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Zusammenfassung 

Schlagworte: Proteinqualitätskontrolle, bakterielle Stressantwort, Antibiotika, Bacillus subtilis 

Alle lebenden Zellen müssen Fluktuationen von abiotischen Umweltfaktoren (z.B. Temperatur, 

Salzgehalt etc.) und daraus resultierendem proteotoxischen Stress entgegenwirken. Ein 

funktionales Proteom wird dabei durch die Aktivität verschiedener Chaperone und Proteasen 

gewährleistet. Dieses Proteinqualitätskontrollsystem (PQK) ist hoch konserviert. Einen Teil 

bilden kleine Hitzeschockproteine (sHsp), die Proteine vor Entfaltung schützen und deren 

Rückfaltung in Kooperation mit Chaperonsystemen begünstigen können. In dieser Arbeit wurde 

YocM als erstes Stress relevantes sHsp in B. subtilis identifiziert und dessen protektive Rolle 

während eines Salzschocks charakterisiert. Zudem wurde ein YocM-mCherry Fusionsprotein 

als in vivo-Aggregatmarker etabliert. Mittels dieses Markers wurde McsB als entscheidendes 

Adapterprotein für die vom Hsp100/Clp Protein ClpC vermittelte Disaggregation von 

Proteinaggregaten unter Hitzestress identifiziert und gleichzeitig dessen Proteinargininkinase 

als essentiell für ebenjene Aktivität erkannt. Dabei stellte sich generell die Disaggregation und 

Rückfaltung im Vergleich zu der Degradation von Proteinaggregaten als bedeutsamer heraus.  

Kürzlich wurden einige Antibiotika charakterisiert, welche auf ClpC als zentralen Punkt in der 

PQK abzielen (z.B. Cyclomarin). In dieser Arbeit konnte gezeigt werden, dass der Austausch 

einer Aminosäure in ClpC (F436A) zu vermehrter Bildung von Proteinaggregaten sowie zu 

erheblich gestörtem Wachstum und sogar Zelltod führt. Diese durch ClpC vermittelte Toxizität 

untermauert die Eignung von ClpC als Ziel für Antibiotika. Im Folgenden wurde ein target-

based screen in B. subtilis etabliert und als proof of concept validiert. Neue Antibiotika, die auf 

ClpC und die PQK abzielen, können so schnell selektiert und anschließend auf deren Effekt auf 

Gram-positive Pathogene weiter getestet werden. 
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Abstract 

Keywords: protein quality control, bacterial stress response, antibiotics, Bacillus subtilis  

All living cells have to deal with fluctuations of abiotic factors, such as temperature and salt 

content, which can cause different types of proteotoxic stress. A functional proteome depends 

on an intricate protein quality control network (PQC) of chaperones and proteases, which is 

highly conserved in all domains of life. As one part of the PQC system, small heat shock 

proteins (sHsp) protect proteins from unfolding and facilitate refolding in cooperation with 

molecular chaperons. During this work, YocM was identified as the first stress-related sHsp of 

B. subtilis, ensuring survival of cells during salt shock. Furthermore, a YocM-mCherry fusion 

protein was established as a protein aggregate marker. Thereby, McsB was identified as the 

main adaptor protein for disaggregation of subcellular protein aggregates by the Hsp100/Clp 

protein ClpC during heat stress, which was dependent on its protein arginine kinase activity. In 

general, protein disaggregation instead of degradation was observed to be the predominant 

process regarding protein aggregate removal in stress response in B. subtilis.  

ClpC as a central player of PQC and stress response was recently identified as a target for 

various antibiotic compounds (e.g. cyclomarin). During this work it was demonstrated that a 

clpC F436A mutation led to severe formation of protein aggregates in vivo and substantially 

impaired survival of B subtilis, which was dependent on the presence of McsB. As this 

deregulation of ClpC by exchange of only one amino acid residue displayed such a toxic 

phenotype, ClpC was confirmed to be an adequate target for antibiotics. Consequently, a ClpC-

target based screen was successfully established and validated in B. subtilis as proof of concept 

to discover and characterize novel antibiotics compounds that address the PQC system in 

Gram-positive pathogenic bacteria. 
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List of abbreviations 

A Adenosine 

AAA+ ATPase associated with diverse cellular activities 

AB Antibody 

Ac Acetate 

ACD α-crystallin domain 

Amp Ampicillin 

AP alkaline phosphatase 

APS ammonium persulfate 

ATP adenosine triphosphate 

BCIP 5-bromo-4-chloro-3-indoyl-phosphat 

BGSC Bacillus Genetic Stock Center 

BSA bovine serum albumin 

C Cytosine 

Cat chloramphenicol acetyltransferase 

cfu colony forming units 

Cm Chloramphenicol 
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CTD carboxyl-(C)-terminal domain 

CV column volume 

Da Dalton 
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ECF enhanced chemifluorescence 

ECF enhanced chemoluminescence 

EDTA ethylenediaminetetraacetic acid 
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G Guanosine 

GB glycine betaine 

GFP green fluorescent protein 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 

(s)HSP (small) Heat shock protein 

IbpA inclusion body protein A 

IMAC immobilized metal ion affinity chromatography 

IPTG isopropyl β-D-1 thiogalactopyranoside 

Kan Kanamycin 
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NTD amino-(N)-terminal domain 

OD600 optical density at 600 nm 

OV overnight cell growth 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate buffered saline 

PC phase contrast microscopy 
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PCR polymerase chain reaction 

PEP phosphoenole pyruvate 

PIPES piperazine-N,N′-bis(2-ethanesulfonic acid) 

PMSF phenylmethanesulfonyl fluoride 

ROS reactive oxygen species 

rpm rotations per minute 

RT room temperature 

SDS sodium dodecyl sulfate 

SMM spizizen minimal medium 

Spec Spectinomycin 

SSC saline sodium citrate buffer 

SUMO small ubiquitin like modifier 

T Thymidine 

TAM triple adaptor mutant 

TBS tris buffered saline 

TCA trichloroacetic acid 

TE tris EDTA 

TEMED N,N,N‘,N‘-tetramethylethane-1,2-diamine 

TES tris EDTA salt 

tet Tetracycline 

TRIS tris(hydroxymethyl)aminomethane 

U Uracil 

Ulp Ubiquitin like protease 

UV ultra violet 

v/v volume per volume 

w/v weight per volume 

wt Wildtype strain 
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1. Introduction 

Life is stressful. This applies to all living organisms known to – and including – mankind. 

Although many factors provoke different types of stress, e.g. oxidative stress, heat stress, salt 

stress, UV and starvation, one underlying aspect is the negative impact on the protein 

homeostasis (Figure 1). Hence, maintaining the dynamic equilibrium of the proteome by a 

functional protein homeostasis is a general and ubiquitous aim of all living cells. These 

protein quality control (PQC) systems consist of a network of chaperones and proteases to 

ensure a functional proteome and the viability of the cell. Molecular chaperones promote 

protein folding and simultaneously protect unfolded proteins from aggregation e.g. by 

holding, shielding and/or facilitating refolding. At the same time, proteases degrade unfolded 

and aggregated proteins to remove them from the system (Figure 1) (Bukau et al., 2006; Hartl 

and Hayer-Hartl, 2009, 2002; Wickner et al., 1999). 

 
 

Figure 1: Simplified overview of general protein quality control mechanisms dealing with proteotoxic 

stress.  

Fluctuations in abiotic factors (heat, UV, water content etc.) cause proteotoxic stress leading to unfolding and 

misfolding of proteins and their subsequent aggregation. The functionality of the proteome is maintained a) by 

chaperones (e.g. DnaK, GroEL), which refold their substrates into the native structure (Repair) and b) by 

proteases (e.g. ClpCP), which degrade them (Removal). 
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1.1. High salinity and salt stress 

Like all living cells, bacteria have to maintain and regulate their intracellular osmotic 

pressure, especially when facing a salt shock (Csonka, 1989). An increase of external salt 

concentrations leads to water efflux, which reduces the volume of the cytoplasm, thereby 

increasing the concentration of intracellular molecules (molecular crowding) and changing the 

turgor pressure. To deal with these circumstances, bacteria in general follow two main 

pathways: the salt-in and/or salt-out strategy (Kempf and Bremer, 1998; Oren, 2008). 

The salt-in strategy follows the idea to realize an osmotic equilibrium by permanently 

increasing the cytoplasmic salt concentration. This mechanism is distributed among, but not 

limited to, members of the Halobacteriaceae (Martin et al., 1999). Living in an environment 

of elevated salinity leads to a constant passive efflux of water to restore an osmotic 

equilibrium. Thus, these organisms permanently possess high intracellular levels of K
+
 ions to 

reduce and/or prevent this salt induced efflux of water. However, elevated levels of K
+
 cause 

severe changes in the intracellular ion composition and therefore have a major influence on 

stability and interaction of macromolecules, e.g. by strengthening hydrophobic interactions. 

As these organisms do not exchange the K
+
 ions with physiologically less interfering 

compounds such as compatible solutes (salt-out strategy), many halotolerant archaea have 

evolved their proteins towards acidic side chain residues, which then use K
+
 ions as their 

respective counterparts. This enhances solvation, but simultaneously restricts optimal growth 

to a permanently elevated salinity (Lanyi, 1974; Mevarech et al., 1977). Collectively, the salt-

in strategy describes life with increased amounts of intracellular ions such as K
+
 and, as a 

consequence of the unfavorable ion composition, substantially adapted macromolecules. 
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Compared to the salt-in strategy, the salt-out strategy does not involve permanent adaptation 

towards increased salinity and is more common. As a fast response towards an osmotic 

upshift, the uptake of K
+ 

ions reduces the efflux of water and the decrease of turgor pressure. 

As a second phase and more long-term adaptation to an increased external osmolality, 

bacteria accumulate compatible solutes and excrete the previously accumulated K
+
 ions 

(Kempf and Bremer, 1998; Roberts, 2005; Wood, 2015). These compatible solutes can be 

accumulated by de novo biosynthesis, uptake and transformation of an imported precursor, 

respectively. They are mostly small organic, polar and zwitterionic molecules like non-ionic 

carbohydrates, amino acids and their derivatives as well as polyols (Figure 2) and described 

as ‘compatible’ since cellular functions are not impaired even at substantially elevated 

intracellular concentrations. Simultaneously, they stabilize e.g. inter- and intramolecular 

protein-protein interactions and are often referred to as osmoprotectants (Boch et al., 1996; 

Ignatova and Gierasch, 2006; Low, 1985). Due to the underlying stabilizing effect, these 

molecules have, despite from salt stress, also been identified to protect macromolecules 

against heat and cold stress (Bashir et al., 2014b, 2014a; Boch et al., 1996; Diamant et al., 

2003, 2001; Hoffmann and Bremer, 2011; Holtmann et al., 2003; Holtmann and Bremer, 

2004; Kempf and Bremer, 1998; Moses et al., 2012; Plaza del Pino and Sanchez-Ruiz, 1995; 

Singer and Lindquist, 1998). 
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Figure 2: Selected compatible solutes. 

Compatible solutes are generally small organic, polar and zwitterionic molecules like non-ionic carbohydrates 

and (derivatives of) amino acids. Especially glycine betaine and proline are the two major compatible solutes 

used by B. subtilis. 

 

 

1.1.1. Salt stress defense strategies in B. subtilis  

As a soil-dwelling organism, B. subtilis is exposed to frequent fluctuations in external salinity 

due to e.g. desiccation, rainfall or flooding. To protect itself from a potential salt shock, 

B. subtilis follows the described classic salt out two step process (see 1.1) starting, as a first 

response, with the fast uptake of K
+
 ions from the environment, increasing its intracellular 

pool from about 350 mM to 720 mM in minimal medium (Whatmore et al., 1990; Whatmore 

and Reed, 1990). Thus, B. subtilis possesses three K
+
 uptake systems with different KtrCD as 

a low-affinity and KtrAB as well as KimA as high-affinity K
+
 transporters in order to allow 

the optimal response to various environmental circumstances (Figure 3) (Gundlach et al., 

2017; Holtmann et al., 2003). Remarkably, transcription of the ktrAB and kimA is regulated 

by a riboswitch which is responsive to cyclic di-AMP (Gundlach et al., 2017; Nelson et al., 

2013).  
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Figure 3: Overview of B. subtilis K
+
, proline and glycine betaine uptake systems.  

During osmotic stress, K
+
 ions are taken up by B. subtilis as a first response by the three uptake systems KtrA/B, 

KtrC/D and KimA. Subsequently, K
+
 is exchanged with compatible solutes to prevent the disturbance of cellular 

processes by K
+
 ions. At that, export of K

+
 is poorly understood and performed by cation-proton antiporter 

KhtT/U. As one of the two major compatible solutes in B. subtilis, glycine betaine (GB) can be taken up by the 

osmotically regulated transport systems OpuA, OpuC and OpuD, or synthesized from a precursor molecule like 

choline (C), which is imported by OpuB and OpuC. Proline (P) is the second major compatible solute and can, 

besides from being an osmoprotectant (imported by OpuE), be taken up as a nutrient by PutP and/or GabP. 

Furthermore it can be converted to glutamate by PutB/C and vice versa be generated from glutamate as precursor 

by either the ProH/A/J pathway (to serve as an osmoprotectant) or by the ProB/A/I pathway (during regular 

metabolism). Adapted from (Hoffmann and Bremer, 2016). 

 

Uptake of high levels of intracellular K
+
 is beneficial as a first line of defence to prevent 

substantial water efflux regarding osmotic stress, but would eventually affect viability of the 

cell by disturbing general processes such as protein-protein or protein-DNA interactions and 

enzyme activity in general. Thus, this first response is followed by the export of K
+ 

and 

simultaneous uptake and synthesis of compatible solutes. However, the export of K
+
 in 

B. subtilis is only poorly understood with one cation-proton antiporter KhtTU, which is 

responsive to salt stress (Figure 3) (Fujisawa et al., 2007; Hahne et al., 2010). 
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On the contrary, the different pathways and mechanisms of synthesis and uptake of the 

various compatible solutes have been studied more extensively, where glycine betaine and 

proline have been identified as the two main compatible solutes regarding B. subtilis (Figure 2 

and Figure 3) (Whatmore et al., 1990). When grown in the presence of 1 mM glycine betaine, 

B. subtilis is able to accumulate this compatible solute to intracellular concentrations reaching 

over 0.6 M upon salt shock (Whatmore et al., 1990). On the one hand this accumulation is the 

result of the three high-affinity transporters OpuA, OpuC or OpuD, albeit OpuC can import 

other osmoprotectants as well (Kappes et al., 1996; Kempf and Bremer, 1995). On the other 

hand it is important to note that besides from glycine betaine, its precursor molecule choline 

can be imported by OpuB and subsequently oxidized into glycine betaine (Boch et al., 1996; 

Kappes et al., 1999; Nau-Wagner et al., 1999). 

Proline is the second major compatible solute used by B. subtilis and was observed to 

accumulate to levels up to 0.5 M upon salt shock starting from less than 20 mM in unstressed 

cells (Whatmore et al., 1990). It is imported by the OpuE transporter during osmotic stress or 

by PutP as a nutrient, albeit it can additionally be used as a nutrient when converted to 

glutamate by PutBC (Figure 3) (Moses et al., 2012; von Blohn et al., 1997). Vice versa, 

certain amino acids such as glutamate can be transformed into proline involving different 

biosynthetic pathways regarding either osmotic stress or during regular proline biosynthesis 

(Zaprasis et al., 2015). Furthermore, GabP as a third proline uptake system has been 

characterised, which belongs to the family of γ-amino butyrate (GABA) transport systems 

(Zaprasis et al., 2014). Collectively, B. subtilis has developed many ways to accumulate 

compatible solutes as part of their salt-out strategy such as uptake, conversion of a precursor 

or de novo synthesis.  
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In addition to their crucial role in salt stress, these compatible solutes were identified to play a 

minor role in heat stress as well. The addition of chemical chaperones relieved the 

thermosensitivity of a dnaK mutant and reduced the concurrent intracellular aggregate 

formation (Caldas et al., 1999; Chattopadhyay et al., 2004). Furthermore, glycine betaine was 

identified to positively affect the activity of different E. coli chaperone systems such as DnaK, 

GroEL or ClpB in vitro (Diamant et al., 2001).  

In B. subtilis, this overlap of heat and salt stress related defensive mechanisms becomes 

apparent regarding salt and thermotolerance development, which describes the survival of a 

lethal heat or salt shock after a short exposure to a milder pre-shock. Thereby, a mild heat pre-

shock can cross-protect against a severe salt stress and a mild salt stress pre-shock can cross-

protect against a severe heat shock, suggesting that both stress response processes are 

intricately connected (Höper et al., 2005; Völker et al., 1992). This priming process depends 

on the ability of the cellular stress response and protein quality control system to prepare and 

protect their cells against otherwise lethal stresses (Runde et al., 2014; Völker et al., 1992). A 

connecting factor of heat and salt stress might be the general stress sigma factor SigB, which 

is important for B. subtilis heat shock response and is also directly involved in salt stress 

response, e.g. by controlling transcription of some osmoregulated transporter systems (Hahne 

et al., 2010; Hecker et al., 2007; Höper et al., 2006, 2005; Spiegelhalter and Bremer, 1998; 

Steil et al., 2003; von Blohn et al., 1997). These observations suggest a close connection of 

heat and salt stress in nature. 
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1.2. Small heat shock proteins 

Salt stress and heat stress can substantially affect the functionality of the proteome. Therefore, 

all organisms possess a protein quality control (PQC) system to counteract any kind of 

proteotoxic stress, continuously monitoring and maintaining protein homeostasis. One part of 

theses PQC systems are small heat shock proteins (sHsp), which occur ubiquitously in all 

domains of life and have even been detected in some marine viruses (Maaroufi and Tanguay, 

2013). Although not every individual species has been identified to possess sHsps, their 

average number per organism ranges from 1-2 in most bacteria with up to 36 in plants 

(Haslbeck and Vierling, 2015; Waters, 2013; Waters et al., 2008).  

As their name suggests, these sHsps are rather small in size with a range of 12 to 42 kDa. 

Despite their small size sHsps have the ability to form higher oligomeric structures, which is 

considered as crucial for their activity. These oligomeric structures can vary from the 

formation of dimers as the underlying building block up to large 36mers (Basha et al., 2013; 

Bepperling et al., 2012; Delbecq and Klevit, 2013). The formation of this underlying dimer is 

thought to be predominantly dependent on the highly conserved α-crystallin domain (ACD), 

which is embedded between the N-terminal domain (NTD) and the C-terminal domain (CTD) 

and the characteristic feature of the sHsp family. The flanking regions, especially a I-x-I/V 

motif in the CTD, are often considered as essential for the assembly of higher oligomers 

(Basha et al., 2012; Chen et al., 2010; McHaourab et al., 2012). However, although the 

number of available structures of sHsps is constantly increasing, exact recognition sites still 

remain elusive and the prediction of their oligomeric state based on their DNA or protein 

sequence has not been achieved yet (Jaspard and Hunault, 2016). 
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1.2.1. Molecular mechanisms of sHsps in protein quality control 

The molecular mechanisms by which sHsps function as chaperones are not well understood. 

However, the emerging picture is that, as part of the PQC network, they can act alone, but in 

addition support and facilitate the activity of other ATP dependent chaperones, while sHsps 

per se act ATP independently (Figure 4). They interact with misfolding proteins, protecting 

them from irreversible aggregation. Furthermore, they stabilize early unfolding intermediates, 

which does not only maintain partial enzyme activity (‘holdase’ activity), but also allows 

spontaneous refolding (Figure 4) (Basha et al., 2012; Ehrnsperger et al., 1997; Horwitz, 1992; 

Mchaourab et al., 2002; Stromer et al., 2003).  

 
 

Figure 4: Model of the role of small heat shock proteins in protein homeostasis.  

Small heat shock proteins (sHsp) occur in different oligomeric states. They interact with partially unfolded 

substrate proteins keeping them in an intermediate, partially active state. Concurrently they form higher 

oligomeric sHsp-substrate protein complexes, which facilitates disaggregation and refolding by molecular 

chaperones (e.g. Hsp100/ClpB and Hsp70/DnaK system) (adapted from (Haslbeck and Vierling, 2015)). 
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Moreover, disaggregation and refolding of misfolded proteins by chaperones systems like 

ClpB and/or DnaKJE can be enhanced by the presence of sHsp IbpA/B in protein aggregates 

in E. coli, as well as Hsp26 in yeast (Figure 4) (Haslbeck et al., 2005a, 2005b; Mogk et al., 

2003b, 2003a; Żwirowski et al., 2017). The formation of these larger sHsp-substrate 

complexes is considered as part of their activity in general (Figure 4) (Basha et al., 2013; 

Bepperling et al., 2012). Recently, specific sHsps were observed to allow controlled protein 

sequestration to subcellular aggregates in eukaryotic cells, which entitled those sHsps as 

protein aggregases and broadens their role in PQC (Specht et al., 2011; Ungelenk et al., 

2016). However, the exact recognition sites for binding of substrate proteins as well as 

oligomerisation per se have not been identified yet (Basha et al., 2006; Haslbeck and 

Vierling, 2015; Hochberg et al., 2014; van Montfort et al., 2001). 

As their name suggests, sHsp are often involved in protection from heat stress (Giese and 

Vierling, 2002; Haslbeck et al., 2005a; Krajewski et al., 2014). As actual heat stress is 

relative, the activity range of sHsps depends on the physiological temperature of the organism 

(Kim et al., 1998; Laksanalamai and Robb, 2004; Lelj-Garolla and Mauk, 2006). In general, 

their mode of activation can be categorized into a) being synthesized upon stress or b) a 

simple change in equilibrium of already present sHsp oligomers, revealing substantially more 

substrate binding sites (Figure 4) (Haslbeck et al., 2008, 1999; McHaourab et al., 2009; 

Posner et al., 2012).  

Some sHsps have also been identified to play a role in various other kinds of stress, including 

e.g. desiccation, osmotic stress and high salinity (Jiang et al., 2009; Khaskheli et al., 2015; 

Kuang et al., 2017; Mu et al., 2013; Ruibal et al., 2013). While some sHsps were shown to 

have a more specific role (e.g. salt stress) (Muthusamy et al., 2017), most take part in various 
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stress responses (Li et al., 2016; Paul et al., 2016; Ruibal et al., 2013; Sandhu et al., 2017; 

Sarkar et al., 2009; Wang et al., 2017a; Zhao et al., 2018). This is especially true for plants, 

which, as sessile organisms, always have to withstand the different types of stress without the 

possibility of simply avoiding it by moving away. Therefore, it appears reasonable that plants 

have developed a broader repertoire of different sHsps during evolution (Waters, 2013; 

Waters et al., 2008). Furthermore, it was demonstrated in many studies that both heterologous 

and homologous overexpression of sHsps led to a protective phenotype regarding multiple 

types of stress. This clearly indicates that although a sHsp may have evolved a more specific 

role under distinct circumstances, it can still contribute to protein protection in general (Kim 

et al., 2013; Salas-Muñoz et al., 2012; Tian et al., 2012; Wang et al., 2017b). 

1.2.2. Potential sHsps in B. subtilis 

Small heat shock proteins occur in all domains of life. In the Gram-positive model organism 

B. subtilis, three potential sHsp genes (yocM, cotM, cotP) encoding the sHsp-characteristic 

conserved α-crystallin domains were detected by sequence alignments (Reischl et al., 2001). 

Two of them (cotM, cotP) were identified as important in spore formation and it could 

subsequently be demonstrated that they participate in the formation of proteinaceous spore 

coat structures during spore development (Henriques et al., 1997; McKenney et al., 2013, 

2010; McKenney and Eichenberger, 2012; Wang et al., 2009). The transcription of the 

remaining putative small heat shock yocM did not appear to be under heat shock control, thus 

it was not considered as part of the PQC (Reischl et al., 2001). Recently, whole genome 

transcriptome studies gave insights into the regulation pattern of yocM, revealing it to be 

substantially different compared to the more similar expression profiles of cotM and cotP, 

which both display strong bias towards upregulation upon sporulation conditions (Nicolas et 
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al., 2012). However, transcription of yocM was observed to be generally induced by salt stress 

(Nicolas et al., 2012) and additionally classified as part of SigW regulon, which is induced by 

cell wall and membrane stress and simultaneously responsive to salt stress (Zweers et al., 

2012). However, it is not clear if and how YocM (or CotM and CotP) as a potential sHsp is 

part of the cellular chaperone network in B. subtilis.  

1.3. Chaperone systems 

In addition to small heat shock proteins, whose protective activities are considered to be 

rather passive, the PQC system also consists of larger molecular chaperone systems to 

actively facilitate protein folding. These molecular chaperones have various operational areas 

ranging from the stabilization of nascent peptide chains during translation (trigger factor) to 

the prevention of protein aggregation and the active refolding of their substrate proteins (Hartl 

and Hayer-Hartl, 2002). The underlying substrate binding (‘holding’) activity of chaperones, 

which per se already prevents interaction of exposed hydrophobic peptide chains due to e.g. 

heat stress, is often ATP-independent, whereas active refolding of substrate proteins is 

energy-consuming and hence requires ATP (Hartl and Hayer-Hartl, 2002; Sauer and Baker, 

2011). 

One prominent example is the Hsp70/DnaK system, which performs an ATP dependent 

‘substrate bind and release’ cycle to keep partially unfolded substrate proteins in an 

intermediate folded state that is prone to subsequent spontaneous refolding upon release (e.g. 

Hsp70/DnaK-system) (Hartl and Hayer-Hartl, 2002; Hesterkamp et al., 1996). As another 

example, chaperonins (Hsp60) bind and completely shield their substrate proteins from the 

cytoplasm favoring correct refolding by providing a beneficial environment (Hayer-Hartl et 

al., 2016). Furthermore, Hsp100/Clp proteins unfold misfolded and aggregated proteins by 
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translocating their substrate proteins through a barrel like structure. These chaperones often 

occur in a complex with of an additional downstream-acting protease to directly remove their 

substrates, e.g. damaged proteins or aggregates, from the cell (Figure 1, see 1.4).  

1.4. Protease complexes 

The proteome is a dynamic equilibrium of synthesis and degradation, where every protein is 

synthesized with a certain purpose. After this purpose has been fulfilled it can be beneficial to 

actively remove the protein and re-use its amino acids to synthesize another peptide chain. 

However, this process at first glance might appear unfavorable regarding the energy needed 

for degradation in the first place (Hoffman and Rechsteiner, 1996; Sauer and Baker, 2011). 

Moreover, during the lifetime of a protein, its polypeptide chain can accumulate damages 

such as oxidations of amino acid residues, which impair or abolish its structure and/or 

function. Consequently, refolding by chaperones to restore its activity is not possible and the 

degradation by proteases becomes more important. The degradation of these non-functional 

and/or aggregated proteins is part of the PQC and termed general proteolysis. Remarkably, 

proteolysis is also performed as a regulatory mechanism. In this regulatory proteolysis, the 

same proteases involved in general proteolysis are responsible for adjusting the levels of 

substrate proteins e.g. to influence gene expression by modulating the amounts of a 

transcription factor or regulator (Battesti and Gottesman, 2013; Elsholz et al., 2017; Machiels 

et al., 1997; Wu et al., 2000).  
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1.4.1. AAA+ proteases and Hsp100/Clp proteins 

In eukaryotes, the major protease is the proteasome. The proteasome is a compartmentalized 

proteolytic machinery consisting of a core particle flanked with two regulatory particles. As 

degradation of native proteins would be detrimental, the regulatory particles only detect 

specifically ubiquitin marked proteins and allow their subsequent translocation into the core 

particle (Hershko et al., 1983). The core particle consists of a barrel like structure, which 

guarantees a shielded environment for degradation of the substrate proteins, as the 

hydrolyzing amino acid residues are pointing inside (DeMartino and Slaughter, 1999; Voges 

et al., 1999).  

The eukaryotic proteasome and the intracellular proteases of bacteria are part of the AAA+ 

(ATPase associated with various cellular activities) superfamily. These protease complexes 

form hexameric barrel-like structures, unfold and translocate their respective substrates into a 

central axial pore, thus functioning in an equivalent way to the heptameric proteasome (Figure 

1 and Figure 5). This translocation of a substrate is driven by conformational changes due to 

cycles of ATP binding and hydrolysis (Martin et al., 2005). Interaction is especially facilitated 

by specific peptide loops that lay inside of the barrel like structure and transmit the generated 

force onto the substrate (Hinnerwisch et al., 2005). 
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Figure 5: Adaptor protein mediated activation of B. subtilis ClpC.  

Monomeric ClpC consists of an N-terminal domain (NTD, purple), two ATPase domains D1 and D2 (green) and 

a middle domain (M-domain, blue). By interaction with the NTD, adaptor proteins (grey) target substrate 

proteins (black line) towards ClpC and induce the oligomerisation. Subsequently, ClpP is able to constitute a 

double heptameric proteolytic chamber underneath the ClpC hexamer to form the now active ClpCP complex 

(adapted from (Elsholz et al., 2017)). 

 

In general, these protease complexes contain one conserved 200-250 amino acid AAA+ 

module (D1) (e.g. Lon, FtsH, ClpX), but can consist of an additional one (D2), which leads to 

the formation of a double ring structure when oligomerized (e.g. ClpA, ClpC) (Figure 6) 

(Kirstein et al., 2009b; Sauer and Baker, 2011). It was observed, that the second ring owns a 

stronger unfoldase activity (Kress et al., 2009). Within one AAA+ module, there are specific 

Walker A and Walker B motifs to bind and hydrolyze ATP, respectively. A mutation within 

the Walker B motif, where the essential glutamate for hydrolysis of ATP is exchanged with 

e.g. an alanine residue, separates the event of ATP binding from subsequent hydrolysis and 

hence is often used as an ATP and substrate trapping mutant (Kirstein et al., 2006; Weibezahn 

et al., 2003).  

Furthermore, theses protease complexes can be categorized by specific N-terminal and/or 

intermediate domains, which are only present in some subtypes of this larger family. One 

example is the zinc binding motif within the N-terminal domain of ClpX species, which is 
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absent in ClpA species and indicates a specific susceptibility towards oxidative stress (Figure 

6) (Wojtyra et al., 2003). In addition, the linker or middle domain (MD), which intercepts the 

AAA+ modules in ClpC and ClpB species, is absent in protease complexes with only one 

AAA+ module and ClpA species (see 1.4.2 and Figure 6) (Haslberger et al., 2007; Kress et 

al., 2009; Sauer and Baker, 2011). Especially these structural features demonstrate that, 

although structurally rather similar, these protease complexes can be functionally quite 

diverse. 

In general, AAA+ proteins can either consist of one polypeptide chain (e.g. AAA+ proteases 

Lon and FtsH) or are formed by an association of an unfoldase attached to a protease complex 

(Hsp100/Clp proteins). Remarkably, one protease can often associate with different 

Hsp100/Clp proteins to form a functional proteolytic complex (Figure 5 and Figure 6) (Sauer 

and Baker, 2011). However, the way these complexes are formed is quite diverse when 

comparing different bacterial species. In B. subtilis, the Hsp100/Clp proteins oligomerize only 

in the presence of the respective adaptor protein, subsequently allowing ClpP to also 

oligomerize and assemble to a complete double heptameric proteolytic complex attached to 

the hexameric unfoldase (Figure 5 and Figure 6) (Kirstein et al., 2006). In E. coli, a stable 

complex of the protease can already form without the presence of an oligomerized unfoldase 

to attach to (Kress et al., 2007).  
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Figure 6: Structural organization of selected Hsp100/Clp proteins of B. subtilis and E. coli. 

B. subtilis possesses, among others, the three Hsp100/Clp proteins ClpC, ClpE and ClpX, which can all associate 

with ClpP (red) to form a proteolytic complex. E. coli does also have a ClpX species, but lacks a variant of ClpE 

and ClpC. The stand-alone disaggregase ClpB of E. coli is absent in B. subtilis. Other proteases and protease 

complexes such as Lon and FtsH are not shown within this selection. 

 

Regardless of the species, the interaction of the Hsp100/Clp protein and the respective 

protease such as ClpP is facilitated by specific surface loops containing a [LIV]-G-[FL] motif, 

which are pointing downwards (Kim et al., 2001; Liu et al., 2013). Regarding B. subtilis, the 

central protease ClpP associates with the different Hsp100/Clp unfoldases ClpC, ClpX and 

ClpE (Figure 6) (Gerth et al., 2004). For ClpC and ClpE species the interaction is 

predominantly based on the tripeptide sequence VGF, while ClpX species contain an 

analogous IGF motif (Kim et al., 2001). When comparing the three unfoldases regarding 

other their structural features it also becomes obvious that while both ClpC and ClpE possess 

a similar linker/middle domain (MD), ClpX and ClpE share a comparable N-terminal domain 

(Figure 6). 

When attached to ClpP, all three Hsp100/Clp proteins take part in various kinds of general 

and regulatory proteolysis: ClpXP degrades ssrA-tagged substrate proteins and is involved in 

oxidative stress response (M. Nakano et al., 2002; S. Nakano et al., 2002; Wiegert and 

Schumann, 2001), ClpEP was observed to only play a role under severe heat shock conditions 
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(Gerth et al., 2004; Miethke et al., 2006), and ClpCP is a key player in competence 

development (see 1.4.3), heat shock response (see 1.4.4) and sporulation (Derré et al., 1999; 

Kirstein et al., 2007; Krüger et al., 2001; Msadek et al., 1994; Pan et al., 2001; Turgay et al., 

1998).  

1.4.2. The special case of the absent disaggregase ClpB in B. subtilis 

When comparing the various AAA+ proteins from different bacterial species it becomes 

obvious that B. subtilis lacks a stand-alone disaggregase such as ClpB in E. coli or Hsp104 in 

yeast (Figure 6). These ClpB species lack the specific peptide surface loop to interact with 

ClpP and are thus per se incapable of forming a proteolytic complex (Gerth et al., 2004; 

Kirstein et al., 2009b; Mogk et al., 2015; Tanner et al., 2018). However, a genetically 

engineered variant where ClpB was fused to the ClpP protease was capable of substrate 

degradation indicating the possibility of a switch between disaggregation and proteolytic 

degradation of substrate proteins upon attachment of ClpP (Weibezahn et al., 2004, 2003). 

Remarkably, B. subtilis appears to be the only species within its genus that has been identified 

to possess ClpC, but not ClpB (Namy et al., 1999). 

There are certain hints that B. subtilis ClpC has a functional role independent of ClpP, 

suggesting that ClpC might act as the B. subtilis ‘ClpB’. In vitro, ClpC (+ its adaptor MecA, 

see 1.4.3) has been observed to bind to Spo0A thereby repressing its target promotors and 

inhibiting transcription independent of ClpP (Tanner et al., 2018). Furthermore, the 

occurrence of fewer ClpP tetradecamerix complexes (~1200 per cell) than hexameric ClpX, 

ClpC and ClpE complexes (~1750 per cell) was estimated in the cell (Gerth et al., 2004). 

However, as the individual ATPase complexes could presumably attach to both sides of ClpP 

as observed in vitro for ClpX and ClpA in E. coli, all unfoldases could at least hypothetically 
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be associated with a protease (Grimaud et al., 1998; Ortega, 2002). Regarding B. subtilis, 

hints towards a mixed ClpX-ClpP-ClpE complex were obtained in vitro, but not further 

characterized regarding physiological importance (Gerth et al., 2004).  

Out of the three candidates that could represent ClpB in B. subtilis, ClpE (~100 per cell) only 

plays a subordinate role and becomes more important under severe heat shock conditions 

(Gerth et al., 2004; Miethke et al., 2006). On the contrary, ClpC is quite similar to ClpB 

regarding the presence of a coiled-coil middle domain (MD or linker domain) (Figure 5), 

which is in addition absent in ClpX species (Figure 6). This MD forms a ring-like structure 

around the active hexameric ClpB complex through head to tail interactions, which represses 

and controls its activity in tight cooperation with DnaK/Hsp70 (Carroni et al., 2014; Oguchi 

et al., 2012). Remarkably, the analogous MD of ClpC is only half the size of the MD of ClpB, 

which does not allow this specific head to tail interaction within an active hexamer (Figure 6). 

However, a head to head interaction within a decameric ‘resting state’ of ClpC was identified 

in S. aureus ClpC (Carroni et al., 2017). This observation still implies a major regulatory 

function for the MD. 

Taken together, although some aspects point towards a role of ClpC independent of ClpP, it 

still remains elusive whether ClpC can act as a stand-alone disaggregase in protein quality 

control and if there is a regulatory switch between ClpC and ClpCP.  

1.4.3. Adaptor proteins of ClpC 

As the same proteolytic complexes are involved in both general and regulatory proteolysis, an 

accurate substrate recognition is crucial for all protease complexes in order to prevent 

mistargeting and malfunction. Besides from substrate recognition of N- or C-terminal 



Introduction 

Page | 20  

 

degrons, which are per se part of the substrate protein, many Hsp100/Clp disaggregases and 

AAA+ protease complexes enable or enhance their substrate recognition capabilities by 

interaction with various external adaptor proteins (Figure 5) (Kirstein et al., 2009b; Wiegert 

and Schumann, 2001). These adaptor proteins target substrate proteins to the respective 

protease complex, predominantly interacting with their N-terminal domains, thereby adding 

another layer of regulation to the intricate pathways of regulatory and general proteolysis 

(Kirstein et al., 2009b; Persuh et al., 1999).  

Regarding B. subtilis ClpC, three adaptor proteins (MecA, YpbH and McsB) have been 

identified and characterized to date. Importantly, in B. subtilis the adaptor proteins completely 

modulate the activity of ClpC leaving it incapable of oligomerizing without an adaptor protein 

present (Kirstein et al., 2006, 2009b). The paralogs MecA and YpbH are about 26 kDa in size 

and facilitate ClpC mediated disaggregation and refolding of aggregated proteins generated 

by e.g. heat stress in vitro (Schlothauer et al., 2003). Furthermore, MecA is involved in 

regulatory proteolysis to control competence development of B. subtilis. At that, MecA 

constantly targets the master regulator of competence, ComK, for ClpCP degradation, which 

thereby represses competence development. The quorum sensing induced expression of comS 

leads to outcompetition of ComK by newly synthesized ComS. The now released positive 

auto-regulator ComK accumulates, which leads to the expression of all competence related 

genes and the development of a competent subgroup in the B. subtilis population (Prepiak and 

Dubnau, 2007; Turgay et al., 1998, 1997). This example of regulatory proteolysis 

demonstrates the importance of specific adaptor proteins, as the same protease complexes can 

simultaneously be involved in general proteolysis as well.  
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1.4.4. The protein arginine kinase McsB 

The third adaptor protein of ClpC is the 40 kDa protein McsB, which is a protein arginine 

kinase and thereby substantially different from the other two, MecA and YpbH (Fuhrmann et 

al., 2009; Kirstein et al., 2007). At that, McsB is involved in the regulatory proteolysis of the 

heat shock repressor CtsR by ClpCP, controlling the heat stress response of B. subtilis (Derré 

et al., 1999; Fuhrmann et al., 2009; Krüger et al., 2001). Furthermore, McsB has been 

identified to delocalize and disassemble competence proteins from the cell poles (Hahn et al., 

2009). Both activities were observed to be primarily dependent on its arginine kinase activity. 

Hence it is essential to determine the respective impact of its role as an adaptor protein and/or 

as an arginine kinase. 

Under unstressed conditions, McsB is inhibited by interaction with ClpC as a result of their 

neighboring genome location and co-translation (Figure 7) (Elsholz et al., 2011a; Kirstein et 

al., 2005). Stress induced release of McsB, e.g. due to competition of ClpC with stress 

induced unfolded proteins, and subsequent activation by its activator protein McsA leads to 

auto-phosphorylation of McsB, which is dependent on the kinase activity of McsB (Elsholz et 

al., 2011a; Kirstein et al., 2005). This activated McsB species can now phosphorylate, among 

others, the class III heat shock repressor CtsR and target it for ClpCP degradation (Fuhrmann 

et al., 2009; Kirstein et al., 2005; Krüger et al., 2001). As CtsR represses the clpC operon 

(encoding ctsR, mcsA, mcsB and clpC) and the monocistronic genes clpE and clpP, removal 

of CtsR results in de-repression and upregulation of the class III heat shock genes, including 

CtsR (Figure 7). This negative feedback loop guarantees the shutdown of the stress response 

system after the cells are no longer exposed to stress.  
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As a regulator of this kinase activity of McsB, a specific arginine phosphatase YwlE was 

identified to dephosphorylate all phosphorylated arginine residues, including McsB per se 

(Figure 7) (Elsholz et al., 2010; Kirstein et al., 2005; Stannek et al., 2015). On one hand, 

overexpression of ywlE resulted in inhibition of McsB activity (Hahn et al., 2009). On the 

other hand, a full deletion of ywlE was observed to result in hyperactivation of McsB and 

simultaneously stabilized phosphorylated arginine residue (Elsholz et al., 2012). This effect 

allowed the identification of protein arginine phosphorylation sites, which could not be 

detected in the wildtype strain (Elsholz et al., 2012). The detection of phosphorylated arginine 

residues all over the proteome in this ∆ywlE mutant strain clearly indicated that this specific 

type of phosphorylation has a significant impact on cellular physiology (Elsholz et al., 2012). 

This is supported by the fact that the simultaneous deletion of both clpC and ywlE, as the two 

inhibitors of McsB activity, had a severe negative impact on viability of B. subtilis (Elsholz et 

al., 2011a).  
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Figure 7: Simplified overview of regulation of CtsR activity by McsB. 

CtsR inhibits the expression of class III heat shock genes (ctsR, mcsA, mcsB, clpC, clpP, clpE) and McsB is 

inhibited by specific interaction with ClpC due to translational coupling under non-stressed conditions. Heat 

stress leads to upregulation of class III heat shock genes due to a) inactivation of CtsR due to its intrinsic 

thermosensor and b) release and activation of McsB by its activator McsA with subsequent phosphorylation and 

targeting of CtsR for degradation by ClpCP. It is not completely understood how protein arginine 

phosphorylation is functional as a general degradation tag on unfolded and misfolded proteins. YwlE is the 

counterpart of McsB and dephosphorylates active McsB and its substrates. Both YwlE and McsA can be 

inactivated by oxidative stress, which links heat and oxidative stress conditions. 

 

The specific role of arginine phosphorylation by McsB and the targeting of substrate proteins 

as an adaptor to ClpCP is still unclear (Figure 7). Regarding degradation of CtsR by ClpCP it 

has been shown that kinase active McsB is essential, although CtsR does not have to be 

phosphorylated (Elsholz et al., 2010, 2011a). However, kinase inactive McsB was identified 

to be still able to bind and thereby relieve CtsR-DNA interactions, which is sufficient to de-

repress its target genes (Elsholz et al., 2010). In addition, certain arginine residues on ClpC 

were identified to be crucial for its activation by McsB, but not MecA, indicating that while 

acting as an adaptor protein, McsB might simultaneously modulate the activity of ClpC by 
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arginine phosphorylation as well (Elsholz et al., 2012). However, first hints were obtained 

that phosphorylated arginine residues on partially unfolded substrates might serve as a tag for 

ClpCP degradation without the presence of McsB as an adaptor protein and, instead, with 

specific binding pockets for phosphorylated arginine residues on the N-terminal domain of 

ClpC (Trentini et al., 2016). This is supported by the observations that binding of 

phosphorylated arginine was detected for M. tuberculosis ClpC1 (Weinhäupl et al., 2018). 

Taken together, the role of arginine phosphorylation in McsB dependent targeting of 

substrates to ClpC while modulating its activity is not completely understood. This is in 

particular due to the rather complicated discrimination between the arginine kinase activity of 

McsB and its role as an adaptor protein. 

1.5. Hsp100/Clp complexes as novel target for antibiotics 

Classic approaches in antimicrobial therapy are based on targeting pathways which are of 

particular importance during cellular growth such as translation, transcription, cell-wall 

synthesis and replication. Following this strategy, antibiotics have saved millions of lives in 

the last decades. However, due to, among others, inappropriate prescribing and excessive 

overuse (in particular in agriculture), antibiotic resistant bacteria are continuously emerging 

worldwide (Kåhrström, 2013).  

In addition to the problematic acquisition of resistance towards antibiotics, some bacteria 

have been identified to develop a specific, more antibiotic tolerant life style: persistence 

(Balaban et al., 2019; Lewis, 2012). While resistant bacteria are able to proliferate and 

replicate during antibiotic treatment without being negatively affected, persistence describes 

the ability of a minor part of the population to withstand and survive antimicrobial treatment, 

however, without being able to replicate during exposure of the drug. It is important to note 
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that a bacterial culture derived from a persistent subset of bacteria becomes as susceptible to 

the original drug as the parental culture. Persistence is in contrast to resistance not 

transferable (Balaban et al., 2019). 

Although persister cells only represent a minor fraction of a bacterial population, they can 

become a serious threat. Since e.g. in these dormant cells all processes regarding proliferation 

are substantially downregulated they can tolerate all kinds of antibiotics that target processes 

associated with cellular growth such as transcription, translation and replication (Balaban et 

al., 2019; Fisher et al., 2017; Koul et al., 2008; Nathan, 2011). These observations, among 

others, emphasize the need for new targets in antimicrobial therapy, which additionally 

address the issue of persistence in bacteria. 

Recently, some antibiotic compounds were observed to kill persisters of pathogenic bacteria 

such as M. tuberculosis and S. aureus and identified to target the protein quality control 

machinery (Conlon et al., 2013; Gao et al., 2015; Schmitt et al., 2011). At first glance, this 

approach appears to be promising as a functional proteome is obviously crucial for all cells. 

Furthermore, during infection, the pathogen has to deal with the host immune system and 

numerous types of stress, including reactive oxygen and nitrogen species (ROS/RNS), iron 

and general nutrient starvation, acidification and hypoxia, which all affect the functionality of 

its proteome (Kurthkoti et al., 2017; Lupoli et al., 2018; MacMicking et al., 1997; Nathan and 

Cunningham-Bussel, 2013; Vaubourgeix et al., 2015; Voskuil et al., 2011). Moreover, a 

defective Hsp100/Clp complex has often been observed to result in impaired virulence, 

pathogenicity, infectivity and/or viability of bacteria in general (Gaillot et al., 2000; Kwon et 

al., 2004; Ollinger et al., 2012; Rouquette et al., 1998, 1996; Sassetti et al., 2003; Wozniak et 

al., 2012). Both could be advantageous when addressing the PQC in antimicrobial therapy. 
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Furthermore, compounds that target the PQC machinery can help to elucidate the mechanism 

of action of their respective target in more detail since some of them were observed to display 

an unusual mode of action in comparison to a simple competitive or allosteric inhibition. One 

example are the acyldepsipeptides (ADEP), which simultaneously activate and uncouple their 

target ClpP from ClpCP leading to uncontrolled proteolysis and eventually cell death (Brötz-

Oesterhelt et al., 2005; Famulla et al., 2016). Vice versa, the cyclic peptides ecumicin and 

lassomycin were identified to enhance the activity of their target ClpC1 in M. tuberculosis 

and were additionally postulated to uncouple it from the ClpP complex, leading to a potential 

toxic accumulation of no longer degraded substrate proteins (Figure 8) (Gao et al., 2015, 

2014; Gavrish et al., 2014). ClpC1 is also the target of cyclomarin, which leads to enhanced 

and deregulated activity without uncoupling from the proteolytic complex (Figure 8) (Schmitt 

et al., 2011). Furthermore, a dihydrothiazepine derivative was shown to deoligomerize ClpX 

in S. aureus and thereby diminish virulence (Fetzer et al., 2017). All these compounds 

deregulate their target species in a special way, which might help gain more insight into the 

mechanism of e.g. ClpC activation. 
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Figure 8: Structures of natural products cyclomarin A, ecumicin and lassomycin. 

Binding sites of cyclomarin A, ecumicin and lassomycin on the N-terminal domain of ClpC1 of M. tuberculosis 

are indicated in Figure 9. 

 

Remarkably, the natural products cyclomarin, ecumicin and lassomycin all bind to the N-

terminal domain (NTD) of ClpC1 in M. tuberculosis to modulate its function (Culp and 

Wright, 2017; Gao et al., 2015; Gavrish et al., 2014; Vasudevan et al., 2013; Weinhäupl et al., 

2018), which is similar to adaptor proteins that also interact with the NTD of e.g. B. subtilis 

ClpC (Figure 9) (Kirstein et al., 2009b). However, a mycobacterial adaptor protein for ClpC1 

and ClpX has not been identified yet. Nevertheless there is a first hint towards an adaptor-

protein like interaction of ClpC1 with ClpS in vitro (Marsee et al., 2018). Although crucial for 
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activity of B. subtilis ClpC (and ClpCP), the formation of an active proteolytic ClpC1 and 

ClpP1/ClpP2 complex does apparently not rely on the presence of an adaptor protein 

(Benaroudj et al., 2011; Kirstein et al., 2006; Kress et al., 2007; Marsee et al., 2018; 

Schlothauer et al., 2003; Schmitz and Sauer, 2014; Weinhäupl et al., 2018). Nevertheless, 

since their way of interacting with their target is comparable, a deeper understanding of the 

activation mechanism of Hsp100/Clp proteins such as ClpC by their respective adaptor 

proteins might help to understand the mode of action of antibiotic compounds that target 

similar Clp species. 

 
 

Figure 9: Natural products cyclomarin, lassomycin and ecumicin bind to the N-terminal domain of ClpC1 

in M. tuberculosis.  

A) Crystal structure of B. subtilis ClpC indicating the N-terminal domain (NTD, purple), the middle/linker-

domain (blue) and the two ATPase domains D1 and D2 (green, light green, respectively) (PDB 3PXI). B) 

Superimposed structures of B. subtilis ClpC NTD (Bsu, purple) and M. tuberculosis ClpC1 (MTB, grey) (PDB 

3WDC). C) Binding sites of lassomycin (yellow, Q17/R21/P79), cyclomarin (F2/E89/F80) and ecumicin 

(L92/L96) on the NTD of MTB ClpC1 (grey). D) Binding site of cyclomarin in MTB ClpC1 compared to Bsu 

ClpC: MTB Phe80 was observed to be essential for interaction, thus Bsu Tyr80 mutation confers resistance to 

cyclomarin (Vasudevan et al., 2013). 
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1.5.1. B. subtilis as a model and screening platform   

Screening natural compounds for their bactericidal activity is a common approach in 

antibiotic research. Discovery of these drug-leads by screening natural product or synthetic 

libraries requires either advanced phenotypic screening systems or more specific target-based 

approaches, e.g. to identify compounds that specifically target Hsp100/Clp complexes (Cheng 

et al., 2007; Clardy and Walsh, 2004; Gao et al., 2014; Ozeki et al., 2015; Ulaczyk-Lesanko 

and Hall, 2005). As the principles and underlying mechanisms of the PQC are conserved in 

all three domains of life (Wickner et al., 1999) and handling of Gram-positive pathogens, 

such as M. tuberculosis, S. aureus or L. monocytogenes, requires specific safety precautions, 

the Gram-positive bacterium Bacillus subtilis is often used as a safe, genetically accessible 

and well-studied model organism when focusing on Gram-positive pathogenic bacteria 

(Figure 9). Furthermore, comparing different Gram-positive bacteria regarding their 

phenotype when treated with the same antimicrobial compound can substantially help to 

understand its function based on variations in the interaction sites. One example is 

cyclomarin, which has been identified to interact with the N-terminal domain of ClpC1 in 

M. tuberculosis. It has already been observed that Phe80 in ClpC1 is an essential residue for 

interaction with cyclomarin, as analogues Tyr80 in ClpC conferred resistance to B. subtilis by 

substantially decreasing binding affinity to cyclomarin (Figure 9) (Vasudevan et al., 2013). 

Thus, these observations can help to elucidate potential resistance mechanisms. 
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1.6. Aim of this work 

The general aim of this work was to investigate different aspects of the bacterial protein 

quality control system. In particular it was intended to elucidate and characterize the potential 

role of YocM as the first small heat shock protein involved in PQC and stress response in 

Bacillus subtilis. Furthermore, YocM should be fused with a fluorescent protein and 

evaluated regarding its suitability as an aggregate marker protein in order to investigate the 

disaggregation activity of the Hsp100/Clp protein ClpC independent of the protease ClpP in 

more detail. Especially it was intended to further elucidate the role of the ClpC adaptor 

protein McsB and the particular impact of its arginine kinase activity in protein 

disaggregation. 

Another objective was to establish a ClpC target-based screening system as proof of concept 

in B. subtilis to identify and characterize antibiotic compounds, while simultaneously 

evaluating ClpC as a promising target for antimicrobial therapy.  
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2. Materials and Methods 

2.1. Basic methods 

B. subtilis cells were grown in Lysogeny Broth medium (LB: 5 g l
-1

 yeast extract, 10 g l
-1

 

tryptone-peptone, 5 g l
-1

 NaCl) at 37 °C if not otherwise indicated. Overnight cultures were 

inoculated from glycerol stock in presence of appropriate antibiotics, if necessary (Table 4). 

Table 7 exhibits the construction of all strains used during this work obtained from 

transformations with indicated plasmids (Table 6) or PCR products derived from cloning with 

primers/restriction enzymes (Table 5) with standard cloning and transformation procedures as 

described previously (Anagnostopoulos and Spizizen, 1961; Arnaud et al., 2004; Sambrook 

and Russell, 2001). Cloning was performed in E. coli DH5α (obtained from Invitrogen, 

Table 3) (ampicillin 100 µg ml
-1

, kanamycin 50 µg ml
-1

) with Phusion High Fidelity 

Polymerase (New England Biolabs, NEB) and chromosomal DNA (Table 7) or existing 

plasmids as template. Strains were stored frozen as glycerol stocks (glycerol final 15-20 % 

v/v) at -80 °C. 

 

Table 1: Devices. 

Device Manufacturer 

Äkta protein purification system FPLC GE Healthcare 

Autoclave VX150 Systec
 

AxioImager M2, fluorescence microscope Zeiss  

Centrifuge Sorvall RC 6+ Sorvall/Thermo Scientific 

Epson Scanner Eppendorf 

Fastblot B44  Biometra 

French Press Heinemann 

Heraeus Centrifuge Thermo Scientific 
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Incubator MaxQ7000 Thermo Scientific 

Micro centrifuge Peqlab 

Nanodrop spectrophotometer Peqlab 

Photometer Eppendorf 

Safe2020 Clean Bench Thermo Scientific 

SpectraMax M3 Molecular Devices 

Spectrofluorometer FP6500 Jasco 

Tecan Pro 200 Tecan 

Thermocycler Biometra 

Thermo shaker Eppendorf 

 

Table 2: Reagents. 

Reagents Manufacturer 

anti-rabbit IgG AP conjugate GE Healthcare 

antibodies, primary Pineda
 

Basic chemicals Carl Roth 

MasterPure DNA purification Kit (Gram-positive) Epicentre 

NucleoSpin PCR clean-up Kit Macherey & Nagel 

peqGOLD plasmid Miniprep Kit Peqlab 

PCR/Cloning buffers/Restriction enzymes New England Biolabs 

Phusion Polymerase New England Biolans 

Primers Biomers 

 

Table 3: Basic E. coli strains. 

Strain Genotype Reference Use 

DH5α F
–
 Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 

endA1 hsdR17 (rK–, mK+) phoA supE44 λ– thi-1 

gyrA96 relA1 

Invitrogen Cloning 

BL21(DE3) F
–
 ompT hsdSB (rB

–
, mB

–
) dcm gal λ(DE3) pLysS Cm

r 
Invitrogen Protein 

production 
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2.1.1. Media and antibiotics 

LB medium (Miller) / agar Yeast extract 

Tryptone 

NaCl 

±Agar 

5 g/L 

10 g/L 

10 g/L 

15 g/L 

 

Belitsky minimal medium 

(BMM) (Stülke et al., 1993) 

10x Basics 

(NH4)2SO4  

MgSO4 ∙ 7 H2OKCl 

Na3-citrat ∙ 2 H2O 

Tris 

ad dH2O 1 L  

 

20 g/L 

20 g/L 

20 g/L 

20 g/L 

60.6 g/L 

 

1 L 1x Belitsky: 

KH2PO4 

CaCl2 ∙ 2 H2O 

FeSO4 ∙ 7 H2O in 1 M HCl 

NaOH 

MnSO4 ∙ 1 H2O 

Glucose ∙ 1 H2O 

L-glutamic acid (pH 7.5) 

L-tryptophan (pH 7.5) 

Volume of stock: 

5 mL of 0.2 M 

2 mL of 1 M 

2 mL of 0.5 mM 

2 mL of 1 M 

0.4 mL of 25 mM 

10 mL of 20 % (w/v) 

9 mL of 0.5 M 

1 mL of 0.039 M 

Final concentration: 

1 mM 

2 mM 

1 µM 

pH-adjustment 

10 µM 

0.2 % (w/v) 

4.5 mM 

39 µM 

 

 

 

 



Materials and Methods 

Page | 34  

 

Table 4: Use of antibiotics. 

Antibiotic Stock Use 

Ampicillin (Amp) 100 mg/mL 100 µg/mL 

Chloramphenicol (Cm) 25 mg/mL
 

10 µg/mL 

Erythromycin (Ery) 1 mg/mL  1 µg/m 

Lincomycin (Linc) 20 mg/mL 20 µg/mL 

Kanamycin (Kan) 50 mg/mL 50 µg/mL E. coli, 10 µg/mL B. subtilis 

Spectinomycin (Spec) 100 mg/mL 150 µg/mL 

Tetracycline (Tet) 10 mg/mL 10 µg/mL 

 

2.1.1. Primer, plasmids and strains 

Table 5: Primer. 

Nr. Plasmid 

(Table 6) 

Primer Sequence 

HS78 2 SacII_SpoVG_mecACTD_for TCCCCGCGGTATAGGGAAAAGGTGGTGAAC

TACTGTGAAGCAAGAACCAGCATCTGAG 

HS79 2 4 GFP_SpeI_rev GGACTAGTGCTCGAATTCATTATTTGTATAG

TTCATCCATGC 

IH3 8 GFP_LCN_SpeI_rev GGACTAGTTTAGTTGCAAAGTTTGTATAGTT

CATCCATGCC 

IH4 7 8 SacII_Strep_gfp_for TGCCGCGGATGTGGTCTCATCCACAGTTCG

AAAAAAGTAAAGGAGAAGAACTTTTC 

IH5 7 GFP_SpeI_rev GGACTAGTTTATTTGTATAGTTCATCCATGC

C 

IH7 7 8 SacII_SpoVG_Strep_for TGCCGCGGTATAGGGAAAAGGTGGTGAACT

ACTGTGTGGTCTCATCCACAGTTC 

IH8 4 SacII_SpoVG_GFP_for TGCCGCGGTATAGGGAAAAGGTGGTGAACT

ACTGTGAGTAAAGGAGAAGAACTTTTC 

IH39 6 SacII_RBS_mCherry_for CCGCGGAGAGAACAAGGAGGGGCCTGCAG

GATGGTGAGCAAGGGCGAGGAGG 

IH41 6 SpeI_MecACTD_rev_IH CGACTAGTCTACTATGATGCAAAGTGTTTTT

TTATCG 

IH42 6 mCherry_Link_MecACTD_IH CAGATGCTGGTTCTTGCTTGGCGGAGCCCTT

GTACAGCTCGTCCATGCCGCCGGTGG 

IH43 63 GFP_Link_MecACTD_IH CAGATGCTGGTTCTTGCTTGGCGGAGCCTTT

GTATAGTTCATCCATGCCATGTGTAATC 

IH44 6 MecACTD_Link_mCherry_IH CGAGCTGTACAAGGGCTCCGCCAAGCAAGA

ACCAGCATCTGAGG 

IH45 63 MecACTD_Link_GFP_IH AACTATACAAAGGCTCCGCCAAGCAAGAAC

CAGCATCTGAGG 

IH47 15 25 26 SalI_ClpC_for_IH GCGTCGACAGAGAACAAGGAGGGGCTACA

AATGATGTTTGGAAGATTTACAG 
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IH48 15 25-28 SphI_ClpC_rev_IH GCGCATGCTTAATTCGTTTTAGCAGTCG 

IH52 16 MecACTD_Mcherry_IH CGATAAAAAAACACTTTGCATCACTTAAGG

ACGTCATGGTGAGCAAGGGCGAGGAGGAT

AACATGG 

IH53 16 Mcherry_MecACTD_IH CCTCCTCGCCCTTGCTCACCATGACGTCCTT

AAGTGATGCAAAGTGTTTTTTTATCG 

IH66 19 SphI_YocM_rev_IH GCGCATGCTCAATCATCAATAACAATGGTT

TTCGC 

IH67 18 SalI_RBS_YocM_for GCGTCGACAGAGAACAAGGAGGGGCTACA

AATGGATTTCGAAAAGATGAAGC 

IH70 3 5 7 SacII_RBS_mCherry_for TCCCCGCGGTATAGGGAAAAGGTGGTGAAC

TACTGTGGTGAGCAAGGGCGAGGAGG 

IH76 52 ClpC_Phe80_rev GACTTTTTTAGCTCTAGGAGTAAAATGAAT

CGTTTGAGACATTTCC 

IH77 52 ClpC_Phe80_for GGAAATGTCTCAAACGATTCATTTTACTCCT

AGAGCTAAAAAAGTC 

IH78 34 36 SphI_GFP_rev_IH GCGCATGCTCATTATTTGTATAGTTCATCCA

TGC 

IH81 16 mCherry_SphI_rev GCGCATGCTCATTACTTGTACAGCTCGTCCA

TGC 

IH85 3 

BIH360* 

mCherry_SpeI_rev GCACTAGTGGATCTTATTTATACAGTTCATC

CATTCC 

IH86 BIH359* SacII_mcherry_for TCCCCGCGGTAAGGAGGACAAACATGGTTA

GCAAAGG 

IH87 3 5 SacII_SpoVG_mCherry_for TCCCCGCGGTATAGGGAAAAGGTGGTGAAC

TACTGTGATGGTTAGCAAAGGCGAAGAGG 

IH88 5 10 SpeI_ssrA_mCherry_rev GGACTAGTTTAAGCAGCCAGAGCGTAGTTT

TCGTCGTTAGCAGCTTTATACAGTTCATCC 

IH95 60 XhoI_GFP_rev TCGACTCGAGTCATCATTTGTAGGGCTCATC

CATGCC 

IH101 60 MecACTD_BsmBI_pCA_for CCAGTGCGTCTCAGGTGGTATGAAGCAAGA

ACCAGCATCTGAGG 

IH108 19 20 KpnI_ACD_yocM_for CGGGTACCATGGATATTGTAGATACCGTTG

C 

IH109 19 20 HindIII_ACD_yocM_rev CGAAGCTTTTTTTGAATAGTGATGTATAGG 

IH110 17 HindIII_yocM_rev_IH CGAAGCTTATCATCAATAACAATGGTTTTC

G 

IH160 BIH360* SacII_RBS_FtsZ_IH TCCCCGCGGTAAGGAGGACAAACATGTTGG

AGTTCGAAACAAACA 

IH161 BIH360* Link_mCherry_FtsZ_I CCTCTTCGCCTTTGCTAACCATGCCGCGTTT

ATTACGGTTTCTTAAG 

IH162 BIH360* Link_mCherry_FtsZ_II CTTAAGAAACCGTAATAAACGCGGCATGGT

TAGCAAAGGCGAAGAGG 

IH171 BIH359* Link1_mCherry_FtsZ_IH CTATGTTTGTTTCGAACTCCAACATGCCTTT

ATACAGTTCATCCATTCC 

IH172 BIH359* Link2_mCherry_FtsZ_IH GGAATGGATGAACTGTATAAAGGCATGTTG

GAGTTCGAAACAAACATAG 

IH173 67 NcoI_mCherry_for_IH CGCCATGGGCCATCATCATCATCATCACAT

GGTTAGCAAAGGCGAAGAGG 
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IH174 67 XhoI_FtsZ_stop_rev_IH CGCTCGAGTTATTAGCCGCGTTTATTACGGT

TTCTTAAG 

IH175 67 SpeI_FtsZ_stop_rev_IH GCACTAGTTTATTAGCCGCGTTTATTACGGT

TTCTTAAG 

IH182 23 24 SalI_clpE_for_IH GCGTCGACAGAGAACAAGGAGGGTACAAA

TGCGTTGTCAACATTGTCATC 

IH183 24 clpE_Y344A_fus_rev_IH CGGAGTTTTGCCGCCAGTTCAGCATTTTCTT

CTTCC 

IH184 24 clpE_Y344A_fus_for_IH GGAAGAAGAAAATGCTGAACTGGCGGCAA

AACTCCG 

IH185 23 24 SphI_clpE_rev_IH 

 

GCGCATGCTCATTATTTTGCTCGCACTTTGA

TTTTATC 

IH187 31 SphI_McsB_rev_IH GCGCATGCTCATATCGATTCATCCTCCTGTC 

IH197 51 BamHI_McsB_for_IH CCCCGGATCCATGTCGCTAAAGCATTTTATT

C 

IH198 51 NcoI_McsB_rev_IH CCCCCCATGGTCATATCGATTCATCCTCCTG

TC 

IH199 29 30 SalI_MicA_for_IH GCGTCGACAGAGAACAAGGAGGGTACAAA

TGTTATTTCTTCATGATGTG 

IH201 29 SphI_MicA_rev_IH GCGCATGCTCATTAGTTGACCTTTGATTCGT

TTTCC 

IH202 30 SphI_His_MicA_rev_IH GCGCATGCTCATTAGTGGTGGTGGTGGTGG

TGTGAGTTGACCTTTGATTCGTTTTCC 

IH203 16 32 SalI_MecA_for_IH GCGTCGACAGAGAACAAGGAGGGTACAAA

TGGAAATTGAAAGAATTAACG 

IH204 32 SphI_MecA_rev_IH GCGCATGCCTATGATGCAAAGTGTTTTTTTA

TCGTTTCTAGAGCGTGCTCTGAAAT 

IH205 33 SalI_YpbH_rev_IH GCGTCGACAGAGAACAAGGAGGGTACAAA

TGCGGCTTGAGCGTCTGAA 

IH206 33 SphI_YpbH_rev_IH GCGCATGCTTATGAAAAATGAGTTTGTATC

G 

IH212 48 SalI_PorA_for_IH GCGTCGACAGAGAACAAGGAGGGTACAAA

TGCGAAAAAAACTTACCGCCC 

IH213 48 SphI_PorA_rev_IH GCGCATGCTTAGAATTTGTGGCGCAAACCG 

IH220 65 NcoI_MecA_for_IH TTCCATGGGCCATCATCATCATCATCATCAT

GAAATTGAAAGAATTAACGAGCATAC 

IH221 62 63 65 XhoI_MecA_rev_IH ATCTCGAGTCACTATGATGCAAAGTGTTTTT

TTATCG 

IH222 61 62 NcoI_His_MecACTD_for AGCCATGGGCCATCATCATCATCATCACAA

GCAAGAACCAGCATCTGAGG 

IH223 63 BsmBI_NcoI_His_GFP_for CCAGTGCGTCTCCCATGGGCCATCATCATC

ATCATCACATGAGTAAAGGAGAAGAACTT 

IH230 46 AvrII_MicA_for_IH 

 

TACCTAGGATGTTATTTCTTCATGATGTGTG

GG 

IH233 46 SpeI_MicA_stop_rev_IH GCACTAGTACCTCAGTTGACCTTTGATTCGT

TTTCC 

IH234 46 GFP_MicA_rev_IH CCCACACATCATGAAGAAATAACATTTTGT

ATAGTTCATCCATGCCATGTG 



Materials and Methods 

Page | 37  

 

IH235 46 GFP_MicA_for_IH CACATGGCATGGATGAACTATACAAAATGT

TATTTCTTCATGATGTGTGGG 

IH236 55 MicA_xhoI_stop_rev_IH TCGACTCGAGTCAGTTGACCTTTGATTCGTT

TTCC 

IH237 55 MicA_BsmBI_for_IH CCAGTGCGTCTCAGGTGGTATGTTATTTCTT

CATGATGTGTGG 

IH278 35 McsB_Link_for_IH AAAAGACAGGAGGATGAATCGATAGCAAG

TGGAATGAGTAAAGGAGAAGAACTTTTC 

IH279 35 McsB_Link_rev_IH GAAAAGTTCTTCTCCTTTACTCATTCCACTT

GCTATCGATTCATCCTCCTGTCTTTT 

IH280 31 34 36 BsmBI_McsB_for_HindIII CCAGTGCGTCTCAAGCTTAAGGAGGGGCTA

CAAATGTCGCTAAAGCATTTTATTCAGG 

IH283 58 59 NcoI_ClpC-NTD_for_IH CATGCCATGGGGCTTGACAGCTTGGCAAGA

GACTTAAC 

IH284 27 28 SalI_ClpC-NTD_for_IH GCGTCGACAGAGAACAAGGAGGGTACAAA

TGGGGCTTGACAGCTTGGCAAGAGACTT 

IH298 37 YwlE_SalI_for_IH GCGTCGACAGAGAACAAGGAGGGTACAAA

TGGATATTATTTTTGTCTGTACTGG 

IH299 37 38 YwlE_SphI_rev_IH GCGCATGCTCATTATCTACGGTCTTTTTTCA

GC 

IH300 38 YwlE_C7S_SalI_for_IH GCGTCGACAGAGAACAAGGAGGGTACAAA

TGGATATTATTTTTGTCTCTACTGGAAATAC 

RK17 56-60 64 pET_ClpC_XhoI_rev CCGCTCGAGATTCGTTTTAGCAGTCGTT 

RK27 56 57 60 

64 

pET_ClpC_NcoI_for CATGCCATGGGGTTTGGAAGATTTACAGA 

NM318 49 50 52 BamHI_clpCORF for CCCCGGATCCATGATGTTTGGAAGATTTAC

AG 

NM319 49 50 52 NcoI_clpCORF rev CCCCCCATGGTTAATTCGTTTTAGCAGTCG 

IH271 

C
o

n
st

ru
ct

io
n

 o
f 

th
e 

yp
b
H

::
ca

t 

m
u
ta

n
t 

YpbH_mut1_for_IH CCCACTTGGTTATAATCGGCGG 

IH272 YpbH_mut2_rev_IH ACTTAAGGGTAACTAGCCTCGCCGAACGTT

CCCTCCTGCCTCTACTTGC 

IH273 YpbH_mut3_cm_for_IH TCAAATTTAAGGAGAATCTCATCGGCGAGG

CTAGTTACCCTTAAGT 

IH274 YpbH_mut4_cm_rev_IH AAATCAGCAGTTTTCCGTTGCATTCCAATAG

TTACCCTTATTATCAAG 

IH275 YpbH_mut5_for_IH CTTGATAATAAGGGTAACTATTGCGATACA

AACTCATTTTTCATAA 

IH276 YpbH_mut6_rev_IH AATTCTTGAATACTCATCCATCATCC 

 

*Ligation of pPG60 ftsZ-mCherry and mcherry-fstZ was directly transformed into B. subtilis (Strains BIH359 

and BIH360, Table 7) due to unsuccessful transformation in E. coli DH5α. 
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Table 6: Plasmids. 

Nr. Plasmid Description Reference 

1 pPG60 

 

amyE-integrating plasmid, Pveg, cm
R
 (Gamba et al., 2015) 

2 pPG60 mecACTD-

gfp 

mecACTD-gfp fused into pPG60, cm
R
 This work 

3 pPG60 mcherry 

 

Constitutive expression of mcherry, Pveg, cm
R
 (Hantke et al., 2018) 

4 pPG60 gfp 

 

Constitutive expression of gfp A206K, Pveg, cm
R
 This work 

5 pPG60 mcherry-

ssrA 

Constitutive expression of mcherry-ssrA, Pveg, 

cm
R
 

This work 

6 pPG60 mcherry-

mecACTD 

Constitutive expression of mcherry-mecACTD, 

Pveg, cm
R
 

This work 

7 pPG60 strep-gfp Constitutive expression of strep-gfp, Pveg, cm
R
 This work 

8 pPG60 strep-gfp-

LCN 

Constitutive expression of strep-gfp-LCN, Pveg, 

cm
R
 

This work 

9 pBS2E 

 

lacA-integrating plasmid, ery
R
 (Radeck et al., 2013) 

10 pBS2E mcherry-

ssrA 

Constitutive expression of mcherry-ssrA, Pveg 

lacA-integrating plasmid, ery
R
 

This work 

11 pBS2E Pveg lacZ-gfp 

 

Pveg-lacZ-gfp in pBS2E, ery
R
 (Hantke et al., 2018) 

12 pBS2E like 

pDR111 

Plac gene of interest + lacI in pBS2E backbone, 

ery
R
 

(Hantke et al., 2018) 

13 pBS2E ibpA 

gfpA206K 

Pxyl ibpA-gfpA206K in pBS2E, ery
R
 (Hantke et al., 2018) 

14 pBS2E yocM-

mCherry 

Pxyl yocM-mCherry in pBS2E, ery
R
 (Hantke et al., 2018) 

15 pBS2E Plac clpC clpC in pBS2E like pDR111, ery
R
 This work 

16 pDR111 mecACTD-

mcherry 

Expression of mecACTD-mcherry, Plac promoter, 

spec
R
 

This work 

17 pDR111 yocM 

 

Expression of yocM, Plac promoter, spec
R
 (Hantke et al., 2018) 

18 pDR111 yocM 

∆CTD 

Expression of yocM lacking the CTD, Plac 

promoter, spec
R
 

This work 

19 pDR111 yocM 

∆NTD 

Expression of yocM lacking the NTD, Plac 

promoter, spec
R
 

This work 

20 pDR111 yocM 

ACD 

Expression of the ACD of  yocM, Plac promoter, 

spec
R
 

This work 

21 pDR111 clpC 

 

Expression of clpC, Plac promoter, spec
R
 (Hantke et al., 2018) 

22 

 

pDR111 clpC 

F436A 

Expression of clpC F436A, Plac promoter, spec
R
 (Carroni et al., 2017) 
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23 pDR111 clpE 

 

Expression of clpE, Plac promoter, spec
R
 This work 

24 pDR111 clpE 

Y344A 

Expression of clpE Y344A, Plac promoter, spec
R
 (Carroni et al., 2017) 

25 pDR111 clpC loop Expression of clpC VGF::GGR (671-673), Plac 

promoter, spec
R
 

This work 

26 pDR111 clpC 

F436A VGF::GGR 

Expression of clpC F436A VGF::GGR (671-

673), Plac promoter, spec
R
 

This work 

27 pDR111 ∆NTD-

clpC  

Expression of ∆NTD-clpC, Plac promoter, spec
R
 This work 

28 pDR111 ∆NTD-

clpC F436A  

Expression of ∆NTD-clpC F436A, Plac 

promoter, spec
R
 

This work 

29 pDR111 micA 

 

Expression of micA, Plac promoter, spec
R
 This work 

30 pDR111 micA-his6 

 

Expression of micA-his6, Plac promoter, spec
R This work 

31 pDR111 mcsB  

 

Expression of mcsB, Plac promoter, spec
R
 This work 

32 pDR111 mecA  

 

Expression of mecA, Plac promoter, spec
R
 This work 

33 pDR111 ypbH  

 

Expression of ypbH, Plac promoter, spec
R
 This work 

34 pDR111 mcsB-gfp Expression of mcsB-gfpA206K, Plac promoter, 

spec
R
 

This work 

35 pDR111 mcsB 

C167S 

Expression of mcsB C167S, Plac promoter, spec
R
 This work 

36 pDR111 mcsB 

C167S-gfp 

Expression of mcsB C167S-gfp A206K, Plac 

promoter, spec
R
 

This work 

37 pDR111 ywlE 

 

Expression of ywlE, Plac promoter, spec
R
 This work 

38 pDR111 ywlE C7S Expression of ywlE C7S, Plac promoter, spec
R 

 

This work 

39 pSG1154-

gfpA206K 

AmyE-integrating plasmid, xylose inducible, 

spect
R
 

(Lewis and Marston, 1999) 

40 pSG1154 cotP-

mCherry 

cotP-mCherry in pSG1154, Pxyl, spec
R
 (Hantke et al., 2018) 

41 pSG1154 cotM-

mCherry 

cotM-mCherry in pSG1154, Pxyl, spec
R
 (Hantke et al., 2018) 

42 pSG1154 ibpA 

gfpA206K 

ibpA in pSG1154-gfpA206K, Pxyl, spec
R
 (Runde et al., 2014) 

43 pSG1154 yocM 

gfpA206K 

yocM in pSG1154-gfpA206K, Pxyl, spec
R
 Provided by Noel Molière 

44 pSG1154 yocM-

mCherry 

yocM-mCherry in pSG1154, Pxyl, spec
R
 (Hantke et al., 2018) 

45 pSG1154 mCherry 

 

mCherry in pSG1154, Pxyl, spec
R
 (Hantke et al., 2018) 

46 pSG1154 micA-

gfpA206K 

micA-gfp A206K  in pSG1154, Pxyl, spec
R
 This work 
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47 pKTH290 porA Constitutive expression of porA from Neisseria, 

kan
R
 

(Nurminen et al., 1992) 

48 pBS2E porA 

 

Expression of porA, Plac promoter, ery
R
 This work 

49 pMAD clpC F436A For B. subtilis markerless point mutation clpC 

F436A in cis, ery
R
 

This work 

50 pMAD clpC F436A 

loop 

For B. subtilis markerless point mutation clpC 

F436A VGF::GGR (671-673), in cis, ery
R
 

This work 

51 pMAD mcsB 

C167S 

For B. subtilis markerless point mutation mcsB 

C167S in cis, ery
R
 

This work 

52 pMAD clpC Y80F For B. subtilis markerless point mutation clpC 

Y80F in cis, ery
R
 

This work 

53 pCA528 pET24a containing SMT3 from yeast (His6-

SUMO), kan
R
 

(Andréasson et al., 2008) 

54 pCA528 yocM 

 

Production of His-SUMO-YocM, kan
R
 (Hantke et al., 2018) 

55 pCA528 micA 

 

Production of His-SUMO-MicA, kan
R
 This work 

56 pET28a clpC Production of ClpC, kan
R
 Provided by Regina 

Kramer 

57 pET28a clpC 

F436A 

Production of ClpC F436A, kan
R
 This work 

58 pET28a ∆NTD-

clpC  

Production of ∆NTD-ClpC, kan
R
 This work 

59 pET28a ∆NTD-

clpC F436A 

Production of ∆NTD-ClpC F436A, kan
R
 This work 

60 pET28a clpC DWB Production of ClpC E280A E618A double 

walker B mutant, kan
R
 

This work 

61 pET28a mecACTD-

gfp 

Production of MecACTD-GFP A206K, kan
R
 This work 

62 pET28a mecACTD 

 

Production of MecACTD, kan
R
 This work 

63 pET28a gfp-

mecACTD 

Production of GFP A206K-MecACTD, kan
R
 This work 

64 pET28a clpC 

VGF::GGR 

Production of ClpC VGF::GGR (671-673), kan
R
 Provided by Regina 

Kramer 

65 pET28a mecA 

 

Production of MecA, kan
R
 This work 

66 pET28a ftsZ-

mCherry 

Production of FtsZ-mCherry, kan
R
 This work 

67 pET28a mCherry-

ftsZ 

Production of mCherry-FtsZ, kan
R
 This work 

 

 



Materials and Methods 

Page | 41  

 

Table 7: List of B. subtilis strains. 

Nr. Genotype / properties Reference/ 

Construction 

BIH1 trpC2 (Anagnostopoulos and 

Spizizen, 1961) 

BT02 trpC2 ∆dnaK::cat (Homuth et al., 1997) 

BEK89 trpC2 lys-3 ∆mcsB::kan (Krüger et al., 2001) 

BEK90 trpC2 lys-3 ∆clpX::kan (Gerth et al., 2004) 

BIH2 trpC2 ∆yocM::spec (Hantke et al., 2018) 

BIH11 trpC2 amyE::Pveg mecACTD-gfp A206K cm Plasmid 2 → BIH1 

BIH19 trpC2 ∆clpC::tet (Hantke et al., 2018) 

BIH20 trpC2 ∆mecA::tet Provided by Noel Molière 

(NM114, unpublished) 

BIH23 trpC2 amyE::Pveg mecACTD-gfp A206K cm BIH20 → BIH11 

BIH24 trpC2 amyE::Pveg mecACTD-gfp A206K cm Plasmid 2 → BIH217 

BIH25 trpC2 amyE::Pveg mecACTD-gfp A206K cm BIH11 → BIH19 

BIH27 trpC2 amyE::Pveg gfp A206K cm Plasmid 4 → BIH1 

BIH35 trpC2 amyE::Pveg strep-gfp-LCN cm Plasmid 11 → BIH1 

BIH38 trpC2 amyE::Pveg strep-gfp cm Plasmid 10 → BIH1 

BIH39 trpC2 amyE::Pveg strep-gfp-LCN cm ypbH::spec 

mcsB::kan mecA::tet 

Plasmid 11 → FS69 

BIH47 trpC2 amyE::Pxyl yocM-gfpA206K spec (Hantke et al., 2018) 

BIH48 trpC2 amyE::Pxyl ibpA-gfpA206K spec (Hantke et al., 2018) 

BIH66 trpC2 ∆mcsB::kan amyE::Pxyl yocM-gfpA206K spec (Hantke et al., 2018) 

BIH69 trpC2 ∆mcsB::kan (Hantke et al., 2018) 

BIH73 trpC2 amyE::Pxyl yocM-mCherry spec (Hantke et al., 2018) 

BIH74 trpC2 ∆mcsB::kan amyE::Pxyl yocM-mCherry spec (Hantke et al., 2018) 

BIH78 trpC2 ∆clpX::kan (Hantke et al., 2018) 

BIH79 trpC2 ∆clpC::tet ∆dnaK::cat (Hantke et al., 2018) 
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BIH81 trpC2 ∆spx::kan (Hantke et al., 2018) 

BIH82 trpC2 amyE::Pxyl mCherry spec (Hantke et al., 2018) 

BIH84 trpC2 ∆spx::kan amyE::Pxyl yocM-mCherry spec (Hantke et al., 2018) 

BIH85 trpC2 ∆clpX::kan amyE::Pxyl yocM-mCherry spec (Hantke et al., 2018) 

BIH88 trpC2 ∆clpC::tet amyE::Pxyl yocM-mCherry spec (Hantke et al., 2018) 

BIH91 trpC2 amyE::Pxyl yocM-mCherry spec lacA::Pxyl ibpA-

gfpA206K ery 

(Hantke et al., 2018) 

BIH121 trpC2 ∆clpC::tet ∆dnaK::cat ∆yocM::spec (Hantke et al., 2018) 

BIH133 trpC2 ∆clpC::tet amyE::Pveg mcherry-mecACTD cm BIH141 → BIH19 

BIH140 trpC2 clpC E280A E618A (DWB) (Kirstein et al., 2006) 

BIH141 trpC2 amyE::Pveg mcherry-mecACTD cm Plasmid 6 → BIH1 

BIH143 trpC2 clpC E280A E618A amyE::Pveg mecACTD-gfp A206K 

cm 

Plasmid 2 → BIH140 

BIH148 trpC2 lacA::Pveg lacZ-gfp ery (Hantke et al., 2018) 

BIH151 trpC2 amyE::Plac clpC spec Plasmid 21 → BIH1 

BIH152 trpC2 amyE::Plac clpC spec ∆clpC::tet BIH19 → BIH151 

BIH154 trpC2 ∆clpC::tet amyE::Plac mecACTD -mcherry cm Plasmid 16 → BIH19 

BIH182 trpC2 amyE::Plac yocM  spec (Hantke et al., 2018) 

BIH185 trpC2 amyE::Pveg mecACTD –gfp A206K cm lacA::Plac clpC 

ery 

Plasmid 15 → BIH11 

BIH186 trpC2 ∆clpC::tet amyE::Pveg mecACTD –gfp A206K cm 

lacA::Plac clpC ery 
BIH19 → BIH185 

BIH216 trpC2 clpC Y80F Plasmid 52 → BIH1 

BIH217 trpC2 clpC VGF::GGR (Moliere, 2012) 

BIH222 trpC2 amyE::Pveg mecACTD-gfp A206K cm clpC Y80F Plasmid 2 → BIH216 

BIH239 trpC2 amyE::Pveg SpoVG mCherry cat Plasmid 3 → BIH1 

BIH240 trpC2 amyE::Pveg RBS mCherry cat (Hantke et al., 2018) 

BIH242 trpC2 amyE::Plac yocM-mCherry spec  (Hantke et al., 2018) 

BIH243 trpC2 amyE::Plac ibpA spec  (Hantke et al., 2018) 
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BIH246 trpC2 amyE::Pveg strep-gfp-LCN cat ∆clpC::tet BIH19 → BIH35 

BIH254 trpC2 amyE::Pveg mecACTD-gfp A206K cm lacA::Pveg 

mcherry-ssrA ery clpC Y80F 
Plasmid 7 → BIH222 

BIH255 trpC2 amyE::Pveg mecACTD-gfp A206K cm lacA::Pveg 

mcherry-ssrA ery  

Plasmid 7 → BIH11 

BIH264 trpC2 amyE::Pveg mecACTD-gfp A206K cm lacA::Pveg 

mcherry-ssrA ery clpX::kan 
NM107 → BIH255 

BIH274 trpC2 lacA::Pveg lacZ-gfp ery ∆yocM::spec (Hantke et al., 2018) 

BIH286 trpC2 lacA::Plac yocM ery ∆yocM::spec (Hantke et al., 2018) 

BIH305 trpC2 amyE::Pxyl yocM-mCherry spec pSG1151mdh-

gfpA206K cat 

(Hantke et al., 2018) 

BIH309 trpC2 ∆ywlE::kan (Elsholz et al., 2010) 

BIH331 trpC2 ∆cotP::cat (Hantke et al., 2018) 

BIH333 trpC2 ∆cotP::cat ∆yocM::spec (Hantke et al., 2018) 

BIH339 trpC2 ∆cotM::tet (Hantke et al., 2018) 

BIH348 trpC2 ∆cotM::tet ∆yocM::spec (Hantke et al., 2018) 

BIH351 trpC2 ∆cotP::cat ∆cotM::tet (Hantke et al., 2018) 

BIH352 trpC2 ∆cotP::cat ∆yocM::spec ∆cotM::tet (Hantke et al., 2018) 

BIH356 trpC2 amyE::Pxyl cotP-mCherry spec (Hantke et al., 2018) 

BIH359 trpC2 amyE::Pveg mcherry-fstZ cat Transformation of ligation (no 

plasmid), see primer Table 5 

BIH360 trpC2 amyE::Pveg ftsZ-mcherry cat Transformation of ligation (no 

plasmid), see primer Table 5 

BIH369 trpC2 lacA::Pxyl yocM-mCherry ery (Hantke et al., 2018) 

BIH375 trpC2 lacA::Pxyl yocM-mCherry ery amyE::Plac clpC spec (Hantke et al., 2018) 

BIH381 trpC2 amyE::Plac clpE spec Plasmid 23 → BIH1 

BIH382 trpC2 amyE::Plac mCherry-YocMCTD spec (Hantke et al., 2018) 

BIH383 trpC2 amyE::Plac clpE Y344A spec (Carroni et al., 2017) 

BIH384 trpC2 amyE::Plac clpC F436A spec (Carroni et al., 2017) 

BIH385 trpC2 amyE::Plac clpC F436A VGF::GGR spec Plasmid 26 → BIH1 

BIH394 trpC2 amyE::Plac clpC F436A spec ∆clpC::tet BIH19 → BIH384 
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BIH399 trpC2 mcsB::kan lacA::Pxyl yocM-mcherry ery BIH69 → BIH369 

BIH400 trpC2 clpC F436A Plasmid 49 → BIH1 

BIH407 trpC2 amyE::Plac mcsB spec clpC VGF::GGR Plasmid 31 → BIH217 

BIH411 trpC2 amyE::Plac mcsB spec clpC E280A E618A (DWB) Plasmid 31 → BIH140 

BIH413 trpC2 amyE::Pxyl cotM-mCherry spec (Hantke et al., 2018) 

BIH414 trpC2 amyE::Plac mcsB spec mcsB::kan lacA::Pxyl yocM-

mcherry ery 
Plasmid 31 → BIH399 

BIH420 trpC2 amyE::Plac clpC F436A spec ∆clpC::tet lacA::Pxyl 

yocM-mcherry ery 

BIH369 → BIH394 

BIH423 trpC2 amyE::Plac mcsB spec mcsB::kan clpC VGF::GGR BIH69 → BIH407 

BIH427 trpC2 amyE::Plac mcsB spec mcsB::kan clpC E280A E618A 

(DWB) 

BIH69 → BIH411 

BIH432 trpC2 lacA::Pxyl yocM-mCherry ery amyE::Plac clpC spec 

∆clpC::tet 

(Hantke et al., 2018) 

BIH434 trpC2 amyE::Plac clpC VGF::GGR spec lacA::Pxyl yocM-

mCherry ery 

Plasmid 25 → BIH369 

BIH439 trpC2 amyE::Plac mcsB C167S spec mcsB::kan lacA::Pxyl 

yocM-mcherry ery 

Plasmid 35 → BIH399 

BIH485 trpC2 amyE::Plac mcsB spec mcsB::kan lacA::Pxyl yocM-

mcherry ery clpC VGF::GGR 

BIH369 → BIH423 

BIH488 trpC2 amyE::Plac mcsB spec mcsB::kan lacA::Pxyl yocM-

mcherry ery clpC E280A E618A (DWB) 

BIH369 → BIH427 

BIH504 trpC2 amyE::Plac clpC VGF::GGR spec  ∆clpC::tet 

lacA::Pxyl yocM-mCherry ery 

BIH19 → BIH434 

BIH581 trpC2 amyE::Plac clpC F436A spec  ∆mcsB::kan BIH69 → BIH384 

BIH582 trpC2 amyE::Plac clpC F436A VGF::GGR spec  ∆mcsB::kan BIH69 → BIH385 

BIH587 trpC2 amyE::Plac clpC F436A spec  ∆mecA::tet  BIH20 → BIH384 

BIH588 trpC2 amyE::Plac clpC F436A VGF::GGR spec  ∆mecA::tet  BIH20 → BIH385 

BIH589 trpC2 amyE::Plac clpC F436A spec  ∆mecA::tet ∆mcsB::kan BIH20 → BIH581 

BIH590 trpC2 amyE::Plac clpC F436A VGF::GGR spec  ∆mecA::tet 

∆mcsB::kan 

BIH20 → BIH582 

BIH599 trpC2 lacA::Pxyl yocM-mCherry ery mcsB::mcsB C167S BIH369 → BIH694 

BIH613 trpC2 amyE::Plac clpC F436A spec  ∆ypbH::ery  MV210 → BIH384 

BIH614 trpC2 lacA::Pxyl yocM-mCherry ery amyE::Plac clpC F436A 

spec mcsB::mcsB C167S 

Plasmid 2 → BIH599 

BIH615 trpC2 lacA::Pxyl yocM-mCherry ery amyE::Plac clpC F436A 

VGF::GGR spec mcsB::mcsB C167S 

Plasmid 26 → BIH599 
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BIH618 trpC2 amyE::Plac clpC F436A VGF::GGR spec  ∆ypbH::ery  MV210 → BIH385 

BIH619 trpC2 amyE::Plac clpC F436A spec  ∆ypbH::ery 

∆mcsB::kan  

MV210 → BIH581 

BIH620 trpC2 amyE::Plac clpC F436A VGF::GGR spec  ∆ypbH::ery 

∆mcsB::kan  

MV210 → BIH582 

BIH621 trpC2 amyE::Plac clpC F436A spec  ∆mcsA::ery  MV210 → BIH384 

BIH622 trpC2 amyE::Plac clpC F436A VGF::GGR spec  ∆mcsA::ery MV210 → BIH385 

BIH624 trpC2 amyE::Plac clpC F436A spec  ∆ypbH::ery ∆mecA::tet BIH20 → BIH613 

BIH625 trpC2 amyE::Plac clpC F436A VGF::GGR spec  ∆ypbH::ery 

∆mecA::tet 

BIH20 → BIH618 

BIH627 trpC2 amyE::Plac clpC F436A spec  ∆ypbH::ery 

∆mcsB::kan ∆mecA::tet 

BIH20 → BIH619 

BIH628 trpC2 amyE::Plac clpC F436A VGF::GGR spec  ∆ypbH::ery 

∆mcsB::kan ∆mecA::tet 

BIH20 → BIH620 

BIH647 trpC2 amyE::Plac clpE Y344A spec ∆mcsB::kan BIH69 → BIH383 

BIH662 trpC2 amyE::Plac mcsB-gfp A206K spec Plasmid 34 → BIH1 

BIH663 trpC2 amyE::Plac mcsB C167S -gfp A206K spec Plasmid 36 → BIH1 

BIH671 trpC2 lacA::Pxyl yocM-mCherry ery amyE::Plac mcsB-gfp 

A206K spec 

BIH369 → BIH662 

BIH672 trpC2 lacA::Pxyl yocM-mCherry ery amyE::Plac mcsB C167S 

-gfp A206K spec 

BIH369 → BIH663 

BIH677 trpC2 lacA::Pxyl yocM-mCherry ery amyE::Plac mcsB-gfp 

A206K spec ∆mcsB::kan 

BIH662 → BIH399 

BIH678 trpC2 lacA::Pxyl yocM-mCherry ery amyE::Plac mcsB C167S 

-gfp A206K spec ∆mcsB::kan 

BIH663 → BIH399 

BIH681 trpC2 lacA::Pxyl yocM-mCherry ery ∆ywlE::kan amyE::Plac 

mcsB-gfp A206K spec ∆ywlE::kan 

BIH309 → BIH671 

BIH682 trpC2 lacA::Pxyl yocM-mCherry ery ∆ywlE::kan amyE::Plac 

mcsB C167S -gfp A206K spec ∆ywlE::kan 

BIH309 →BIH672 

BIH694 trpC2 mcsB::mcsB C167S Plasmid 51 → BIH1 

BIH695 trpC2 ∆ywlE::kan mcsB::mcsB C167S BIH309 → BIH694 

BIH721 trpC2 lacA::Pxyl yocM-mCherry ery ∆ypbH::cat ypbH::cat (PCR) → BIH369 

BIH735 trpC2 lacA::Pxyl yocM-mCherry ery ∆ypbH::cat ∆mcsB::kan  BIH69 → BIH721 

BIH737 trpC2 lacA::Pxyl yocM-mCherry ery ∆ypbH::cat ∆mcsB::kan 

∆mecA::tet 

BIH20 → BIH735 

BIH739 trpC2 lacA::Pxyl yocM-mCherry ery ∆ypbH::cat ∆mcsB::kan 

∆mecA::tet amyE::Plac mcsB spec 

Plasmid 31 → BIH737 
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BIH740 trpC2 lacA::Pxyl yocM-mCherry ery ∆ypbH::cat ∆mcsB::kan 

∆mecA::tet amyE::Plac mecA spec 

Plasmid 32 → BIH737 

BIH741 trpC2 lacA::Pxyl yocM-mCherry ery ∆ypbH::cat ∆mcsB::kan 

∆mecA::tet amyE::Plac ypbH spec 

Plasmid 33 → BIH737 

BIH792 trpC2 lacA::Pxyl yocM-mCherry ery clpC::clpC VGF::GGR 

(671-673) 

BIH369 → BIH217 

BIH805 trpC2 lacA::Pxyl yocM-mCherry ery ∆ywlE::kan 

mcsB::mcsB C167S 

BIH369 → BIH695 

BIH816 trpC2 amyE::Plac ywlE spec  Plasmid 37 → BIH309 

BIH817 trpC2 amyE::Plac ywlE C7S spec  Plasmid 38 → BIH309 

BIH819 trpC2 lacA::Pxyl yocM-mCherry ery ∆ywlE::kan BIH369 → BIH309 

BIH820 trpC2 amyE::Plac ywlE spec ∆ywlE::kan BIH309 → BIH816 

BIH821 trpC2 amyE::Plac ywlE C7S spec ∆ywlE::kan BIH309 → BIH817 

BIH824 trpC2 lacA::Pxyl yocM-mCherry ery amyE::Plac ywlE spec 

∆ywlE::kan mcsB::mcsB C167S 

BIH816 → BIH805 

BIH825 trpC2 lacA::Pxyl yocM-mCherry ery amyE::Plac ywlE C7S 

spec ∆ywlE::kan mcsB::mcsB C167S 

BIH817 → BIH805 

BIH828 trpC2 lacA::Pxyl yocM-mCherry ery amyE::Plac ywlE spec 

∆ywlE::kan 

BIH369 → BIH820 

BIH829 trpC2 lacA::Pxyl yocM-mCherry ery amyE::Plac ywlE C7S 

spec ∆ywlE::kan 

BIH369 → BIH821 

FS69 trpC2  ypbH::spec mcsB::kan mecA::tet Provided by Franziska 

Schöttmer (unpublished) 

NM107 trpC2 clpX::kan (Gerth et al., 2004) 

NM115 trpC2 ypbH::spec (Persuh et al., 2002) 

MV210 trpC2 ypbH::ery (Koo et al., 2017) / BGSC 

ORB3834 trpC2 pheA1 ∆spx::kan (Nakano et al., 2001) 

QBP418 PY79 ∆clpC::tet (Pan et al., 2001) 

BGSC: Bacillus Genetic Stock Center 
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2.1.2. Transformation in E. coli 

200 µL competent cells were thawed on ice before 50-200 ng plasmid DNA or ligation 

reaction was added. The mixture was kept on ice for 30 min and treated with a heat shock at 

42 °C for 45 s. Afterwards the cells were shifted to ice for 5 min and subsequently 1 mL LB 

medium was added. The cells were incubated shaking at 37 °C for 1 h. After centrifugation 

for 3 min at 5,000 xg, the pellet was resuspended in 100 µL of the remaining supernatant. At 

last, the cells were plated on LB agar containing the appropriate antibiotics to select positive 

clones after incubation overnight at 37 °C. 

2.1.2.1.Generating competent cells of E. coli 

20 mL LB medium was inoculated with a single colony or glycerol stock as a pre-culture. 

That pre-culture was incubated shaking at 28 °C for 20 h. 4 mL pre-culture were used to 

inoculate 250 mL of SOB medium supplemented with MgCl2 and MgSO4. The main culture 

was kept shaking at 18 °C to an OD600 of 0.5 – 0.9, before being shifted to ice for 10 min. The 

cells were harvested at 4 °C and 5,000 xg for 10 min. The pellet was resuspended in 80 mL of 

TB buffer and incubated on ice for 10 min before re-centrifugation. The cells were 

resuspended in 20 mL ice-cold TB buffer. DMSO was added to a final concentration of 7 % 

(v/v). The cells were frozen in liquid N2 and stored in 200 µL aliquots at -80 °C. 

TB buffer PIPES 

CaCl2 ∙ 2H2O 

KCl 

MnCl2 

10 mM 

15 mM 

250 mM 

55 mM 
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SOB w/o Mg
2+

 Tryptone 

Yeast extract 

NaCl 

KCl 

2 % (w/v) 

0.5 % (w/v) 

10 mM 

2.5 mM 

 

SOB SOB w/o Mg
2+

 

+ MgCl2 

+ MgSO4 

 

10 mM 

10 mM 

 

 

2.1.3. Transformation in B. subtilis 

Transformation of PCR-products, plasmids or gDNA into B. subtilis was performed by 

standard methods (Anagnostopoulos and Spizizen, 1961). AmyE insertion (pDR111, pPG60, 

pSG1154) in B. subtilis was checked by plating transformants on agar containing 0.4 % starch 

(w/v) in addition to appropriate antibiotics to check for successful loss of α-amylase by 

staining starch with Lugol’s iodine. LacA insertion (pBS2E) was screened by PCR. 

Integrations into lacA instead of the amyE locus resulted in a lower expression level (Sauer et 

al., 2016; Slager and Veening, 2016), which was especially used to minimize a potential 

unspecific influence of YocM-mCherry in the in vivo disaggregation assays. Deletion mutant 

(ypbH::cm) was generated firstly fusing mut1/mut2, mut3/mut4 (resistance marker) and 

mut5/6, and secondly combining all PCR products in a standard overlap fusion PCR (Table 

5). Successful gene integrations were re-confirmed by western blotting or fluorescence 

microscopy (depending on constructs).  
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2.1.4. Preparation of chromosomal DNA of B. subtilis 

B. subtilis chromosomal DNA was prepared using the MasterPure Gram Positive DNA 

Purification Kit (Lucigen) according to instructions of the manufacturer. After cell lysis with 

ReadyLyse lysozyme in Gram Positive Lysis Solution, DNA precipitation was performed by 

adding MPC Protein Precipitation Reagent followed by isopropanol. DNA was dissolved in 

dH2O. Concentrations were determined using the NanoDrop spectrophotometer and 

subsequently diluted to adequate concentrations for PCR and transformations (300-

500 ng/µL). 

2.2. Competition 

A B. subtilis pre-culture was inoculated with a fresh overnight culture to a mixed main culture 

with an OD of 0.05 each strain (Spizizen minimal medium or Belitsky Minimal Medium for 

salt stress and LB for heat competition) and grown to 0.4. Cultures were separated and either 

0, 2.5, 5 or 15 % NaCl (w/v) was added (salt stress) or separated cultures were incubated at 

37 °C, 48 °C and 53 °C (heat stress). At different time points, cells were plated on agar plates 

containing different antibiotics in serial dilution or analyzed by fluorescence microscopy to 

calculate the ratio of the chosen strains. Statistics were done with at least three biological 

replicates using unequal variances students’ t-test (Welch’s test), which is does not depend on 

equal variances or sample sizes and is consequently stricter than regular student’s t-test. 

Standard deviations are indicated by error bars. 

2.3. Spot test 

25 mL LB medium was inoculated 1:50 with overnight culture. Cells were incubated shaking 

at 37 °C to OD600 1 and kept on ice to stop growth before all samples were serially diluted 
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1:10 with saline. Starting at OD600 1, 5 µL of each dilution step was put on agar plates 

containing 0, 0.05 or 2 mM IPTG. The plates were incubated either at 37 °C or 50 °C 

overnight. 

2.4. Northern blotting and RT-qPCR 

Northern blotting was performed as previously described (Hantke et al., 2018; Simard et al., 

2001). 2 µg total RNA per sample was denatured and transferred to a positively charged 

nylon membrane by upwards capillary transfer overnight (16 h). The integrity and equal 

loading of the RNA was verified by staining the membrane with methylene blue dye (0.02 % 

methylene blue, 300 mM sodium acetate pH 5.5). Digoxigenin-labeled RNA probes were 

generated by in vitro-transcription with T7 RNA-polymerase (NEB) and labelled DIG RNA 

Labelling Mix (Roche). Membranes were hybridized overnight (Simard et al., 2001). The 

membrane was blocked by incubation in Blocking reagent (Roche Applied Sciences) for 1 h. 

Anti-digoxigenin antibodies conjugated to alkaline phosphatase (Roche Applied Sciences) 

were diluted 1:5000 in the same buffer and applied to the blot for 2 h. The membrane was 

washed. CDP-Star solution (Tropix Inc.) was used as substrate and signals were detected in a 

ChemiBIS 4.2 imaging system (DNR). 

RT-qPCR was performed as previously described (Hantke et al., 2018). 500 ng total RNA 

was used for Protoscript® II reverse transcriptase (NEB) with 3.5 µM random hexamer 

primers for 1 h at 42 °C. qPCR was performed using Luna® Universal qPCR Master Mix 

(NEB) with cDNA equivalent to 5 ng RNA (or 0.5 ng RNA for rRNA targets). Primer 

efficiency was calculated using a standard curve with serial 10-fold dilutions of cDNA. 23S 

rRNA was used as the reference gene and the 2
ΔΔCT

 Method  was used to calculate relative 

gene expression (Livak and Schmittgen, 2001).  
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2.5. Fluorescence microscopy 

B. subtilis cells were inoculated with a fresh overnight culture to an OD of 0.05 in indicated 

medium + 0.25/0.5 % xylose (w/v) or 2 mM IPTG (indicated in figure, depending on 

construct Plac / Pxyl and expression level), if not otherwise indicated. Cultures were treated 

according to experimental setup (e.g. thermotolerance or in vivo disaggregation). 1 µL 

samples were taken for microscopy performed on an object slide coated with 1 % agarose 

(w/v) in saline (0.9 % NaCl (w/v)). Oil immersion and 10x100 magnifications were used with 

an AxioImagerM2 Zeiss fluorescence microscope with common gfp and mCherry filters.   

2.6. Aggregate preparation 

100 mL LB was inoculated with a fresh overnight culture to an OD of 0.05 and grown to 0.4. 

Cultures were separated and treated A) ± with a 15 min pre-shock of 48 °C or B) ± a 30 min 

pre-shock of 4 % NaCl w/v. Both were subsequently shifted to A) 53 °C or B) treated with 

15 % NaCl w/v. 25 mL samples were taken by centrifugation at 5.000 xg for 10 min at 

indicated time points. Aggregate preparations were performed as previously described (Runde 

et al., 2014). Total amount of 2.5 or 5 µg protein, calculated by Bradford test from cellular 

extract ‘CE’; was used for SDS Page analysis (PE: aggregate/enriched pellet fraction). 

2.7. In vivo disaggregation assay 

B. subtilis cells were inoculated with a fresh overnight culture to an OD of 0.05 in LB + 0.5 % 

xylose (w/v) to induce Pxyl yocM-mCherry. At OD600 0.25 – 0.3 cells were treated with a heat 

shock at 52 °C for 20 min or 50 °C for 30 min, depending on heat sensitivity of the strains 

used. Cultures were separated and ± 2 mM IPTG was added while shifting the cells to recover 
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at 37 °C. Samples were taken at indicated time points for aggregate preparations, western 

blotting and/or fluorescence microscopy.  

2.8. Salt and thermotolerance 

LB media (thermotolerance) or Belitsky minimal medium (salt tolerance) was inoculated with 

a fresh overnight culture to an OD of 0.05 and kept shaking at 37 °C. At OD600 0.4 cultures 

were treated ± with a 15 min pre-shock of 48°C or ± 4 % NaCl (w/v) for 30 min. Both were 

shifted to 54°C or treated with 15 % NaCl (w/v). Samples were diluted and subsequently 

plated on LB agar at t0, t30, t60 and t120 min. Counted cfu were plotted against time after heat or 

salt shock. Statistics were done with at least three biological replicates using unequal 

variances students’ t-test (Welch’s test). Standard deviations are indicated by error bars. 

2.9. Growth curves 

25 mL LB was inoculated with a fresh overnight culture to an OD600 of 0.05 kept shaking at 

indicated temperature. The OD600 was measured every 30 min, if not otherwise indicated. For 

high throughput measurements, the SpectraMaxM3 or Tecan infinite 200Pro plate reader was 

used. 

2.9.1. Growth curves / screening in plate reader 

Pre-cultures were started in the morning 1:50 with fresh overnight cultures (LB medium). The 

pre and main cultures contained LB medium plus various supplements (e.g. xylose, IPTG), as 

indicated in each figure. When the exponential phase was reached, all strains were diluted to 

OD600 of 0.1 as ODstart of the main cultures. Afterwards, 200 µL of each sample was added 

into a sterile 96-well plate and growth curve was measured shaking at 37 °C in a SpectraMax 

M3 or Tecan infinite 200 Pro, if not otherwise indicated. At least four replicates were placed 
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on random positions on the 96-well plate to ensure reproducibility. For screening purposes, 

compounds dissolved in DMSO were added with different concentrations (0-64 µM) at the 

beginning of the growth curve (ODstart). A sample containing only DMSO was always used as 

control. 

2.10. Biochemical methods 

SDS PAGE (15 % gels) and Blue native PAGE (3.5 – 15 % gradient gels) were performed as 

previously described (Laemmli, 1970; Schägger and von Jagow, 1991). In semi-dry blotting, 

proteins were blotted from gels onto nitrocellulose membranes soaked in 20 mM Tris-HCl 

pH 8, 150 mM glycine and 20 % methanol (v/v). Membranes were blocked afterwards in 1x 

TBS and 5 % skim milk powder (w/v). The membrane was incubated in 1x TBS + primary 

antibodies (Pineda Berlin), followed by three washing steps were performed before anti-rabbit 

or anti-mouse (for the anti-his6 antibody) alkaline phosphatase conjugate was used as 

secondary antibody (1:10000). After 10 min equilibration in AP buffer, blots were developed 

in 10 mL AP buffer + 250 µL BCIP (5 % (w/v) in DMF) + 250 µL NBT (5 % (w/v) in 70 % 

DMF) or using the ECF western blotting reagent (GE Healthcare). 

AP buffer Tris-HCl pH 9.5 

NaCl 

MgCl2 

100 mM 

100 mM 

5 mM 

 

1x TBS buffer Tris-HCl pH 7.5 

NaCl 

50 mM 

150 mM 
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2.10.1. Protein production 

Protein production was performed in E. coli BL21 (DE3) (Table 6). Cells were to grown at 

37 °C to an OD600 of 0.7-0.9 and expression was started by adding 1 mM IPTG. Cells were 

shifted to 22 °C overnight for protein production. Purification of his6-tagged proteins was 

performed by standard nickel affinity chromatography after cell lysis in lysis buffer by French 

press (Turgay et al., 1997). Lysis buffer was supplemented with 20 mM or 250 mM imidazole 

during washing and elution step, respectively. ClpC was purified as previously described 

(Turgay et al., 2001). His-Sumo-YocM was cleaved with Ulp-protease overnight at 4 °C 

according to manufacturer (ThermoFischer) in lysis buffer. Protein concentrations were 

calculated using Bradford test and, if necessary, enriched using Vivaspin® spin columns 

(Sartorius). Proteins were frozen in aliquots with liquid N2 and stored at -80 °C in storage 

buffer. 

Lysis buffer Tris-HCl pH 8.0 

NaCl 

MgCl2 

50 mM 

150 mM 

5 mM 

 

Storage buffer Lysis buffer + 

Glycerin 

 

 

10 % w/v 

 

2.10.2. Size exclusion chromatography 

Size exclusion chromatography was performed with an ÄKTA FPLC system with a 

Superose6 Increase 10/300 column (CV: 24 mL) at 4 °C (GE Healthcare). The flowrate was 

kept constant at 0.5 mL ∙ min
-1

. For calibration purposes, different marker proteins were used: 

Thyroglobulin (669 kDa), Ferritin (440 kDa), Catalase (232 kDa), Aldolase (158 kDa), 
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Ovalbumin (44 kDa), Carbonic anhydrase (29 kDa) and Ribonuclease (13.7 kDa). For 

formation of hexameric ClpC complex (i.e. + MecA), the sample was incubated at 37 °C 

+ 5 mM ATP for 10 min prior to chromatography. In addition, 0.5 mM ATP was added to the 

running buffer. ClpC E280A E618A (ATPase inactive Double Walker B mutant) was used 

instead of wildtype ClpC to increase stability of the oligomeric complex. 

Running buffer Tris-HCl pH 8.0 

NaCl 

MgCl2 

50 mM 

150 mM 

5 mM 

 

2.10.2.1. Protein precipitation 

After size exclusion chromatography, all peaks were collected in 1 mL fractions starting at 

8 mL elution volume. 110 µL of TCA was added to each 1 mL fraction and the mixture was 

incubated for 10 min on ice. Samples were centrifuged for 15 min at 10,000 xg and the 

supernatant was discarded. The pellet was washed twice with 2 mL of acetone and kept on ice 

for 15 min before re-centrifugation. At last, the pellet was dried until all acetone was 

evaporated. 20 µL of 1x TBS was added and kept shaking at 37 °C for 5 min before being 

analyzed by SDS PAGE. 

2.10.3.  Malachite green ATPase and degradation assay 

The staining solution was prepared in the described ratio and kept stirring under exclusion of 

light for 1 h before use. A calibration was performed with KH2PO4 as standard from 0 to 

1000 µM. The reactions were performed in 1x ATPase assay buffer with a final 1 µM of 

protein samples in a total of 50 µL. Reactions were started by adding 1 µL ATP (200 mM, 

final 4 mM) and shifting of the mixture to 37 °C. At indicated time points, 10 µL of the 
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reaction mixture was added to 160 µL staining solution in a 96-well plate to stop the reaction. 

Afterwards 20 µL of sodium citrate (34 % (w/v)) was added and the released phosphate was 

measured at 660 nm in a SpectraMax M3 photometer. Degradation assay was performed in 

ATPase Assay buffer with an ATP regeneration system according to (Schlothauer et al., 

2003) with all proteins diluted to a final 1 µM. Substrate αβ-casein was used with a final 

concentration of 3 µM. Reaction was started at 37°C by adding a final 4 mM ATP and 

samples were taken for SDS-Page at indicated time points. 

5x ATPase assay buffer Tris-HCl pH 8.0 

KCl 

MgCl2 

250 mM 

250 mM 

25 mM 

 

Staining solution Malachite Green hydrochloride 

Ammonium molybdate 

Triton X 

 

 

4.5 µg/mL, 30 mL 

4.2 % in 4 M HCl, 10 mL 

100 %, 40 µL 

 

2.10.4.  Light scattering assays 

2.10.4.1. Luciferase 

5 µL of 1 mg ∙ mL
-1

 luciferase (firefly luciferase, Roche) was denatured for 40 min at 25 °C 

in 200 µL 1x luciferase buffer + 114 mg GuHCl. 12.5 µL were added to 987.5 µL luciferase 

buffer (final 0.03 µM) containing proteins of interest at indicated concentrations and 

aggregation of luciferase was observed by light scattering at 360/360 nm in a Jasco FP6500 

spectrofluorometer (sensitivity: medium) (Hantke et al., 2018). 
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5x luciferase buffer HEPES/KOH pH 7.6 

KCl 

MgCl2 

DTT 

125 mM 

250 mM 

25 mM 

1 mM 

 

2.10.4.2. Malate dehydrogenase 

Aggregation of Malate dehydrogenase (Mdh, final 2 µM) was performed in 1x refolding 

buffer at 47 °C containing different proteins of interest or other supplements at indicated 

concentrations. Light scattering was measured at 360/360 nm in a Jasco FP6500 

spectrofluorometer (sensitivity: low) (Schlothauer et al., 2003). For Mdh refolding, Mdh was 

denatured with 6 M GuHCl and refolding was initiated by dilution 1:100 (final 0.5 µM) in 1x 

refolding buffer containing proteins of interest or other supplements at indicated 

concentrations. Samples were taken at indicated time points for activity measurements to 

follow refolding process. No increase in light scattering was observed at 360/360 nm under 

any tested conditions.  

5x Mdh refolding buffer Tris-HCl pH 7.5 

KCl 

Mg(OAc)2 

DTT 

500 mM 

750 mM 

100 mM 

5 mM 

   

The activity of Mdh was measured at indicated time points by adding 5 µL of the reaction 

mixture into 250 µL Mdh assay buffer. The reaction was followed at 340 nm in a 

SpectraMaxM3 (Figure 10) (Schlothauer et al., 2003). Standard deviations of at least three 

biological replicates are shown as error bars. p-values were calculated from Welch’s test.  
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Figure 10: Enzymatic reactions of malate dehydrogenase (Mdh).  

NADH is oxidized during the reaction of oxaloacetic acid to malate by Mdh. The reaction can be visualized by 

following the absorbance at 340 nm (NADH) in a spectrophotometer. 

 

5 mL Mdh assay buffer K
+
-phosphate buffer pH 7.6 

DTT 

NADH 

Oxaloacetate 

dH2O 

1 M, 750 µL 

1 mM 

0.931 mg 

0.33 mg 

ad 5 mL 

 

2.10.4.3. Citrate synthase 

Citrate synthase was unfolded for 2 h in 0.1 M Tris HCl pH 8.0 by 6 M GuHCl. Refolding 

was induced by dilution 1:100 (Buchner et al., 1991) into reaction mixture (final 0.1 µM) 

containing proteins of interest and other supplements while measuring light scattering at 

360/360 nm in a Jasco FP6500 spectrofluorometer (sensitivity: low). Activity was measured 

at indicated time points (5 µL samples, 30 °C) by conversion of Acetyl-CoA (0.047 mM) and 

oxaloacetate (0.023 mM) into citrate and CoA-SH, which reacts with the Ellman’s reagent 

(0.1 mM DTNB) (Figure 11). The reaction was observed at 412 nm in a SpectraMaxM3 at 

30 °C (Faloona and Srere, 1969; Hristozova et al., 2016). 
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Figure 11: Enzymatic reactions of citrate synthase (CS).  

While oxaloacetate is turned into citrate, acetyl-CoA is cleaved to CoA-HS, which reacts with the Ellman’s 

reagent (DTNB). The reaction can be followed by observing the formation of 5-thio-2-nitrobenzoic acid at 

412 nm.  



Results 

Page | 60  

 

3. Results 

3.1. The role of sHsp YocM during salt stress 

Despite the occurrence of small heat shock proteins in all domains of life, no sHsp has been 

identified as such in the Gram-positive model organism B. subtilis yet. In B. subtilis, the three 

genes cotM, cotP and yocM all encode for proteins containing the sHsp characteristic α-

crystallin domain, but while CotM and CotP were observed to be part of the proteinaceous 

spore coat during spore development, YocM still lacks an assigned role in the cell (Henriques 

et al., 1997; McKenney et al., 2013, 2010; McKenney and Eichenberger, 2012; Wang et al., 

2009). However, transcriptomics data gave a first hint towards a role of YocM during salt 

stress (Nicolas et al., 2012). 

To further elucidate the stress mediated transcriptional and translational regulation of the 

potential sHsp YocM in more detail, RT-qPCR, northern and western blotting were 

performed (Figure 12). It was exhibited that the levels of the yocM transcript were 

significantly raised after 6 % NaCl salt shock, which was not as pronounced when looking at 

the translational level. S738, an asRNA to yocM, might additionally influence the efficient 

translation of YocM (Nicolas et al., 2012). However, a sHsp characteristic, significant heat 

mediated upshift in transcript or protein level, could not be observed for yocM and YocM, 

respectively (Figure 12).  
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Figure 12: yocM is induced upon salt shock.  

A) Sampling scheme. B) α-YocM western blotting according to sampling scheme (A) (salt, Belitsky minimal 

medium BMM / heat, LB medium). Translational level of YocM was calculated from western blot band intensity 

using ImageJ from at least three biological replicates with *: p<0.05. Error bars indicate standard deviations. 

20 µg protein of whole cell extract was analyzed. C/D) Quantitative PCR analysis of yocM under indicated heat 

and salt stress conditions and northern blotting (of one representative sample to visualize qPCR results) were 

performed by Heinrich Schäfer (IFMB / LUH) with provided samples taken according to A. 2 µg RNA of whole 

cell extract was analyzed. Error bars (D) indicate standard deviations of at least three biological replicates. *: p < 

0.05 (Kruskal-Wallis). 

 

As yocM is upregulated upon salt shock, both a ΔyocM deletion mutant and a Plac yocM 

overexpression strain were examined towards salt sensitivity. The ΔyocM mutant appeared 

more sensitive towards higher NaCl concentrations, which was reversed in the Plac yocM 

strain (Figure 13AB). Additionally, elevated synthesis of the α-crystallin domain of YocM 

alone or in combination with either the NTD or the CTD did not positively affect growth at 

5 % NaCl (Figure 13C). This truncation suggested the necessity of the full length YocM in 

the Plac yocM overexpression strain to display accelerated growth under higher salt 

concentrations (Figure 13C). To allow a direct comparison between the wildtype strain and 

the ΔyocM mutant, both strains were analyzed in a competition growth experiment where a 

mixed culture with equal amounts of both strains was examined (Figure 13DE). While the 
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ΔyocM mutant was slightly outcompeted by the wildtype strain when grown in SMM with 

5 % NaCl (Figure 13D), the overexpression of yocM in the Plac yocM strain significantly 

enhanced growth under these conditions (Figure 13E).  

 
 

Figure 13: Levels of YocM correspond with salt sensitivity.  

A) Growth of B. subtilis wt (black) and ΔyocM (BIH2, red) was compared in SMM ± 5% NaCl at 37 °C. B) 

Growth of B. subtilis wt (black), ΔyocM (BIH2, red) and ΔyocM Plac yocM (BIH286, blue) was compared in 

SMM ± 3.5/5% NaCl at 37°C + 1 mM IPTG. C) Growth of B. subtilis wt (white circle), Plac yocM (BIH182, 

black), Plac yocM-NTD (BIH343, red), Plac yocMACD (BIH344, green) and Plac yocM-CTD (BIH345, blue) was 

compared in LB + 5% NaCl + 1 mM IPTG at 37°C. All growth curves were performed in a Tecan infinitePro200 

plate reader. Error bars indicate standard deviations calculated from three biological replicates. D) B. subtilis wt 

constitutively expressing mcherry (BIH240) and ΔyocM constitutively expressing gfp (BIH274) were analyzed 

in a competition experiment in SMM with wt constitutively expressing gfp as control (BIH148). E) B. subtilis 

Plac yocM (BIH182) vs. wt were analyzed in a competition experiment under salt stress conditions with Plac 

mcherry-yocMCTD (BIH382) as control. Samples were taken at indicated time points for fluorescence microscopy 

and cfu counting on agar plates. Error bars indicate standard deviations (*: p<0.05 Welch’s test) calculated from 

three biological replicates.  
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When examining a more severe salt shock of 15 % NaCl, the ΔyocM deletion mutant was 

significantly impaired in salt tolerance development (Figure 14A). However, artificially raised 

levels of YocM did only moderately improve both salt tolerance and resistance (Figure 14B). 

Nevertheless, the data suggests that YocM positively influences the ability of B. subtilis to 

deal with salt stress. 

 
 

Figure 14: A yocM deletion mutant is impaired in salt tolerance development.  

A) B. subtilis wt (red) and ΔyocM mutant (BIH2, black) were treated with a harsh 15 % salt shock and survival 

was measured by cfu at indicated time points. B) B. subtilis Plac yocM (BIH182) was analyzed as in A without 

IPTG (red) and with IPTG (black). Squares: with 30 min pre-shock at 4 % NaCl; triangles: without pre-shock. 

Log10-values of viable cell count were normalized and standard deviations (indicated error bars) were calculated 

from three biological replicates (*: p<0.05 Welch’s test). 

 

As a member of the family of small heat shock proteins, the influence of varying levels of 

YocM regarding sensitivity towards heat stress was also investigated. The ∆yocM mutant and 

the wildtype strain were compared in a competition experiment regarding their ability to 

outgrow each other at elevated temperatures. It was observed that both strains behaved 

similarly (Figure 15A), albeit overexpression of yocM in the Plac yocM strain gave an 

advantage towards growth at 48 °C (Figure 15B). Furthermore, both thermoresistance and 

thermotolerance of the ∆yocM mutant were investigated. The overexpression of yocM in the 

Plac yocM strain led to a minor protective effect regarding heat stress while the deletion of 

yocM did not affect sensitivity towards heat stress (Figure 15CD). 
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Figure 15: Deletion of yocM does not affect heat sensitivity. 

A) B. subtilis wildtype constitutively expressing mcherry (BIH240) and ΔyocM constitutively expressing gfp 

(BIH274) were analyzed in a competition experiment in LB with a wildtype strain constitutively expressing gfp 

as control (BIH148) at indicated temperatures 37 °C (black) / 48 °C (red) / 53 °C (blue). B) B. subtilis Plac yocM 

(BIH182) vs. wt were analyzed in a competition experiment with Plac mcherry-yocMCTD (BIH382) as control at 

indicated temperatures 37 °C (black) / 48 °C (red) / 53 °C (blue). Samples were taken at indicated time points for 

fluorescence microscopy and cfu on agar plates. C) B. subtilis wt (red) and ΔyocM mutant (BIH2, black) were 

treated with a 54 °C heat shock and survival was measured by cfu at indicated time points. D) B. subtilis Plac 

yocM (BIH182) was analyzed (see A) without IPTG (red) / with IPTG (black). Squares: with 15 min pre-shock 

at 48 °C; triangles: no pre-shock. Log10-values of viable cell count were normalized and standard deviations 

(indicated error bars) were calculated from three biological replicates (*: p<0.05, **: p<0.01, Welch’s test). 

 

 

3.1.1. YocM-mCherry as a marker for protein aggregation  

As YocM was detected in the aggregate fraction, the subcellular localization of YocM was 

additionally determined in vivo with a xylose inducible Pxyl yocM-mcherry strain and verified 

by co-localization with malate dehydrogenase fused to GFP (Mdh-GFP), a known aggregate 

marker protein (Runde et al., 2014). Under non-stressed conditions both YocM-mCherry and 

Mdh-GFP were homogenously distributed throughout the cell (Figure 16). After salt or heat 

shock distinct fluorescent YocM-mCherry foci were formed, which were localized and 

distributed similar to subcellular protein aggregates (Kirstein et al., 2008; Runde et al., 2014).  
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Figure 16: YocM-mCherry targets subcellular protein aggregates in vivo.  

A/D) Strain mdh::mdh-gfp Pxyl yocM-mCherry (BIH305) was grown in A) LB or D) BMM + 0.25 % xylose and 

treated with a 15 min shock at indicated temperature or salt concentration. B/E) Strain Pxyl yocM-mCherry in 

Δspx and ΔclpX background (BIH73, BIH84, BIH85) was grown in LB with 0.25 % xylose and treated with B) 

15 min 54 °C heat shock ± a 15 min 48 °C pre-shock or E) with indicated salt concentration for 30 min. C) 

Corresponding western blot of aggregate fractions of B) after 30 min of 54 °C heat shock of Pxyl yocM-mCherry 

(BIH73) compared with Δspx and ΔclpX mutants (BIH84, BIH85). Western blot α-YocM shows band of YocM-

mCherry in aggregate fraction indicating amount of aggregates in comparison to wt. F) Strain Pxyl ibpA-gfp Pxyl 

yocM-mCherry (BIH91) was grown with 0.25 % xylose and either treated with 15 min heat shock at 50 °C or 

30 min salt shock with 10 % NaCl. G) Strain mdh-gfp Pxyl yocM-mCherry (BIH305) treated with 20 µg/mL 

puromycin for 15 min in LB medium. Grey: phase contrast; red: mCherry; green: gfp (standard mCherry/gfp 

filter). Scale bar: 5 µm 

 

When elucidating the distribution of YocM-mCherry in different background mutant strains, 

which are known to accumulate more (Δspx) or less (ΔclpX) subcellular protein aggregates 

than the wildtype (Runde et al., 2014), it was observed that the degree of YocM-mCherry 

marked aggregates reflected and confirmed those phenotypes of a ∆spx and a ΔclpX strain  

(Figure 16BE). At the same time, the expression of yocM-mcherry did not affect heat stress 

resistance per se (Figure 17). Moreover, comparing the sHsp fusion protein YocM-mCherry 
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to the E. coli sHsp IbpA fused to GFP resulted in a similar distribution in vivo (Figure 16F) 

(Lindner et al., 2008; Runde et al., 2014). Furthermore, after treatment with puromycin, 

which leads to pre-termination of peptide chain during translation, only YocM-mCherry 

instead of Mdh-GFP was observed to co-localize with emerging subcellular protein 

aggregates (Figure 16G). While YocM-Cherry associated with protein aggregates consisting 

of puromycin induced, unfinished protein fragments, Mdh-GFP was only appropriate as an 

aggregation marker protein at elevated temperatures due to unfolding of Mdh per se (Runde et 

al., 2014). 

 
 

Figure 17: Elevated levels of YocM-mCherry do not affect heat and salt resistance. 

B. subtilis strain Pxyl yocM-mcherry was grown ± 0.5 % xylose and treated at OD600 0.4 with A) a 54 °C heat 

shock or B) a 15 % salt shock according to the respective scheme and survival was measured by cfu at indicated 

time points. Squares: A) with 15 min 48 °C pre-shock / B) with 30 min pre-shock at 4 % NaCl; triangles: 

without pre-shock. Log10-values of viable cell count were normalized and standard deviations (indicated error 

bars) were calculated from three biological replicates. 

 

For further characterization, the yocM overexpressing strain (Plac yocM) was examined with 

the new established yocM-mcherry marker. Surprisingly, the formation of polar fluorescent 

foci was observed when, besides from yocM-mcherry, yocM was overexpressed (Figure 18A). 

It is important to note that overexpression of yocM did not result in the formation of more 

insoluble protein aggregates and protected B. subtilis cells to a certain agree against salt and 

heat stress, while expression of yocM-mcherry in trans affected the heat sensitivity and 

thermotolerance of B. subtilis to a much lesser extent than yocM, suggesting only partial 
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YocM activity (Figure 13, Figure 15, Figure 17 and Figure 19). When IPTG was removed and 

Plac yocM no longer induced, the foci disappeared within 180 min (Figure 18A). After heat 

shock and subsequent recovery at 37 °C, all heat induced subcellular aggregates were cleared, 

but YocM based foci were still apparent (Figure 18B). It was tempting to speculate that the 

formation of those sHsp clusters at the polar region might be an artifact due to overexpression 

and interaction of both a sHsp and a sHsp-fusion protein. Hence, the sHsp IbpA from E. coli 

was compared to YocM. As expected, whenever YocM-mCherry or IbpA-GFP was present in 

the cell and subsequently yocM or ibpA was overexpressed, fluorescent foci were formed at 

the cellular pole (Figure 18C). 
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Figure 18: Overexpression of yocM leads to formation of polar fluorescent clusters in the presence of 

YocM-mCherry. 

A) Strain Plac yocM Pxyl yocM-mcherry (BIH629) was grown in LB + 0.5 % xylose until treated at OD600 0.3 ± 

2 mM IPTG for 20 min. Cells were harvested by centrifugation and resuspended in medium ± IPTG for recovery 

at 37 °C for 3 h. B) Strain Plac yocM Pxyl yocM-mcherry (BIH629) was grown in LB + 0.5 % xylose ± 1 mM 

IPTG until treated OD600 0.4 ± heat shock at 53 °C for 30 min. Cells were then shifted to 37 °C for 3 h to 

recovery. C) Strains Plac ibpA Pxyl yocM-mcherry (BIH610), Plac yocM Pxyl ibpA-gfp (BIH631), Plac yocM Pxyl 

yocM-mcherry (BIH629) and Plac ibpA Pxyl ibpA-gfp (BIH634) were grown in LB + 0.5 % xylose and treated 

with 1 mM IPTG at OD600 0.4 for 30 min. Grey: phase contrast; red: mCherry; green: gfp (standard mCherry/gfp 

filter). Scale bar: 5 µm 

 

Collectively, the data underline the YocM-mCherry fusion protein as a useful tool to 

investigate protein aggregate formation in vivo. However, studying the effect of sHsp in stress 

response by using a sHsp based marker protein requires specific attention.  
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3.1.2. The effect of salt stress on protein aggregation 

Exposure to salt leads to changes in turgor pressure, cell size and intracellular ion 

composition, which can concurrently result in protein unfolding and potential protein 

aggregation (Bourot et al., 2000; Ignatova and Gierasch, 2006; Stadmiller et al., 2017). YocM 

was detected in the enriched aggregate fraction after exposure to severe salt stress and, when 

overexpressed, also observable in the cellular extract (Figure 19). However, in protein 

aggregate preparations only minor amounts of protein aggregates were observed after a salt 

shock compared to heat treated cells suggesting that the effect of heat stress on protein 

unfolding and aggregation is substantially different from the influence of salt stress (Figure 

19) (Hantke et al., 2018; Runde et al., 2014). Though, the aggregate marker protein malate 

dehydrogenase (Mdh) still appeared to be associated with the salt induced aggregated protein 

fraction (Runde et al., 2014). The amount of Mdh in this fraction increased during severe salt 

exposure, while being decreased in the IPTG-induced Plac yocM strain, suggesting that YocM 

can prevent Mdh aggregation during severe salt shock (Figure 19). IPTG per se had no 

significant influence on amount of aggregates at used concentrations (Hantke et al., 2018). 

 
 

Figure 19: Aggregate preparations reveal minor aggregate formation after salt compared to heat shock.  

Time-resolved aggregate preparations after A) 54 °C heat shock and B) 15% salt stress with SDS-page and α-

YocM/α-Mdh western blotting of B. subtilis wt, Plac yocM (BIH182, + 1 mM IPTG) and ΔyocM (BIH2). 2.5 µg 

of whole cell extract was analyzed. CE: cellular extract, PE: enriched pellet/aggregate fraction. 
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Moreover, the YocM-mCherry marked foci after salt stress appeared much more 

heterogeneous and fragmented compared to more distinct ones after heat stress (Figure 16). 

The YocM-mCherry fusion protein obviously co-localizes with all aggregated proteins. 

However, the salt shock induced and potentially more fragile aggregates might be more prone 

to be removed during the stringent washing steps of the aggregate preparation protocol which 

could explain the different results of fluorescence microcopy and aggregate preparations 

(Figure 16 and Figure 19). 

To further elucidate the different nature of heat and salt stress mediated unfolding, it was 

hypothesized that while heat stress affects all proteins in the cell, salt stress might especially 

influence the folding of nascent polypeptide chains and structurally sensitive proteins. To test 

this hypothesis, chloramphenicol was used to arrest translation and reduce the number of 

nascent chains. As speculated, chloramphenicol resulted in a significant 20 % reduction of 

cells bearing YocM-mCherry marked subcellular protein aggregates following salt shock 

(Figure 20A). Furthermore, the amount of intracellular protein aggregates after heat shock did 

not differ from cells that were previously treated with chloramphenicol (Figure 20BC). At the 

same time it is important to note that the addition of chloramphenicol per se did not affect the 

total amount of protein aggregates and/or levels of YocM-mCherry (Figure 20DE).  
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Figure 20: Impaired translation causes reduced protein aggregation after salt shock.  

Strain Pxyl yocM-mCherry (BIH369) was grown in BMM + 0.5 % xylose and treated ± with final 25 µg ∙ mL
-1

 

chloramphenicol at OD600 0.4 for 10 min (LB medium for heat shock in C). After subsequent addition of 

10 % NaCl cells were analyzed at t30. Two analogous examples of salt shocked cells are shown (1/2). Grey: 

phase contrast; red: mCherry. Scale bar: 5 µm. Error bars indicate standard deviations calculated from three 

biological replicates (***: p<0.001, Welch’s test). D) SDS-PAGE analysis of aggregate preparations at indicated 

time points after treatment with 10 % NaCl according to materials and methods with α-YocM western blotting 

(E) to detect levels of YocM-mCherry. 5 µg of whole cell extract was analyzed. CE: cellular extract, PE: 

enriched pellet/aggregate fraction. 

 

  

 



Results 

Page | 72  

 

3.1.3. Interplay of YocM with the PQC  

A synergistic interplay of sHsps with the PQC network has been observed e.g. in E. coli when 

the combination of an ibpA deletion with ΔdnaK and ΔclpB deletion mutants resulted in an 

enhanced phenotype towards heat stress (Kitagawa et al., 2000; Mogk et al., 2003a, 2003b; 

Thomas and Baneyx, 1998). To determine the relation of YocM with the PQC in B. subtilis, 

the ΔyocM strain and additional deletions of dnaK and clpC were investigated regarding an 

enhanced phenotype upon heat and salt stress. First it has to be noted that despite a 

ΔdnaKΔclpC double deletion mutant displayed severely impaired thermoresistance and 

thermotolerance, the sensitivity towards salt stress was not as affected, suggesting a negligible 

role of ClpC or DnaK in salt stress response in general (Figure 21). Additional deletion of 

yocM did not result in any obvious synergistic phenotype. However, whereas a ΔyocM 

deletion and the wildtype strain were indistinguishable regarding heat sensitivity, a triple 

ΔyocMΔdnaKΔclpC mutant strain was more impaired in thermoresistance than a 

ΔdnaKΔclpC double mutant (Figure 21C). Furthermore, the induction of Plac yocM did not 

influence the cellular level of various chaperones indicating an independent and non-

regulatory role in PQC network (Figure 21E).  
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Figure 21: YocM potentially interacts with protein quality control system in B. subtilis.  

A)-D) Wildtype (yellow), ΔyocM (BIH2, red), ΔdnaKΔclpC (BIH79, black) and the triple ΔdnaKΔclpCΔyocM 

mutant strain (BIH121, blue) were treated with (A) a 15% NaCl salt shock (B after 30 min 4% NaCl) or (C) a 

54 °C heat shock (D after 15 min 48°C) and survival was measured by cfu at indicated time points. Log10-values 

were normalized and error bars indicate standard deviations (*: p<0.05, Welch’s test). E) Induction of Plac yocM 

(BIH182) by 1 mM IPTG for 30 min at OD600 0.4. 5 µg of whole cell extract was analyzed by western blotting. 

 

 

3.1.4. CotM and CotP do not play a role in the PQC 

Next it was investigated whether the other sHsp paralogs (CotM and CotP) played a role in 

stress response. Hence, all combinatorial single, double and triple deletion mutant strains of 

ΔyocM, ΔcotM and ΔcotP were tested, respectively. Thereby, thermotolerance development 

and thermoresistance were unaffected under tested conditions in all strains examined (Figure 

22ABC). However, when testing salt sensitivity, all strains lacking yocM were less salt 

resistant, independent of the presence of cotM and cotP, suggesting that CotM and CotP play 

no significant role in PQC and that their apparent function is possibly restricted to their 

known role in proteinaceous coat formation during spore development (Figure 22DEF) 
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(McKenney et al., 2013). Moreover, both CotM-mCherry and CotP-mCherry did not interact 

with heat or salt stress generated protein aggregates as well as the YocM-mCherry fusion 

protein (Hantke et al., 2018). Collectively the data suggests that out of the three B. subtilis 

sHsp paralogs, only YocM fulfils a role in PQC.    

 
 

Figure 22: CotM and CotP are not involved in salt and heat stress response. 

A)-F) ΔyocM (BIH2), ΔcotM (BIH339) and ΔcotP (BIH331) were compared to wt in a salt and thermotolerance 

experiment according to materials and methods. A)/D) Black: ΔyocM (BIH2); blue: ΔcotP (BIH331); red: wt 

(BIH1); green: ΔcotM (BIH339). B)/E) Black: ΔyocM (BIH2); blue: ΔcotPΔyocM (BIH333); red: ΔcotMΔyocM 

(BIH348); green: ΔcotMΔcotP (BIH351). C)/F) Red: ΔcotMΔcotPΔyocM (BIH352); black: ΔyocM (BIH2). 

Squares (A/B/C): + 15 min pre-shock at 48 °C; triangles (A/B/C): no pre-shock. Squares (D/E/F): + 30 min pre-

shock at 4 % NaCl; triangles (D/E/F): no pre-shock. Log10-values of viable cell count were normalized and 

experiment was performed at least three times. Standard deviations are indicated as error bars. 

 

 

3.1.5. YocM accelerates protein aggregation in vitro 

To gain biochemical evidence for the obtained phenotype in vivo, YocM was purified and 

analyzed in vitro. Since sHsps usually occur in an equilibrium of various oligomeric 

structures, YocM (~18 kDa as a monomer) was tested in size exclusion chromatography and 

native PAGE. Both approaches indicated the existence of distinct higher oligomeric structures 

of YocM in vitro (~580-650 kDa / ~32-36 mer) (Figure 23AB). However, the fusion protein 
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YocM-mCherry was impaired in that characteristic structural feature with a potential tetramer 

(~175 kDa) as the highest oligomer observed in both approaches, although it was not the 

predominant species in the native PAGE (Figure 23AB). In addition, the underlying structure 

of YocM appeared to be a dimer (~36 kDa) or tetramer (~72 kDa), which is common for 

sHsp.  

 
 

Figure 23: YocM forms higher oligomeric structures in vitro. 

A) YocM (black, monomer: 18 kDa) and YocM-mCherry (red, monomer: 44 kDa) (25 µM each) were analyzed 

by size exclusion chromatography on a Superose6 Increase 10/300 column according to materials and methods. 

B) α-YocM western blotting of purified YocM after SDS-PAGE (15 % gel) and native PAGE (5 – 13.5 % 

gradient gel). Common native protein markers and their respective sizes are indicated in both approaches: IgM 

pentamer/ 1048 kDa, Thyroglobulin/ 669 kDa, Ferritin/ 440 kDa, Aldolase/ 158 kDa, Ovalbumin/ 44 kDa, 

carbonic anhydrase/29 kDa and Ribonuclease/ 13.7 kDa. 

 

For further characterization of YocM as a sHsp, in vitro experiments using light scattering to 

follow the aggregation and refolding of model substrates were performed. First, chemically 

denatured firefly luciferase was used to determine the ability of YocM to prevent its 

aggregation upon dilution. Unexpectedly, addition of YocM accelerated the aggregation of 

chemically denatured luciferase instead of preventing it (Figure 24A).  
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Consistently, addition of YocM accelerated the aggregation of heat denatured Mdh at 47 °C, 

while YocM alone did not aggregate under these conditions (Figure 24B). However, only a 

minor protective effect of YocM on Mdh inactivation was observed during denaturation 

(Figure 24B). By contrast, lysozyme per se aggregated to a certain extent at 47 °C but did not 

impact the heat mediated enzyme inactivation (Figure 24C). As the yocM overexpressing 

strain displayed an improved growth at salt stress, it had to be determined whether the in vitro 

activity of YocM is influenced by higher salt concentrations. However, there was no 

significant difference in the Mdh activity loss and aggregation at 47 °C in the presence of 

YocM when 0.25 or 0.5 M NaCl was added (Figure 24D).  
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Figure 24: YocM accelerates aggregation of model substrates in vitro. 

A) GuHCl denatured firefly luciferase (luci) was diluted into refolding buffer containing indicated amounts of 

YocM or lysozyme (luci final 0.03 µM). Dilution induced aggregation was measured by light scattering in a 

Jasco FP6500 spectrofluorometer. B)-C) Malate dehydrogenase (Mdh, final 2 µM) was incubated (B/C) ± 

lysozyme or ± YocM at indicated concentrations at 47 °C to induce unfolding and subsequent aggregation. D) 

Mdh (final 1µM) was incubated ± 250/500 mM NaCl at 47 °C. Light scattering was measured at 360/360 nm in 

a Jasco FP6500 spectrofluorometer and samples were taken at indicated time points to measure the loss of Mdh 

activity. Error bars indicate standard deviations and significant improvements are indicated (*: p<0.05, Welch’s 

test). 
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As a defense mechanism upon salt stress, many cells accumulate compatible solutes, which 

protect protein function and prevent protein aggregation. Additionally, it was demonstrated 

several times that these chemical chaperones, in particular glycine betaine (GB) and proline, 

improved the survival of heat shocked E. coli or B. subtilis cells in vivo (Bashir et al., 2014b, 

2014a; Caldas et al., 1999; Chattopadhyay et al., 2004; Diamant et al., 2003; Holtmann and 

Bremer, 2004). Hence, the effect of GB and proline was examined in the in vitro chaperone 

aggregation and refolding assays in combination with YocM or lysozyme as control. At that, 

0.25 and 0.5 M GB or proline were used, as it was estimated that the intracellular 

concentration of GB reaches 0.6 M upon salt stress (Record et al., 1998; Stadmiller et al., 

2017; Whatmore et al., 1990; Whatmore and Reed, 1990). In general, the addition of 0.5 M 

proline or 0.5 M GB reduced the rate and extent of Mdh aggregation at 47 °C (Figure 25 AB). 

Simultaneously, in the presence of 0.5 M GB, the addition of YocM retained significantly 

higher Mdh activity at 47 °C after 120 min (Figure 25A). A similar but minor effect was 

observed when 0.25 M proline or 0.25 M GB was used. Lysozyme as control did not 

positively affect Mdh activity under tested conditions (Figure 24C and Figure 25C). Those 

results were first hints towards a synergistic relationship between the sHsp YocM and 

chemical chaperones in B. subtilis, whereby the interplay of YocM with GB appeared to have 

the strongest protective effect. 
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Figure 25: YocM and the chemical chaperone glycine betaine synergistically protect malate 

dehydrogenase activity at 47 °C.   

Malate dehydrogenase (Mdh, final 2 µM) was incubated ± YocM and A) ± glycine betaine (GB), B) ± proline at 

concentrations of 0.25 or 0.5 M or C) ± lysozyme at 47 °C to induce unfolding and subsequent aggregation. 

Light scattering was measured at 360/360 nm in a Jasco FP6500 spectrofluorometer and samples were taken at 

indicated time points to measure the loss of Mdh activity. Error bars indicate standard deviations with 

significance indicated with respect to base line (Mdh ± GB/proline: white) indicated (*: p<0.05, Welch’s test). 
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To confirm the observed aggregase-like and protective character of YocM, it was added at a 

later time point (t45 min) instead of supplementing it before starting the reaction. As 

anticipated, the addition of YocM resulted in an increase in light scattering and a decrease in 

the loss of Mdh activity from the moment it was added to the reaction mixture (Figure 26AB).  

 
 

Figure 26: When added at a later time point, YocM maintains malate dehydrogenase activity at 47 °C to a 

lesser extent. 

Malate dehydrogenase (Mdh, final 2 µM) was incubated with 0.5 M glycine betaine (GB) and ± YocM A) in a 

1:1 ratio or B) in a 1:5 ratio. Samples were taken at indicated time points to measure the loss of Mdh activity. 

Error bars indicate standard deviations with significant improvements compared to the respective base line (Mdh 

± GB/proline: white) indicated (*: p<0.05, Welch’s test). 

 

After chemical denaturation by using 6 M guanidinium hydrochloride, firefly luciferase 

instantly aggregated upon dilution into refolding buffer (Figure 24A). On the contrary, when 

Mdh was chemically denatured and subsequently diluted, it spontaneously refolded without 

detectable aggregation in light scattering (Figure 27). Next, the effect of YocM was 

investigated and an accelerated refolding process of Mdh was observed when YocM was 

added in a 5:1 ratio, which was not possible when lysozyme was used as control. 

Furthermore, refolding of Mdh was also positively influenced by the presence of chemical 

chaperones GB or proline per se (Figure 27). Simultaneously adding YocM slightly enhanced 

this effect. 
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Figure 27: Refolding of GuHCl denatured malate dehydrogenase is slightly accelerated by chemical 

chaperones and YocM. 

Malate dehydrogenase (Mdh) was denatured with 6 M GuHCl and refolding was initiated by dilution 1:100 

(final 0.5 µM) in buffer ± YocM and ± lysozyme (as control) containing A) 0.25/0.5 M proline, B) 0.25/0.5 M 

glycine betaine (GB) or C) no further additives. Samples were taken for activity measurement at indicated time 

points to follow refolding process. No increasing light scattering at 360/360 nm was observed under any tested 

conditions. Standard deviations of three biological replicates are shown. p-values indicating significance are 

shown in D (Welch’s test).  
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The refolding process of GuHCl denatured Mdh could be monitored by measuring the 

restored enzymatic activity upon dilution into an adequate buffer (Figure 27). Unsurprisingly, 

when Mdh was examined in an assay buffer with 6 M NaCl (close to saturation), no activity 

could be detected (Figure 28A). However, when Mdh was incubated in buffer containing 

additional 6 M NaCl prior to dilution into an assay buffer with adequate salt concentrations, 

the activity of Mdh was immediately restored (Figure 28BC). An ongoing refolding process 

as observed for GuHCl denatured Mdh was not detected (Figure 27). These results suggested 

that the treatment of Mdh with high salt concentrations did not lead to unfolding of Mdh, but 

abolished its enzyme activity possibly by interference with its substrates (oxaloacetate and 

NADH) and/or disturbance of Mdh dimerization (Dévényi et al., 1966).  

 

 
 

 

Figure 28: High NaCl concentrations abolish Mdh activity, which is immediately restored upon dilution 

into physiological buffer. 

 A) Malate dehydrogenase (2 µM) was incubated in refolding buffer (R) and diluted (1:50) into assay buffer (A) 

to measure its activity according to materials and methods. Error bars indicate standard deviations. B) The 

amount of NaCl was varied in assay buffer (0-6 M NaCl), while kept at constant 0 M NaCl in refolding buffer. 

C) The amount of NaCl was varied in refolding buffer (0-6 M NaCl), while kept at constant 0 M NaCl in assay 

buffer. D) The amount of NaCl was varied in assay buffer (0-6 M NaCl), while kept at constant 6 M NaCl in 

refolding buffer. 
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In contrast to Mdh, chemically denatured citrate synthase (CS) aggregated and regained only 

~1 % of its activity within 50 min when diluted into refolding buffer (Figure 29A). Chemical 

chaperones proline and glycine betaine enhanced that refolding rate to final ~5 and 3 % of 

original citrate synthase activity under tested conditions, respectively (Figure 29BC). In 

addition, proline prevented the aggregation of CS to a certain extent (Figure 29C). The 

simultaneous addition of YocM further enhanced that effect. Importantly, addition of 

lysozyme as control did not influence the aggregation of CS.  

In summary, addition of YocM in the presence of chemical chaperones resulted in enhanced 

protection of Mdh during heat mediated aggregation in vitro (Figure 25 and Figure 26). 

However, refolding of chemically denatured Mdh and CS was only slightly affected by YocM 

in the presence of GB or proline (Figure 27 and Figure 29). In the cases of heat mediated 

aggregation of Mdh as well as dilution induced aggregation of chemically denatured 

luciferase, addition of YocM resulted in accelerated aggregation (Figure 24). This aggregase-

like activity has been observed for partially heat unfolded Mdh (at 41°C), which did not 

aggregate per se, but prevented the aggregation of completely heat unfolded Mdh (at 47°C) 

(Ungelenk et al., 2016). In contrast, the aggregase-like activity of YocM could only be 

observed using completely heat unfolded Mdh.  
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Figure 29: Proline and glycine betaine support refolding of GuHCl denatured citrate synthase.   

Aggregation and refolding of GuHCl denatured Citrate synthase was induced by dilution 1:100 (final 0.1 µM) 

into buffer A) ± YocM or lysozyme at indicated ratios, B) + additional 0.25/0.5 M glycine betaine and C) + 

additional 0.25/0.5 M proline. Light scattering was measured at 360/360 nm and samples were taken at indicated 

time points for activity test in a SpectraMaxM3 at 30 °C at 412 nm. Error bars display standard deviations. 
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Collectively, YocM was identified to play a supportive role during salt stress in B. subtilis. 

While the expression of yocM was upregulated at elevated salt concentrations, the ∆yocM 

mutant was identified to be more sensitive towards salt stress (Figure 12, Figure 13 and 

Figure 14). Furthermore, YocM displayed the sHsp characteristic formation of higher 

oligomeric structures in vitro, which was impaired when a YocM-mCherry fusion protein was 

examined (Figure 23). However, this YocM-mCherry fusion still targeted protein aggregates 

in vivo and thus was established as a non-invasive protein aggregate marker (Figure 16 and 

Figure 18). Thereby the different nature of the rather insoluble heat stress induced protein 

aggregates and potentially more fragile salt stress originated protein aggregates was 

visualized in vivo (Figure 16, Figure 19, Figure 20 and Figure 21). Furthermore, it allowed the 

visualization and subsequent characterization of ClpC and McsB mediated protein 

disaggregation in vivo (see 3.2, Figure 32). 

 

3.2. Interplay of ClpC and McsB in vivo 

Small heat shock proteins like YocM are members of the protein quality control system, 

which act ATP independently. Larger molecular chaperones like the Hsp100/Clp proteins rely 

on their ATPase activity to fulfill their function in protein degradation and disaggregation. In 

B. subtilis, the ATPase activity of the chaperone ClpC is predominantly dependent on its 

adaptor proteins (Kirstein et al., 2006, 2009b). In order to evaluate the specific roles of the 

three known adaptor proteins of ClpC, the increase in levels of MecA, McsB and YpbH was 

examined during heat stress and under thermotolerance conditions (Figure 30A). 

Thermotolerance describes the phenomenon of surviving a normally lethal heat shock (54 °C) 

when primed by a milder pre-shock (48 °C). In contrast to YpbH and MecA, McsB was not 
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detected at 37 °C (Figure 30B). At elevated temperatures and especially under 

thermotolerance conditions a distinct upshift of McsB levels was observed, whereas YpbH 

and in particular MecA did not follow this profile. In addition, raised levels of ClpC and ClpP 

were also observed during heat shock conditions with a peak at 50 °C (Figure 30B). This was 

consistent with transcriptomic data with only clpC, mcsB and clpP being upregulated upon 

heat shock (Nicolas et al., 2012). Besides from their regulatory role in e.g. competence 

development, mecA and ypbH were identified as part of the Spx Regulon, thereby part of the 

oxidative stress response (M. Nakano et al., 2002; Persuh et al., 2002; Rochat et al., 2012). 

 
 

Figure 30: Levels of McsB display a strong bias towards thermotolerance and heat stress. 

B. subtilis wildtype strain was in grown in LB medium with samples taken for western blotting according to the 

scheme in A). B) Western blotting to visualize levels of adaptor proteins McsB, MecA and YpbH, as well as 

ClpC and ClpP with 5 µg of cellular extract. 

 

 

3.2.1. McsB is the main ClpC adaptor protein regarding heat stress 

To further assess the importance of McsB during heat shock conditions, a strain lacking all 

genes for the adaptor proteins mecA, ypbH and mcsB was generated. That triple adaptor 

mutant strain (TAM) was in general more sensitive towards heat stress and significantly 

impaired in its ability to develop thermotolerance with a drop in cellular survival of about two 

orders of magnitude (Figure 31A). In order to determine the individual impact of each adaptor 

protein per se, each gene was re-introduced into the TAM strain in the amy locus in trans 
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under the control of an IPTG inducible promotor (Plac). Thereby it was possible to investigate 

each adaptor protein individually in a TAM background strain lacking the other two. It was 

observed that when mcsB was expressed, the thermotolerance deficient phenotype of the 

TAM strain was restored (Figure 31B). However, neither expression of mecA nor expression 

of ypbH affected the heat sensitivity of the TAM strain significantly (Figure 31CD). 

During a severe heat shock B. subtilis cells accumulate subcellular protein aggregates, which 

can be prevented by priming through a moderate pre-shock (Runde et al., 2014). Since an 

aggregate marker protein was established during the characterization of the sHsp YocM 

(3.1.1, Figure 16), the formation and clearance of protein aggregates during heat shock and 

subsequent recovery could be followed by fluorescence microscopy. Consistent with the 

above findings, only expression of mcsB during recovery from a 50 °C heat shock led to the 

complete removal of fluorescent foci (representing YocM-mCherry marked protein 

aggregates) (Figure 31E). To prove the synthesis of the respective adaptor protein, western 

blotting was performed after heat shock and recovery (Figure 31F). As MecA and YpbH are 

paralogs, the additional detection of MecA with the α-YpbH antibody was not surprising 

(Figure 31F). 
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Figure 31: Only expression of mcsB restores thermotolerance deficient phenotype of ∆mcsB∆mecA∆ypbH. 

A) B. subtilis wt (black) and ∆mcsB∆mecA∆ypbH (TAM, BIH737, red) were treated according to scheme ± pre-

shock and subsequent heat shock at 54 °C. Survival was measured by cfu at indicated time points. B-D) TAM + 

Plac mcsB / mecA / ypbH (BIH739/740/741) strains were analyzed as in A without IPTG (black) and with 2 mM 

IPTG (red). Squares: with 15 min pre-shock at 48 °C; triangles: without pre-shock. Log10-values of viable cell 

count were normalized and standard deviations (indicated error bars) were calculated from three biological 

replicates (*: p<0.05, **: p<0.01, ***: p<0.001, Welch’s test). E) Strains from B-D) were treated at OD600 0.3 

with 30 min at 50 °C and shifted to recover at 37 °C for 90 min ± 2 mM IPTG to express a: mcsB, b: mecA or c: 

ypbH, respectively (d: control: no IPTG). Samples for fluorescence microscopy and western blotting (F, 5 µg 

cellular extract) were taken at indicated time points. 
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3.2.2. McsB targets protein aggregates in vivo 

To gain more insights into the observed McsB mediated clearance of subcellular aggregates 

(Figure 31E), a ∆mcsB deletion mutant had to be investigated individually. This mutant strain 

displayed a raised amount of YocM-mCherry marked protein aggregates, in particular after 

heat shock (Figure 32A). Importantly, the additional synthesis of McsB complemented that 

phenotype and resulted in the formation of fewer aggregates (Figure 32A). Hence, a mcsB-gfp 

fusion was cloned to investigate the potential aggregate-targeting character of McsB. As 

expected, when mcsB-gfp was expressed, YocM-mCherry marked protein aggregates were 

also targeted by McsB-GFP (Figure 32B). It is important to note that a kinase inactive 

McsB C167S-GFP fusion protein was not impaired in its aggregate localizing character 

(Figure 32B) (Kirstein et al., 2005). 

It must be kept in mind that in these experiments heat stress was applied when McsB-GFP 

was already present in the cell due to induction of Plac mcsB-gfp at the very beginning. Thus, 

it had to be ruled out that McsB-GFP is localized to the subcellular aggregate fraction due to 

heat induced unfolding of McsB itself. As anticipated, the McsB-GFP fusion protein was also 

co-localized with protein aggregates when Plac mcsB-gfp was induced later during the 

recovery without having sensed the actual heat shock (Figure 32C). Comparing clearance of 

aggregates by McsB and its GFP-fusion protein, McsB-GFP appeared to be only partially 

active (Figure 31E and Figure 32C). Therefore, both proteins were tested regarding their 

ability to activate ClpC ATPase in vitro. Consistently, McsB-GFP displayed only 20 % ClpC 

ATPase activation showing the importance of testing GFP-fusion proteins for their 

functionality and complementation (Figure 32D).  



Results 

Page | 90  

 

 
 

Figure 32: McsB targets protein aggregates in vivo.  

A) The ∆mcsB Plac mcsB strain (BIH414) was grown in LB + 0.5 % xylose to induce Pxyl yocM-mcherry and 

treated with 15 min 48 °C heat shock at OD600 0.4 with samples taken for fluorescence microscopy. B) The 

∆mcsB Plac mcsB-(±C167S)-gfp strains (BIH677/678) were grown in LB + 0.5 % xylose to induce Pxyl yocM-

mcherry with additional 1 mM IPTG and treated with 15 min 48 °C heat shock at OD600 0.4 with samples taken 

for fluorescence microscopy. C) Strain ∆mcsB Plac mcsB-gfp (BIH677) was treated with a 50 °C heat shock for 

30 min and afterwards shifted to 37 °C, before 2 mM IPTG was added to induced Plac mcsB-gfp during recovery. 

Samples were taken at indicated time points. All scale bars indicate 5 µm. One representative example is shown. 

D) Activation of ClpC ATPase by McsB and McsB-GFP was tested with a malachite green ATPase assay in 

vitro. Error bars indicate standard deviations. 

  

 

3.2.3. Disaggregation by ClpCP is dependent on kinase active McsB in vivo 

As the arginine kinase of McsB is crucial for its function but its exact role is not completely 

understood, a kinase inactive McsB C167S mutant was analyzed (Elsholz et al., 2010; 

Kirstein et al., 2005). Thus, a ∆mcsB mutant strain was complemented either by Plac mcsB or 

mcsB C167S, respectively. Monitoring the protein aggregates during 50 °C heat shock and 
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subsequent recovery at 37 °C demonstrated a severely impaired aggregate clearance when the 

kinase inactive McsB C167S was synthesized instead of fully active McsB (Figure 33A). 

However, the synthesis of McsB C167S during recovery phase still reduced the number of 

cells containing aggregates by 20 % indicating a potential impact non-related to its kinase 

activity (Figure 33A). Comparable amounts of McsB and McsB C167S were verified by α-

McsB western blotting after heat shock and during recovery process (Figure 33B). 

 
 

Figure 33: Clearance of aggregates requires kinase active McsB in vivo. 

A) The ∆mcsB Plac mcsB (BIH414) and ∆mcsB Plac mcsB C167S (BIH439) strains were treated at OD600 0.3 in 

LB + 0.5 % xylose with a 50 °C heat shock for 30 min before ± 2 mM IPTG was added during recovery at 

37 °C. Samples were taken for western blotting (B, 5 µg cell extract) and fluorescence microscopy at indicated 

time points to determine the ratio of cells containing YocM-mCherry marked protein aggregates. Error bars 

indicated standard deviations from at least three biological replicates. 

 

The arginine kinase of McsB is indirectly regulated by its corresponding phosphatase YwlE, 

which de-phosphorylates phosphorylated arginine-residues on proteins, hence acting as 

counterpart of McsB (Elsholz et al., 2010; Kirstein et al., 2005). Consequently, the influence 

of YwlE on protein aggregation was investigated. A ∆ywlE mutant strain was complemented 

in trans either by IPTG inducible Plac ywlE or its inactive ywlE C7S mutant (Fuhrmann et al., 

2013). It was speculated, that a less restricted McsB arginine kinase in a ∆ywlE mutant would 

result in a decreased formation of protein aggregates, whereas overexpression of ywlE would 

counter McsB dependent arginine phosphorylation and thereby led to an increased heat 

sensitivity as seen for ∆mcsB (Figure 31 and Figure 32A) (Elsholz et al., 2012). 
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During the investigation of heat stress it was observed, that aggregate clearance was 

substantially improved in a ∆ywlE mutant when compared to wildtype (Figure 34A). That 

phenotype could be complemented by expression of ywlE under control of Plac promoter on a 

construct located in trans. As expected, a complementation was not observed when the 

inactive YwlE C7S mutant was synthesized. To rule out any indirect effect of YwlE, the 

effect of ywlE expression was tested in a strain with the inactive McsB C167S as an 

additional control (Figure 34A). As elevated levels of YwlE did not display any difference in 

this kinase inactive mcsB C167S mutant, YwlE did not directly affect aggregate clearance but 

relied on the indirect regulation of McsB activity (Figure 34A). 

In addition to aggregate clearance, the formation of aggregates was analyzed under 

thermotolerance conditions. Consistent with the above findings, a ∆ywlE mutant accumulated 

a substantially reduced number of aggregates under thermotolerance conditions (48 °C pre 

shock + 53 °C heat shock) when compared to wildtype (Figure 34B). When complementing 

this phenotype by synthesis of YwlE in trans, the low induction of Plac ywlE with 10 µM 

IPTG was already sufficient to lead to the minor formation of protein aggregates, whereas 

using 2 mM IPTG resulted in massive occurrence of protein aggregates in all cells (Figure 

34B). This suggests that even small amounts of YwlE can have a substantial impact on the 

physiology of the cell regarding heat stress.  
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Figure 34: McsB dependent aggregate clearance after heat shock is accelerated in a ΔywlE mutant. 
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A) The ∆ywlE (BIH819), ∆ywlE Plac ywlE (BIH828), ∆ywlE Plac ywlE C7S (BIH829) and mcsB C167S ∆ywlE 

Plac ywlE (BIH824) strains were treated at OD600 0.3 in LB + 0.5 % xylose with a 52 °C heat shock for 20 min 

before ± 2 mM IPTG was added during recovery at 37 °C for 60 min. Samples were taken for fluorescence 

microscopy at indicated time points to determine the ratio of cells containing YocM-mCherry marked protein 

aggregates. Error bars indicate standard deviations from three biological replicates. B) Wildtype (BIH369), 

∆ywlE Plac ywlE (BIH828) and ∆ywlE Plac ywlE C7S (BIH829) strains were analyzed under standard 

thermotolerance conditions in LB + 0.5 % xylose and increasing IPTG concentrations to induce Plac ywlE 

according to materials and methods. C) Strains ∆ywlE Plac mcsB-gfp (BIH681) and ∆ywlE Plac mcsB C167S-gfp 

(BIH682) were grown in LB + 0.5 % xylose and treated with a 15 min 48 °C heat shock at OD600 0.4 with 

samples taken for fluorescence microscopy. One representative example is shown. 

 

In addition, when examining the localization of the McsB-GFP fusion protein in a ∆ywlE 

mutant strain, distinct fluorescent foci of McsB-GFP were formed at the polar region of the 

cell (Figure 34C). It is important to note that the formation of these polar clusters in a ∆ywlE 

mutant was independent of the kinase activity of McsB (Figure 34C). In the wildtype strain, 

McsB-GFP clusters were only observed after heat shock and/or in a ∆mcsB deletion 

background strain (Figure 32BC). This localization pattern of McsB fused to a fluorescent 

protein had been observed before (Kirstein et al., 2008).  

The obtained results demonstrated that the absence of YwlE enhances McsB activity leading 

to less aggregate formation upon heat shock (Figure 34B) and accelerated disaggregation in 

recovery (Figure 34A). In order to determine whether a ΔywlE mutant strain would also be 

more resistant towards heat stress, a thermotolerance survival assay was performed. 

First, the survival regarding heat stress of the ∆mcsB mutant strain was compared to the 

kinase inactive mcsB C167S strain. Both strains displayed a comparably and significantly 

elevated sensitivity towards heat stress and were both impaired in thermotolerance 

development (Figure 35A), suggesting that the arginine kinase activity of McsB is essential 

for its impact in heat stress response (Figure 35A). Surprisingly, a ΔywlE mutant strain, which 

accumulated less aggregates than the wildtype strain during heat shock, was observed to be 

more affected by heat stress (Figure 35B and Figure 34AB). Moreover, besides from the ywlE 
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deletion, the overexpression of ywlE also led to significantly impaired heat resistance in a 

dose dependent manner (Figure 35B). Next, a ΔywlE mutant was complemented in trans, but 

even though no IPTG was added to induce Plac ywlE, the previously diminished heat 

resistance was restored probably due to leakiness of Plac promotor (Figure 35B). To prove that 

hypothesis, the ∆ywlE mutant strain was complemented with Plac ywlE C7S, which is an 

inactive variant of the phosphatase and leakiness of the promotor would consequently not lead 

to restored heat resistance (Fuhrmann et al., 2013). As anticipated, the complemented ∆ywlE 

Plac ywlE C7S strain and the ∆ywlE strain were both affected by heat stress in a comparable 

manner (Figure 35C). These observations suggest that indeed the leakiness of the Plac 

promotor of Plac ywlE is sufficient for complementation of the ∆ywlE mutant strain and 

physiological levels of YwlE are marginal. Notably, overexpression of ywlE did not change 

levels of ClpC at 37 °C or under tested thermotolerance conditions (Figure 35DEFG). As 

already observed before, McsB was only detectable at heat shock conditions (Figure 30 and 

Figure 35DEFG). Remarkably, elevated levels of YwlE appeared to result in decreased 

amounts of McsB at 54 °C (Figure 35F) but not at thermotolerance conditions (48/54 °C) 

(Figure 35G). 
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Figure 35: Deletion and overexpression of ywlE leads to increased heat sensitivity in B. subtilis. 

A standard thermotolerance survival assay was performed with strains A) ∆mcsB (BIH69), mcsB C167S 

(BIH694) and wildtype, B) ∆ywlE (BIH819) and ∆ywlE Plac ywlE (BIH828) + indicated concentrations of IPTG 

and C) ∆ywlE (BIH819), ∆ywlE Plac ywlE (BIH828), ∆ywlE Plac ywlE C7S (BIH829) according to materials and 

methods. Cfu was normalized at indicated time points. Error bars indicate standard deviations based on three 

biological replicates. Significance is illustrated by *: p<0.05 and **: p<0.01 (Welch’s test). D/E/F/G) The strains 

∆ywlE (BIH819), ∆ywlE Plac ywlE (BIH828) and wildtype were treated ± 15 min 48 °C at OD600 0.4 (samples 

D/E) and afterwards shifted to 54 °C for 30 min (samples F/G). Samples for SDS-PAGE and western blotting (α-

ClpC/ α-McsB/ α-YwlE) as well as Coomassie staining were taken at every step. D/E/F: 5 µg of cellular extract 

and G: 10 µg of cellular extract.  
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To prove the successful synthesis of YwlE after IPTG addition in the Plac ywlE strain, western 

blotting was performed at standard thermotolerance conditions. Surprisingly, although 

overexpression of ywlE was confirmed by α-YwlE western blotting, YwlE was not detected in 

the wildtype strain at all tested temperatures (Figure 35DEFG). The physiological levels of 

YwlE were probably below the detection limit of the performed ECL (enhanced 

chemoluminescence, see Materials & Methods) for visualization of proteins after western 

blotting. In order to still get an impression of the amounts of YwlE in the cell, α-ywlE western 

blotting was performed with purified YwlE in a defined standard curve from 0.2 – 200 ng 

(Figure 36A). The comparison of this standard curve with the amount of YocM in the ∆ywlE 

Plac ywlE strain (total 5 µg) allowed an extrapolation towards approximately 135 or less 

molecules YwlE per cell in the wildtype, which fitted the already observed range of 90 – 250 

molecules YwlE (Muntel et al., 2014) (Figure 36BC). 

 
 

Figure 36: Quantitative α-YwlE western blotting. 

A) The wildtype strain and the ∆ywlE Plac ywlE (BIH828) strain were grown in the presence of indicated 

concentrations of IPTG in LB at 37 °C with samples for SDS-PAGE and α-YwlE western blotting (5 µg extract) 

taken at OD600 0.5 and compared with indicated amounts of purified YwlE (His-tagged). Concentrations were 

obtained by Bradford test. B) Relative western blot band intensity was obtained with ImageJ software and 

plotted against the respective sample concentrations. Linear calibration was performed resulting in the equation 

y=1010.2x – 51.853, which was used to calculate the molecules YwlE per cell with cfu: 8.3 * 10
7
 cells/mL, 1.38 

* 10
7
 cells in 5 µg extract and the size of YwlE, 16.6 kDa (C). 
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3.2.4. Toxicity of ClpC F436A depends on McsB  

Recently it was observed that the F436A linker variant of Staphylococcus aureus ClpC 

displayed enhanced basal ATPase activity in vitro and that a clpC F436A expressing mutant 

strain was severely impaired in growth (Carroni et al., 2017). This toxic phenotype was 

suspected to be a direct consequence of the hyperactivity and simultaneous loss of 

physiological function of ClpC F436A. In order to gain more insight into the activation 

mechanism of ClpC, the ClpC F436A linker mutant was investigated in B. subtilis. 

A markerless clpC F436A mutant in cis (strain BIH400) was impaired in growth at 37 °C and 

50 °C (not shown). Unfortunately, the extent of impairment was hardly reproducible, which 

was probably based on the accumulation of suppressor mutation during the long-lasting 

procedure of the markerless transformation protocol (Arnaud et al., 2004). Therefore, the clpC 

F436A gene was cloned under the control of an IPTG inducible Plac promoter to sustain 

reproducibility and allow a controllable expression. Surprisingly, the expression of clpC 

F436A in B. subtilis resulted in dramatic protein aggregation and the formation of bulges in 

the membrane, which were not exceptionally co-localized with the marked protein aggregates 

(Figure 37A). Moreover, the severely impaired growth of a clpC F436A expressing S. aureus 

was also observed in B. subtilis (Figure 37B) (Carroni et al., 2017). That effect was increased 

at elevated temperatures (Figure 37C). 
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Figure 37: Expression of clpC F436A is toxic in B. subtilis. 

Strain ΔclpC Plac clpC F436A (IH420) grown in LB + 0.5 % xylose at 37 °C was treated ± 2 mM IPTG at 

OD600 0.3. Samples were taken at indicated temperatures for A) fluorescence microscopy and B/C) OD 

measurement as wells as plating for cfu. One representative example is shown. 

 

As B. subtilis ClpC is modulated by its adaptors, the effect of clpC F436A was examined in 

strains lacking the genes for each adaptor protein. Surprisingly, a ΔmcsB mutant completely 

abolished the toxicity and aggregation phenotype of the clpC F436A mutant (Figure 38A). In 

addition, a ΔypbH mutant further increased the toxic effect of clpC F436A. Analyzing all 

combinations of single, double and triple adaptor deletion mutants demonstrated that 

whenever McsB was not present, the toxicity of ClpC F436A was severely decreased or 

abolished (Figure 38A). Remarkably, this was not observed in a ΔmcsB mutant strain with the 

clpC F436A analogue clpE Y344A, clearly indicating the importance of the adaptor protein 

McsB for activity of ClpC only (Figure 38B). As control, expression of clpC F436A and clpE 

Y344A was compared with the respective non-mutated strains Plac clpC and Plac clpE by 

western blotting (Figure 38C). In addition to that, neither overexpression of clpC nor 

overexpression of clpE negatively affected the viability of B. subtilis at 37 °C or 50 °C.  
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Figure 38: Toxicity of clpC F436A is dependent on the presence of McsB. 

Strains A) wildtype, Plac clpC F436A (BIH384) + ΔypbH (BIH613) + ΔmecA (BIH587) + ΔmcsB (BIH581) +  

ΔmecA∆ypbH (BIH624) + ΔmcsB∆ypbH (BIH619) + ΔmcsB∆mecA (BIH589) + ΔmcsB∆mecA∆ypbH (BIH627) 

and B) Plac clpE Y344A (BIH383) and ΔmcsB Plac clpE Y344A (BIH647) were analyzed in a spot test according 

to materials and methods. Experiment was performed at least three times with one representative example 

shown. C) Strains Plac clpC (BIH151), Plac clpC F436A (BIH384), Plac clpE (BIH381) and Plac clpE Y344A 

(BIH383) were grown to OD600 0.3 in LB medium and treated ± 2 mM IPTG for 1 h to take samples for α-ClpC 

and α-ClpE western blotting (5 µg cellular extract). 

  

Since the kinase activity of McsB was identified to be crucial for ClpC mediated 

disaggregation in vivo, its importance was examined regarding clpC F436A toxicity. 

Surprisingly, abolishing the kinase activity of McsB in either a mcsB C167S mutant strain or 

by deleting its activator mcsA, did not decrease the toxic effect of ClpC F436A (Figure 39). In 

addition, only the deletion of mcsB displayed a more translucent colony morphology at 50 °C. 

Both phenotypes suggested a role of McsB independent of its kinase activity. 
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Figure 39: Toxicity of clpC F436A is decreased in ΔmcsB, but not in kinase inactive mcsB C167S.  

The strains wildtype, Plac clpC F436A (BIH384) + ΔmcsB (BIH581) + mcsB C167S (BIH614) and + ΔmcsA 

(BIH622) were analyzed in a spot test according to materials and methods at A) 37 °C and B) 50 °C. Experiment 

was performed at least three times with one representative example shown. 

 

To investigate the toxicity of ClpC F436A in more detail, a clpC F436A VGF::GGR (loop) 

mutant was created. A VGF::GGR mutant is incapable of forming the active ClpCP complex, 

allowing to differentiate between protein unfolding by ClpC and degradation by ClpCP 

(Figure 42) (Moliere, 2012). The clpC F436A VGF::GGR strain was not impaired in growth 

at 37 °C, however, a toxic phenotype was observed at elevated temperatures (Figure 40A). 

Strikingly, when analyzing all combinations of single, double and triple adaptor deletion 

mutants, all tested ΔmcsB mutant strains were more prone to the toxic effect of clpC F436A 

loop, which on first view contradicted the previous results, where the toxic effect of clpC 

F436A was abolished in a ΔmcsB mutant (Figure 40A). 
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However, while the toxicity of ClpC F436A was not abolished in a kinase inactive mcsB 

C167S mutant, expression of clpC F436A loop negatively affected the ΔmcsB, mcsB C167S 

and ΔmcsA strains, which all directly or indirectly lack kinase active McsB (Figure 40BC). 

 
 

Figure 40: Absence of a kinase active McsB increases toxicity of clpC F436A VGF::GGR. 

The strains A) wildtype, Plac clpC F436A VGF::GGR (BIH385) + ΔypbH (BIH618) + ΔmecA (BIH588) + 

ΔmcsB (BIH582) + ΔmecA∆ypbH (BIH625) + ΔmcsB∆ypbH (BIH620) + ΔmcsB∆mecA (BIH590) + 

ΔmcsB∆mecA∆ypbH (BIH628) and B)/C) + mcsB C167S (BIH615) and + ΔmcsA (BIH621) were analyzed in a 

spot test according to materials and methods at A/B) 37 °C and A/C) 50 °C. Experiment was performed at least 

three times with one representative example shown. 
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In addition to the toxic phenotype of S. aureus clpC F436A in vivo, an enhanced ATPase 

activity of ClpCS.a. F436A was observed in vitro (Carroni et al., 2017). To determine whether 

this is also true for B. subtilis, ClpC and its F436A variant were purified and an ATPase assay 

was performed. In accordance with the previous results, a significant ~three times enhanced 

basal ATPase activity of ClpC F436A was observed (Figure 41A). In addition, ClpC F436A 

was no longer activated by MecA indicating the necessity of this particular amino acid residue 

on the tip of the linker domain for interaction with MecA (Figure 41B). This was in line with 

the observations of ClpCS.a. F436A (Carroni et al., 2017).  

 
 

Figure 41: ClpC F436A displays enhanced basal ATPase activity in vitro and cannot be activated by 

MecA.  

ClpC and ClpC F436A were compared in a malachite green ATPase assay at 37 °C with A) no adaptors or 

substrates (final 6 µM, 60 min, normalized to ClpC) or B) McsB or MecA added (final 1 µM, 15 min). Basal 

ClpC ATPase activity is indicated by red bar. All ATPase rates were calculated during phase of linear phosphate 

release according to materials and methods. Experiments were performed three times with standard deviation 

indicated as error bars. Significance is illustrated by *: p<0.05 and **: p<0.01 (Welch’s test). 

 

 

3.2.5. The impact of disaggregation vs. degradation in PQC 

The protein quality control system consists of an intricate network of molecular chaperones 

and proteases. Heat stress leads to unfolding, misfolding and subsequent aggregation of 

proteins, which need to be degraded by proteases or disaggregated and refolded by 
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chaperones (Figure 1). ClpC as a AAA+ Clp ATPase was shown to disaggregate (alone) or 

degrade (in combination with ClpP) its substrate proteins in vitro (Kirstein et al., 2007; 

Schlothauer et al., 2003). As the clearance of heat induced protein aggregates was now 

observed in vivo (Figure 31, Figure 33 and Figure 34), the question arose whether it was the 

result of ClpC (±ClpP) mediated disaggregation or degradation. In order to distinguish 

between disaggregation and degradation, the ClpC VGF::GGR mutant was analyzed in more 

detail. This variant of ClpC is incapable of forming the active ClpCP proteolytic complex 

(Moliere, 2012). In order to assess the impaired degradation, a ∆clpC strain was 

complemented either with Plac clpC or Plac clpC VGF::GGR. Chloramphenicol was used to 

arrest translation and to subsequently follow the degradation of adaptor proteins MecA, McsB 

and YpbH, as re-synthesis was no longer possible. First it was observed that YpbH was 

degraded faster than MecA at 37 °C and 50 °C, while McsB was not detected at 37 °C at all 

(Figure 42A). In general, degradation was accelerated at 50 °C. As expected, the ∆clpC Plac 

clpC VGF::GGR strain was incapable of degrading all three adaptor proteins at 37 °C and 

50 °C (Figure 42B). The respective levels of ClpC and ClpC VGF::GGR were compared by 

western blotting (Figure 42C). In vitro degradation of β-casein was consistently not observed 

when the assay was performed with ClpC VGF::GGR instead of wildtype ClpC (Figure 42D). 
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Figure 42: VGF::GGR mutation in ClpC prevents the degradation of target proteins. 

Strain ΔclpC complemented by either A) Plac clpC (BIH152) or B) Plac clpC VGF::GGR (BIH504) was treated 

with 2 mM IPTG at OD600 0.3 for 1 h. 25 µg/mL (final) chloramphenicol was added to arrest translation and 

samples were taken at indicated time points for western blotting (5 µg cellular extract). One representative 

example is shown. C) Control of A) / B) regarding ClpC levels during chloramphenicol treatment. D) In vitro 

degradation of β-casein at 37 °C according to materials and methods. All samples contain ClpP, β-casein, 

pyruvate kinase, PEP as well as indicated proteins ClpC, MecA and McsB. One representative result with band 

of β-casein is shown. Results in panel D) were generated in cooperation with Regina Kramer (IFMB / LUH). 

 

As the ClpC VGF::GGR variant was not able to degrade of substrate proteins, the different 

impact of protein degradation and disaggregation by ClpC regarding thermoresistance, 

thermotolerance and aggregate clearance capacity was examined in a markerless clpC 

VGF::GGR mutant (where only disaggregation is possible) and compared with a complete 

∆clpC mutant (where neither disaggregation nor degradation is possible). 

Surprisingly, while a ∆clpC strain displayed impaired survival (Figure 43A) and increased 

protein aggregation at thermotolerance conditions (Figure 43B), a clpC VGF::GGR mutant 

was not observed to be heat sensitive under tested conditions. Additionally, McsB mediated 

removal of protein aggregates during recovery from heat shock was not impaired in this strain 

(Figure 43C). As a control, clearance of aggregates by McsB was not possible in an ATPase 

inactive clpC double walker mutant (DWB) strain (Figure 43C). This ClpC DWB variant fails 

to hydrolyze ATP and is considered a trapping mutant (Kirstein et al., 2006; Weibezahn et al., 

2003), which demonstrated that the obtained phenotype is indeed based on a functional ClpC. 
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Figure 43: A clpC VGF::GGR mutant strain is not impaired in thermotolerance and aggregate clearance. 

A) Wildtype (BIH369), ∆clpC (BIH432) and clpC VGF::GGR (BIH792) were examined in a standard 

thermotolerance experiment according to materials and methods with three biological replicates. Error bars 

indicate standard deviations with significance illustrated by *: p<0.05 and **: p<0.01 (Welch’s test). Upper 

panel (squares) shows 48 °C pre-shocked cells, lower panel (triangles) shows survival of cells without former 

pre-shock. Additional samples were taken for fluorescence microscopy in B) to illustrate subcellular aggregation 

with YocM-mCherry. Scale bar indicates 5 µm. One representative example is shown. C) Strains ∆mcsB Plac 

mcsB (BIH414), clpC VGF::GGR ∆mcsB Plac mcsB (BIH485) and clpC E280A E618A (DWB) ∆mcsB Plac mcsB 

(BIH488) were treated with at 50 °C heat shock for 30 min at OD600 0.3. Cultures were split ± 2 mM IPTG to 

induce Plac mcsB during recovery at 37 °C. Samples of at least three biological replicates were taken for 

fluorescence microscopy and ratio of cells containing YocM-mCherry marked aggregates was obtained by 

counting fluorescent foci. Results in panel A) were generated in cooperation with Regina Kramer (IFMB / 

LUH). 
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Protein degradation appeared to be less important than protein disaggregation regarding heat 

stress response. To further discriminate their respective impacts in protein stress, puromycin 

was applied as a different kind of stressor. Puromycin leads to impaired protein translation 

due to premature nascent chain termination and release of incomplete polypeptide chains 

(Pestka, 1971; Yarmolinsky and Haba, 1959). These incomplete peptide fragments represent 

misfolded proteins, which cannot be refolded. Hence it was hypothesized that removal of 

subcellular protein aggregates resulted from puromycin treatment rely on protein degradation.  

The treatment with the antibiotic puromycin (25 µg/mL, 15 min) led to the formation of 

YocM-mCherry marked protein aggregates (Figure 44A). After centrifugation and removal of 

puromycin by resuspension of cells in fresh LB media, the clearance of YocM-mCherry 

marked protein aggregates was observed within 150 min when mcsB was expressed (Figure 

44A, 1 vs 2). This suggests that McsB is in combination with ClpCP able to remove protein 

aggregates originated from different types of stress (Figure 44A, Figure 31 and Figure 33). 

During the inspection of the fluorescence microscopical images, some YocM-mCherry 

marked aggregates were observed outside of the cell suggesting previous cellular lysis (Figure 

44E). These protein aggregates were excluded in the statistical evaluation in Figure 44C. 

Remarkably, in contrast to clearance of heat based protein aggregates, the removal of protein 

aggregates resulted from puromycin treatment was not possible to a similar extent in the clpC 

VGF::GGR mutant as seen before (Figure 43C and Figure 44BC). Yet potential unfolding of 

incomplete, misfolded protein fragments by ClpC VGF::GGR might facilitate unspecific 

degradation by other concurrent proteases, which could explain the minor positive effect 

when mcsB was expressed in this clpC VGF::GGR strain (Figure 44C). Moreover, a clpC 

VGF::GGR mutant displayed a reduced removal of protein aggregates compared to the 
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wildtype after 150 min independent of the presence of McsB, indicating interactions with 

other adaptor proteins of ClpC (Figure 44C). As control, western blotting was performed to 

demonstrate comparable amounts of ClpC as well as the synthesis of McsB due to addition of 

IPTG (Figure 44D). These results suggested that protein degradation by McsB and an active 

ClpCP complex becomes important when disaggregation and refolding is not possible. 

 
 

Figure 44: Clearance of subcellular aggregates resulted from puromycin treatment requires a functional 

ClpCP proteolytic complex. 

The strains A/E) ∆mcsB Plac mcsB (BIH414) and B) clpC VGF::GGR ∆mcsB Plac mcsB (BIH485) were grown in 

LB + 0.5 % xylose and treated with final 25 µg/mL puromycin at OD600 0.4 for 15 min. Cells were harvested by 

centrifugation and resuspended in fresh LB + 0.5 % xylose without puromycin and ± 2 mM IPTG was added. 

Cultures were kept shaking at 37 °C for 150 min with samples taken at indicated time points for fluorescence 

microscopy (scale bar 5 µM) with one representative example shown. Ratios (C) were calculated from three 

biological replicates with error bars indicating standard deviations including significance indicated by *: p<0.05, 

**: p<0.01 and ***: p<0.001 (Welch’s test). D) At t150min after puromycin treatment, additional samples were 

taken for α-McsB and α-ClpC western blotting to allow comparability (5 µg cellular extract).  
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During the investigations regarding in vivo disaggregation after heat stress, it was 

demonstrated that kinase activity of McsB was essential for aggregate clearance (Figure 33). 

Furthermore, a deletion of ywlE substantially increased the removal of protein aggregates, 

which was only possible when McsB was present and kinase active (Figure 34). In order to 

elucidate the role of McsB kinase activity in targeting proteins for ClpCP degradation in vivo, 

the same experiments were performed with puromycin instead of heat stress. 

As expected, when the kinase inactive McsB C167S was examined, aggregates clearance was 

abolished (Figure 45A). Furthermore, the ∆ywlE deletion mutant displayed accelerated 

clearance of puromycin induced aggregates within 150 min of recovery at 37 °C when 

compared to a strain with elevated levels of YwlE (Figure 44AB and Figure 45BC). That 

effect was not observed when a ∆ywlE strain was complemented with an inactive Plac ywlE 

C7S variant in trans (Figure 45D). In addition, a kinase inactive mcsB C167S background 

mutation completely abolished aggregate removal regardless of the amount of YwlE present 

in the cell (Figure 45E). These observations indicated that kinase active McsB was essential 

for degradation of puromycin generated aggregates and were consistent with the previous 

experiments regarding aggregate removal after heat stress. 
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Figure 45: Kinase active McsB is essential to remove puromycin generated aggregates. 

The strains A) ∆mcsB Plac mcsB C167S (BIH439) B) ∆ywlE (BIH819), C) ∆ywlE Plac ywlE (BIH828), D) ∆ywlE 

Plac ywlE C7S (BIH829) and E) mcsB C167S ∆ywlE Plac ywlE (BIH824) were grown in LB + 0.5 % xylose and 

treated with final 25 µg/mL puromycin at OD600 0.4 for 15 min. Cells were harvested by centrifugation at 

5.000 xg for 5 min and resuspended in fresh LB + 0.5 % xylose without puromycin and ± 2 mM IPTG. Cultures 

were kept shaking at 37 °C for 150 min with samples taken at indicated time points for fluorescence microscopy 

(scale bar 5 µM) with one representative example shown.  
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3.3. Establishing a ClpC target-based screening system in B. subtilis 

Recently, various compounds have been identified to target the NTD of ClpC resulting in 

cellular death of Gram-positive pathogenic bacteria like M. tuberculosis and S. aureus. Their 

non-pathogenic relative B. subtilis is often used as a general model organism and/or for proof 

of concept experiments since it is well studied, genetically accessible, fast growing and, as an 

S1 organism, does not need specific safety requirements. 

In order to develop a ClpC target-based screening system, a suitable reporter had to be 

established. The underlying idea was to develop a fluorescent reporter fusion protein, which 

functions as a substrate for ClpCP and is therefore constantly degraded. Inhibition, 

competition or deregulation of ClpCP e.g. by natural compounds would result in a change of 

fluorescent signal possibly allowing for a fast high-throughput screening.  

In B. subtilis the three known adaptor proteins MecA, YpbH and McsB are constantly 

degraded by the protease complex ClpCP (Figure 42A) (Kirstein et al., 2007; Persuh et al., 

2002; Schlothauer et al., 2003; Trentini et al., 2016). McsB is 40 kDa in size and has, besides 

from its role as an adaptor protein in heat stress regulation by targeting CtsR for degradation 

by ClpCP, as a protein arginine kinase a major impact on cellular physiology and hence is a 

key player during heat stress response (see 3.2). Moreover there is no structure of McsB of the 

active ClpC-McsB complex known so far.  

MecA is only 26 kDa in size and involved in e.g. competence development (Turgay et al., 

1997). In contrast to McsB, a structure of the active ClpC-MecA complex has already been 

solved (Wang et al., 2011). Regarding its architecture it is known that both the NTD and CTD 

have distinct roles. While the NTD interacts with substrate proteins, the CTD binds and 
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activates ClpC (Persuh et al., 1999; Wang et al., 2011). In comparison to MecA, its paralog 

YpbH is not well studied (Persuh et al., 2002). Therefore, MecA was the first choice 

regarding the development of a ClpC reporter protein.   

As expected, deletion of the NTD of MecA did not affect ClpC activation in vitro (Figure 

41C). In addition it was observed that MecACTD was degraded by ClpCP in a decelerated 

manner (Figure 46A). Consequently, the CTD was functional as a degradation tag without the 

NTD. Unsurprisingly, when the NTD as the putative substrate interaction site of MecA was 

deleted, degradation of the substrate α-casein by ClpCP was abolished (Figure 46B) 

suggesting that without the NTD, MecACTD is not able to target proteins for ClpCP mediated 

degradation anymore. 

 
 

Figure 46: Deletion of NTD abolishes MecA mediated degradation of α-casein by ClpCP. 

In vitro degradation assay was performed according to materials and methods at 37 °C with samples taken for 

SDS-PAGE and Coomassie staining at indicated time points after starting the reaction with ATP. Indicated 

proteins A) ClpC / MecA / ClpP / MecACTD and B) ± α-casein were analyzed at a final concentration of 

1 µM. Indicated ratios were calculated from band intensity using ImageJ and subsequently normalized to band 

intensity of ClpC. One representative example is shown. PK: pyruvate kinase.  

 

To monitor the activity of ClpCP in vivo, the degradation tag MecACTD was fused to a green 

fluorescent protein and examined regarding its degradation by ClpCP. The addition of GFP as 

well as its positioning on the C- or N-terminal end of MecACTD did not significantly affect the 
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activation of the ClpC ATPase (Figure 47A). As ClpC F436A (see 3.2.4) was not activated by 

MecA or MecACTD, a MecACTD-GFP fusion protein was speculated to behave likewise 

(Figure 41). Surprisingly, when this fusion construct was analyzed regarding ClpC F436A 

ATPase activation, about 5 % of the abolished ClpC ATPase activity was regained (Figure 

47B). However, that effect could not be observed when a GFP-MecACTD fusion protein was 

investigated, suggesting a significant influence of the position of the GFP-tag during 

activation of ClpC F436A. 

 
 

Figure 47: ATPase of ClpC F436A is slightly activated by MecACTD-GFP, but not by GFP-MecACTD.  

ClpC (A) and ClpC F436A (B) were compared in a malachite green ATPase assay at 37 °C for 15 min with 

indicated MecACTD-fusion proteins (final 1 µM each). All ATPase rates were calculated during phase of linear 

phosphate release according to materials and methods. Experiments were performed three times with standard 

deviation indicated as error bars. Significance is illustrated by *: p<0.05 and **: p<0.01 (Welch’s test). 

 

Thus, the structure of active MecA-ClpC hexameric complex was analyzed regarding the 

positioning of the MecACTD in more detail (Figure 48A). It has to be noted that GFP was 

fused to MecACTD with an intermediary Gly-Ser-Ala linker region to allow flexibility and 

dynamics within substrate binding and unfolding by the ClpCP complex.  
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Figure 48: MecACTD-GFP fusion protein might restore ClpC F436A (+ MecACTD) activity by partially 

keeping the M-domain in its functional position. 

A) Structure of hexameric ClpC-MecA complex obtained by cryo-electron microscopy (PDB: 3J3R, based on 

crystal structure PDB: 3PXG). The NTD of MecA is not shown because of low electron density due to high 

flexibility. B) Zoomed fraction of A): Phenylalanine F436 on tip of the M-domain (MD) is indicated (grey box). 

Crystal structure of GFPA206K (PDB: 2YE0) was added manually to actual structure of ClpC-MecA complex to 

illustrate hypothetical positioning at N- or C-terminal end of MecACTD. All experiments were performed with 

monomerized GFP A206K variant (orange) to prevent artifacts through dimerization. Color code: ClpC – 

lightblue, ClpCNTD – purple, ClpCMD – blue, MecACTD – red, GFPA206K – green, A206K mutation of GFP – 

orange. 

 

However, when examining the specific structural features on that position, it became evident 

that fusing GFP at the N-terminal end of MecACTD would extend the active complex at its top 

region, whereas a C-terminal MecACTD-GFP fusion would rather lead to the positioning of 

GFP at the side of the complex next to the M-domain (Figure 48B). It is known that the 

positioning of the M-domain is essential for activity and regulation of ClpC or ClpB species 
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(Carroni et al., 2017, 2014; Haslberger et al., 2007). The loss of ClpC F436 abolishes the 

interaction of the M-domain with MecA (i.e. MecACTD). Hence, adding GFP might at least 

partially lead influence the position the M-domain by simple steric hindrance explaining the 

slightly restored activity in a ClpC F436A mutant with MecACTD-GFP as a modified adaptor 

protein (Figure 41C and Figure 48A).   

As activation of ClpC was possible with all examined variants, the degradation of the GFP-

fusion proteins was monitored by continuously measuring the fluorescence intensity in a plate 

reader during the reaction (Figure 49ABCD). Additionally, samples for SDS-PAGE were 

taken to compare the band intensity of the GFP-fusion protein in each reaction with the 

control sample (without ClpC) after 90 min (t90 min) (Figure 49EF). 

Although both GFP-fusion proteins activated the ATPase of ClpC in a comparable manner, 

the N-terminal GFP-MecACTD fusion protein was degraded faster than the C-terminal 

MecACTD-GFP fusion (Figure 49AB). As control, both fusion proteins were not processed 

when ClpC VGF::GGR or ClpC F436A was examined instead of the wildtype ClpC (Figure 

49AB). Addition of MecA to the reaction mixture indicated a direct competition with the 

GFP-fusion proteins in a dose dependent manner (Figure 49CDEF). 
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Figure 49: MecACTD-GFP and GFP-MecACTD are degraded by ClpCP in vitro. 

In vitro degradation assay was performed according to materials and methods in a SpectraMaxM3 plate reader at 

37 °C. The breakdown of fluorescent A/C) GFP-MecACTD and B/D) MecACTD-GFP was monitored at ex. 

470 nm/em. 509 nm. All indicated proteins were diluted to a concentration of final 1 µM if not otherwise 

indicated. Samples were taken at t90min for SDS-PAGE and Coomassie staining (E/F) to compare the band 

intensity of the GFP-fusion protein in the respective sample with the control sample without ClpC. One 

representative example is shown. PK: pyruvate kinase.  
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Both MecACTD-GFP and GFP-MecACTD fusion proteins were degraded in vitro (Figure 49). 

However, the MecACTD-GFP fusion was selected as the reporter for the construction of the 

screening strain as it was not degraded as efficiently and could therefore accumulate more 

easily upon disruption or deregulation of ClpC or ClpCP. Furthermore, a constitutive 

promotor (Pveg) was selected for synthesis of the reporter in the screening strain to avoid the 

requirement and possible influence of an inductor.  

The strong Pveg promotor resulted in sufficient synthesis of MecACTD-GFP as shown by 

western blotting (Figure 50A), which did not negatively affect growth of the screening strain. 

Furthermore, the α-MecA antibody detected the fusion protein as well as the regular levels of 

MecA as internal control (Figure 50A). As MecA was shown to compete with MecACTD-GFP 

in vitro (Figure 49F), the effect of a ΔmecA deletion regarding the Pveg mecACTD-gfp strain 

was investigated in vivo. Deletion of mecA led to reduced band intensity of MecACTD-GFP in 

a western blotting experiment presumably due to lack of competition (Figure 50A). 

Nevertheless, mecA was not deleted in the final screening strain to minimize the genetic 

modifications compared to the wildtype strain, keeping the modifications as physiological as 

possible. 

As anticipated, a ΔclpC deletion mutant led to accumulation of MecACTD-GFP indicated by 

augmented band intensity in western blotting (Figure 50A). On the contrary, elevated levels 

of ClpC decreased the amount of the fusion protein in the cell due to accelerated degradation 

(Figure 50B). Degradation of both MecACTD-GFP as well as untagged MecA was accelerated 

at 50 °C and only observed when ClpC was present in the cell (Figure 50C). 
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Figure 50: MecACTD-GFP is permanently degraded by ClpCP in vivo.  

A) Strains Pveg mecACTD-gfp (BIH11), + ΔmecA (BIH23), + clpC VGF::GGR (BIH24), + ΔclpC (BIH25) and 

wildtype were grown in LB medium to OD600 0.4 and samples were taken for α-ClpC, α-MecA and α-GFP 

western blotting (5 µg cellular extract). B) Strain ΔclpC Plac clpC Pveg mecACTD-gfp (BIH186) was grown to 

OD600 0.4 and treated ± 2 mM IPTG for 1 h. Samples were taken for α-ClpC, α-MecA and α-Mdh western 

blotting (5 µg cellular extract). C) Strain Pveg mecACTD-gfp (BIH11) and ΔclpC Pveg mecACTD-gfp (BIH25) were 

treated with final 25 µg/mL chloramphenicol at OD600 0.4 to stop translation. Samples were taken at indicated 

time points for western blotting to follow breakdown of MecA and MecACTD-GFP, respectively.  

 

Although MecACTD-GFP was detected by western blotting, when the strains were examined 

with fluorescence microscopy, no GFP signal was detected in the Pveg mecACTD-gfp strain 

(Figure 51). A control strain expressing gfp without the mecACTD degradation tag displayed a 

strong fluorescent signal (Figure 51). As already observed in western blotting, exchange of 

wildtype clpC with clpC VGF::GGR or complete deletion of clpC resulted in accumulation of 

MecACTD-GFP and a substantial increase in GFP signal (Figure 50 and Figure 51). 

Additionally, the exchange of clpC with an ATPase inactive clpC DWB (double walker B) 

trap mutant resulted in a general increase in total GFP fluorescence signal and simultaneously 

in the formation of fluorescent foci at the cellular poles representing the trapped substrate 

MecACTD-GFP at ClpC (Figure 51).  
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Figure 51: Impaired or deleted clpC leads to increase in MecACTD-GFP signal in vivo.   

Strains Pveg mecACTD-gfp (BIH11), + ΔclpC (BIH25), + clpC VGF::GGR (BIH24), + clpC double walker B 

mutant (DWB, BIH143) and Pveg gfp (BIH27) were examined with fluorescence microscopy at OD600 0.5. Phase 

contrast (pc) and standard gfp filters were used. Scale bar indicates 5 µm.   

 

In order to allow high-throughput screening, the growth of the reporter strain had to be 

monitored in a plate reader and optimized regarding the fluorescent measurements. Growth 

curves were started at OD600 0.1 with a volume up to 200 µL in a 96-well plate and incubated 

shaking at 30 °C while OD600 and fluorescence intensity (ex. 470 nm/ em. 485 nm) were 

tracked. As LB medium displayed severe background fluorescence and did not allow 

unimpeded monitoring of a possible accumulation of GFP signal, the screening strain was 

grown in the more transparent Belitsky minimal medium. In order to maintain fast growth of 

B. subtilis in this minimal medium, 0.01 % yeast extract was added. Additionally, enhanced 

GFP signal intensity could be achieved by an artificially raised cellular density due to 

evaporation of medium by incubating cells in 96-well plates without closing the lid. Due to 

low reproducibility of values after 18 h of growth, presumably because of unequal medium 

evaporation and oxygen distribution in the plate reader, growth curves were in general 

measured for 16 h. 
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Consistent with the pre-experiments (western blotting and fluorescence microscopy), the 

strain Pveg mecACTD-gfp did not display any fluorescent signal unless clpC was additionally 

impaired or completely deleted (Figure 52A). The obtained values are based on a 

normalization of the fluorescent signal divided by optical density, because in particular the 

∆clpP mutant strain is severely impaired in growth in minimal media, which obviously results 

in a decreased total fluorescence (Figure 52B). Remarkably, in both strains clpC VGF::GGR 

and a complete ΔclpP deletion mutant, where only unfolding instead of degradation of 

substrate proteins and the reporter fusion MecACTD-GFP was possible, the signal intensity still 

reached about 40 % of positive control suggesting unspecific degradation after unfolding 

(Figure 52B). 

 
 

Figure 52: Accumulation of MecACTD-GFP in stationary phase leads to detectable GFP signal during 

growth in plate reader. 

A) Strains Pveg mecACTD-gfp (BIH11), + ΔclpC (BIH25), + clpC VGF::GGR (BIH24) and Pveg gfp (BIH27) as 

well as B) ΔclpP Pveg mecACTD-gfp (BIH114) and clpC double walker B (DWB) Pveg mecACTD-gfp (BIH143) 

were grown in Belitsky minimal medium + 0.01 % yeast extract starting at OD600 0.1 and kept shaking at 30 °C. 

OD600 and GFP signal (ex. 470 nm/ em. 485 nm) were monitored in a SpectraMax M3 plate reader with one 

representative example shown. B) Combined results of three biological replicates A). GFP signal intensity was 

normalized by cellular density. Results from time point 13-15 h are displayed. Error bars indicate standard 

deviation.  
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Next, different combinations of MecACTD fused with mCherry instead of GFP were generated 

to support its applicability as a reporter in vivo. Additionally, the IPTG inducible Plac 

promoter instead of the constitutive Pveg promoter was tested to generate alternatives 

regarding the screening strain. Obtained results in western blotting and fluorescence 

microscopy confirmed a comparable behavior of all tested MecACTD-mCherry and -GFP 

fusions in vivo (Figure 53BCD).  

Moreover, besides from the established MecACTD fusions as a reporter for ClpC activity, 

different other fusion proteins should be established to allow simultaneous screening for 

activity of other Clp proteins. The ssrA-tag is one example of a known marker for ClpXP 

mediated degradation (Wiegert and Schumann, 2001). In order to prevent false positive and 

superimposed signals with the GFP fusion protein, mCherry was selected for the second 

reporter. To this end mcherry-ssrA was integrated into the lacA site under the control of Pveg 

promoter into the genome of B. subtilis. As Pveg mecACTD-gfp was inserted into the amyE site, 

both reporter fusions could be produced simultaneously. As expected, expressing mcherry-

ssrA did not result in a detectable mCherry signal in fluorescence microscopy (Figure 53A). 

However, when a strain lacking the ATPase ClpX was examined, an increase in fluorescence 

was observed (Figure 53A), which validated the mCherry-ssrA fusion protein as an adequate 

reporter for ClpX activity. It is important to note that a ΔclpX deletion mutant strain is 

severely impaired in motility and growth (Molière et al., 2016). Hence it was not possible to 

measure a growth curve (and fluorescence development) in the plate reader, where shaking 

and oxygen supply are only ensured to a certain extent. 
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Besides from compounds that address the unfoldases ClpC and ClpX, the attached protease 

ClpP has also been identified as a promising target for antibiotics (Lupoli et al., 2018). One 

prominent example are the acyldepsipeptides (ADEP), which trigger oligomerization of ClpP 

monomers and activate the proteolytic complex (Brötz-Oesterhelt et al., 2005; Kirstein et al., 

2009a). Importantly, the ClpP complex is uncoupled from the corresponding ATPase and 

activated independently. This enhanced and unphysiological activation resulted in cellular 

death in different Gram-positive pathogens (Brötz-Oesterhelt et al., 2005; Ollinger et al., 

2012). It was demonstrated that growth in ADEP treated cells is in particular impaired due to 

enhanced degradation of the cellular division protein FtsZ by ADEP activated ClpP 

complexes (Sass et al., 2011).  

In order to further characterize potential antibiotic compounds that were identified by the 

screening strains, an FtsZ-mCherry and mCherry-FtsZ fusion protein was generated. Thereby 

a potential influence of the respective compound on activation of ClpP might be identified by 

a simple fluorescence microscopical analysis. In addition, in many organisms ClpX is 

involved in controlled proteolysis or at least in maintaining stability of FtsZ (Camberg et al., 

2009; Dziedzic et al., 2010; Haeusser et al., 2009). Besides from the fluorescence intensity in 

total, the regular formation of Z-rings during cellular division could be investigated. Both 

FtsZ-mCherry and mCherry-FtsZ fusion proteins were investigated in vivo and additionally 

purified for potential in vitro testing. At 37 °C, the formation of the Z-ring was observed 

independent of the positioning of the mCherry-tag at the N- or C-terminal end of FtsZ (Figure 

53E). A heat shock at 53 °C resulted in the dispersal of the Z ring and the localization of the 

fusion proteins to protein aggregates (Figure 53E). 
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Figure 53: mCherry-ssrA is stabilized in a clpX mutant strain. 

A) The strains Pveg mcherry (BIH239), Pveg mcherry-ssrA (BIH255) and ∆clpX Pveg mcherry-ssrA (BIH264) were 

grown to OD600 0.5 and samples were taken for fluorescence microcopy with standard mcherry filter. Scale bar 

indicates 5 µm. B) Strains Pveg mcherry-mecACTD (BIH141) and ∆clpC Pveg mcherry-mecACTD (BIH133) were 

grown to OD600 0.5 and samples were taken for α-ClpC and α-MecA western blotting (5 µg cellular extract). C) 

Strain ∆clpC Plac mecACTD-mcherry (BIH154) were treated ± 1 mM IPTG for 1 h at OD600 0.5 and samples were 

taken for α-ClpC and α-MecA western blotting (5 µg cellular extract) as well as fluorescence microscopy (D) 

with standard mcherry filter. Scale bar indicates 5 µm. E) The strains Pveg mcherry-ftsZ (BIH359) and Pveg ftsZ- 

mcherry (BIH360) were grown to OD600 0.5 and treated with a 30 min heat shock of 53 °C. Samples were taken 

for fluorescence microcopy with standard mcherry filter. Scale bar indicates 5 µm. 
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After various potential reporter proteins have been tested and evaluated, eventually the final 

Bacillus subtilis screening strain constitutively expressed mecACTD-gfp and mcherry-ssrA to 

monitor activity of ClpC, ClpX and ClpP by measuring the levels of MecACTD-GFP and 

mCherry-ssrA, respectively (Figure 54).  

 

 
 

Figure 54: Illustration of the established screening strain with reporter fusions and their corresponding 

Clp protease complexes.  

A) The genes for mecACTD-gfp and mcherry-ssrA are under control of the constitutive promotor Pveg. Under 

normal conditions, both reporter protein fusions MecACTD-GFP and mCherry-ssrA are degraded by their 

corresponding protease complex ClpCP or ClpXP. No fluorescence is detectable. 

B) Impaired or non-functional ClpC, ClpX and/or ClpP leads to diminished degradation and subsequent 

accumulation of reporter protein(s). Fluorescence can be measured.   
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3.3.1. Validation of the screening strain 

Common targets for antibiotics are replication, transcription and translation. To exclude a 

false positive accumulation of a reporter fusion, e.g. due to a generally impaired translation 

and thus lower levels of the corresponding protease, the established screening strain had to be 

validated against standard antibiotics. Therefore, chloramphenicol, erythromycin, 

spectinomycin, kanamycin, phleomycin, ampicillin and ciprofloxacin were tested regarding 

their impact on the screening strain, a wildtype strain as negative control and a gfp expressing 

strain as a positive control. All compounds were tested in different concentrations ranging 

from ‘no effect on growth’ to ‘substantial/complete inhibition of growth’ upon addition from 

the beginning of the growth curve. Remarkably, none of the tested antibiotics resulted in a 

detectable fluorescent signal in the Pveg mecACTD-gfp strain at any concentration (Figure 55). 

Figure 55 displays two exemplary results of the two compounds erythromycin (A) and 

ampicillin (B) as well as a table containing the combined results of all analyzed compounds 

(C). As expected, the GFP signal of the positive control (Pveg gfp) was only decreased due to a 

general inhibition of growth at increased concentrations of antibiotics (Figure 55). 
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Figure 55: Selected standard antibiotics do not lead to accumulation of MecACTD-GFP. 

Strains Pveg mecACTD-gfp (BIH11) and Pveg gfp (BIH27) were grown in SpectraMaxM3 plate reader in Belitsky 

minimal medium + 0.01 % yeast extract starting at OD600 0.1. Indicated antibiotics A) erythromycin and 

B) ampicillin were added to indicated final concentrations prior to incubation at 30 °C for at least 16 h. OD600 

and GFP signal (ex. 470 nm/ em. 509 nm) were continuously monitored. One representative example is shown. 

C) Combined results of all antibiotics tested according to procedure in A/B) and evaluated regarding effect on 

growth and detectable GFP signal of Pveg mecACTD-gfp (BIH11) and Pveg gfp (BIH27). Effect on growth: -: no 

effect, +: slightly inhibited, ++: severely impaired, +++: no growth. GFP signal: -: no detectable GFP signal, +: 

low GFP signal, ++: moderate GFP signal, +++: strong GFP signal. 

 

 

 

 



Results 

Page | 127  

 

In order to further evaluate the generated screening strain, two derivatives of the ClpC 

targeting cyclic peptide cyclomarin were analyzed regarding their respective impact on the 

reporter proteins. While cyclomarin C has a terminal double bond, cyclomarin A inherits an 

epoxide at that same position (Figure 56). Cyclomarin A was observed to deregulate and 

enhance ClpC1 activity e.g. in M. tuberculosis. However, B. subtilis was not affected, which 

was assumed to be predominantly based on the Tyr80 residue in ClpC (Schmitt et al., 2011; 

Vasudevan et al., 2013) (Figure 9). Hence, a clpC Y80F markerless point mutant was created 

in B. subtilis to approximate it to the clpC1 Phe80 of M. tuberculosis.  

 
 

Figure 56: Structures of cyclomarin A and cyclomarin C.  

 

Growth of B. subtilis was only slightly affected by elevated concentrations of cyclomarin A, 

whereas cyclomarin C did not lead to impaired growth (Figure 57AD). It is important to note 

that especially cyclomarin A itself absorbed at 600 nm, which caused problems at a final 

concentration of 10 µM and had to be subtracted from the total absorbance. Still, the 

normalization of relative fluorescence signal intensity (RFU) by optical density was error 

prone (Figure 57B). Therefore, as another normalization approach, the RFU of each strain 

was normalized by subtraction with RFU of a control strain without cyclomarin added (Figure 

57C).  
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Only addition of 10 µM of cyclomarin A led to a minimal raise in GFP signal, corresponding 

to the accumulation of MecACTD-GFP in the screening strain Pveg mecACTD-gfp Pveg mcherry-

ssrA (Figure 57C). This finding was expected as B. subtilis was observed to be resistant 

against cyclomarin (Schmitt et al., 2011). Remarkably, when the ClpC Y80F variant was 

introduced into the screening strain, it became more susceptible towards both cyclomarin A 

and cyclomarin C regarding accumulation of MecACTD-GFP (Figure 57CF). This effect was 

only observed at higher concentrations though. In addition, the measured GFP signal in the 

strain Pveg gfp, which was used as positive control, was about 10 to 15 times higher when 

compared with the screening strains treated with the maximum concentration of cyclomarin A 

or C (10 µM) (Figure 57CFG). Although the detected amplitude in fluorescence upon 

cyclomarin addition was only marginal, these results still demonstrated that the established 

screening strain would have detected cyclomarin as a compound of interest. Even a minor 

raise in GFP signal indicates impaired degradation of MecACTD-GFP and could hint towards a 

promising candidate in antibiotic development.  
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Figure 57: High concentrations of cyclomarin A or C lead to slight accumulation of MecACTD-GFP in clpC 

Y80F background strain. 

The screening strains Pveg mecACTD-gfp Pveg mcherry-ssrA (BIH255) and clpC Y80F Pveg mecACTD-gfp Pveg 

mcherry-ssrA (BIH254) were grown in a TecanPro200 plate reader in Belitsky minimal medium + 0.01 % yeast 

extract starting at OD600 0.1. Indicated concentrations of A/B/C) cyclomarin A or D/E/F) cyclomarin C 

(dissolved in DMSO) were added from the beginning. Cells were grown shaking at 30 °C with OD600, signal of 
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GFP (ex. 470 nm/ em. 509 nm) and mCherry (ex. 587 nm / em. 610 nm) monitored continuously. A/D) Optical 

density during growth in plate reader at 30 °C for at least 16 h. At 10 µM, cyclomarin per se absorbs light at 

600 nm which was normalized by subtracting the base line signal. B/E) GFP signal was normalized by 

respective starting RFU and OD600 as indicated. C/F) RFU of control strain with no cyclomarin added was 

subtracted from RFU of each respective strain to illustrate positive and negative differences from baseline. G) 

Strain Pveg gfp (BIH27) was used as positive control for GFP signal and treated as described above (C/F). 

Addition of DMSO did not influence growth or GFP signal and mCherry signal was not detected under tested 

conditions. Unprocessed raw data were obtained by Victoria Schmitt and Dr. Jennifer Herrmann from HIPS 

(Helmholtz institute for pharmaceutical research). 

 

 

3.3.2. Screening a myxobacterial compound library 

Besides from the extensively exploited Gram-positive actinobacteria, the Gram-negative 

myxobacteria are among the top producers of natural products due to their rich secondary 

metabolism (Diez et al., 2012; Weissman and Müller, 2009; Xiao et al., 2011). As a screening 

strain to monitor ClpC, ClpX and ClpP activity as well as general growth of B. subtilis had 

been successfully established and validated, screening of a small myxobacterial compound 

library (~300 compounds) was performed during a two-week stay at the Helmholtz institute 

of pharmaceutical research (HIPS) in Saarbrücken in cooperation with Dr. Jennifer Herrmann.  

In a first test, all 300 myxobacterial compounds were added to a final concentration of 10 µM 

(dissolved in DMSO) to the screening strain Pveg mecACTD-gfp Pveg mcherry-ssrA and its clpC 

Y80F counterpart producing the same reporter proteins. As controls, the strains Pveg gfp and 

Pveg mcherry as well as the wildtype strain and a DMSO sample were continuously examined. 

As a consequence of previous optimizations, all strains were grown shaking at 30 °C in a 

plate reader in Belitsky minimal medium + 0.01 % yeast extract. Many compounds were 

identified to inhibit growth of the screening strains, but did not lead to a raise in fluorescence. 

Promising compound candidates for a more detailed dose-dependent analysis are displayed in 

Table 8 and were chosen according to following characteristics: 
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 Enhanced GFP or mCherry signal in combination with impaired/inhibited growth 

 Enhanced GFP or mCherry signal 

 Impaired/inhibited growth while affecting either clpC Y80F or wildtype clpC strain 

Table 8: Summarized results of selected compounds from screening ~300 myxobacterial compounds with 

strains Pveg mecACTD-gfp Pveg mcherry-ssrA ± clpC Y80F. 

Screening and processing of obtained data were performed as described in materials and methods and Figure 57 

with a final concentration of 10 µM. Model of screening strain and reporter proteins in Figure 54.  

OD600/growth: ++: complete inhibition, +: growth impaired. Fluorescence signal: ++: strong signal, +: low signal 

2.: 2
nd

 dose-dependent test confirmed results (✓) or presumably false positive (X). 

No. Compound 
Described activity, known 

target 

Growth 

impaired? 
GFP signal? 

mCherry 

signal? 

2. 

clpC 
clpC 

Y80F 
clpC 

clpC 

Y80F 
clpC 

clpC 

Y80F 
✓ / X 

1 Carolacton 

Folate-dep. C1 metabolism 

/ FolD, anti-biofilm 

(Fu et al., 2017) 

++ ++ + - - - X 

 

2 

 

Myxopyronin 

B 
RNA-Polymerase inhibitor 

(Belogurov et al., 2009) 

++ ++ + - - - ✓ 

 

3 

 

Myxopyronin 

A 
+ + + + - - ✓ 

 

4 

 

Saframycin 

Mx1 BCH 

Potential anti-tumor drug 

(Arai et al., 1980) 
+ ++ - - + - X 

 

5 

 

Pinesin A n.d. + + - + - - n.d. 

6 Disorazol A7 

Microtubules polymeriz. 

inhibitor 

(Elnakady et al., 2004) 

- - + + - - (✓) 

7 
Tubulysin Ar-

672 

Microtubules polymeriz. 

inhibitor 

(Khalil et al., 2006) 

- - - - + + n.d. 

 

8 

 

Trichangion 

HZI 
n.d. - - - - + - n.d. 

 

9 

 

Haprolid 
Cytotoxic 

(Steinmetz et al., 2016) 
- - + - - - X 

 

10 

 

Chlorotonil 
Antimalarial 

(Held et al., 2014) 
++ - - - - - X 

n.d.: not determined. 
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Out of the 10 promising candidates from the pre-test (Table 8), carolacton (1), myxopyronin 

A & B (2/3), saframycin (4), disorazol A7 (6), haprolid (9) and chlorotonil (10) were selected 

for a second dose-dependent characterization.  

Carolacton completely inhibited growth of the screening strains in a range of 0.125 µM – 

128 µM. The lowest tested concentration of carolacton (62.5 nM) still led to substantially 

impaired growth. However, none of the conditions resulted in an evident raise in mCherry or 

GFP signal as seen in the pre-screen. In the first screen, chlorotonil failed to inhibit growth of 

clpC Y80F but completely prevented growth of the screening strain with wildtype clpC. In the 

dose-dependent test, that result could not be reproduced suggesting a pipetting error in the 

first assay. Haprolid and saframycin decelerated the growth of both screening strains at 

concentrations above 32 µM (haprolid) and 4 µM (saframycin), but did not result in a 

significant increase in GFP or mCherry as observed in the pre-screening. 

Addition of disorazol A7 did not affect growth of B. subtilis but resulted in a minor raise in 

GFP signal during pre-testing, which was confirmed during 2
nd

 screening (Figure 58 and 

Figure 59). However, the increase in GFP was not consistently dose dependent and reached 

only about 5 % of the positive control at concentration > 2 µM of disorazol (Figure 59B). At 

concentrations above 4 µM myxopyronin A, growth of B. subtilis was severely impaired in 

the screening strains. Furthermore, elevated concentrations above 32 µM led to complete 

inhibition. At 4 µM, the GFP signal reached ~ 20 % of the positive control suggesting an 

influence of myxopyronin A on accumulation of MecACTD-GFP in both screening strains 

(Figure 59C). Myxopyronin B affected the screening strains in slightly less intense manner 

(Table 8).  
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Collectively, the screening of 300 myxobacterial compounds in a pre-selection screening and 

2
nd

 dose dependent testing resulted in only two compounds (myxopyronin A and B) as 

potentially interesting regarding influence on ClpC activity (Figure 58 and Figure 59). Effects 

of other compounds that were at first glance selected for 2
nd

 dose dependent screening could 

not be reproduced and were consequently evaluated as false positive results (Table 8, Figure 

59 and Figure 57).  

 
 

Figure 58: Structures of disorazol A7, myxopyronin A and myxopyronin B. 
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Figure 59: Dose dependent screening of disorazol A7 and myxopyronin A on Pveg mecACTD-gfp Pveg 

mcherry-ssrA.   

A) Formula of normalization of relative fluorescence units (RFU) and OD600 to allow comparability. RFUstart was 

subtracted at each time point (RFUi) and divided by OD600. Obtained values from respective used concentrations 

(X µM) were further normalized with values from the samples without antibiotics added (0 µM). B/C) The 

screening strains Pveg mecACTD-gfp Pveg mcherry-ssrA (BIH255) and clpC Y80F Pveg mecACTD-gfp Pveg mcherry-

ssrA (BIH254) were grown shaking at 30 °C in a TecanPro200 plate reader in Belitsky minimal medium + 

0.01 % yeast extract starting at OD600 0.1 with concentrations of 0.0625 – 128 µM disorazol A7 (B) and 

myxopyronin A (C) with only selected concentrations displayed to ensure clarity. OD600, signal of GFP (ex. 

470 nm/ em. 509 nm) and mCherry (ex. 587 nm / em. 610 nm) were monitored continuously. Strain Pveg gfp 

(BIH27) was used as positive control for GFP signal. Addition of DMSO did not influence growth or GFP signal 

and mCherry signal was not detected under tested conditions. Unprocessed raw data were obtained by Victoria 

Schmitt and Dr. Jennifer Herrmann from HIPS (Helmholtz institute for pharmaceutical research). 

 



Results 

Page | 135  

 

3.3.3. The LCN-degradation tag 

Besides from screening purposes, studying the MecACTD-GFP fusion protein in different clpC 

mutant strains gave more insight into the activation mechanism of ClpC and interaction sites 

with MecA (Figure 49, Figure 50, Figure 51 and Figure 52) demonstrating that studying 

degradational tags (degrons) with fused fluorescent proteins in different mutant strains can 

help to reveal their interaction partners. The sporulation factor SpoIIAB of B. subtilis contains 

a unique C-terminal LCN tag, which was shown to be essential for its degradation by ClpCP 

in vivo (Pan and Losick, 2003). Yet degradation of SpoIIAB was not achieved by ClpCP 

alone in vitro and additionally ClpC was not observed to interact with SpoIIAB in a direct 

manner. Both findings suggested the necessity of an adaptor protein for successful 

degradation of SpoIIAB by ClpCP (Pan and Losick, 2003). In order to reveal that missing 

adaptor protein, a strain producing the SpoIIAB specific LCN degradation on GFP was 

generated. In addition, a strep-tag was fused to the N-terminus of GFP-LCN to enable 

potential pull-down or specific interaction studies on a biotin matrix as downstream 

experiments. 

In order to elucidate which adaptor protein was necessary for ClpCP mediated degradation of 

SpoIIAB, strep-gfp-LCN was transformed into B. subtilis under the control of a constitutive 

promotor Pveg and investigated in a clpC, mcsB, mecA and/or ypbH deletion background. The 

strains were grown as established in 3.3 in a plate reader while continuously measuring 

optical density and fluorescence (Figure 60).  
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Figure 60: LCN-tagged GFP is stabilized in a ∆clpC mutant, but not in a ∆mecA∆mcsB∆ypbH mutant. 

A) The strains Pveg strep-gfp (BIH38), Pveg strep-gfp-LCN (BIH35), ∆clpC Pveg strep-gfp-LCN (BIH246), 

∆mecA∆mcsB∆ypbH Pveg strep-gfp-LCN (BIH39) and wildtype were grown shaking in a SpectraMax M3 plate 

reader in Belitsky minimal medium + 0.01 % yeast extract at 30 °C starting at OD600 0.1. GFP (ex. 470 nm/ em. 

509 nm) signal and optical density (600 nm) were monitored for at least 16 h with one representative example 

shown. B) Combined results of GFP signal intensity normalized by cellular density. Results from time point 15-

16 h are displayed from at least three biological replicates. Error bars indicate standard deviation. 

 

As expected, synthesis of Strep-GFP resulted in an increase in fluorescence during growth 

curve (Figure 60A). When the LCN tag was added, the fluorescence was significantly reduced 

to 10 % (Figure 60B). Subsequent deletion of clpC restored the fluorescent signal to 50 % of 

the positive control. However, deletion of mecA, mcsB and ypbH did not increase the 

fluorescence showing that GFP-LCN degradation by ClpCP is not dependent on one of the 

three known adaptor proteins (Figure 60). Additional in vitro experiments demonstrated that 

ClpC ATPase was not induced by mCherry-LCN per se and degradation of mCherry-LCN by 

ClpCP was not successful alone or in cooperation with MecA or McsB as adaptor proteins 

(data not shown). 

Out of the three known adaptor proteins of ClpC, McsB was identified in 3.2 as the most 

important one regarding heat stress. However, the above results indicate the presence of a yet 

unknown adaptor protein for ClpCP mediated degradation of SpoIIAB.  
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4. Discussion 

4.1. The sHsp YocM protects B. subtilis during salt stress 

Small heat shock proteins are present in all three domains of life. Although the name suggests 

that small heat shock proteins become important under heat stress conditions, sHsps have 

been identified to play a role in various other kinds of advers conditions such as salt and 

oxidative stress, and can additionally have a more specific function such as maintaining the 

refractive index in the eye lens (Haslbeck and Vierling, 2015; Horwitz et al., 1999). 

In the Gram-positive model organism B. subtilis, three potential sHsp genes (yocM, cotM, 

cotP) encoding the sHsp-characteristic conserved α-crystallin domains were detected by 

sequence alignments (Reischl et al., 2001). More recent transcriptome studies revealed yocM 

to be generally induced by salt stress, which identified yocM as expressed in a substantially 

different way compared to the expression profiles of cotM and cotP, which were both 

identified to be upregulated upon sporulation conditions (Nicolas et al., 2012). However, it 

was not clear whether YocM is a small heat shock protein and, as such, part of the PQC 

system in B. subtilis.  

The detailed analysis presented in this work demonstrated that yocM is upregulated upon salt 

shock (Figure 12). Consistently, the growth of the ∆yocM deletion mutant was impaired under 

salt shock conditions, which was not observed upon heat shock (Figure 13). Nevertheless, 

artificially raised levels of YocM conferred resistance towards elevated salt and heat stress 

conditions, indicating an underlying protective activity on protein homeostasis in general 

(Figure 13 and Figure 14). This generally increased resistance towards different types of 

stress upon heterologous and/or homologous overproduction of a sHsp has been observed 
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many times (Kim et al., 2013; Salas-Muñoz et al., 2012; Tian et al., 2012; Wang et al., 2017b) 

and is probably based on the general interaction of sHsps with substrate proteins, regardless 

of the origin of the potentially heterologous sHsp and the type of stress. 

In comparison to yocM, cotM and cotP display a clear expression profile of sporulation genes 

and were not identified to have any impact regarding stress response (Figure 22) (Nicolas et 

al., 2012). Examining their evolutionary distance with a phylogenetic tree based on the amino 

acid sequence of the ACD domain (COG0071, EggNOG Database) also confirmed the 

distinct and diverse roles of the three paralogs YocM, CotM and CotP in B. subtilis (Huerta-

Cepas et al., 2016). Remarkably, the asRNA S738 of yocM is also expressed under 

sporulation conditions and might prevent the efficient synthesis of YocM, indicating a 

potential evolutionary link to sporulation (Nicolas et al., 2012). Since bacteria are 

permanently exposed to different types of stress in their respective environments and the 

process of sporulation developed during evolution, it is tempting to speculate that in particular 

CotM and CotP evolved into sporulation specific sHsps (de Hoon et al., 2010; Paredes et al., 

2005). However, one could also think of a sHsp involved in sporulation (e.g. as part of the 

spore coat), which evolved into a more salt specific sHsp, which could in the case of YocM 

derive from raised negative influence of a cis-acting asRNA (S738) (Nicolas et al., 2012). 

Nevertheless, YocM appeared to be the only sHsp that is involved in stress response of 

B. subtilis. 

In general, the characteristic α-crystallin domain as well as the attenuated growth of the 

respective mutant strain during salt stress already indicated that YocM is a member of the 

sHsps that is involved in stress resistance. Furthermore, YocM displayed the typical aggregate 

targeting character of a sHsp. YocM as well as the YocM-mCherry fusion protein localized to 
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stress induced protein aggregates (Figure 16, Figure 19 and Figure 20). This characteristic 

feature was used to establish YocM-mCherry as a marker for subcellular protein aggregates, 

which enabled the visualization of protein aggregation upon different types of stress and 

subsequent disaggregation by the protein quality control machinery of B. subtilis in vivo 

(Figure 16, Figure 20, Figure 32, Figure 33 and Figure 61).  

Previously, the B. subtilis malate dehydrogenase (Mdh) was fused to GFP to visualize protein 

aggregates upon heat shock due to unfolding and aggregation of Mdh per se (Runde et al., 

2014). The now established YocM-mCherry aggregate marker provides various advantages 

compared to Mdh. A strain carrying the mdh-gfp fusion construct in cis had to be inoculated 

with a higher optical density to guarantee sufficient Mdh-GFP before heat treatment of the 

cells (Runde et al., 2014). Additionally, using YocM-mCherry is more reproducible since 

YocM per se did not aggregate upon comparable heat treatments (Figure 24), it also marks 

protein aggregate generated from other types of stress (while Mdh does not) (Figure 16) and 

synthesis of YocM-mCherry can be controlled by xylose (Figure 61). 

It is important to note that fusing mCherry to YocM impaired the oligomerization abilities of 

YocM in vitro, which also diminished its protective character in vivo as overexpression of 

yocM-mcherry, in contrast to yocM alone, did not affect thermotolerance (Figure 17 and 

Figure 23). However, regarding the purpose of YocM-mCherry as a simple, non-invasive 

aggregate marker protein, this loss of function is beneficial (Figure 61).   
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Figure 61: YocM-mCherry is a suitable marker for subcellular protein aggregates in vivo. 

Under control of xylose inducible Pxyl promotor, yocM-mcherry is moderately expressed and YocM-mCherry is 

homogenously distributed in the cell. Heat stress leads to denaturation and misfolding of proteins, subsequently 

leading to the formation of protein aggregates, which are targeted by YocM-mCherry. Thereby, both formation 

and clearance of protein aggregates can be visualized by fluorescence microscopy. Representative pictures are 

shown. 

 

When examined regarding protection of aggregation, YocM unexpectedly displayed an 

aggregation acceleration activity in vitro (Figure 24). Although aggregation e.g. of model 

substrate Mdh was accelerated at heat stress, the activity of Mdh was to certain extent 

protected and maintained (Figure 24 and Figure 25). These at first glance contradicting 

observations could be explained by specific sequestration of (partially) unfolded and 

misfolded protein species in a structural state where partial activity is preserved and/or 

spontaneous refolding is favored in vitro. This activity has been observed in yeast where 

Hsp42 displayed a similar aggregase activity with partially heat unfolded Mdh (41 °C) while 

still preventing aggregation at fully unfolding conditions (47 °C) (Ungelenk et al., 2016). The 

emerging picture of prevention of uncontrolled aggregation by specific aggregase-like 

sequestration of proteins that are prone to unfolding and aggregation adds new functional 

aspects to sHsps (Grousl et al., 2018; Ojha et al., 2011; Ungelenk et al., 2016). 

Another considerable aspect is the mutual interplay of YocM with chemical chaperones. 

Since a) YocM contributed to salt resistance and b) salt stress leads to accumulation of 
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compatible solutes, GB and proline as the two major compatible solutes of B. subtilis were 

examined in vitro regarding their influence on YocM. Both proline and GB individually 

protected Mdh to certain extent regarding loss of activity upon heat treatment (Figure 25). In 

general, compatible solutes were observed to be able to provide thermoprotection to proteins 

(Bashir et al., 2014b, 2014a; Diamant et al., 2003, 2001; Holtmann and Bremer, 2004; Moses 

et al., 2012; Singer and Lindquist, 1998). It was observed that especially in combination with 

GB, the protective activities of YocM were enhanced (Figure 25). These results suggested a 

mutual, synergistic relationship, where the presence of chemical chaperones enhanced the 

protective abilities of a sHsp (and maybe vice versa). It had already been demonstrated that 

chemical chaperones such as GB can affect the chaperone activity of different E. coli 

chaperones such as DnaK, GroEL or ClpB in vitro (Diamant et al., 2001). 

Furthermore, yocM was identified to be also upregulated upon cold shock (Nicolas et al., 

2012). Remarkably, the chemical chaperone GB has been observed to be taken up by 

B. subtilis after cold stress conditions (Hoffmann and Bremer, 2011). These findings suggest 

that besides from their potential beneficial interplay in salt stress response, YocM could 

cooperate with GB also under cold stress conditions and further supports the hypothesis of a 

mutual relationship between a sHsp and chemical chaperones. However, since the actual 

experiments were performed in vitro, a specific interplay remains to be elucidated in vivo. 

Apart from the potential interplay with chemical chaperones, sHsps have been observed to 

interact with other molecular chaperone systems, e.g. to facilitate protein disaggregation and 

refolding (Haslbeck and Vierling, 2015; Mogk et al., 2003a). Regarding YocM, this potential 

interplay with DnaK and/or ClpC was indicated when examining a ∆dnaK∆clpC∆yocM 

mutant strain in vivo, which was to certain extent more affected by heat stress when compared 
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to a ∆dnaK∆clpC mutant strain (Figure 21). It had already been demonstrated that the lack of 

sHsps did not negatively affect the heat resistance of the cell as long as other chaperone 

systems such as DnaK and ClpB are still functionally present (Mogk et al., 2003a). Since 

YocM was identified as an aggregase-like protein, it is tempting to speculate that the specific 

sequestration of unfolding and misfolding proteins species facilitates active processing and 

refolding by other molecular chaperone systems such as ClpC and/or DnaK.  

To sum up, YocM was characterized as a stress related sHsp in B. subtilis. Nevertheless, the 

experimental data suggested that its protective role is potentially limited to salt stress. 

Chemical chaperones such as GB accumulate upon salt stress and appeared to facilitate a 

synergistic effect with YocM regarding the protection of the folding state of model substrates 

in vitro. This indicated a functional relationship where uptake and synthesis of compatible 

solutes after salt stress provides a sHsp with an optimal environment to develop its full 

protective potential. This elaborated interplay adds an interesting aspect to the growing list of 

sHsp features and attributes. 

4.1.1. The different nature of heat and salt stress 

During the characterization of YocM as the first sHsp in B. subtilis, a YocM-mCherry 

aggregate marker protein was established and, among others, used to examine the different 

nature of salt and heat induced protein aggregates. In the respective environment, these 

different kinds of stress are not occurring in a strictly separate way. One example is the 

combination of heat and salt stress in a drought. In addition to that it was observed that in 

B. subtilis a mild salt-shock can cross-protect against a severe heat shock and vice versa, 

suggesting that both types of stress are connected (Völker et al., 1992). Especially plants have 

evolved numerous types of sHsp, which are not only expressed upon influence of a specific 
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stressor (e.g. heat stress), but also during multiple types of stress and during different 

developmental stages such as embryogenesis or pollen development (Mu et al., 2011; 

Muthusamy et al., 2017; Sun et al., 2002; Wehmeyer and Vierling, 2000; Zhao et al., 2018).  

However, the folding stress experienced by cellular proteins is different upon heat and salt 

shock. Heat stress leads to unfolding and exposure of previously buried hydrophobic patches, 

which can interact and lead to misfolding and subsequent formation of insoluble protein 

aggregates. The removal of these insoluble aggregates requires functional molecular 

chaperones and protein disaggregases, which explains the severely impaired heat resistance 

when examining a ∆clpC and/or ∆dnaK mutant strain (Figure 21). The same mutant strains 

were not affected under salt stress conditions suggesting that both chaperone systems do not 

play a major role during salt stress (Figure 21). Consequently, the aggregate marker protein 

YocM-mCherry revealed more distinct protein aggregates after heat shock compared to a 

more heterogeneous distribution after salt stress (Figure 16 and Figure 20). In addition to 

fluorescence microscopy, protein aggregation was investigated by direct aggregate 

preparations. Here, the stringent washing steps during that experimental procedure guaranteed 

the removal of all soluble and membrane proteins and the enrichment of insoluble protein 

aggregates. The amount of protein aggregates obtained by aggregate preparations was 

substantially decreased when examining salt shocked cells in comparison to cells treated with 

heat stress (Figure 19). These results suggested differences in the properties of protein 

aggregates generated from these types of stress. 

Upon a salt shock, water efflux causes a fast 2-3 fold reduction of cell size, thereby increasing 

the concentration of macromolecules and leading to an effect which is referred to as 

‘molecular crowding’ (Stadmiller et al., 2017; Wang et al., 2012; Whatmore and Reed, 1990; 
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Zimmerman and Minton, 1993). Notably, molecular crowding was observed with ambiguous 

effects on protein stability. On one hand it was demonstrated that a crowded environment can 

enhance the stability of the native state of proteins (Cheung et al., 2005; Ebbinghaus et al., 

2010; Monteith et al., 2015) while on the other hand protein-protein interactions in such an 

environment were identified to destabilize some model proteins (Ignatova et al., 2007; 

Schlesinger et al., 2011; Stadmiller et al., 2017). The complex influence of the cytoplasmic 

environment on protein folding and stability might therefore be more ambiguous and cannot 

be considered as generally favorable or unfavorable (Danielsson et al., 2015; Sarkar et al., 

2013). Nevertheless, since smaller amounts of protein aggregates were formed after an 

osmotic shock (Figure 19), a fast reduction of cell size and simultaneous increase in 

molecular crowding appears to at least partially destabilize the overall folding state of the 

proteome (Stadmiller et al., 2017). 

However, destabilization of proteins upon an osmotic upshift presumably also resulted from a 

change in turgor pressure and increased amounts of potassium ions. It was observed that an 

osmotic upshift leads to a decrease in turgor pressure in B. subtilis (Whatmore and Reed, 

1990). The turgor pressure sustains the structural integrity of each cell by pressing the 

membrane to the cell wall and is thereby thought to drive growth in general (Cayley et al., 

2000; Geitmann and Ortega, 2009). In order to prevent extensive water efflux and recover 

turgor pressure, K
+
 are taken up as a first response to salt stress, albeit theses ions can also 

interfere with ionic inter- and intramolecular protein interactions (Hoffmann and Bremer, 

2016; Höper et al., 2006; Whatmore and Reed, 1990). A moderate salt shock of 0.4 M NaCl 

led to an increase in K
+
 levels up to 0.7 M within 1 h (Whatmore et al., 1990). Thus, it is 

questionable whether an intracellular protein would ever be in contact with substantially even 
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higher amounts of Na
+
 and/or K

+
. Nevertheless, the treatment of Mdh with NaCl (up to 6 M) 

decreased and subsequently abolished its enzyme activity (Figure 28) in a manner where it 

was presumably still at least partially folded, since the dilution into physiological buffer 

immediately restored full activity without an observable refolding process as seen with 

chemically denatured Mdh (Figure 27 and Figure 28). This suggested that only the 

dimerization of Mdh was impaired while the monomeric tertiary structure was still intact. 

However, one should keep in mind that these experiments were performed in vitro and do not 

take into account the combined effect of elevated salt concentrations, increased 

macromolecular crowding and reduced turgor pressure upon osmotic upshift in vivo (Cayley 

et al., 2000; Stadmiller et al., 2017; Whatmore and Reed, 1990). 

It was further speculated that an osmotic upshift predominantly affects intermolecular protein 

interactions (e.g. Mdh dimerization), structurally sensitive proteins and in particular nascent 

peptide chains, which do not have correctly folded yet. To this end, chloramphenicol was 

used in order to arrest translation and reduce the apparent numbers of nascent chains before 

treatment with a salt shock. Remarkably, the significantly reduced formation of protein 

aggregates after salt stress was observed in cells pre-treated with chloramphenicol (Figure 

20). As this was not observed during heat shock, one could speculate that heat stress affected 

all proteins in the cell while salt stress might be considered less severe regarding protein 

unfolding, potentially affecting in particular structurally sensitive proteins. 

As a long term response during salt stress, compatible solutes are accumulated by synthesis or 

uptake (Kempf and Bremer, 1998; Roberts, 2005). They are thought to shield the protein 

surface and prevent aggregation by maintaining their hydration state without affecting cellular 

functions even at substantially high compatible solute concentrations (Arakawa and 
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Timasheff, 1985; Bourot et al., 2000; Cayley et al., 1992; Stadmiller et al., 2017). Since these 

compatible solutes protect protein activity in general, it is not surprising that they have been 

observed to provide a protective effect to native protein folding states during heat stress as 

well (Figure 25) (Bashir et al., 2014b; Holtmann and Bremer, 2004; Santoro et al., 1992). 

Taken together, although salt and heat stress can be connected in the respective environment, 

they cause different types of protein unfolding stress. Heat stress leads to the formation of 

insoluble protein aggregates due to interaction of exposed hydrophobic patches. The 

experimental data suggests that salt stress can impair protein-protein interactions without 

unfolding of the protein, especially affecting nascent peptide chains at the ribosome and 

presumably structurally very sensitive proteins (Figure 19, Figure 20 and Figure 21). This 

appears to result in the formation of less and possibly more loose protein aggregates (Figure 

16 and Figure 20), which do not require (and are maybe not even recognized by) protein 

disaggregation and degradation machineries (Figure 21). This could explain why a sHsp such 

as YocM and compatible solutes in general are more capable of counteracting the effects of 

salt stress, stabilizing protein structures in general by providing a more amenable environment 

upon an osmotic upshift (Kempf and Bremer, 1998; Stadmiller et al., 2017). 

In the future, analyzing the specific composition of salt and heat stress generated protein 

aggregates by mass spectrometry could help to gain further evidence regarding the different 

behavior of proteins towards either type of stress. 

4.2. McsB is the main adaptor for ClpC mediated disaggregation 

The various systems of protein quality control mechanisms form a broad network to repair or 

remove misfolded proteins. AAA+ protease complexes and disaggregases are key players 
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within these systems to remove potentially toxic insoluble protein aggregates (Sauer and 

Baker, 2011). These large machineries need to be tightly controlled as malfunction could 

severely affect the viability of the cell (Carroni et al., 2017). This is true for their activity and 

in particular regarding their substrate recognition, which can be enabled by adaptor proteins 

or other chaperone systems (Haslberger et al., 2007; Kirstein et al., 2009b; Seyffer et al., 

2012). 

In B. subtilis both activity and substrate recognition of Hsp100/Clp proteins is modulated by 

their respective adaptor proteins. There are three adaptor proteins known for B. subtilis ClpC: 

MecA, McsB and YpbH. All of them have been identified to play different roles in regulatory 

proteolytic networks including ClpCP as the central protease (Elsholz et al., 2010, 2011a; 

Fuhrmann et al., 2009; Persuh et al., 2002; Schlothauer et al., 2003; Turgay et al., 1998). 

However, apart from degradation of specific substrate proteins in regulatory proteolysis, it has 

not been investigated whether one of them is in particular responsible for general protein 

homeostasis by facilitating ClpCP dependent unfolding and/or degradation of unspecific 

unfolded and misfolded proteins e.g. after a heat shock. 

To this end, the different adaptor proteins MecA, YpbH and McsB had to be investigated 

regarding their respective roles in protein homeostasis after heat shock in vivo. Translational 

levels of McsB indicated a clear heat stress related profile, which was not observed for MecA 

and YpbH (Figure 30). Furthermore, although mecA and ypbH were identified as part of the 

Spx Regulon, which links them to the oxidative and heat stress response, only elevated levels 

of McsB resulted in the functional complementation of a thermotolerance deficient triple 

adaptor mutant strain ∆ypbH∆mecA∆mcsB (Figure 31) (Nakano et al., 2002; Persuh et al., 

2002; Rochat et al., 2012; Runde et al., 2014). Consistently, using the previously established 
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aggregate marker protein fusion YocM-mCherry, it was observed that again only McsB 

facilitated the clearance of heat induced protein aggregates during recovery at 37 °C, which 

was dependent on active ClpC (Figure 31, Figure 32 and Figure 43C). It is important to 

mention that in previous studies MecA had been observed to disaggregate and refold the 

model substrate Mdh in vitro, albeit a ∆mecA mutant was not identified as thermosensitive 

(Schlothauer et al., 2003). The presumably less important role of MecA regarding heat stress 

in vivo was confirmed (Figure 30 and Figure 31) (Schlothauer et al., 2003).  

Furthermore, it should be kept in mind that there are presumably more adaptor proteins of 

ClpC existent in B. subtilis. The degradation of LCN-tagged GFP (degron of the sporulation 

factor SpoIIAB) by ClpCP was observed to be independent of the three known adaptor 

proteins in vivo indicating the presence of an unknown adaptor protein for ClpC (Figure 60) 

(Pan and Losick, 2003). A potential novel adaptor protein of ClpC called ‘MicA’ was 

characterized to be relevant under sporulation conditions and toxic upon overexpression 

during vegetative growth (cooperation with Dr. Amy Hitchcock Camp, Mt. Holyoke College, 

unpublished). Moreover, a phage-encoded protein GP53, which is produced during infection 

of B. subtilis with phage SPO1, was identified to stimulate ClpC ATPase activity in vitro and 

promoted cell death when gp53 was expressed in B. subtilis (Mulvenna et al., 2019) 

(cooperation with Prof. Ramesh Wigneshweraraj and Nancy Mulvenna, Imperial College 

London). These observations underline the yet not fully explored spectrum of ClpC 

modulating (adaptor) proteins for B. subtilis. 

In contrast to the paralogs YpbH and MecA, McsB is a protein arginine kinase (Fuhrmann et 

al., 2009). As a) McsB had already been identified to target the transcriptional repressor CtsR 

for degradation by ClpCP in the regulation of the heat shock response and b) it was exhibited 
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in this work that McsB is the main adaptor protein to maintain protein homeostasis and 

remove protein aggregates after e.g. heat stress, it was intended to separately assess its 

arginine kinase activity and its role as an adaptor protein. 

The aggregate targeting character of McsB was identified to be unaffected in the kinase 

inactive McsB C167S variant, suggesting that the roles as an arginine kinase and an adaptor 

protein are at least partially independent (Figure 32). On the other hand, a thermotolerance 

assay demonstrated that a kinase-inactive mcsB C167S mutant and a complete ∆mcsB mutant 

were comparably impaired when treated with a severe heat shock (regardless of a prior pre 

shock) (Figure 35). Furthermore, when comparing aggregate clearance in mcsB and kinase 

inactive mcsB C167S mutant strains, the mcsB C167S mutant exhibited a reduced aggregate 

clearance activity of about 10 % compared to active McsB (Figure 33). That observation was 

supported by the fact that kinase inactive McsB was observed to be still able to repress CtsR-

DNA interactions by binding to CtsR (Elsholz et al., 2011a; Kirstein et al., 2005). Preventing 

the interaction of CtsR with the DNA binding sites in the class III heat shock genes results in 

their subsequent upregulation and thus could explain the slightly enhanced aggregate 

clearance (Figure 7 and Figure 33). Nevertheless, the arginine kinase activity of McsB was 

identified as crucial regarding its protective roles to maintain protein homeostasis after heat 

shock, e.g. by facilitating the removal of protein aggregates by ClpC and/or ClpCP. 

Remarkably, arginine phosphorylation sites of McsB have been identified proteome-wide in 

B. subtilis, severely affecting gene expression in various developmental pathways and 

regulatory networks (Elsholz et al., 2012; Schmidt et al., 2014; Trentini et al., 2016), 

suggesting a broad and unspecific substrate spectrum of McsB. Therefore, it is obviously 
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difficult to strictly distinguish between the nature of McsB as an adaptor protein and an 

arginine kinase. 

Theoretically, substrates could be bound by McsB per se and by McsB in a phosphorylated 

state, as seen for CtsR, albeit their interaction was increased when McsB was phosphorylated 

(Elsholz et al., 2010; Kirstein et al., 2005). However, since both kinase inactive and active 

McsB variants were observed to target protein aggregates, the recognition of substrate 

proteins is presumably independent of its arginine kinase activity (Figure 32). Furthermore, 

substrates could be phosphorylated at arginine residues and simultaneously need McsB to be 

targeted to ClpCP. A variant of CtsR lacking all arginine residues was still targeted by kinase 

active McsB for ClpCP dependent degradation (Elsholz et al., 2010). Moreover, substrates 

could be phosphorylated at arginines without the need of McsB for the targeting to ClpC 

(Elsholz et al., 2010, 2011a, 2012; Trentini et al., 2016). As a model substrate, the 

degradation of arginine phosphorylated β-casein by ClpCP was observed in the absence of 

McsB in vitro and was abolished in the presence of the phosphatase YwlE (Kirstein et al., 

2007; Trentini et al., 2016). However, one should keep in mind that on one hand β-casein 

represents a special fully unfolded model substrate which might not require an adaptor protein 

like McsB for recognition by the ClpCP complex and on the other hand it was demonstrated 

that the degradation of CtsR is dependent on the presence of McsB (Elsholz et al., 2010). 

One explanation of these at first glance contradicting results could be the special role of CtsR 

as a specific regulator of heat stress response, thus presumably being a special substrate for 

McsB and ClpCP. It was observed that the C-terminal domain of CtsR and McsB share 

structural similarities regarding a pArg binding motif (Suskiewicz et al., 2019), further 

supporting this hypothesis. Since CtsR degradation by ClpCP relies on the additional presence 
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of phosphorylated and active McsB, this interplay could guarantee the degradation of CtsR in 

order to prevent accumulation and maintain the regulatory negative feedback loop in heat 

stress response (Derré et al., 1999; Elsholz et al., 2010; Fuhrmann et al., 2009). These 

observations suggest a different role of arginine phosphorylation by McsB as part of general 

stress response (e.g. targeting and removal of unspecific protein aggregates) and in regulatory 

proteolysis of CtsR to control the heat stress response. 

4.2.1. The dual role of arginine phosphorylation in disaggregation 

The exact role of McsB dependent phosphorylation of arginine residues regarding targeting of 

substrates to ClpCP is still not clear. Nevertheless, phosphorylation of arginine residues per se 

has a major impact on proteins. It changes a positive into a negative charge, while 

phosphorylation of serine or threonine just adds one negative charge. This obviously affects 

protein stability and protein-protein interactions. In addition to that it was demonstrated that 

raised negative charges increased solubility of overproduced proteins, whereas insolubility 

was often associated with positively charged patches (Chan et al., 2013). This could hint 

towards a stabilizing and thus beneficial effect of protein arginine phosphorylation regarding 

heat stress in general, although substantially affecting the physiology of the respective 

protein. Supporting this hypothesis, arginine phosphorylated proteins were identified to be 

enriched in protein aggregates after heat stress and 25 % of the proteins degraded by ClpP 

were substrates of arginine phosphorylation by McsB (Trentini et al., 2016).  

It is important to note that compared to e.g. phosphoester bonds, phosphoramidate bonds like 

pArg are thermodynamically unfavored and therefore transient, especially in the additional 

presence of the respective phosphatase. Thus, detection of arginine phosphorylation sites in 

the proteome of B. subtilis was only possible in either a ywlE mutant strain or in the presence 
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of a specific inhibitor (Elsholz et al., 2012; Schmidt et al., 2014). YwlE dephosphorylates 

McsB and its substrates, consequently counteracting McsB activity (Elsholz et al., 2011a; 

Hahn et al., 2009; Kirstein et al., 2005). Moreover, McsB can be inhibited by binding to ClpC 

(Elsholz et al., 2011a; Kirstein et al., 2005). A double deletion mutant of clpC and ywlE 

displayed a severely impaired growth in B. subtilis, which was restored by additionally 

deleting mcsB or abolishing its kinase activity (mcsB C167S) (Elsholz et al., 2011a). These 

observations suggested that although the lack of McsB impaired aggregate clearance, 

thermoresistance and thermotolerance (Figure 31, Figure 32 and Figure 33), a non-restricted, 

hyperactive McsB (e.g. due to lack of ywlE) could also perturb the viability of the cell. 

In order to characterize this apparent balance between positive and negative effects of active 

McsB, its counterpart YwlE was examined in a dose dependent way. When ywlE was deleted, 

aggregate clearance during recovery from heat shock was significantly increased (Figure 

34A). When examining a kinase inactive McsB (C167S) or a YwlE protein lacking its 

phosphatase ability (C7S) on the other hand, aggregate clearance was no longer accelerated, 

suggesting that enhanced aggregate clearance resulted from less restricted activity of McsB 

(Figure 34A). Accordingly, overexpression of ywlE led to substantially raised aggregate 

formation upon thermotolerance conditions in a dose dependent way (Figure 34B).  

However, when the same strains were examined in a survival assay, both deletion and 

overexpression of ywlE led to severely impaired thermoresistance and thermotolerance 

(Figure 35). The leakiness of the Plac promoter appeared to be sufficient to complement a 

ywlE deletion in a ΔywlE Plac ywlE strain. Extrapolation of quantitative western blotting 

pointed towards less than 135 molecules YwlE per cell (Figure 36), suggesting that low 

amounts of catalytically active YwlE are sufficient to keep McsB in an optimal state where 
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adequate activation is guaranteed, but hyperactivation and subsequent overphosphorylation of 

the proteome is prevented. Deletion of ywlE would lead to enhanced arginine kinase activity 

of McsB which would result in accelerated clearance of aggregates (Figure 62), which at first 

glance is beneficial for the survival of the cell. However, there are presumably also negative 

effects of uncontrolled arginine phosphorylation, since arginine phosphorylation sites have 

been observed to occur in a ΔywlE mutant strain in the whole B. subtilis proteome (Elsholz et 

al., 2012). 

Furthermore, the absence of YwlE might also be detrimental in the refolding process of 

substrates after disaggregation by ClpC. After translocation of an arginine phosphorylated 

peptide chain through the ClpC barrel, the arginine residues of the now unfolded protein 

presumably remain phosphorylated. Although these phosphorylated arginine residues 

potentially stabilized the unfolded state preventing re-aggregation to a certain extent, they 

could concurrently prevent refolding of the unfolded substrate into the native structure (Figure 

62). Hence, in addition to unspecific and uncontrolled hydrolysis of the pArg bond, refolding 

could be induced by the phosphatase YwlE (Figure 62). This effect has already been observed 

in vitro where refolding of unfolded substrates after disaggregation was substantially 

improved when YwlE was added only in low amounts (unpublished results, Regina Kramer).  

On the contrary, elevated levels of YwlE keep McsB in a restricted state where 

phosphorylation of its substrates and McsB itself is diminished. Since McsB is permanently 

dephosphorylated, CtsR cannot be targeted by McsB for ClpCP degradation (Elsholz et al., 

2010; Kirstein et al., 2005). However, it was demonstrated that a strict degradation of CtsR is 

not essential in order to de-repress the heat shock response of B. subtilis, since CtsR possesses 

a glycine-rich loop, which can act as a molecular thermometer per se, abolishing CtsR-DNA 



Discussion 

Page | 154  

 

interactions upon heat treatment and resulting in de-repression of its target genes (Elsholz et 

al., 2010). More importantly, it was demonstrated that a mutated variant of ClpC with a 

decreased ability to bind pArg residues resulted in impaired survival during heat stress 

(Trentini et al., 2016). Assuming that arginine phosphorylation is an important signal for 

ClpCP dependent targeting of substrates, overexpression of ywlE would prevent functional 

targeting of unfolded and/or aggregated proteins and thus explain why protein aggregate 

clearance after heat shock was substantially impaired (Figure 33).  

These hypotheses could explain the impaired viability of the cells regarding heat stress due to 

both deletion and overexpression of ywlE and underline the importance of a strict regulation 

of the arginine kinase activity of McsB in general (Figure 35 and Figure 62). 
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Figure 62: Simplified model of the impact of McsB arginine kinase activity and YwlE dephosphorylation 

events on protein disaggregation and refolding. 

Native proteins can unfold due to heat stress and subsequently form insoluble potential toxic aggregates. Heat 

stress leads to activation of McsB by its activator McsA and autophosphorylation (Figure 7). While not activated 

McsB possesses a low aggregate targeting character, active McsB strongly targets and phosphorylates protein 

aggregates potentially improving its solubility in general and facilitating disaggregation by ClpC or degradation 

by ClpCP. Thereby it remains elusive whether McsB is, besides from its arginine kinase activity, essential as an 

adaptor protein (as proven for CtsR, Figure 7). The phosphatase YwlE dephosphorylates all phosphorylated 

arginine residues on proteins, including ClpC and McsB. Hence, elevated amounts of YwlE inhibit the activity 

of McsB due to dephosphorylation of McsB per se. However, dephosphorylation of unfolded and still arginine 

phosphorylated proteins by YwlE is presumably important to trigger refolding events due to reversion of charge. 

Additionally it is still unclear whether arginine phosphorylation is involved in determining the fate of a substrate 

protein regarding unfolding by ClpC or degradation by ClpCP. 
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One should keep in mind that some close relatives of B. subtilis lack McsB. Since CtsR was 

observed to be present regardless of the absence of McsB, it is assumed that ClpE inactivates 

CtsR in these strains (Elsholz et al., 2010). During disulfide stress, CtsR is also inactivated in 

B. subtilis without the need of kinase active McsB (Elsholz et al., 2011b). In addition, 

overexpression of clpE (from Lactobacillus lactis, lacking mcsAB) resulted in inactivation of 

CtsR upon oxidative stress (Elsholz et al., 2011b). These observations suggest differently 

evolved ClpE species, which sense oxidative stress by its zinc finger binding domain when 

McsAB is not present (Figure 6) (Elsholz et al., 2011b, 2010). Although protein arginine 

phosphorylation appears to have a major impact e.g. on removal of protein aggregates upon 

heat stress in B. subtilis, this protein modification system to sense proteotoxic stress and 

maintain protein homeostasis might therefore not be ubiquitously distributed. 

4.2.2. ClpC is the major disaggregase in B. subtilis 

While most organism possess stand-alone disaggregases such as ClpB in E. coli or Hsp104 in 

yeast, which are incapable of forming a functional proteolytic complex by association with a 

protease, B. subtilis lacks such a dedicated player (Molière and Turgay, 2013; Tessarz et al., 

2008; Weibezahn et al., 2004). However, the stand-alone disaggregases ClpB or Hsp104 still 

needs to interact with other chaperone systems (DnaK/DnaJ/GrpE) to facilitate protein 

disaggregation and subsequent refolding (Mogk et al., 2015, 2003a; Seyffer et al., 2012; 

Zolkiewski, 1999). This interplay of ClpC with the DnaK system has not been observed in 

B. subtilis. It is important to note that the protein quality control system of B. subtilis diverges 

in various other aspects, e.g. in the control of dnaK and groEL transcription, from the E. coli 

system (Mogk et al., 1997). The dnaK mutant strain displays a moderate phenotype in 

B. subtilis while it is substantially involved in modulating E. coli heat shock response (Straus 
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et al., 1990). Nevertheless, all the highly conserved Hsp60, Hsp70, Hsp90 and Hsp100 

homologs as well as the ribosome associated chaperone trigger factor and many other redox 

chaperones are present in both organisms (Elsholz et al., 2017; Kirstein et al., 2009b; Moliere 

and Turgay, 2009; Turgay, 2017).  

The AAA+ unfoldase ClpC of B. subtilis, which is structurally similar to ClpB (Figure 6), 

possesses a peptide binding loop for interaction with the protease ClpP (Kirstein et al., 

2009b). These observations raised the question whether especially ClpC as a key player in 

protein quality control would have a role besides its unfoldase activity in the proteolytic 

ClpCP complex as a stand-alone disaggregase, and if so, how this switch from disaggregation 

towards degradation is controlled and regulated. 

To address these questions, it was examined whether unfolding of substrate proteins by ClpC 

without subsequent degradation by an associated ClpP protease was a) possible and b) 

physiologically relevant in vivo. To this end, the wildtype strain was compared to a strain, 

where the association of ClpC and ClpP was prevented by a mutated ClpC VGF tripeptide 

sequence (clpC VGF::GGR) (Kim et al., 2001; Moliere, 2012). Both strains were compared to 

either a full clpC deletion or a strain carrying an ATPase inactive clpC variant (DWB). 

Remarkably, the prevention of the association of ClpC and ClpP did not negatively affect 

thermoresistance, thermotolerance development, aggregate formation and McsB mediated 

aggregate clearance while a ∆clpC mutant and a clpC DWB strain were always at least 

partially impaired (Figure 42 and Figure 43). These results demonstrated that the absence of 

ClpCP dependent protein degradation was not detrimental under tested conditions. Hence, 

protein disaggregation appeared to be more important than protein degradation during general 

stress response. Nevertheless one should keep in mind that concerning specific developmental 
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pathways, unfolding of a substrate by ClpC is not sufficient and degradation by ClpCP is 

crucial. During the positive autoregulatory feedback loop in competence development of 

B. subtilis (see 1.4.3), the number of ComK molecules is substantially increasing (Persuh et 

al., 1999; Turgay et al., 1998, 1997). Degradation by MecA and ClpCP is essential to remove 

the elevated levels of ComK during the escape of the competent state (Turgay et al., 1998). 

However, regarding general proteolysis and protein homeostasis, protein disaggregation 

obviously saves cellular resources since the peptide chain may refold and does not require re-

synthesis. These results suggested that degradation of misfolded substrates in general 

proteolysis could be favored when disaggregation and refolding is not possible due to e.g. 

damaged proteins or broken peptide chains.  

In order to assess this hypothesis, puromycin was used to generate fragmentary protein 

species by inducing premature chain termination during protein synthesis, which subsequently 

misfold and generate protein aggregates (Figure 44). Thus, these aggregates had to be 

degraded as disaggregation and refolding was not possible. As expected, when the association 

of ClpC and ClpP was abolished, the clearance of protein aggregates was significantly 

decelerated compared to wildtype (Figure 44). Furthermore, when mcsB was expressed, the 

degradation of puromycin based aggregates was substantially accelerated. These observations 

additionally demonstrated that McsB is able to target protein aggregates for disaggregation or 

degradation (Figure 32, Figure 33, Figure 44 and Figure 62).  

Taken together, protein disaggregation by ClpC was observed to be a major protective process 

regarding stress response of B. subtilis, unless refolding of the respective proteins was not 

possible. Nevertheless one has to keep in mind that protein degradation by ClpCP is important 

in regulatory proteolysis, where specific substrates, such as the transcription factor ComK in 
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competence development, have to be removed to close the feedback loop and prevent 

uncontrolled accumulation of ComK (Persuh et al., 1999; Turgay et al., 1998, 1997).  

Taken together, the presented results imply a functional switch between ClpC and ClpCP 

where ClpP might not be generally attached to ClpC, although the numbers of ClpP 

tetradecamers are sufficient to occupy all corresponding unfoldases (Gerth et al., 2004). 

Remarkably, arginine phosphorylation sites have been detected in ClpP (Elsholz et al., 2012; 

Schmidt et al., 2014). As McsB was identified to be the essential adaptor protein for ClpC, 

regardless of association with ClpP, arginine phosphorylation could be involved in the switch 

between disaggregation and degradation.  

Nevertheless, ClpC was identified as the main disaggregase in protein quality control of 

B. subtilis with the ability of attach to the ClpP protease complex, if necessary.  

4.2.3. ClpC F436A causes protein aggregation and cellular death 

Recently, the structure of a distinct and unique decameric state of ClpCS.a. formed by head to 

head interactions of the linker domains (MD) was solved for S. aureus (Carroni et al., 2017). 

While the formation of this complex was abolished when a F436A amino acid exchange was 

introduced at the tip of the linker domain, ClpCS.a. F436A concurrently displayed enhanced 

ATPase activity and FITC-casein degradation without the need of adaptor proteins in vitro 

(Carroni et al., 2017). Lack of the M-domain or suppression of resting state formation by 

F436A resulted in severely impaired survival in vivo (Carroni et al., 2017). Although such a 

decameric state has not been observed for B. subtilis ClpCB.s., an analogous ClpCB.s. F436A 

mutant was investigated in B. subtilis to examine the impact of this amino acid exchange on 
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its activity and to elucidate whether it is a conserved mechanism of Hsp100/Clp proteins or 

specific to S. aureus.  

As observed for S. aureus, expression of clpC F436A led to cellular death in B. subtilis 

(Figure 37). Simultaneously, using the established YocM-mCherry aggregate marker protein, 

the severe formation of protein aggregates was observed upon expression of clpC F436A 

(Figure 16 and Figure 37). Remarkably, the toxicity of ClpCS.a. F436A was further enhanced 

in S. aureus when the N-terminal domain was deleted (Carroni et al., 2017). However, 

production of a ClpCB.s. F436A mutant lacking its N-terminal domain did not affect growth 

(Master’s thesis Jana Theilmann, 03/2018-09/2018, supervised). Thus, in contrast to 

S. aureus, toxicity of ClpC F436A in B. subtilis appeared to be dependent on the interaction 

with adaptor proteins. 

In order to elucidate which adaptor protein is the reason for ClpC F436A mediated toxicity, 

all combinations of ΔmecA, ΔmcsB and ΔypbH gene deletions were analyzed regarding their 

respective impact. Remarkably, all negative impacts were abolished when a ∆mcsB mutant 

was introduced into the clpC F436A expressing strain (Figure 38). This was neither observed 

with the other known adaptor proteins nor with ClpE, which displayed a comparable 

phenotype when the analogous Y344A mutant was examined (Figure 38). Consistently it was 

demonstrated that ClpC F436A is still activated by McsB, but not MecA in vitro (Figure 41). 

These results strongly suggest that the toxicity of ClpC F436A is based on its interaction with 

its adaptor protein McsB.  

In B. subtilis the oligomerization and activation of ClpC appears to be dependent on the 

presence of adaptor proteins (Kirstein et al., 2006). In S. aureus, McsB is also present, but 

since the lack of the N-terminal domain of ClpC F436A did not abolish but further enhanced 
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its phenotype, the interaction with McsB is not important for ClpC F436A toxicity in this 

strain (Carroni et al., 2017; Wozniak et al., 2012). When assuming an underlying similar 

mechanism, this observation would indicate that the toxic effect of ClpC F436A simply relies 

on active ClpCF436AP species, which can form in S. aureus without the need of adaptor 

proteins while B. subtilis ClpC requires McsB (since interaction with MecA is abolished in a 

F436A mutant (Figure 41)). Surprisingly, although the arginine kinase activity was observed 

to be essential for McsB activity in nearly all previous experiments (Figure 32, Figure 33, 

Figure 34 and Figure 35), the toxicity of a clpC F436A strain was not abolished in a kinase 

inactive mcsB C167S strain (Figure 39). These observations suggest that in the absence of a 

kinase active McsB, the ClpC F436A variant is already activated. Consequently, both kinase 

inactive and kinase active McsB could target substrate proteins to the activated ClpCF436AP 

protease complex in an uncontrolled manner. Based on this hypothesis, the toxicity of ClpC 

F436A would derive from (unphosphorylated) McsB targeting e.g. essential proteins for 

ClpCF436AP mediated degradation.  

To this end, a ClpC F436A VGF::GGR variant which lacks the ability to associate with ClpP 

was investigated (Figure 40 and Figure 42). As expected, expression of clpC F436A 

VGF::GGR was not toxic at 37 °C, suggesting that indeed the uncontrolled degradation of an 

essential protein is the underlying reason for ClpC F436A toxicity (Figure 40). However, 

growth of the clpC F436A VGF::GGR expressing strain was slightly attenuated at 50 °C 

(Figure 40). Moreover, when mcsB was deleted, the fast formation of suppressor mutants was 

observed at 37 °C and growth became even more impaired at 50 °C. This was unexpected due 

to the fact that an additional ∆mcsB had abolished the toxicity of clpC F436A in the first place 

(Figure 39). Notably, a ∆mcsB, a mcsB C167S and a ∆mcsA mutant strain displayed a 
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comparably attenuated growth when clpC F436A VGF::GGR was expressed, suggesting that 

this effect was dependent on the kinase activity of McsB, which is impaired or completely 

abolished in all these strains (Figure 40) (Kirstein et al., 2005). 

The opposing effects of a ∆mcsB mutant on a clpC F436A and a clpC F436A VGF::GGR 

expressing strain were at first glance contradictory. It is tempting to speculate that a direct and 

immediate effect of clpC F436A expression is degradation of at least one essential protein by 

ClpCF436AP using McsB as an adaptor (regardless of its phosphorylation state (Figure 39)), 

which then results in impaired growth and cellular death. As this is prevented in a clpC 

F436A VGF::GGR mutant, the observed minor toxic effect of ClpC F436A VGF::GGR at 

50 °C might be of more indirect nature. ClpC F436A VGF::GGR could unfold intact (or even 

essential) proteins, abolish the formation of regular ClpCP complexes and/or perturb 

regulatory networks as interaction with (at least) MecA is no longer possible. Consequently, 

expression of clpC F436A VGF::GGR could lead to a generally occupied and impaired 

protein quality control system. This would also explain the increased susceptibility of the 

clpC F436A VGF::GGF mutant regarding the additional lack of kinase active McsB as an 

identified key player in aggregate clearance in vivo (Figure 38 and Figure 40).  

In order to gain a better understanding of the toxic effect, an ATPase inactive ClpC F436A 

substrate trapping (DWB) mutant could be investigated in the future to identify potential 

target proteins and help to further elucidate the direct and indirect effects that cause the severe 

growth defect in clpC F436A expressing cells (Weibezahn et al., 2003). 

Collectively, the experimental data suggests (and further confirms with respect to 3.2.1) that 

McsB is the most important adaptor protein for ClpC mediated disaggregation of protein 

aggregates in stress response. At the same time, McsB certainly plays an at least minor role 
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without its arginine kinase activity. Regarding Hsp100/Clp proteins, the M-domain was re-

confirmed as an important regulatory feature (Oguchi et al., 2012; Seyffer et al., 2012). 

Impairing its function (e.g. due to specific amino acid exchange) resulted in a drastic change 

of a beneficial unfoldase towards a toxic aggregase (Figure 37 and Figure 38). This toxic 

effect was observed in different species (B. subtilis and S. aureus, (Carroni et al., 2017)) and 

in different Hsp100/Clp proteins (ClpC and ClpE, Figure 38), suggesting a general underlying 

principle, which is beneficial regarding future research in targeting Hsp100/Clp proteins in 

antimicrobial therapy. 

4.3. ClpC is a suitable target for antibiotic screening  

During the last centuries, antibiotics have saved millions of lives. Unfortunately, especially 

due to overuse, inappropriate prescribing and excessive agricultural use, antibiotic resistant 

bacteria are emerging worldwide pointing towards a currently often called ‘post-antibiotic 

era’ (Kåhrström, 2013). Simultaneously, the number of approved, novel antibiotics is 

constantly declining, among other reasons, due to fading interest of pharmaceutical industry, 

as research has become less profitable (Edwards et al., 2018; Nathan and Goldberg, 2005).  

The traditional targets of antibiotics are major cellular physiological processes such as 

translation, transcription, cell wall synthesis and replication. The underlying similarity 

regarding these targets is the assumption that bacterial cells are growing and proliferating e.g. 

during infection. However, a dormant, non-growing cell does not rely on e.g. active 

replication and translation and hence can survive the treatment with gyrase inhibitors like 

ciprofloxacin or translation inhibitors like tetracycline without genetic changes (Lewis, 2012). 

Hence, these persister cells are a major threat regarding antibiotic tolerance (Fisher et al., 

2017; Mandal et al., 2019). In order to overcome these problems, novel targets for antibiotics 
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have been evaluated in the last years that do not depend on actively growing bacterial cells. 

These targets include, among others, signal transduction, biofilm formation and protein 

quality control (Brötz-Oesterhelt et al., 2005; Gotoh et al., 2010; Rice et al., 2002; 

Worthington et al., 2012).  

Recently, various compounds, in particular from actinobacteria, have been identified to target 

the Hsp100/Clp protease complex ClpCP within the protein quality control network of 

different Gram-positive pathogenic bacteria (Brötz-Oesterhelt et al., 2005; Gao et al., 2014; 

Gavrish et al., 2014; Schmitt et al., 2011). Often these findings were originally based on 

previous screens for antibiotic activity (Cheng et al., 2007; Gao et al., 2014; Ozeki et al., 

2015). Based on these promising observations, a ClpC target based screening system should 

be established in the S1 model organism B. subtilis to screen a myxobacterial compound 

library as proof of concept in cooperation with Dr. Jennifer Herrmann (HIPS) in Saarbrücken. 

It is important to note that during characterization of the linker domain of ClpC, the clpC 

F436A mutant was identified to be toxic in vivo (Figure 37 and Figure 38). Exchanging one 

amino acid was already sufficient to deregulate the beneficial chaperone ClpC into a toxic and 

uncontrolled aggregase-like machinery, which concurrently loses its physiological function 

(Figure 37, Figure 39, Figure 41, Figure 43 and chapter 4.2). This fact clearly demonstrated 

that the chaperone ClpC is indeed a suitable target for antimicrobial therapy. In addition, all 

recently identified compounds that target and deregulate ClpC were found to interact with the 

N-terminal domain of the respective ClpC species e.g. in M. tuberculosis (Gao et al., 2015; 

Gavrish et al., 2014; Vasudevan et al., 2013). However, the F436A mutation is located on the 

tip of the linker domain (Figure 48). This finding suggested that besides from the N-terminal 

domain, the M-domain might also be a suitable target for drug development. This idea is 
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certainly not limited to ClpC, but could also apply to ClpB, where the M-domain is also an 

important regulatory element, albeit it is doubled in size (Carroni et al., 2017, 2014; 

Haslberger et al., 2007). 

The established screening strain constitutively produced a GFP fusion of the MecA adaptor 

protein, MecACTD-GFP, to monitor ClpC activity as well as an ssrA-tagged mCherry to follow 

ClpX activity, respectively (Figure 54). As expected, the permanent synthesis and subsequent 

degradation of the fusion proteins did not affect growth of the screening strain and the CTD 

of MecA is not able to interfere with substrate proteins (Figure 46). MecA can present a 

substrate protein without MecA being degraded by ClpCP, which is not possible for the 

MecACTD-GFP fusion protein, possibly explaining the much faster degradation of the fusion 

protein especially at elevated temperatures in vivo (Figure 42, Figure 46, Figure 49 and Figure 

50) (Schlothauer et al., 2003). Certainly one could speculate that MecACTD-GFP would still 

affect MecA dependent regulatory pathways such as competence development, as it competes 

with MecA for the binding site at ClpC (Figure 48 and Figure 49). However, these specific 

developmental pathways are not relevant during compound screening, albeit they could 

certainly help to further characterize compounds of interest by examining the way they affect 

these pathways. The influence of a compound on a specific ClpC dependent developmental 

pathway could e.g. suggest an overlapping binding site with a ClpC adaptor protein.  

In general, it is important to note that growth of the B. subtilis strains in a shaking 96-well 

plate differed substantially from a shaking flask, as e.g. the ∆clpX mutant strain, which 

already displayed attenuated growth, did not grow under tested conditions in a 96-well plate 

(Figure 53). This is presumably due to inefficient oxygen distribution. The strains were 
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always examined in different wells in the 96-well plate to prevent and decrease false negative 

results. 

Screening a smaller myxobacterial library of 300 compounds resulted in a pre-selection of ten 

interesting compounds after a first test, which were subsequently examined in a more specific 

dose-dependent screen (Figure 59 and Table 8). Unfortunately, the majority of the previously 

obtained results could not be reproduced and, hence, identified as false positive. Only 

myxopyronin A and B were observed to lead to an accumulation of MecACTD-GFP at elevated 

concentrations (Figure 59 and Table 8). At even higher concentrations (> 4 µM) they 

substantially attenuated or completely abolished growth and consequently did not lead to 

accumulation of MecACTD-GFP anymore. However, as known RNA-polymerase inhibitors, 

the myxopyronins potentially affected the bacterial cell in a pleiotropic way (Belogurov et al., 

2009). To exclude that myxopyronin based transcription deficiency of clpC instead of direct 

interaction of myxopyronin with ClpCP is responsible for the accumulation of MecACTD-

GFP, a northern blotting or qPCR experiment accompanied by western blotting would 

certainly reveal the impact on levels of clpC and ClpC, respectively.  

Despite the results of the actual screening, validation of the screening strain with various 

common antibiotics (Figure 55), known ClpC targeting compounds such as cyclomarin 

(Figure 56 and Figure 57), different background mutations (Figure 51, Figure 52 and Figure 

53) and positive/negative controls in western blotting and fluorescence microscopy (Figure 

49, Figure 50, Figure 51, Figure 52 and Figure 53) successfully demonstrated the 

functionality of the established screening strain to identify compounds that target the protein 

quality control system in B. subtilis.  
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Collectively, targeting Hsp100/Clp complexes in antimicrobial therapy is a reasonable 

approach. Firstly, a defect within these systems was observed to result in impaired virulence 

and/or pathogenicity (Gaillot et al., 2000; Kwon et al., 2004; Ollinger et al., 2012; Rouquette 

et al., 1998, 1996; Sassetti et al., 2003; Wozniak et al., 2012). Secondly, a bacterium with an 

impaired protein quality control system is presumably more sensitive towards the general 

immune response of the host (e.g. reactive oxygen/ROS and nitrogen species/RNS) during 

infection. Next, as already stated above, non-growing persister cells still possess an active 

protein quality control system while other processes such as replication or cell-wall synthesis 

are highly downregulated or completely shut down (Fisher et al., 2017; Lewis, 2012). Finally, 

when comparing the recently identified ClpCNTD targeting compounds lassomycin, 

cyclomarin and ecumicin, it becomes evident that all are either ribosomal or non-ribosomal 

cyclic peptides (Figure 8). ClpC, as part of the ClpCP protease complex, is designed to bind 

to adaptor and/or substrates proteins with its N-terminal domain, and hence obviously more 

suited to bind peptide chains than e.g. polyketide chains. This observation could help to guide 

and optimize screening of natural compound libraries. 

In addition to natural products, in the last years novel approaches have been established such 

as genetically engineered phages, modified antibodies and CRISPR/Cas systems, which all 

contributed to progress in antimicrobial therapies (Citorik et al., 2014; Mariathasan and Tan, 

2017; Trigo et al., 2013). Despite these innovative approaches, the classic target based 

screening systems are regaining attention due to identification of novel antibiotic compounds 

from uncultivable microorganisms by improved cultivation techniques or genome mining of 

metagenomics data without the necessity of cultivation (Medema and Fischbach, 2015; 

Ziemert et al., 2016). It became possible to sequence the genome from one single cell, which 
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is of particular interest because the majority of bacteria are assumed to be uncultivable 

(Amann et al., 1995; Raghunathan et al., 2005; Streit and Schmitz, 2004). Collectively, the 

fast increasing number of sequenced genomes and compiled metagenomics data provide a 

constantly raising amount of information regarding novel drugs and their respective active or 

cryptic gene clusters. To this end, specific target-based or general screening systems remain 

irreplaceable. 

4.4. Summary and outlook 

During this work, YocM was identified as the first stress-related small heat shock protein of 

B. subtilis, ensuring survival of cells during salt shock presumably in a synergistic 

relationship with accumulated chemical chaperones. Although occurring in all domains of 

life, such a potential relationship has not been observed before and broadens the repertoire of 

sHsp functions. A better understanding of sHsp might ultimately help regarding a number of 

human diseases connected to mutated sHsps or malfunction of their respective regulation, 

such as a cataract, myopathy and neurological disorders (Sun and MacRae, 2005). 

The established YocM-mCherry aggregate marker protein allowed the visualization of protein 

disaggregation and degradation in vivo. Thereby, protein disaggregation by ClpC was 

observed to be the favored way to deal with protein aggregates accumulated during heat stress 

in B. subtilis. Furthermore, McsB was identified as the most relevant adaptor protein for 

disaggregation of subcellular protein aggregates by the Hsp100/Clp protein ClpC during heat 

stress, which was in particular dependent on its protein arginine kinase activity. At that, levels 

of arginine phosphorylation appeared to be strictly controlled since elevated or decreased 

levels of the phosphatase YwlE severely affected the viability of the cell. On the one hand, 

these findings demonstrated the substantial influence of protein arginine phosphorylation in 
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PQC and heat stress regulation, albeit its precise and presumably target-specific role still 

needs to be addressed in the future. On the other hand, these insights into the PQC system of 

B. subtilis also demonstrate the intricate connection of regulatory proteolysis and general 

proteolysis in general and provide a better understanding of the bacterial cell since the 

underlying mechanism are conserved within all domains of life. 

A better understanding of the PQC system may also help to find and characterize novel 

antibiotics. Exchanging only one amino acid in the linker domain of ClpC resulted in at least 

partial loss of physiological function, formation of subcellular aggregates and general toxicity 

in vivo. These observations proved ClpC to be a suitable target for antimicrobial therapy. To 

this end, a ClpC target based screening system was successfully established, validated and 

tested in B. subtilis with a myxobacterial compound library. This proof of concept forms the 

basis for high-throughput screening of larger compound libraries towards the development of 

antibiotics aiming at ClpC, a promising target for antimicrobial therapy.   
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