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Abstract

This thesis considers the treatment of the wave equation given outside of a bounded,
orientable Lipschitz domain with the boundary element method (BEM). Beginning with
a scattering problem the retarded (potential) boundary integral operators are defined.
These operators are discretized with a tensor product ansatz. For the retarded Poincaré-
Steklov operator and the inverse counterpart, numerical experiments are presented using
the marching-on-in time (MOT) scheme.

The coupling of the finite element method (FEM) and the boundary element method
(BEM) provide an analysis of a fluid-structure interaction (FSI) problem with given
transmission conditions and the wave propagation interface problem with correspond-
ing transmission conditions. For the FSI problem two approaches are addressed. The
symmetric FEM-BEM coupling are discretized such that the MOT-scheme is applica-
ble. Numerical experiments demonstrate the reliability of the implementation. The
other approach uses a retarded boundary integral operator as a test function, which
leads to major challenges in the discretization and the performing of numerical experi-
ments. The wave propagation interface problem is adressed with a symmetric coupling.
Here the discretization is chosen such that a MOT-scheme may applied. Numerical
results are demonstrated as well. A prori and a posteriori error estimates for conform-
ing Galerkin approximation are derived in all these cases, motivating adaptive mesh
refinement procedures.

The remaining chapters consider the results of time domain boundary element dis-
cretizations for screen problems, unilateral contact and a real-world application on
tyres. Numerical experiments achieve optimal approximation rates on graded meshes
for screen problems, resolving the edge and corner singularities. As a first step towards
high-order methods p and hp—versions of time domain boundary element method are
presented for quasi-uniform meshes. Further crack and punch problems, as two ex-
amples of dynamic contact problems in time domain, are analyzed. While an error
analysis is done for flat contact areas, numerical experiments show convergence even
for non-flat contact areas. The sound emission of tyres, where noise emitting from the
contact of the tyre with the pavement, are discussed. Numerical experiments illustrate
the applicability of the boundary element method to real-world problems.

Keywords: FEM-BEM coupling, wave equation, finite elements, boundary elements, a

posteriori error estimates, graded meshes, hp method, dynamic contact, sound emission
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1 Introduction

Variational methods for partial differential equations (PDE) have a long history. They
have been established in mathematics as well as in engineering [27, 65, 28]. The bound-
ary element method (BEM) needs the knowledge of a fundamental solution for the
considered PDE. The strength of the boundary element method lies in the reduction
of a problem given inside or outside of a closed Lipschitz area into the boundary of
that area. In particular we are able to reduce problems of an unbounded domain to
the compact boundary via a representation formula or an adequate ansatz. The BEM
requires the discretization of integral equations.

In this thesis we are interested in an inital boundary value problem with the wave
equation given at the outside of a closed Lipschitz area © ¢ R? as the PDE, homogenous
initial conditions at time zero and a Dirichlet, Neumann or Robin boundary conditions
at the boundary 0€2. This is the scattering problem. The corresponding time-dependent
Galerkin boundary element methods go back to Bamberger, Ha-Duong [1 1, 12] and Ha-
Duong [55]. We solve the appearing boundary integral equations via a tensor product
ansatz in space time as in [84, 45, 57]. For piecewise constant test functions in time the
space time equation reduces to a time stepping scheme, the marching-on-in-time (MOT)
scheme, see [97] and [104] for fast methods developed in the engineering literature.
For higher test functions in time, e.g piecewise linear test functions in time, we are
forced to solve a large space time system. Hence it gives rise to an analysis of a
suitable preconditioner, which is in interest of future research. For some first works
on preconditioning time domain BEM, see [52, 32, 6, 98]. The work group of Aimi
considered an energetic Galerkin approach in space time with a tensor product ansatz
in [5, 3, 4]. An alternative to the space time discretization is the convolution quadrature
time stepping method, which is done and analyzed in [14, 90].

In the current thesis we also consider transmission problems which couple the wave
equation in the exterior domain to an elastic scatterer described by the Lame equation
from elasticity at the interior domain. This fluid-structure interaction (FSI) problem
is solved by coupled finite elements (FE) and boundary elements (BE) in time domain.
In time independent cases an analysis of the coupling method may found in Stephan
[92, 54], while previous works on the time dependent case include [64, 63, 1, 44, 13].

In addition to the FSI problem we consider unilateral contact problems for the wave
equation. While the analysis of elliptic and parabolic contact problems are well under-
stood, see [54, |, the dynamic contact for the wave equation requires a numerical
analysis. First results are [30, 61]. We propose a time domain boundary element
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method, see [17].

Furthermore in [16] and [19], the asymptotic behaviour of the solution of the wave
equation in a polyhedral domain in R? is studied. In this thesis we briefly show the
main results and present numerical experiments for graded meshes and the hp-version
on screens.

A modeling of the sound radiation of tyres requires studying the wave equation on a
half-space. Therefore we need a Green’s function in R?, which is given by Ochmann
[83]. Further analysis and numerical experiments for the sound radiation of tyres are

given in [15, 82, 18, ]. In this thesis we present the results based on [51, 10].

All numerical experiments are done in Maiprogs. Maiprogs is a batch control language
developed by Matthias Maischak, see [76, 77, 85], which contains amongst other things
the implementation of finite elements and boundary elements [78]. We still needed to
implement our own code in addition to Maiprogs in Fortran in order to run the numerical
experiments, but it gives a great background. The implementation of the boundary
elements for the wave equation in Maiprogs has been developed with the support of
Matthias Maischak by Elke Ostermann, Matthias Glafke, Zouhair Nezhi, David Stark
for their Phd thesis [84, 53, 82, 91], Fabian Meyer and myself. An implementation of
parallelized code becomes a lot easier, since Maiprogs gives the option of using OpenMP
and/or MPI. For more information on OpenMP and MPI, see [74, 75].

In Chapter 2 we introduce the scattering problem together with the boundary inte-
gral operators. We discretize the corresponding boundary integral equations and show
numerical experiments.

In Chapter 3 we consider the bilinearform used by Filipe [44] to solve the FSI problem.
This bilinearfom leads to the usage of the retarded single layer potential as a test
function. The boundary element part gives the retarded adjoint double layer potential
tested with the retarded single layer potential, which lead to a geometrical structure
still in need to be analyzed. For the discretization of these operators we use an L*-
projection to get the corresponding boundary element matrices for the already known
case in Chapter 2. We discretize the interior part as well. We derive an a priori and a
posteriori error estimates for the Galerkin scheme and perform numerical experiments.

In Chapter 4 we take advantage of the bilinearform, used in [0, 63] to solve the same
FSI problem. This bilinearform leads to a symmetric coupling of finite and boundary
elements. We repeat the discretization, since we need other ansatz and test functions.
Again, we derive an a priori and a posteriori error estimates for the Galerkin scheme
and perform numerical experiments.

In Chapter 5 we consider for the wave wave interface problem the coupling of the finite
element method together with the boundary element method, where we couple the wave
equation at the exterior domain together with the wave equation on the interior domain
with transmission conditions via a symmetric coupling. We derive an a priori and an a



posteriori error estimates and present numerical experiments.

In Chapter 6 we consider the behaviour of the retarded potential boundary integral
operators on screens, based on the joint work with H. Gimperlein, F. Meyer, D. Stark
and E. P. Stephan [16] and H. Gimperlein, D. Stark and E. P. Stephan, [19]. We present
the main results of these works. Furthermore we demonstrate numerical experiment on
a circular screen, an L-shaped screen, and a square screen for a graded mesh with
grading parameter S = 2 as well as an hp-version on a uniform square screen.

In Chapter 7 we will have a look at contact problems, based on the joint work with H.
Gimperlein, F. Meyer and E. P. Stephan [17]. Here as well we show the main results
and present numerical experiments as well.

In Chapter 8 we refer to the joint work with H. Gimperlein and E.P. Stephan [51]
and consider the sound radiation of tires on a half-space. Here we consider absorbing
conditions on a half-space and present numerical experiments.

In the Appendix there is a detailed computation of time integrals, a listing of some
important theorems, used in this thesis, together with a road-map of spaces and norms
compared with the one in Ha-Duong’s lecture notes [77], computations for the single
layer integral equation with a parameter ¢ > 0 and the bcl-scripts in Maiprogs. These
scripts are executed, which gives us the numerical results in this thesis.

Notation: We write f $ g provided there exists a constant C such that f < Cg. If the
constant C' is allowed to depend on a parameter o, we write f S, ¢g. Further we write
f(x,t) =0 f(x,t) and f(z,t) = 0? f(x,t) for the first two derivatives in time.

Application to sound emis- FEM-BEM coupling in time
sion of tyres (Chapter 8) domain (Chapters 3, 4, 5)

Wave equation and boundary
integral equation (Chapter 2)
Time integrals, Important
theorems, Bcl-skripts (Im-
plementation) (Appendix)

Time domain BEM: graded Unilateral contact prob-
meshes and hp-version on lems: Punch problems /
quasi-uniform meshes(Chapter 6) Crack problems (Chapter 7)







2 Wave equation and boundary integral
formulations

2.1 Introduction to scattering problems

Let Q be a bounded open domain with a connected complement Q¢ = R3\Q. We consider
the transient sound radiation of the body €2, where the acoustic pressure v(z,t) satisfies

072%—Av =0 (z,t) eQ°xR,
v(z,0) =0(z,0) =0 in Q° (2.1)
BU = f in F X R+

where B is either the exterior trace of the normal derivative (Neumann boundary con-
dition) or the exterior trace on I' (Dirichlet boundary condition), f is given and c is
the wave-velocity. Here we set ¢=1. If ¢ # 1 is given, we may substitute 7 = ¢t and get
a wave equation with respect to 7, where the velocity is 1. In this case we just need to
adapt the boundary conditions. Furthermore if we have Neumann data we interprete
the problem as a hard scattering problem and if we have Dirichlet data we interprete the
problem as a soft scattering problem. In Chapter 8, we also consider Bv = g;’; - @%
on an acoustic half-space R? x {0} with constant a > 0, which refers to an absorbing

scatterer. The fundamental solution of the wave equation in 3 dimensions is known as:

1ot - |z[)
dr Jz|

G(x,t) = (2.2)

where ¢ is the delta-distribution. Next we can write down the acoustic pressure v(z,t)

for x € Q° as:

v(z,t) /foR+ on, (z -y, t = 7)ve(y, 7)dsydr (2.3)
Ov,
- /]FXR+ G(x —y,t—T)a—n(y,T)dsydT
where for z € T, v*v = vy (z,t) = lslzm v(z',t) and analogously 9fv = 8”* = (r,t) =
Q-
lim 6” go(a’,t) = lim N Vou(a',t), where n := n, is the unit normal vector on x € T’
2z 9 z'eQC—

always pointing towards QC. Here " is the exterior trace and 0} is the exterior trace of
the normal derivative. A proof can be found ini.e. [17, 55]. In (2.3) the first integral is
called the retarded double layer potential and the second integral is called the retarded
single layer potential. We consider them in the next section.



2 Wave equation and boundary integral formulations

2.2 Retarded integral operators

We define the retarded single layer potential and the retarded double layer potential.

Definition 2.1. Let (z,t) € (R®\T) xRy, 7 =t~ |z —y| and p € C*(I' xR,), then the
retarded single layer potential is defined as:

p(y,T)d

Splmi) = r |z -yl

(2.4)

Definition 2.2. Let (2,t) € (R3\I') xRy, 7 =t~ |z —y| and p € C*(I' xR,), then the
retarded double layer potential is defined as:

DgO(:ZI,t) — % fr ny'(x_y) (gp(y,T) n Sb(y’T))dSy ) (25)

-yl \|lx-y? J|o-y

We extend the solution v of (2 1) to the interior by zero, i.e. v_ = 0 and 0, v =0, where

analogously to v, and resp S,y v =v_:= lim v(a',t) and 0, U—— = lim a” go(a!,t)=
z'eQ-x z'eQ—

h{rzn ng-Vou(z',t) with 2 € T and the unit normal vector n = n, is pointed towards Qe
r'eQd—»x

Now let us introduce for x € I" the jump operator [-]:

ov ov, Ov_
Y = [U] =V — U, p= I:%:I = 8n —8—n. (26)
Now we write down (2.3) as
v(xz,t)=Dp-Sp. (2.7)

Now we define the retarded potential operators on the boundary I'.

Definition 2.3. a) Let x €T, t e Ry, 7 =t —|x —y| and p e C*(T xR,). Then the
retarded single layer potential on the boundary is defined as:

p(yﬁ)ds
U |z -yl

Vp(z,t) =

b) Letx e, teR,, 7 =t—|z—y| and pe C*(I' xR,). Then the retarded adjoint double
layer potential on the boundary is defined as:

KTp(x,t) = K'p(a,t) = 4;~/;7h(1%_y)(lmy’7)—kp(y’T))dsy

lz-yl \|lz-y? |z-yl

¢c) Let v e, teR,, T=t— |z —y| and ¢ e C*(I' xR,). Then the retarded double layer
potential on the boundary is defined as:

ch(a: t) 1 '[1_‘ ny(‘r_y) ((P(va) " Sb(y’T))dsy

4 lz-yl \|lr-y?* |z-y




2.2 Retarded integral operators

d) Letxel', teR,, 7=t—|z—y| and p e C}(I' xR,). Then the retarded hypersingular

integral operator on the boundary is defined as:

1 - o -
Wo(z,t):=— lim 1,V (E jl:nyvx,sa(y : |z y|)dsy) _

r'eQe—x |J,‘ —y|

With these operators the following jump relation hold:

Theorem 2.1 ([55], Lemma 3, 4a). Let © € Q°, t € Ry and I the identity, then for
@,pe C*(T' xR,) there holds:

(SP-) (5P:to) = Vo) (2.5)
8(§p)+( 1) = (—= I+K)p(x 1), (2.9)

a(gp)( ) - (;I+K)p(ac b (2.10)

(D) (1) = (51 + K)p(,1) (211)

(Dg) (1) = (-5 T+ K)ol 1) (2.12)

HED- (4 1y = X291y e Wity (213)

on

The normal derivative of the retarded single layer potential and double layer potential
have an additional jump term if we go to the boundary I'. The proof of this theorem
can be found in [55, Lemma 3 and Lemma 4a].

Now we apply the jump relations to v(z,t) = Dy — Sp.

1 1
p=7"v(t) = (K+5De=Vp, p=0yv(a,t)=We-(K'-D)p. (2.14)
Since the retarded single layer potential is invertible [53], we get:
1 1 . 1
<p:(K+§I)Lp—Vp©0:—Vp+(K—§I)g0 < p=V (K—E)go. (2.15)

Using (2.15) on the second equation of (2.14) yields
+ ;1 -1 1
oyv=(W-(K —§I)V (K—§I))<p = Sep. (2.16)
S is called the exterior Dirichlet-to-Neumann or the retarded Poincaré-Steklov operator.

We write down the retarded Poincaré-Steklov operator as a system of linear equations,
where we use, equivalently to (2.15), Vp— (K - 1) = 0:

w —~(K'-1D\ (¢ _([0Ov
Lt )6 (7). a1



2 Wave equation and boundary integral formulations

Since W is also invertible (see [55]), one defines the retarded inverse Poincaré-Steklov
operator S~

1 1 1
p:Wgo—(K'—§I)p©0:Wg0—(K'+§I)p©W_1(K'+§I)p=cp,

v = (K + %I)W‘l(K’ + %I) -V)p=81p. (2.18)

We write down the retarded inverse Poincaré-Steklov operator as a system of linear

w ~(K'+3D)\(¢\ (O
(o )60 219

The discretization of the retarded Poincaré-Steklov operator (see Subsection 2.3.5) and

equations:

its inverse (see Subsection 2.3.6) requires a discretization of the retarded single layer
potential, adjoint double layer potential, double layer potential and hypersingular inte-
gral operator first. An easier approach to the discretization of the retarded single layer
potential, adjoint double layer potential and double layer potential are done in Subsec-
tions 2.3.1 - 2.3.3. The discretization of the retarded hypersingular integral operator
(see Subsection 2.3.4) is used as well for the retarded Poincaré-Steklov operator and its

inverse.

The standard procedure of studying (2.1) requires spaces adapted to the Fourier-Laplace
transformation. With the help of the Paley-Wiener theorem (see Appendix 9.2, The-
orem 9.1) one can define analogously the single layer potential and the double layer
potential in frequency domain. A trace theorem (see Appendix 9.2, Lemma 9.1, 9.2,
9.3) and equivalent jump relations on the half-plane {w = v+ip € C: Imw := u > o} hold
for some o > 0. Therefore one may proof the well-posedness of the Helmholtz equation.
At last using an inverse Fourier-Laplace transform with the help of Parseval’s theorem
(see Appendix 9.2, Theorem 9.3) we obtain the well-posedness for (2.1). This strategy
is also used in other cases as well, like in proving existence and uniqueness for the
fluid-structure-interaction problem, see [63, (4] or the wave-wave coupling problem, see

[70]-

We introduce space-time anisotropic Sobolev spaces, which we use in all Chapters of
this thesis. We proceed as in [57].

We consider a bounded, orientable Lipschitz domain Q c R? with Q¢ = R3\Q and the
closed, orientable Lipschitz boundary I' = 0{2. Then we use the usual Hilbert spaces
HO(Q) = L*(Q) with the norm |ulo.o= ([, [u[?dz)*? and with k=(k1, ko, k3) € N3

gk k2 ghs
k1 ko ks
O0xy" 0xy* Oy

3
HY(Q) = {ueL*(Q): D*ue L*(Q) with [k|=> k; <1, and D" =
=1

with the weighted norm

|ull1wa = (levul2 + Jwul?dz)?



2.2 Retarded integral operators

In this setting Becache and Ha-Duong prove in [18] a trace theorem (Lemma 9.1, 9.2,
9.3), where the norms of the corresponding trace spaces are defined in the following
procedure.

We first extend T to a closed, orientable manifold T, if T is a screen, i.e. dT # @. For
r € R, we define the usual Sobolev space of supported distributions on I':

H'(T)={ueH"(T) :suppucT}.

Further H"(T') is defined as the quotient space H" (T)\H" (T'\I'). Furthermore, we define
for a Hilbert space E, with o € R, values in E and support in [0, c0):

LT(0,E) = {f e D\(E),e "' f e §,(E)} ,

where D', (E) resp. S, (E) are the sets of distributions resp. tempered distributions
on R with values in E and support in [0,00). For o < o', LT (0,E) c LT(¢', E), there
exists o(f) =inf{o: f € LT (0, E)}. Then the set of Laplace transformable distributions
with values in E' is denoted by

LT(E) = Uyer LT (0, E),

where for o > o(f) and w = n +ic the Fourier-Laplace transform of f € LT(FE) in the
half-plane {w € C : Imw := 0 > o(f)} with Imw denoting the imaginary part of w is given
by

Flw) = F(e ) () = f : ¢ F()dt .

For u with support for positive times and u(-,0) = 4(-,0) = 0, we extend u to the whole
R by setting u(-,t) =0 for ¢t <0.

We introduce a partition of unity ; subordinate to a covering of T' by open sets B;
1 <1 < s covering ). We define the diffeomorphisms ¢; which maps each B; into the
unit cube Q, BinQ into Q* = {zx € Q: 3 >0}, and B;c T into ¥ = {x € Q: x3=0}. For
u defined on T', we get a family of Sobolev norms with w e C\{0}:

ful, = (Z [ l? + 1621 F () o so;1<s>}|2d£)2 (2:20)

i=1

and for u € Q)

fulyc = (Z el + 16217 (i) o w?l(f)}l2d§)2 . (221)

The weighted norms on H"(I') are being induced by ||, = inf 7 @\ lu+v], 5

We can also define the weighted norms on H"(T') via |u[,wr« = [ecul, . Here e

extends the distribution u by zero from I to T. Since the norm |u|,.., r is being extended
rw, for re%+Z [54].

by an arbitrary v, the norm on ||, r . is stronger than |u

Due to Theorem 9.1, 9.2 and 9.3 we define the space-time anisotropic Sobolev spaces
and the corresponding norms:
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Definition 2.4. For s,r € R and o > 0 we define for I' and 2, being a bounded,
orientable Lipschitz domain, the Hilbert space

HS (Re, H'(Q)) = {w € LT(H"(Q)) : Jul s < 00,
H3 (R, H' (D)) = {u e LT(H () : |u
Hy (R, B (D)) = {we LT(H (1) : |u

‘S,T’,O’,F < OO}’

|87T70-7F7* < OO}’

equipped with the norm

lulls o = lulsro:=lu

+oo+i0 % 1l ~ 9 %

o= ([ i) g dw)
—00+10

+o0+i0 % 1l ~ 9 %

S,T‘,F = ”uHS,T',O',F = (/ . ’w’ Hu(w)Hr,w,F dw) )
—o0+10

+oo+i0 % 1l ~ 9 2
e Il OO T ) oy
—00+10

rw, %
We note that for s = r = 0 we receive the weighted L?—space. In case of o = 0 we skip the
index and write H*(R*, H"(I")). Because I', Q are Lipschitz, like in the case of standard
Sobolev spaces [21] these spaces are independent of the choice of «; and ; when |r| < 1.
Due to Parseval’s theorem (Theorem 9.3), we get for the norm in H2(R, HY(Q)):

co+io 1/2 © oy ) 1/2
uloa=( [ Nildoade) = ([ e [ 1vuta O + i, ) Pdvdt)
—0o+i0 00 Q

Therefore e 'vu and e ?'% both need to be square integrable in space and time, where

lullsro = llu

=

lullsroe = ltls,rr . = ul

we have u(-,0) = @(-,0) = 0. Hence for ¢/ > o, we say e 'u need to be in ”H(Q) in
space” and " H'(R) in time”.

For a finite time interval [0,7] with o =0, we get
H([0,T],H'(Q)) = {Vu and @ are square integrable in Q and [0, 7] with u(-,0) = 0},

where the norm is defined in [72]:

T, ) 1/2
lulo.onomy = ( [ Tulnaydt+ [Nl qorpde) - (2.22)

We want to use (2.22) in order to get the norms for the trace spaces of H([0,T], H*(Q2)).
For u € HY(R, HY*(T")) = {u e LT(H'*(T")) : (LZYZTH@H%/QM,F)IM < oo}, we observe
for all w with Imw > g9 > 0 and

1+0f
(wl® +[6P) < (L+ w72 + (1 + ¢!V < 2(70)1/2(\w\2 +eh)2
0
that e *u needs to be in ” H'/2(T) in space” and ” HY/?(R) in time”.
Similar as before we write for a finite time interval [0,7"] that u € HO([0,T], H/?(T))
needs to be "H'Y?(T) in space” and ” HY/?([0,T]) in time” with u(-,0) = 0. Corre-
sponding trace theorems (see Appendix Lemma 9.4, 9.5) hold for H°([0,T], H?(I"))

10



2.2 Retarded integral operators

as well as it’s dual space HO([0,T], H"'/>(T)). With the same idea for the Hilbert
space H*([0,T], H"(T")) with s,7 >0 the corresponding norm is defined as:

1/2
ey = () Volinqeyde+ [ el goirndss)

For negative s,r we use the dual space together with the dual norm of |[u|_, _ rx[o77-
In this thesis, we will need this norm only for s € Z (in particular Chapter 5). A
comparison between the Hilbert spaces defined in this thesis and Ha-Duong in [57] is
done in the Appendix 9.3. We will use the same setting for 2. For more details, see
[72, Chapter 4].

For real functions u,v we define

(U, V)TxR* o f 2Utfruvds$dt and (u,v)r ::fruvdsx. (2.23)

Further we define

(u, V) xR+ o = fo e 20t fQ uvdzdt . (2.24)
For vector valued u = (uy, ..., uq)? € (HS(R*, H"(Q)))% with d € N we define the norm:

=\‘ 2 luillZ 0

Furthermore the corresponding norm for a matrix C' is defined by

= /ZHC,J()IISTQ

Then for real vector valued u, v, we define

(0, V)aoxr* o / _QUt[u vdxdt and (u,V)r«p+es f _Q‘thu vds.dt .
(2.25)

In case of o =0, we skip the index.

Next we remark for 0;(Vp):

0(Vp) (1) = a([”(y’—wdsy)=fr8t(p(y’t_|x_y|))(8t(t—va—yl))dsy

|z =yl |z =yl
_ [0y, t=lz-yD) .
_[F r— dsy = (Vp)(x,t) .

The same property holds for K, K', W as well.

Next from [18] we state the mapping properties of the retarded integral operators.
Theorem 2.2 ([18]). Let Z =R,. The following operators are continuous for r € R:
Vi NI H 3 (T)) » HY(Z,HE (D))
K’ Hy*NZ,H72(D)) » HY(Z.H3(D)) |
K : Hy™(Z, H7 (1)) > Hy(Z,H? (D)) .
W HN (I HE (D)) > Hy(T,H (D)) -

11
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Due to Ha-Duong in [55, Chapter 4.4] an analogous result is made for finite times:

Proposition 2.1. Let Z=[0,T]. The following operators are continuous for r € R:

Vi Hy T, H73(0)) » HY(Z,H2(T))
K':H'WT, H3(1) » HY(Z,H3(T))
K:H'NT, H3()) - HI(T,HE (D)) ,

W HyN T, HE (D)) » HY(Z,H (1)) .

For the half-space I' = R?"!, Fourier methods yield improved estimates for V and W:

Theorem 2.3 ([76], pp. 503-506). The following operators are continuous for r,s € R,
o>0:

Vi HDE(RY, BY(T)) » HI(RY, HY(T)) |
W:H(R", H(T)) > H,(R*,H* /(1)) .

For GG, a bounded Lipschitz subset of I', we deduce from Theorems 2.2 and 2.3 corre-
sponding mapping properties for the composition with a restriction pg to @ = G x R.
For the retarded single layer potential V' as an example, we obtain from Theorem 2.2
poV : HI'Y(RY, H™3(G)) - HI*Y(RY, H2(T")) - H'(R*, H2(G)). Furthermore we
denote with H?(R*, H*(G))* the set of nonnegative distributions. We will need this
setup for unilateral contact problems in Chapter 7. At last we note the continuous
embedding
HO(RY, HY(D)) € H(RY, H™/2(1))

2.2.1 A retarded single layer potential ansatz

Alternative to (2.3), we may use a retarded single layer potential ansatz, see [17, 55].
The acoustic pressure is given via

v(z,t) = [f G(x-y,t—7)p(y,7)dsydr = Sp (2.26)
xRy

with v is extended to the interior such that y*v =~"v and p = (9,v-0;v) = —[g—:fb]. For
a Dirichlet problem, where the boundary condition y*v = f on " x R, is given, we get
with the jump relation the integral equation

Vp=fonT xR, . (2.27)

. . . . ~_ 1
V satisfies a coercivity estimate in the norm H?(R* H ™2 (I')): ||¢H(2)’_%70_7*SU<V¢, O P)PxR* o
when testing against a time derivate, see Bamberger and Ha-Duong [ 1]. On the other
hand we get the continuity of (V ¢, 0¢¢)r«r, » with the mapping properties of Theorem

12
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2.2 in the bigger norm of Hi(RJ’,ﬁ_%(F)): (V,0i0) < ||¢)H? 1, These estimates
b 27 b

are a crucial ingredient in the numerical analysis of time-domain boundary integral

equations.

Therefore the variational formulation reads:

Find p e HY(R,, H Y2(T)) such that forall ¢ e H}(R,, H-'/2(T)), there hold

fowa(Vp)ddsz e 27tdt = fowfpf(x,t)q dsge 27 dt. (2.28)

The weak formulation (2.28) for the Dirichlet problem is well-posed [15]:

Theorem 2.4. Let o > 0. Assume that f € H2(R", H%(F)) Then there exists a unique
solution p € H:(R", ]?I_%(F)) of (2.28) and

Il s ps S0 1flosr (2.29)
A theoretical analysis requires o > 0, but for the ease of implementation we do compu-

tations for finite times using o =0 [1 1, 415]. In the Appendix 9.4 we perform a numerical
experiment for the retarded single layer potential for o > 0.

For 7=t - |x — y| we get:

= 1 p(y’T) ; —20t [OO f . —20t
/0 [“[F47r |x_y|q(ﬂf,)syse 0 Ff(af )q dsze ( )

Remark 2.1. For o = 0, integration by parts in time for (2.30) gives the following

equivalence
(VP, q>F><R+ = <f7 q>Fx]R+ = <Vp7 )FXR+ (f, Q>FXR+ .

Next based on Ha-Duong in [57] we consider the following relationship between the
energy at time ¢

_ 1 2 g 2
B(1) =5 [ 70l 0P (e, 0P de

and the integral equation (2.27). With Green’s formula and v satisfying the wave
equation we get

op _1
ot 2 JrA\T

=fQC(W-W)+(f>-ii)dx+fﬂ(w-w)+(m)dx

~ ovy . . ov- _.
—/ U Av + 0idx fr 8n7 vdsx+/;2 v Av+vvda¢+/; anfy VS,
f((%* ~¢ 8 Vs ) ds, (2.31)

Now with y* 0 = 8t(Vp) with p = (0,v—-07v) and v*0 = y70, we get

. 1 )
O (Vv - V) + 0 (00)dx = 3 /RS\F 2(Vvu- Vo) +2(v)dx

23 _ - + + _
i '[F(@nv—anv)’y vds, = frp 0¢(Vp)ds, .

13
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Hence with integration by parts in time

E(t) = fta—Ed —fotfrp at(vp)dsxdtz—fotfrp (Vp)dsadt . (2.32)

Also in R* for o > 0 and integrating by parts in time, we get:

- 0F 1
20t 20t 20t

E = e % T .
A (t)dt / ot —dt = f [p@t( p)ds dt

Further as in [57] assuming e ¢ F(t) € L?(R) using the Fourier transform with % - —iw
and the Parseval’s theorem:

oo 1 ) 1 co+10
—20t 2 .12 ~ 21 ~12
Etdt:—f f + ddt:—f + dad
[T ertewa- 5 | o[ VO #lidadt = o= f (9 ]) + ol ol dad

1 co+10 .
- [ Il

With the trace theorem, we estimate

oo —9pt co+i0 2
[Tt Emdrz [ rde 2 Iplo 1o -

For f € H([0,T], H'/?(T")), we extend f to f into R in time by f(-,#) = 0 for ¢ < 0 such
that for all o > 0 and C' independent of o

(0,77 -

We write a variational formulation for 8;(Vp) = f: Find p € H:(R,, H *(T)) such
that for all ¢ € H}(R,, H'/2(T")):

o —20t _ e —20t s
[0 e /Fat(Vp)quxdt—fO e /qudsxdt. (2.33)

With (2.32), we state a variational formulation for finite times [0,7']:
Find p e H'([0,T], H'/?(I")) such that for all ¢ e H'([0,T], H/2(I")):

fo ! fr 9:(Vp)gdsydt = fo ! fr fqds.dt . (2.34)

Since the solution p of (2.33) doesn’t depend on f for times larger than T (due to
Theorem 9.2 and the mapping properties of V'), the solution p of (2.33) also satisfies
(2.34). For p, a solution of (2.34) we multiply 0;(Vp) = f with €727t extending f to f
and integrating on I' x R, the restriction of (2.33) for [0,7'] gives the same solution.

With

S

t

[E(t)dtz/Tjf(&(Vp)(m,r))p(x,r)dsxdrdt=/ffp(m,r)f(:r,r)dsmdrdt
00T r

0

o\% o

(T—r)fp(m,r)f(:n,r)dsmdr
T

14



2.2 Retarded integral operators

and the duality, we estimate

T
fo E(t)dt $7

(0,77 -

Using (3.14) in [55, Chapter 4.3]:

T
P13 s joretory ST [ Bt

Hence, we have proven:

Ipllo,-1/2,rx[0,1] ST ”f||0,1/2,1"><[0,T] .

Proposition 2.2. Let p € H'([0,T], H Y2(T)) satisfy for f ¢ H*([0,T], HY/*(T))
Vp=f onT x[0,T]. Then there hold

Ipllo,-1/2,rx[0,7] ST ||f||0,1/2,rx[0,T]

For a Neumann problem, where the boundary condition 9} v = f on I" x R, is given, we
get with the jump relation the integral equation

1
(—§I+ Kp=f onT xR, . (2.35)

The weak formulation reads as follows: Find p e HX(R,, H'/?(I")) such that

oo oo

[ o20t (K/_ —I)p, th _ [ f QUtf(:E t)q(m t)dsx dt, (236)

0 0
holds for all ¢ € HX(R,, H'/2(I")).
The weak formulation (2.36) for the Neumann problem is well-posed [55, 51]:

Theorem 2.5 ([51]). Let 0 >0. Assume that f € Hg(RJ“,H_%(F)). Then there exists
~ 1
a unique solution p e HLX(R*Y, H 2(T")) of (2.36) and

1t So [ flls -1 p (2.37)

T

For a finite time interval [0,7] the solution p of the retarded integral equation
1 /
(—§I+K )p=f onT x[0,T]

is due to Theorem 9.2 and the mapping properties of K’ the same for (2.35), where the
corresponding solution for times larger than T doesn’t depend on f, the extension of f
to R.

15



2 Wave equation and boundary integral formulations
2.2.2 A retarded double layer potential ansatz

A further alternative to (2.3) gives the retarded double layer potential ansatz

xt)—// aG (x -y, t—71)p(y,T7)dszdr = Dy (2.38)
xR+

with v extended to the interior such that dfv =9,v and ¢ =y v -~ v = -[v].

For a Dirichlet problem with boundary conditions vfv = f on I" x R, we get with the
jump relation the integral equation

1
(§I+K)g0=f on 'xR, . (2.39)

The weak formulation reads as follows: Find ¢ € H}(R,, H'/?(T')) such that
f e 27 ((K + I)(p, Vpdt = f [ 20t £ (4 2)(t, ) ds, dt, (2.40)
0

holds for all ¢ € HL(R,, H'/2(I")).

The weak formulation (2.40) for the Dirichlet problem is well-posed, see [55].

Theorem 2.6. Let o > 0. Assume that f € Hg(R*,H%(I‘)). Then there exists a unique
solution @ € H:(R*, ﬁ%(F)) of (2.40) and

<
AT R0 Hf”g,%,l“ . (2.41)

For a finite time interval [0, 7] the solution ¢ of the retarded integral equation
1
(§I+K)<p: f onT x[0,T]

is due to Theorem 9.2 and the mapping properties of K the same for (2.39), where the
corresponding solution for times larger than 7" doesn’t depend in f, the extension of f
to R.

For the Neumann problem, with 97v = f on I' x R, we get with the jump relation the
integral equation
We=f onI'xR" . (2.42)

0'>(—

For W we get similar estimates as for V: ”1/’“(2)7%70,* So (W1, 0i)) Hzﬁ”l ! ee

[18, 57] for proofs and further information. Then the variational formulation reads:
Find ¢ € H}(R", ﬁ%(l‘)) such that for all ¥ e H(R", fl%(l’)) there holds:

/R (W) v e atds, - fR S o dtds, (2.43)

The weak formulation (2.43) for the Neumann problems is well-posed [51]:

16



2.2 Retarded integral operators

Theorem 2.7 ([01]). Assume that f € Hg(]RJr,H_%(F)). Then there exists a unique
solution ¢ € H;(R*,ﬁ%(f‘)) of (2.43) and

lol s re <Clfla 1 r (2.44)

Analogously as V we derive an energy formulation for W. From (2.31) with d}v = 0, v
and 9Fv =W with p =v7v -~y v = —[v], we observe

8_E ~ ovt
ot on
T

(770 =" 0)dss = [ (Wep) gdsa
I

Hence

taE t .
E(t)-fo Edt-fo fF(ch) odspdt .

For a finite time interval [0, 7] the solution ¢ of the retarded integral equation
We=f onT x[0,T] (2.45)
is due to Theorem 9.2 and the mapping properties of W the same for (2.42), where the

corresponding solution for times larger than 7', doesn’t depend on f, the extension of
f to R. Further proceeding similar as in the retarded single layer potential case

[T E(t)dt = fT j f (W) (, 7)oz, r)dsydrdt =
0 0o 0 T

/t/f(m”)@(»fﬂ’)dsxdrdt
0T

(T—T)ff(a:,r)gb(:c,r)dsxdr.
T

Now using the duality we estimate

T
fo E(t)dt s @] -1,1/2,0x0,71 1 f[11,-1/2,0x0,77 -

Using (3.7) in [55, Chapter 4.3]:

T
”90”3,1/2,1“X[O,T] ST [0 E(t)dt ,

we get

lllo,/2,rx10,17 ST 1 f1l1,-1/2,7x[0,77 -

Proposition 2.3. Let ¢ € H'([0,T], H'/*(T")) satisfying for f € H*([0,T], H Y*(T))
We=f onT x[0,T]. Then there hold

lello,1/2,rxp0,m7 ST 1 l1,=1/2,rx[0,77] -
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2 Wave equation and boundary integral formulations

2.3 Boundary element discretization

Now let us define the discretization spaces as in [84]. Let 7Tp, 2 be a regular triangulation
of I' into finite I';(j € {1,..., Ny} ), where the following properties are statisfied:

1.T= U Iy
Fj57-h,2

2. every I'j € Tj, o is a closed Lipschitz continuous boundary with intl'; # @

3. for FZ',FJ' € 771,2,1: # 7, there hold intl'; N intI‘j =J.
Let Trepo = {(21,22) 10 < 21 <1-29 <1;0 < 23 < 1} be the reference element, then we
define I'j € Tp, o by

1

Ij={x=a2'+a"72 + a®7 2o with a7, a?7 e R? | (21,22) € Trefa} -

Furthermore we define
SV (Tref2) ={v:Trepa > Riv(z1,22) = ), ai,jzizg with «; ; € R}
i+j5ps

the space of polynomials on T..fo with degree ps. Therefore we can set the space of
splines for ps > 0 as follows:

Sy (L) ={v:Tj>R:v(z) = (voF)(x) with (voF)eSV (Trer2)},

where F':Tycp0 = T';.

Let V}f (T") denote the space of piecewise polynomial functions of degree p in I'. For
p>1VP(T) is continuous. Moreover, we define f/}f (T') as the space VP(T'), where the
polynomials vanish on 9" for p > 1. For p = 0, both spaces coincide. We will need
f/,f (T) for the discretization of screens, see Chapter 6. For p =0 and p = 1 we have:

V(T) ={v e L*(T): v, € Sp(T;) ¥ T € Tro} e HV2(T)

Vi (T) ={v e CO(T) : vlp, € SL(T'y) V Ty € Tha} € HYA(T) .
We divide the time interval R, = (0, 00) into At equidistant subintervals I, = (t,,-1, ]
n € N. Here ¢, = nAt and we take the discretization of a finite subinterval 7; :=

{I1,...,In,}. We define with V{, the space of piecewise polynomial functions of degree
q in time. For ¢ > 1, VAqt is continuous and vanishes at ¢t = 0. We write

VoA =V @ V§, (2.46)

as the tensor product of the approximation spaces in space and time associated to the
space-time mesh T, x ;.
Analogously:

(7P _ 7P q

Viae=Vy ®Va, - (2.47)

In this thesis we use the notation:

18



2.3 Boundary element discretization

for the basis of piecewise constant functions in time, yX,(t) = H{t—tm-1) - H{Et—t.m)

. {1 Afte (fmot,tm]

0 ,else

for the basis of piecewise linear functions in time,

BR(t) = (A)TH((t = tm-1)VRy (1) = (= tmar) VR (1))

1,if 2 eIy

for the basis of piecewise constant functions in space, wz(x) = { |
0 ,else

for the basis of piecewise linear functions in space, & ().

2.3.1 The retarded single layer potential

We recapitulate the weak formulation: Find p € H2(R,, H /%(T')) such that forall
qe HX(R,, H'/2(T")), there hold

" [w 'dx_%tdtzfoof ) dspe 2t
[ [ et [~ [ stmiriin

For 7 =t —|x - y|, we get

_[ f/r 417r}|?§:y7;|) x,t)dsyds e e 20t qt = [ ff(m t)q dsze —20t gt (2.48)

Then the discretized variational formulation reads: Find pp a; € V'K such that for all

P2,92 .,
qh,At € Vh At -

1 ) — o . —
f [ [ Ph, At(y T) n.ac(x,t)dsydsge 2 dt = [ f F(x,t)gn.ay dsge™27tdt .
rar |z-y| o Jr ’

(2.49)
Set o = 0 and use piecewise constant ansatz function in space and in time, i.e.
& & ' 0,0
prac(z t) = 2 > oA (O Yn(x) €Vyn, - (2.50)
m=11i=1

We use piecewise constant test functions in space and time, i.e gp a¢(2,t) € VhO ’gt. We
write for 1 <n < Ny and 1< j < Ny qn,at(z,t) = YR, ()] (). This yields ¢nac(z,t) =
AR, (1)1 (). Now let us compute the retarded single layer potential with this setting:

N; N, -
Z sz / _//1: ! 7At|( )u}h(y) At(tﬁp (x) dszdsydt

m=11=1
=SS [ vm)m(t)dt]% doads,. (251)
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2 Wave equation and boundary integral formulations

The computation of the time integral may be found in the Appendix 9.1 (see (9.2)). It
leads to the so-called acoustic lightcones.

E ={(z,y) e xT: i <|z—y|<tj1} cI'xT

l,xeA
Let XA:{ v }be the indicator function of the set A. Altogether we get for (2.51):

0,z¢ A
e DALAC)
i T,y) - z,y)) o g ds
lezlgpz ‘/];\/I;(XEniWLil( y) XEn—m( y)) 47T|l’—y| Yy T
N: Ns i J (2 i e Ny
_ E szn f wh(y)wh( )dSdex— [ wh(y)wh( )dSde;p = Z Vn—mpm
m=1i=1 o dmlz - y| o Amlz -yl m=1
(2.52)
where V™™™ is a matrix which has these two integrals as the ¢, j—th entry and p™
Py’
the corresponding vector with p™ = : |. The integral over E,_,, disappears, if
PN,
n —m is negative. This integral also disappears if we have already passed the mesh,

ie. n—-m> [%] V™™™ has only nonzero entries if the lightcone E,,_,,, or E, -1

intersects with the triangles of the mesh (see Figure 2.1). It is also enough to compute
only the integral over FE,_,, for timestep n, since we can use the integral from the
previous timestep n — 1 and change it’s sign. Furthermore we can compute every entry
of V™™™ in a parallelized fashion.

AYAN

Figure 2.1: Sparsity of the retarded matrices for plane triangles
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2.3 Boundary element discretization

In the case depicted in Figure 2.1, i.e. for 2 lightcones, we only get entries for triangles
intersecting the blue and lightblue colored area. Therefore the corresponding matrix is
sparse. We calculate these integrals by using a composite hp-graded quadrature rule

[54].

Let us consider the right hand side. We approximate f as follows:

Ny
Tnae(z,t) = 3 TR
m=1

where f = f(x,t,,). This yields for the right hand side:

[ [ sk ) @)dssdt - :z [ [T om0
(2.53)

We compute the time integral part in (2.53)

[T P O8] gy 10 1) (500 1) - 600 - 1)

= [ R0 = bt = [0~ )t =1 Ru(tam) =K (1),

to obtain

oo . N Ny .
L [ s ikl @)dsadt = [ [ > F R te) = 3 F R () [ (@) dse
m=1 m=1

Since ¥ (tp-1) = 1 if tp—1 € (tm-1,tm ], therefore t,_1 = t,, yields n—-1=m
Nt 1 Nt
> [ (tn-1) = f77 and Y f R () =
m=1 m=1

We get:

[7 [ s i@ @dssdr= [ [ = o) ds = 1

We compute the integral in space by using the standard Gauss quadrature. Therefore
(2.49) results in a space-time linear system:

Ve 0 0 o0 p! F!
vl ve o 0 p? F?
VQ Vl VO 0 p3 — F3

p4 F4

VS V2 Vl V()

Since we have a block lower triangular matrix this allows us to solve the system via for-
ward substitution. This procedure is called the marching-on-in-time (MOT) algorithm
(see Algorithm 1), [97]. We need to solve a linear equation system in every timestep n:

n n-1
SV = F e VO = Fr - Y VT (2.54)
m=1

m=1
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2 Wave equation and boundary integral formulations

We can also compute a discretized energy with (2.32) for T'= Ny (At):

~ T
E(T) =~ fo /th,At(Vph,At)dedt . (2.55)
Inserting pp, A¢:
I o r = R n:n m’YAt(t—W—Z/Dwi(y)
B()=- [ (3 LAiA0ae) [ mzl ; oy dsydsadt.
The integral:

t — |z —y|)ya.(t)dtds,d
I'xT’ 47r|x Yl 7At( |z = y|) YA (t)dtdsyds,

1

p
gives us the i, j-th entry of the matrix V™. Together with the vector p=| : |, we
pM
get
Vel oo ... 0\ /p!
5 Vl VO p2 e
E(T)=-(p'p* ... P™)| ", S | I R (2.56)
vNe o v\ p

forn=1,2,... do
ifn-1> [d‘amr] then

1 V(W)Y

- Mdsxdsyzo, fOrZ‘,lzlw--?NS
47T En—l |x_y|

else

Compute and store

1 UL ()¢ ()

dsgds,, fori,l=1,..., N
41 JE,_1 |z -y vy s

end if
Construct and store (VJL‘l) by using the stored computation in the timestep
before, i.e. for ¢,1=1,..., Ny

Vi dsgdsy + —

= d
i dw JE,.1n |z -1y 41 JEn s |z -y doadsy,

Compute right hand side f*~1 - f7 - Z%;ll ynompm
Solve system of linear equations (2.54)
Store solution p™
end for
Algorithm 1: Marching-on-in-time algorithm for the retarded single layer potential
with ansatz and testfunctions as in (2.50) and below.
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2.3 Boundary element discretization
2.3.2 The retarded adjoint double layer potential

We repeat the weak formulation: Find p e HL(R,, H'/?(T")) such that

[ee] (o]

[e_QUt (K’——I)p, y)rdt = / f 29t (g, t)(x, t)ds, dt,

0 0

holds for all ¢ € H}(R,, H'/?(T)). Then the discretized weak variational formulation
reads : Find p € V' such that

e P (K' - —I)ph Ats Gh,AL)T [ fe’2gtf(t,a:)qh,m(t,x)dsx dt,
0 T

holds for all gy a; € V,f QA’ZZ. For our computations we set ¢ = 0 and choose ansatz and test

functions such that we get a MOT-scheme. For ansatz functions we choose piecewise
constants in time and space, i.e.

S

Ny .
prac(z,t) = 3, 3 oK (v (2) € V', (2.57)

m=1i=1

For the derivative of the test function we choose piecewise constants in time and space,
i.e.

. ; 0,0
dn.at(z,t) = YA (D) () € thAt‘

We divide the computation into two parts:

r 1 . r .
f_/F(K/_§I)ph,At(~T:t)Qh,At(xat)dedt:f/FK,ph,At(xat)Qh,At(xvt)dedt
0 0

17 .
D) frIph,At(%t)Qh,At(x,t)dsxdt .
0

Let us consider the retarded adjoint double layer potential first. Inserting the ansatz

and test function

| ) K o tyinaie tdssde
0

Ny Ny ng - (r - T 5 (7)) »
=33 f/f 2 ( Z/) YR, (TP} (y) +7At( wh(y))’th(t)wi(w)dsydsxdt

m=1i=1 Ar|z - y| |z — y[? 7~
Nt s ng - (- y) AHACD .

m= 11 1 [[ A7z - y| |z — y[2 0[ YA (T)vA(t)dt
%O/‘WZt(T)VZt(t)dt)dsydsm
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2 Wave equation and boundary integral formulations

The time integrals are computed in the Appendix 9.1, see (9.5) and (9.3). We get

[ Ko tyinaie tydssde
0

N Ns . — i J
B S e (P s 10
i J
# (St + 2= YD)XE, 0 (2,1)) + %(){En_m (2,9) = Xy (7, y)))dsydsx
Yy e RN AC) UL ()Y (@)
leZZ; 47r|a:—y\ ( iz — g2 tnferlXEn_m(x»y)_WXEn_m(:E?y)
i J
- Mtn—m—IXEn,mJ ($, y) + MXEnfmq (.le, y)
[z -y [z =y
i J
LW RORE Vs,
] |z -y
My ne - (z =) ¥, ()¢5, (x)
—mzzjl;pi (tnm+1Eﬂ 47T|$—y|3 dsydsz
nx(fﬁ—y)wﬁ(y)i/’i(x) _ L m,.m

where tj, = k(At) with k € Z and K'* has entries of the both integral above. Remember
that the integral vanishes if n — m is negative. This gives us the following space-time
matrix:

K° 0 0 0
K" K% 0 0
K/Q K/l K/O 0
K/S K/Z K/l K/O

Next considering the identity part, leading to the mass matrix I:

S

1 Ny ' .
ioffFIph,At(ac,t)Qh,At(x,t)dsmdt— DN f/1;’VZL,:(t)%(x)’yﬁt(t)wz(m)dszdt

m=1i=1
1 Ne Ns . . oo
=3 & LA @ @dse [T ROk
=1§2§?m [ @) @)ds, ftt H(t~ty1) = H(t = ty)dt

S5O0 35 [u@d s, - ot
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2.3 Boundary element discretization

where we used that the time integral is nonzero only if n = m. For the right hand side,
we approximate f in time with piecewise linear functions:

N
Praue.t) = 32 R0,

where f = f(x,t,,). This gives:

00 . Ny oo .
S ooy @ @asar= 3 fr| [T a0 g s 259
We compute the time integral part of (2.58)

(o] tn
| s = [ Rt

= [ A -t R0 [ (A bR (0

n—

(At)
2
n—1=m the first integral vanishes and the second integral is @. In every other case

For n = m the second integral vanishes and the first integral is .Forn=m+1<

both integrals vanish. We get:

J e 07806, () dsadt = % [+ g )ds, = P
We compute the integral in space:
[ e @)ds.

with a standard Gauss quadrature.

Altogether we get the following space-time linear system:

K" - 1(AN)I 0 0 0 pt F!
K" K" - 1(ANI 0 0 p? F?
KIQ Kll KIO _ %(At)] 0 p3 — FS
Kl3 K12 Kll KIO _ %(At)] p4 F4

Again we take advantage of the block lower triangular scheme of the space-time matrix.
For every timestep n, we solve the system:

n-1
(K" - %(At)[)p” S (2.59)

m=1
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2 Wave equation and boundary integral formulations

Compute and store

At [
I = 75-j£<¢;(x)¢g(x)dsxdsy, il=1,.. N,

forn=1,2,... do
ifn-1> [dlamr] then

g LS he @U@
x y - Y 9 e I ) S

R - yf?
else
Compute and store

o i J
/-c’"fl-ifE ng - (@ = y) vy (y) vy, (v) dsgds,, i,j=1,...,N,
n-1

M dn o = yf?

end if
Construct and store (K™ ') by using the stored computation in the timestep
before and multiply with the corresponding time factors, i.e.

Kln—l - tnk‘ln_l _ tn72k,n_2

Compute right hand side F" - ¥4 K/m=mpm
Solve system of linear equations (2.59)
Store solution p™
end for
Algorithm 2: Marching-on-in-time algorithm for the retarded adjoint double layer
potential with ansatz and testfunctions as in (2.57) and below.

2.3.3 The retarded double layer potential

The weak formulation reads: Find ¢ € H:(R,, H/?(T")) such that

[ee] oo

fe_%t (K+ = I)p, th_[/ “29t (¢, 2) (L, x)ds, dt,

0 0

holds for all ¢ ¢ H:(R,, H H~Y2(I")). The discretized weak variational formulation reads:
Find ¢ ar € VPRI such that

/672“ (K + I)phAt7QhAt rdt= f/ 2L (t, ) g (t, ) ds, dt,
0 0

holds for all g a¢ € VFR®.

26



2.3 Boundary element discretization

As before we set 0 = 0 and choose ansatz and test functions such that we get a MOT-
scheme. We can use the same ansatz and test functions in space and time as in Sub-

section 2.3.2. For ansatz functions we choose piecewise constant in time and space,
l.e.
AR ; 0,0
enar(@,t) = 20 Y el vA() Y (x) € Vi n, (2.60)

m=11i=1

For the derivative of the test function we choose piecewise constant in time and space,
ie.

dn,ar(2,1) = R, (1)), (x) € VIR,

We divide the computation into two parts:

r 1 . r .
f/F(K+51)%,&(%7t)Qh,At(UC,t)dsxdt:ffrK%,At(%t)Qh,At(%t)dSmdt
0 0

17 .
+ §f frIwh,At(HT,t)Qh,At(%t)dS:cdt-
0

For the identity part I we obtain the same result as in Subsection 2.3.2. Let us consider
the retarded double layer potential . Inserting ¢, A¢ and gp a¢:

/fFK(PAt,hQAt,hdsrdt
Ny N . m 7 )
12;% f/fniﬂ(; sz) Mt|§: )Z)&(y) +WAt|(Q¢y;i(y))ﬁt(th(x)dsydsxdt
Ni Ns n x —
== (B o oy o
m= 111 47T|$ y| |$ y|
B f S () dsy s,

The time integrals are computed in the Appendix 9.1, see (9.5) and (9.3). We get

/ﬁK@At,hQAt,hdsxdt

0

— Ni Ns m (l‘ Y) ¢h(y)w ( )

;1;901/ dm|z - yl( |z — y? ((tn—erl—|$—y|)XEn_m(x’y)

i J
+ (tnomet + 2= Y)XE, 0 (2,9)) + %(mnm(w, Y) = XBpomn (T, y)))dsdex

Ne N T - I (z : e
= Z Zsoznf ( y)(wh(y)w ( )tn—m+1XEn7m(‘T7y)_MXEnfm(xay)

o o | 4l -y |z —y|? |z -y
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2 Wave equation and boundary integral formulations

i j i J
_ thm_wm_m_l(x, y) + MXEn—m—l(x’ Y)
|z —y] [z =yl
i j i J
+ MXE}L—"L('%?Z/) - M){En,mJ ($, y) dsydsr
|$ — y| |$ - y|
N N (z-y) ¢Z(y)¢] (z)
_ m Yy h
DR ke ( oy X (00)
i J
+ %tn—m—1XEn_m—l (, y))dsydsx
NN ny - (z - )P (Y)Yl (2)
= mzzzl ; 2 (tn—m+1E;L/_£ 47T|l‘ — y|3 dSdea:
ny - (x = y)i (vl (x) & mm
— tn_m—lEn[[1 47T|1‘ _ y|3 dSdex = TnZ:l K 2

where tj, = k(At) with k € Z and K* contains entries from both of the integrals above.
Remember that the integral vanishes if n —m is negative. This gives us the following
space-time matrix:

K' K9 0 o0
K2 K' KY o
K3 K? K!' KO

With the right hand side as in Subsection 2.3.2, altogether we get the following space-
time linear system:

K%+ L(ANI 0 0 0 ! Fl
K! KO+ 3(At)I 0 0 ©? F?

K? K1 KO+ (At 0 o= F?

@4 F4

K3 K? K! K%+ (AN

Taking advantage of the block lower triangular scheme of the space-time matrix the
MOT-scheme reads:

1 n-1 o m
(KU+§UM»¢":F”—§:K“ o™ . (2.61)

m=1
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2.3 Boundary element discretization

Compute and store

At [
—TquS;L(x)qﬁﬁl(x)dsmdsy, il=1,.. N,

forn=1,2,... do
ifn-1> [dlamr] then

1 . _ i J
kst —f na - (@~ Y)Y (Y)v, (@) dsydsy =0, i,j=1,...,Ng
Y e o=y

else

Compute and store

gt = L f g - (x - Y)Y (y)¥i (z)
En1

1, in = —yP dsgdsy, 4,j7=1,...,N;

end if
Construct and store (K™ ') by using the stored computation in the timestep
before and multiply with the corresponding time factors, i.e.

Kn—l — tnkln_l _ tn,ka_Q

Compute right hand side F"™ - Y7 K” ™
Solve system of linear equations (2.61)
Store solution "
end for
Algorithm 3: Marching-on-in-time algorithm for the retarded double layer poten-
tial with ansatz and testfunctions as in (2.60) and below.

2.3.4 The retarded hypersingular integral operator

Recapitulating the variational formulation: Find ¢ € HX(R*, H %(F)) such that for all
~1
U e HY(R*, H2(T')) there holds:

[ W) e s, = [ f 0w dtds,
We will need the formula from [55, Lemma 4 b]
[; F(Wﬁp(x,t)) Oy (z,t) e ds,dt

- f]]rxr{_nx ny . oy, ) B (2, t) + (curlp ) (y, 7) - (curlp W) (z,t) }dsydsgge_zatdt.

|2 |z -y

The discretized weak variational formulation reads:
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2 Wave equation and boundary integral formulations

Find pp .t € V]ffA’Zl such that for all Uj as € V}TA’%

fo W o0, 0)01 W i, 8) sy 2t = fo [ @000 a1, ) ds, 7t
(2.62)

Again we set o = 0. For our discretization we use piecewise linear ansatz functions in

space and time, i.e.
Nt Ns

onat= Y L OPBR(DE () € Viiy, - (2.63)

m=14=1
For the test function we choose with 1 <n < Ny and 1 <j < Ng:
; j 1,0
Uh,ae(z,t) = A (8)&, () € Vi n,-

We compute

r : 1 r Mg Ny . ..
f [ Weonau@, ) Unanat) dsgdt = [ [ { o oA ) B )
0 I'xI’

(Curlr on.at) (Y, |T) (c|urlr \Ilh at)(,t) }dsydswdt
-y

> S er Tt [T (e 0) - (D) ) syt

P> —
Ny Ns
+m2:1;1% dn f / Il Ahdntens fh)(ff Z?t(t)(cuﬂr £) @) s sydsadt
:Z%@ o S T ) (6) [ 8D didsyds.
e [l )0 feut DO [ 52 e ety s

The time integrals are computed in the Appendix 9.1 (see (9.4) and (9.9)). We get:

Ny N Ng N , oo, ]
> 26l i ffon T (6h)-(6) [ AR )R (s s

e A 7=
O //M e 7;%;73;&% S
+&En fm <nm.75>_g,;|<i>fi;<x> doyde, At) X ;n/ (1 - Ti)g};'ﬁé( %) 4o, 5]
and
Xyerr L. p(cuﬂrfz)(ig) '_(;urw)(x) [T 8RR s, ds,
) :Z%ﬁ”mi S gz)(ﬁ?;(jurlr G e, sy s
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2.3 Boundary element discretization

where

yn—m(fv,y)‘Q(At)ﬂx Y- 20z - y|(n - m+ D)(A)+((n-m+ 1)(A))xE, . (z,y)
+ Q(Lt)(|$—y| —2|a:—y|(n—m—2)(At)+((n—m—2)(At))2)XEnim72(x,y)
+—2(Zt) (=2]z = y|* + 2|z - y|((n = m - 1) (At) + (n — m)(At))

= (((n=m=1)(A1))* + ((n=m)(A1))?) + 2(AL)*)XB, -1 (2,7).
Altogether we get:
[ODO/FWSOAt,h(%t)"i’m,h(ﬂﬁ,t) dszdt
& & (2 - 1y)&}, (4)) (2)
= Z Z‘P (At) / Yoh h dsydsy

m=1i=1 s |z — y|dm
(ns - 1y)&}, (1)), () (s - 1y) &4 ()&} (2)
(At) f |z — y|dm dsydse (At) f |z — yldm dsydsx]
R (curlp &) (y) - (curlp &) () 1 & em m
+ mZMZ;% o ffF - p— Y (@, y)dsyds, = mZle o

The right hand side is the same as in Subsection 2.3.2.

Now we can write (2.43) in a space-time linear system:

80

302
W2 Wl WO 0 @3 — F3
W3 W2 Wl WO @4

Since we have a block lower triangular matrix we can use the marching-on-in-time
(MOT) algorithm as for the retarded hypersingular integral operator. We get for the
current timestep n

n n-1
Z Wn—mgom N LN WO no_ o 2 Wn—m(Pm . (264)

m=1 m=1

2.3.5 Retarded Poincaré-Steklov operator

We begin this subsection with an existence and uniqueness result of the retarded
Poincaré-Steklov operator in (2.16). From [38], p. 48:
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2 Wave equation and boundary integral formulations

-2 -1
Set wz curl’ wz curl> W1
forn=1,2,... do
ifn-1> [dlamr] then

fori,j5=1,...,Ns do

, Wy 12 to zero.

witye f[, CoSOSE

|z — yldm
Ir €)(y) - (curlp &
1 curl (4 ) ﬂ (Cur - fh)(y) (Cur - gh)(x) dsydsif =0
D" dx JE, dr|z -y
el (curlp &) (y) - (curlr &) («) _
Wi = 1o ff y - dsydsy =0
] (curlp f,@)(y) - (curly éi)($)|x -yl _
W3, curl (i) 47-[- mn 1 4 dsydsm -
end for
else

Compute and store for ¢,5 =1,..., N;

. i J
uiy- f[, CrmlSOE@,

|z — y|dm
Ir €)(y) - (curlp &
1 curl ,(4 ) [/ (Cur - fh)(y) (Cur - éh)(x) dsydsl"
D" ax e, Arlz - y|

ol (curlp fz)(y) - (curly fi)(v’c)d

Wy curl (i) = 47‘(’ /Ln 1 47 Pyt
e (curlr &) (y) - (curlp &) (2)]z ~ y|
3 curl,(i j) /] dsy S

’ 47T En-1 4

end if

Construct and store (W™™!) by using the stored computation in the 2 timestep
before and multiply with the corresponding time factors, i.e.
- 1 _ 2 _ 1 (At)
1 1 2 2, n-1 1
W= _mw? + mw? - (At)w + Tn w?curl nw;curl
1 wh 1 (At)

Q(At) 3curl (( ) +n —2)101 ,curl + (2(7’L 1) 1)w2 ,curl
Lo At Lo
(At) w3 cirl ( ) (n 3)2 wy cm“l (n 3)’LU2 curl ;

Q(At) 3 curl

Compute right hand side F™ - an_:11 wn=mpm
Solve system of linear equations (2.64)
Store solution ™

end for

Algorithm 4: Marching-on-in-time algorithm for the retarded hypersingular inte-
gral operator with ansatz and test functions as in (2.63) and below.
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2.3 Boundary element discretization

1 ~
Theorem 2.8. Let f € H2 (R, H_i(f‘)) Then there exists a unique u € HZ (R*, H%(F))
such that for all ve H, : (R*, i (1))

fom((W - (K"~ %I)V_l(K - %I))u,v)re_zatdt = [Ooo [P f(x, t)v(x, t)dsze 2 dt
(2.65)

Agam we set 0 = 0 and use (2. 17) then the Variational formulation reads: For given
fe H2 (R*,H (F)) find p € H2 (R, iz (T)),pe H2 (R H N_%(F)) such that

J W= (s~ 4y iyede = [(F)r . (2.66)
0
f Vp, dw)r — (K = L), rw)r] dt = 0, (2.67)
0

holds for all w e HU% (]RJ“,I?%(F)), w € HU% (RJ“,EI_%(F)). We want to discretize the
retarded single layer potential, the double layer potential, the adjoint double layer
potential and the hypersingular integral operator so that we get again a marching-on-
in-time scheme. By choosing the ansatz and the test functions as below, the discrete
system reads as follows: Find ¢ A and pp a¢ such that

/(Wsﬂh,m (K' - —I)ph At, Wh )T db = f frnae)rdt (2.68)
0 0
r . 1 .
f[(Vph,At,wh,At>r - {(K - §I)¢At,h,wh,m)r] dt =0, (2.69)
0

holds for all wp A and wp Ay for n = 1...,Ny,j = 1,...,N,. Let us begin with the
hypersingular operator. Here we use the same ansatz and test functions in space and
time as in Subsection 2.3.4:

onat(x,t) = Z i% Bay(t fh(fz) € Vhl,it

m=14=1

and wp A¢ = ’ygt(t)fi(x) € Vhl’gt for 1<n<N;and 1<j< N, We get:

fo fr Won ae(x,t) -ip ac(x,t) dsgdt

_ o m[ _ 1 (ng - ny)fh(y)ih( ) ds. ds
“mue (At)Enffm EETT

2 () WEE) (2 )&, &) |
" (At)En S |z — y|dm dsydss - (At) nfm . |z — yldm dsyd x]

curlp & - (curl x N
+ Z ngl o ﬂ‘ F( th)(y) ( th)( )yn_m(x,y)dsdex _ Z W”_mgom

|IE - y| m=1
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2 Wave equation and boundary integral formulations

We continue with the discretization of the retarded single layer potential. For the ansatz

function we use piecewise linear functions in space and time.

Ny N

prad(at) = 3 S Pl AR W& () e Vi, -

m=11i=1
As test functions we use piecewise constant functions in time and piecewise linear
. . . B j 1,0 . :
functions in space, i.e. wpar = YR, (£)E) () € Via for 1<n <Ny and 1<j <N, This

gives after some computation

(VDhat, Wh,At)PxR, = f prh at(x,t) - dpae(x, t)ds,dt

Ny f ()& (x) 5 ()& (x)
thlp, [[ ( thy\ h47r(Aht) )dsyds’”
&)  _&WE ()
Efmf ((2( m)-1) ’zm'xjy' _9 h47r(Aht) )dsydsm
AODACIEADIACD) AL IR\ S——
fmf ( D eyl (A )dSde’”]:n;l;V}*" pit= v

Next with (31— K7 )ppat, Wnat)rsr, = (310n,at, hat)rxr, — (KT P at, i, at)rxr, We
get for the retarded adjoint double layer potential after some computation :

(KT pp.as, on at) xR, = / fFKTph,At’tbh,Atdedt

N¢ Ns g - (2 - .
-z t D) 6 1)) (e o)

Arlz -yl 4n(At)|x - y|

o ff e ( n—my - HEDEE) |, GO ) o s,

N: N, i () (x ()& (x
. Z sz ff no - (1 y)((n_ )ﬁh(y)§h( ) W&, () )dsydsx

A7)z — y|? 4w (At)|z -y

GeE(x) & W& ()
g "x'(x_y)(("'m‘2) iafo - P _4&&)&_1]')@@,@4

En—m—2
Nt Ns T Nt T

= )0 Y (K= Y (KT
m=1i=1 m=1

and for the identity part:
N N

(glpnaeinadez, =5 [° f 5 S o8 (0RO (st
Ni¢ N
=5 30 S [ g s [ AR DR )
m 14=1
I L ey (AD [P n=1] 1%,
=5 sz (ﬁ{h(x)ﬁi(x)dsx)T {pf el 2 } =3 ; 3APT = Ipf
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2.3 Boundary element discretization

_ (A [ n=1
pr=5 n_ on-1
pt+p ,n>2.

In the same way we consider ((—%I + K)@h,At,wh,At>FxR+ = <_%I¢h,Atawh,At>er+ i
(K oh,Ats WhAt)TR, :

with

(K on,At, Wh AL) TSR, = fo fFKQOh,Atwh,Atdsmdt

RELE, GweEx)  &weE ()
L RRCE) (_("_m”) info P *m?mi—yl?) s

m=11i=1 Eom

e y)(@( - EWE@ ) G0EE) ) s,

. Ar|z —y|3 A (At)|z - y|?
n—-m-1

ff (o y)( N <101 (51 CO B OGO )dsydsz]

Arlz -y An(At)|z - yf?

Ny N n ( 2TL (l’ y)
PR ff v e LK x)dsydsz*ff e QT
n (3? v) NN N
] Bl W] = R = 3 K
and

1 1 o Nt Ns ) ,
Lo soinadra, =1 [T [ 3 S o064 W s,

m=1i=1
1 N 7 7 e m n
=3 LA GG @[ ARt
1NN o} ,n=1
=0 X el G @)ds) |
lezZ; ' PR ’ ( notl)y n>2
1 Ng
= 5 Z 3iPI = _IQOI
i=1
with
_gpl ,yn= 1
pr=
—p" vl n>2.
Finally we solve the following equation:
N Ny 1 1 N¢ N¢
Z wn-m m Z (KT)TL mpm+ Ip1+ I(p[— Z Kn—mgom_l_ Z Vn—mpm L
m=1 m=1 2 2 m=1 m=1

(2.70)
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2 Wave equation and boundary integral formulations

We want to remark that W*, K* K7" V* vanish if the index k is negative. Therefore

we get for the first timestep (n =1):
1
Wogol—KTop1+§ > Ip1—§I<p1—K0<p1+VO 1_pt

We can write it as the following system of linear equations:

0
MO 901 _ wo _KTY 4 %(%t)[ 801 i Fl |
Pt ~KO-11 Vo p' 0

For an arbitrary timestep n > 2 we need to solve:

- n-m,_m S T\n—-m_m 1 (At) n n—1 1 n n—1
2, W = 3L (K)o i I 4 )+ ST (=" ")
m=1 m=1
> >
_ K’n—m@m + Vn—mpm — FTL .
m=1 m=1
We can define in addition to M? and N> k > 2:
T S T )
~Kl 41T Vi ’ -Kk vk
Since we already computed ¢, p* for all k=1,...,n -1 altogether we get:

wo —KT0+%(A2—”I "
—KO—%I VO pn

_ Fro_ 277711—:11 Wn—mgpm + Z;Lﬂ—:ll(KT)n—mpm _ %@Ipn—l ‘
Z%—:ll Kn—m(pm _ %IgDn_l _ Z7frlrz_:11 Vn—mpm

Or concisely written:

() ()2 ()

If we save the matrices from previous time steps, we only need to calculate one new
matrix M™ ! in time step n to obtain the vector [¢", p”]T. We solve this system until
the timestep IV is reached.

Example 2.1. We solve the Dirichlet-to-Neumann equation Sv = f on the unit sphere,
geometrically approximated by an icosahedron, with a right hand side obtained from the
Neumann data of a known, radially symmetric solution to the wave equation:

f = 000t 2) | ooy = (-% +cos(5 (4= 1)) + 2 sin(Z (4 1))
- i(cos(ﬂ(ll 1))+ msin(r(4— ) ) [H(4-1t) - H(~1)] .

The solution v corresponds to the Dirichlet data of the solution to the wave equation.
Therefore,

o(t,r) [r= (3 = cos(TEDY 4 Leos(m(4 - 1)) [H(4-t) - H(-t)].

We hold the Courant-Friedrichs-Levy (CFL) ratio % ~ 0.6 and compute till T = 5.
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2.3 Boundary element discretization

Figure 2.2 shows the L?(I')-norm of the exact solution together with the numerical
solutions for various refinements of the unit sphere as a function of time. Figure 2.3
displays the error in this norm. We observe that the error remains uniformly bounded
in time. In Figure 2.4 we consider the L?([0,T] x I')-norm of the error between the
numerical solutions and the exact solution depending on the degrees of freedom (DOF).
We obtain a convergence rate of a = 0.7, which corresponds to 2.1 in terms of h, since
the CFL % is fixed and DOF is proportional to h™3. We calculate the convergence
rate a with

_log Err(v1) —log Err(vs)

~ log DOF} - log DOF,
where Err(v;) denotes the L*([0,7] x I')-norm of the error between the numerical
solution v; and the exact solution u. We remark that we have an approximation error

of the geometry.

T T T
—20 triangles, At=0.8
80 triangles, At=0.4

3.5 2N —320 triangles, At=0.2 [
—1280 triangles, At=0.1
3k / 5120 triangles, At=0.05 ||

- - -exact solution

L2 norm in space
n
T

- L A L
0 0.5 1 15 2 25 3 3.5 4 4.5 5
Time

Figure 2.2: L?(I")-norm of the solution to Sv = f for fixed CFL ratio % ~ 0.6. Figure

1in [17]

Difference of L , norm

—20 triangles, At=0.8 i
80 triangles, At=0.4 4
—320 triangles, At=0.2 El
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Figure 2.3: Absolute error of the exact solution and the numerical solution for the L?
norm in space as a function of time for fixed %. Figure 2 in [17]
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2 Wave equation and boundary integral formulations
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Figure 2.4: L2([0,T]xI')-error vs. degrees of freedom of the solution to Sv = f for fixed
St Figure 3 in [17]

2.3.6 Retarded inverse Poincaré-Steklov operator

For the inverse retarded Poincaré-Steklov operator in (2.18), given v* = f on I'; we want
to solve S0 v = f. With (2.19) the variational formulation reads:

3 1 ~ 1 ~
For given f e H2 (R*, H2(T")), find p € H2 (R*, H3 (")), p e HZ (R*, H3(T)) such that

f(Wso—(K’ 3)p, ) dt =0, (2.71)
0
f (~Vp, B + (K + L), dw)r] / oy dt | (2.72)
0 0

1 ~ 1 ~
holds for all w e H2 (R*, H2(T))w e HZ (R*, H2(T)).

This leads to the following discretization: Find ¢ A and pp ¢ such that

r 1
/<W‘Ph,At - (K" + §I)ph,At, wpA)rdt =0, (2.73)
0
o0 . 1 . o0
f[(‘Vph,AtaWh,At>F +((K + §I)SDh,At7Wh,At>F]dt = f(f, wp,A¢)T dt, (2.74)
0 0
holds for all wy Ay and wp Ay for n=1..., Ny, j =1,...,N,. We use the same ansatz

. : . . . . 1,1

and test functions in space and time as in Subsection 2.3.5, i.e. ©pa¢ € VA DPhat €
1,1 1,0 1,0 . . . .

Vh,At,wh,At € Vh,At’wh»At € Vh,At' Now using the same computations as in Subsection

2.3.5, we get:

Ny Ny
an—mgpm Z(KT)nmm__IpI+ZKn m(pm_l_ IQO]-FZVnmm "

m=1 m=1

38



2.3 Boundary element discretization

For the first timestep (n = 1), we solve

NO (,01 i WO _KTO_%@I (Pl _ 0
pt KO-11 -v0 p Ft)-

In addition to MY, we define for N3 k > 2:

Wl _(KT)I_lgI Wk _(KT)k
1_ 272 k _
N (K1+%I -Vt SR VT |

For an arbitrary timestep n, we solve

K- 31 -v0 p"
(AT S (4 SR
Fno— Zn—l Kn—mspm _ %Ig@n_l + an_:ll Vn—mpm ’

m=1
n n-1 m
() ()2 ()
pn Fn mzzjl pm

Saving the matrices for every timestep n again, we only need to calculate the new matrix

Written concisely

N™ 1 and obtain the vector [©",p"]. We solve this system until our desired timestep
N, is reached.

Example 2.2. We solve the Neumann-to-Dirichlet equation ST\ = f on the unit
sphere, geometrically approrimated by an icosahedron, with a right hand side obtained
from the Dirichlet data of a known, radially symmetric solution to the wave equation:

F=v(t,r) [p= (3 - cos(ZEY) + Leos(m(4 - 1)) [H(4—t) - H(~t)].

The solution A corresponds to the Neumann data of the solution to the wave equation.
Therefore,

A= 0,0t 7) | (o) = (-Z +cos(5 (4= 1)) + 7 sin(Z (4 1))
- i(cos(ﬂ(ll S 1)) 4 msin(r(d— ) [HA 1) - H(-)] .

We hold the CFL ratio % ~ 0.6 and compute till T = 5.

Figure 2.5 shows the L?(I')-norm of the exact solution together with the numerical
solutions for various refinements of the unit sphere as a function of time. Figure 2.6
displays the error in this norm. We observe that the error remains uniformly bounded
in time. In Figure 2.4 we consider the L?([0,T] x I')-norm of the error between the
numerical solutions and the exact solution depending on the degrees of freedom (DOF).
We obtain a convergence rate of o = 0.5, which corresponds to 1.5 in terms of h. We
remark that we have an approximation error of the geometry.
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2 Wave equation and boundary integral formulations
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Figure 2.6: Absolute error of the exact solution and the numerical solution

norm in space as a function

of time for fixed %.

10°

=)

Relative L 2 error in space-time

1072

102

10°

Figure 2.7: L*([0,T] x T')-error vs.

At
fixed ot

40

10*
Degrees of Freedom

degrees of freedom

10°

108

for the L2

of the solution to S™'\ = f for



3 FEM-BEM coupling in time domain | :
Fluid structure interaction with retarded
single layer potential as test function

3.1 Introduction

Coupled adaptive finite and boundary element procedures provide an efficient and ex-
tensively investigated tool for the numerical solution of elliptic interface problems, es-
pecially in unbounded domains [92]. To describe the transient emission or scattering
of waves from an elastic body, we use a coupling of time—domain finite and boundary
elements as well.

In this chapter we address the coupling of finite and boundary element method in the
context of fluid-structure interaction (FSI). Based on ideas from the time-independent
coupling formulation and its a posteriori error analysis [25, 29, 35, 34], we give a priori
and a posteriori error estimates, which demonstrate the convergence. A basic well-
posedness theory for the time-dependent problem has been established in [11] by formu-
lating the FSI problem as a Cauchy problem and proving the conditions of the theorem
of Lumer-Phillips of semigroup theory. In this way Filipe proved in [14] Theorem 3.1
below.

We recall the equations which describe an elastic body submersed in a fluid. For a
bounded, orientable Lipschitz domain © ¢ R? with d = 3, let Q¢ = R?\ Q, we consider
the wave equation in ¢ with constant wave speed c =1,

dv-Av=0in Q°xR, , v=0w=0 for t=0, (3.1)
coupled to a linearly elastic medium in §2,
Qlatzu—A*u:OianR+ , u=0u=0 for t=0. (3.2)
On I' x R, we impose transmission conditions
GOy u)n+ (g + 0™ )n =0  and 020y un + v+ 90 =0 (3.3)

where n = n, denotes the unit normal vector, always pointing towards ¢, pi, p2 are
constants and A*u = pAu + (A + p)V(divu) = div(6(u)) with Lamé constants p > 0
and A such that 3\ + 2 > 0 and 6(u) = (Adivu)E + 2ue(u),e(u) = 3((Vu) + (vu)’)
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

with F the unit matrix. For z € T', we define vy u(z,t) := u_(z,t) :== lim u(z’,t),

z'eQ—x
yro(x,t) = vy(z,t) = xlgl}giwv(x',t) and Ojv(x,t) = %(m,t) = xlelgg:xg—fl(:c',t) =

l}zm ng - Vo(z',t). We use retarded potentials for the exterior problem to recast the
z'eQC >z
interface problem as a coupled domain / boundary integral equation. Using a retarded

single layer ansatz for the pressure in (€,

_ _ q(y,t -z —yl)
v(x,t) = Sq(x,t) = e dtds, ,

the equations for the fluid-structure interaction (3.1), (3.2) become

010?u—div(6(u)) =0in Q xR, , (3.4)
Gy a)n+ (0 Vq+ 0™ )n =0, 020y un + (—%I +K')g+0 v =0 on R, xT,

with initial conditions v = 0w =0and u=0;u=0 at ¢t =0.

We perform an a priori and a posteriori error analysis for space-time Galerkin discreti-
sations of (3.4). The a posteriori error estimate is based on insights from the elliptic
theory. The error indicators motivate a space-time adaptive mesh refinements as in
[50, 53, 89] for time-dependent boundary integral equations. The theorems, lemmas
and propositions in this chapter are also satisfied for d = 2, but we have to adapt the
retarded integral operators.

3.2 Preliminaries and discretization spaces

From [11] we recall the well-posedness for the continuous problem (3.1), (3.2).

Theorem 3.1. Let s >0 and assume v e H>*5 (R, H3 @), 0} v"e e H3TS(R, H’%(F))
Then the system (3.1), (3.2) and (3.3) admits a unique solution (u,v)e HX*(RY HY(Q))x
HE(RY, HY(Q°)), which depends continuously on the data.

We consider a space—time discretization based on tensor products of piecewise polyno-
mials, similar to Chapter 2:

If © is not polygonal, we approximate it by a polygonal domain and write ) again for
the approximation. For simplicity, we will use here a domain composed of Ny simplicies
such that Q = ui\:[ 58,00 =T = Uﬁ\zfsl' I';. Each element §2; and I'; are closed with positive
measure. For distinct €;, Q; c Q the intersection int(Q;) nint(2;) = @. I; satisfy an
analogous property. For our numerical computations we divide Q into N, tetrahedrals
and I' into the corresponding Ny triangles. Hence in particular, let 7 3 be a regular
tetrahedralization of € into finite tetrahedrals Q; (j € {1,...,N,}) with the properties
mentioned above. Let T}..r 3 := {(21, 22,23) : 0 < 21, 22, 23; 21 + 22+ 23 < 1} be the reference
element, then ; € T, 3 is described as:

1 2 3

Qj={zx =2 +a 7z +a™ 20 + a”’ 23 with a7, a*7 a7 € R3, (21, 29, 23) € Trefs} -
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3.2 Preliminaries and discretization spaces

Furthermore we define

S}ZZS(Trefvg) ={v Trep3 — Riv(z, 20,23) = Z ai7j7kziz§z§ with o; ;1 € R}
i+J+k<ps
the space of polynomials on T}..r 3 with degree ps. Therefore the space of splines on (;
for ps > 0 is defined as follows:

Sﬁs(Qj) ={v:Q; — R:v(z)=(voF)(zr) with (voF)e Sﬁs(Tref,g)} ,

where F': T..r3 —> ;. Let Wf denote the space of piecewise polynomial functions of
degree p in Q. For p>1 W} (Q) is continuous. For p=0 and p =1

Wy ={veL*(Q) :vlq, € Sh(Y)VQ; € Ths}
Wy ={veC%(Q):vlg, € SH(Q)VQ; € Ths} .

For interior functions going onto the boundary I" we take the restrictions of functions
in W,f to the boundary. For exterior functions on I' we use the space V}f,,, which
is already defined in Section 2.3. Also the time discretization remains the same as
in Section 2.3. Therefore the space of piecewise polynomial functions of degree ¢ in
time is denoted by V{,. Altogether Tp, 3= {Q1,...,Qn,} is a regular tetrahedralization
and Tpo = {I'1,...,I'n,} is a regular triangulation. We divide R = (0, 00) into (At)
equidistant subintervals I, = (t,-1,t,] n € N, with ¢, = n(At). As our temporal mesh T;
we take a discretization of a finite subinterval [0,7"] with T; = {I1, I2,--, In,} whereas
T = Ni(At). For the numerical approximation of the solution, we consider the tensor

product of the approximation spaces in space and time (as in (2.46))
Pad _ P q pad _ /P q
Wiat =Wy ®Va s Vil = Vi ® Vi,

For the a posteriori error estimate we will require an approximation result: Let ITa; the
orthogonal projection from L2(R,) to V1., IIj, the orthogonal projection from L3(T) to
V}f . Their approximation properties lead to corresponding properties of the composed
operator ITj o ITpn; in space—time, similar to [18]):

Lemma 3.1. Let f € Hi(R*,H™(T)nH"(T')), 0<m<q+1,0<s<p+1,r<s, [[|<3
such that l-r>0. Then if l,r <0

|f = Ty o I acf i < OB + (AOD)| fllsmr

where o = min{m - I,m - %}, B =min{m+s—(I+r),m+s- "2} If [,r >0,
B=m+s—(l+r).
We also recall the inverse estimate (see [11, Lemma 2 and the proof of the following
corollary])
1
lvn,adllii,0 S Eth,AtHOJ,Q (3.5)

: : : P.q
for vj, A in the approximation spaces Wh7 At
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

3.3 An a priori error estimate

A variational formulation of (3.4) for o > 0, derived in [11], is given in terms of the

bilinear form
E((u,q),(w,q’)):[]R+ e—%t{glggfg(afu)(atw) dm+92an(u):g(atw) dz
‘0 fr (VEiq) (9, (v w)n) dss — 02 fr (B, (v0)n) (VB ds,
- [+ KNV org) dsa} dt (3.6)
and the linear functional

Fw.d) = [ e =0 [ (0ni) (@7 win) s, + [ 2 (Vo) ds}dt . (3.7)

Here, B is defined on (H}(R*, H'(Q))¢ x D(V))?, where

D(V) = {qe Hy(R", H >(I)): Vg e Hy(R", H *(D)} . (3.8)
The variational formulation for fluid-structure interaction then reads: Find (u,q) €
H}(R*, H'(Q))? x D(V) such that

B((u,9),(w,q')) = F((w,q)) (3.9)

for all (w,q’) € H:(R*, H'(Q))? x D(V). Its analysis relies on the following coercivity
property, which follows from [14]:

Proposition 3.1. Let (u,q) € H{(R*, H'(Q))? x D(V). Then

[l e+ lal?_y s B((wq), (w.q) (3.10)

Due to Proposition 3.1, the weak formulation (3.9) admits an unique solution (u,q)
with an ansatz Sq = v, and (—%I + K')q = 0;}v provided that the solution of the original

transmission problem satisfies v, € Hg/2(]R+, HY2(I)).

We consider the Galerkin discretization of (3.9): Find (q,q) € (W}TA’(I; d Vf,?gi such
that
B((ﬁaq)a(waq,)) :Fh',At(W,ql) (311)

for all (W,q’) e (W) x V22, Here

Furar(w, )= [ €2 = o2 [ (@) i@ wim)dse + [ (255, (VOua)ds, et
R, r r ’

Wlth V}fi?g? El atv}ll/7At = (atvinc)h’7At ~ at'l)inc = 3,51}1 € Hg(R"” Hl/Q(F)) and (%_i)h’,At =

53’:6 )IYINE (8+g:c) = %—i) e H3(R*, H™Y/>(")). Our first main result is the follow-

ing a priori error estimate for the time domain boundary element scheme:
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3.3 An a priori error estimate

Theorem 3.2. Let (u,q) € HX(R*, H'(Q))? x D(V) be the solution of the continuous
problem (3.9) and (@,§) € (WPRIH)? x V,ffg? the Galerkin solution of (3.11). Then

inc
ovY

~ 2 ~ 2 ;
[ -ulf o+ la—alg s p 5o 1o - mng s+ (%

+(1+(At)”

B,UITLC || 2

)h/,At _171—‘

I (u- v~v>||§,%$ a7y

hold for all (W,7) € (V[/;flA’qt1 d V}?K?

Proof. Let (u,q) € Hy(R*, H'(Q))? x D(V) resp. (1,q) € (W) x Vi?x: be the
solution of the continuous problem (3.9) resp. the Galerkin solution of (3.11). For

(w,7) e (W3 dy Vfﬁgﬁ, we obtain with the triangle inequality and Youngs inequality:

[a-ulf,o=a-%+%-ufpiela-¥%+w%-u

0,1,0

<(la-wlora+w-ufore)(t-Wloia+|[W-ulo10)

- i [a- w30 IW
<Ja-Wg 10+ W -uff 0+ 2( 52+

2
~Ulp1,0 )
2

Analogously we can estimate:

lg - QH(2),—1/2,F Slg- fH?),—l/ZF + |7 - QH(2),—1/2,F $lg- f”?),—l/Q,F + |7 - q\\i,_l/g,r ’

where the last inequality follows from estimating with a larger norm. We already see

the terms |W-u|3, o, and |7 -q3 _1/2,r on the right hand side. Therefore we focus on
the remaining parts. From the coercivity (3.10) we obtain

estniri el ) (52 ()
({52 (5 s e

)20 (25) -G
sl () ()m(520) (53

Now looking at the first two terms.

)
ﬁz Sz
v

s () -+ (32))

UI ’UI
[ o ford- ooy | (G (GO - 7))dsa i

R,

I 8’01 o
Soldhods s 00! -y 0@y 3 G e (g eI VAOE =Pt
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function
I 8’01
0,1, + H( )h At~ (

8 I 81}1 R
+ H(a_n)h’,At_(a_n) HQ,_%I lg- 7“”0,_% r

<H”h'At v Hz—l F”U- w

~ir 1(0:(q - 7)) H—l,—%,F

I I
S th’,At_ v ||2,_§

where we have used the duality, the trace theorem and the mapping properties of V.
Now using Young’s inequality with small € >0

Fh«m<(‘”;:‘§)T>—F< (‘;:2’?)3

”vh’ ATV HQ

U 2 ~ ~112
”( )h At_( n)”g,_%,r"-qu_r”O,_%r

Since |a-w|32 | o and ||q~ -7 H(Q) 1 . occurs on the left hand side as well, we combine them
[l sT o

together. Therefore

|-

- L W [U-W
W11y 5 s Iy o0 a0y B2 Y)),

For
B((u-w,q-7),(0-W,q-7))
= [ e {oren [ (07 (- ))(01(0-)) do+ g2 [ G(a-%): (@10 -W)) do
+02 [[(VOa=P) @ (@=W))n) ds; = 02 [ (0 (u=w))m)(VOL(a~7)) ds,
- [ (5 KDY a=)(Vor(a-7)) ds.} dt

we estimate every term separately. The first two terms of B are estimated using the
duality and the inverse estimate (3.5) together with Young’s inequality

[;h 6-2‘”{fQ(af(u—vv))(at(a—W)) dx+g2fﬂ&(u—x7v):e(8t(ﬁ—\7v)) d} dt
So 107

(u-w)| (u=w)) o000

sty

S (At)”

1 ~ 12 ~ ~ 12
N «an? la - WHO,LQ +ea- W”O,LQ
Again we are able to combine the second term with the left hand side.

For the third term we similarly see with the help of the duality and the mapping
properties of V' (see Theorem 2.2)

f e [(vata- )@ (@-w)n) dsq d
So |V (q—T7) ”0,%,1“ ”at'Y_((ﬁ -w)n) ”0,7%,1“

S0Pl s ol (@ -9l s 5 la-7l s ply (@-Wnly 1y . (3.12)
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3.4 An a posteriori error estimate

The continuous embedding of HO(R™, Hz (T)) into HL(R", H3 (T")) and the trace the-
orem then imply

Iy~ (a=w)nf, 1psly (@=-w)lg1rsa-wloo.

Again using Young’s inequality and taking advantage of |q — FH% _1 . dominated by
b 27
lg=7|* . ., we estimate (3.12) by
3,-1.T
S g =13y g+ ela- W08 Ha I3y o+ ela-wid 0

We combine ¢|@ - w3 1o Wwith the left hand side.

The fourth term is similarly bounded as follows:
fR 20t fr(at(ﬂu — W) (VOG- 7)) ds, dt

So 10:(y" (u-w)n)

S0y~ (a=w)n)ly 1 pl0:(a =) 1 p Sy (u=-w)l51p

2,—%,1“”‘/&5(@ ~7) H—Q,%,F

G- 7'”0,_%,1“ :
Using Young’s inequality together with combining €| g -7 ||§ _1 . with the left hand side,

3
we get the additive term |y~ (u - V~V)H§ 1
3

For the last term, we use the duality and the mapping properties of K’ and V. We
observe

Joe [ K= V0rd - 7)) dss de

S H(_% +K')(q- f)||27_%7r||V8t((]— f)”_z?%,r S lg- 77”37_%7r”q_ f”();;r .

With Young’s inequality and combining €| g -7 Hg _1 p with the left hand side we get the
%
last additive term |q — 7’”3 _1 p to the estimate. O
b} 27

3.4 An a posteriori error estimate

. .. I I .
For simplicity we assume v,Il, AL = v! and (%Ln) WAL= %Ln. Then we state the following

a posteriori error estimate:

Theorem 3.3. Let (u,q) € HX(R*, H () x D(V) be the solution of the continu-
ous problem (3.9) and (@,§) ¢ (WP x VPR% the Galerkin solution of (3.11). Let
Uj]\isl 0Q; =T =U", T;, where each T; is a face of one Q;. With [v], a jump into a face
T;, the following a posteriori error estimate holds:

[a-ul§ 0+ 1G-alg 1 So 0t + 5+ 03+ i,
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

where

=Y lerd7a - dive ()3 o, -
Q;

m =3, max{h,At}[[5(a) 7]

Tiﬂl—‘:Q
1732) =max{h,At}|c(y 0) n+ Vi -n+ atvinc . n||%7071ﬂ ,

i =020 (y R) -t (=5 + K)q+ S5 3

2
1,0,7; »

1 .
-ir

Proof. Let (u,q) € HX(R*,H*(Q))? x D(V) resp. (@,q) € (W) x VX% be the
solution of the continuous problem (3.9) resp. the Galerkin solution (3.11). From the
coercivity estimate (3.10) and the variational formulations (3.9) resp. (3.11) we obtain

gt P1,91\d P2,92.
for all (w,7) e (W), 3 )" x VA7

[a-u

Bratld-al}_y
SE((ﬁ_u7q~_Q)a(ﬁ_uvq_Q))
:E((fl,(’j),(ﬁ—u,cj—q))—g((u,q),(ﬁ—u,Q—q))
= B((2,9), (@-w,d-q)) - F(i-u,G-q)
= B((8,9). (a-w,G-7)) + B((2,0), (W ~u,7 - q)) - F(a~W,§ ~7) - F(W ~u,7 - q)
= B((2,9), (W -w,7-q)) - F(W - u,7 - q)
= [, o [[@0)- 0 -w) de o [ 5(8):(@(% - w)) dr
+ 02 [F(Vatrj)(at(’y_(\if—u))n) dsz — 02 ﬁ(at(V_ﬁ)n)(vat(f_Q)) dsgz
- {3+ VDV 0= 0) dss + 2 fp(O0) (07 (W =) -m) ds,
_fra*g;“(vat(f—q)) ds,} dt

where we used B((11,§),(i—w,{—7)) = F(l1— W, { —7) since we assumed U,L}At = !

and (%Lnl)hgm = %—”;. Now using Betti’s formula:
<&(77u) n, 77W>FXR+,U = (&(u)u E(W))Q_XR+,U + (A*u, W)Q_XR+,U
on each tetrahedron 2;, we get

Siatla-dli s ps [ e [ {aofa-dive@)} @(w-w) de
+ Q; i

cor ¥ [ [6(0) n]- (0 -w) ds,

T,T=g 7 Ti

[a—u

+ 02 [P {5(7_11) n+ VoG -n+ o n} (O(v(W=-u))) dsy

—/F{Qzat(’y_ﬁ)-n+(—%+K’)éj+ 8*;;“}(vat(f—q)) dsx} dt .
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3.4 An a posteriori error estimate

Now estimating with the duality:
o=l 0+ 13- a2y p S0 Yoo - diva(@)looe, 1% - Wloos,
Q;

+ > [e()-n]

Ti n'=g

1,0,T; |0 (W —u) ”—1,0,T¢
+6(v ) n+ Vg n+0w' - nf1or|0(% -u)|_1or
. 1 " o' -
+ [0y @ n + (—§I+ K')q+ %\\2,-1/2,1““‘/31:(7’— D212, -

Now using the mapping properties of V', we further estimate

[@-u

10+ ld- QIIS,_%,F S Ylpofa - dive ()]o.0, W - ufo1,0,
Q;
+ > lo@)-n]loz W -ualoomn
TmF:Q

+e(ya) n+Vag-n+ow'-n
- 1 _ o

+oy a-n+ (-5I+K')g+——|2-1/or

2 on

Lor| (v (W —u))|oor

\f - QHO,fl/Q,F .

Next we choose w = 0 + IIj, o IIpn;(u — 1) for the second and the third term in order
to use Lemma 3.1, w = u for the first term and 7 = ¢ for the last term. We remember
Y ue HY(R®, HU2(T)):

Ja-uld, o+ li-al2_, 5 Dlodfa-div@looe, i -ulo o,
Q;
+ > [E) - n]|1om max{At, B} P a - ulo1pr,

TmF:Q

+[6(y7) - n+ VaG-n+ g’ - nfyor max{At, h}?| (v (1 - u)) lo,1/2,r
. 1 ol ~
+ 0y a-n+ (—51 +K')q+ %”2,-1/2; G = qllo-1/20 -

Now using Young’s inequality and the trace theorem and combining [i-u|2, , and
lq - q||g7_1/27r with the left hand side yields the estimate:

~ 2 ~ 2 2 ~ s~ N2
la-ulg10+1d- Q||07_%7p S Y lp1dia-dive (a)[5.0,
Q;

+ > la(@) - n]lf oz, max{At, h}
TiﬂF:@
+e(ya) n+Vag-n+ o' - n”%,OI max{At, h}
- 1 _ o
+ oy an+ (—§I +Kg+ %H;—l/&l“ )

O]

For the upcoming sections, we set p; = po = 1 and ¢ = 0 and continue with the dis-
cretizations of (3.6) and (3.7).
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

3.5 Discretization via generalized light cones

We begin with the discretization of (3.6). Since we want to focus on numerical experi-
ments for 3D in time domain, we discretize {2 with N tetrahedrals and divide a finite
temporal mesh into N; equidistant intervals of length (At). The boundary I' is being
discretized with Ng triangles.

In this section we focus especially on the discretization of:

L7 [(ar KDy (v st

As ansatz functions we first begin by choosing:

Ny N ’
i 1,0
anai(@, 1) = Y S a" R (D () € Viae - (3.13)
m=1 i=1
Then as test functions we choose for n=1,...,N; and j=1,..., Ng:
. j 1,0
dh,ac(2:t) = VA(DE () € Vyis, - (3.14)

We begin with the discretization of (—llq, V' )rxr, . For (I¢,V{ )rxr,:

. Nt NS & (2)6 () m
(an,ae Vi ar) = / h ke ’yAt(t)’yAt(t —|x - y|)dtdsyds,

m= 11 1 477"7: y|
Ny Ngr 5 Sj y
330 (=) )«tm_m—|x—y|)xEm,n+(—tm_n_1+|x—y|>xEm_n_1)dsydsx
m=14=1 drlz -y
e m//w)éh(y)(tm_w—\x—yn oyl [ BB ey,
22 drlz -y LA drlz | o
_ VTq ’ (3.15)

where for the time integral, we used (9.5) in Appendix with switched indices n and m. At
last multiplying (3.15) with a prefactor —% gives us the discretization of (—%I ¢, Vi \r«r, -
We notice that the indices of the lightcones are reversed compared to the lightcones for
V' in Subsection 2.3.1. In order to compute these matrices efficently we begin computing
them at the furthest timestep and then going backwards until 0, see Section 3.7, (3.24)
for the matrix structure of V7. We continue with the discrete calculation of

L7 [ a0 .0V, st

:f""[ fnz (z - y)(Zm e gy R (= o - y))E ()
v Anlz -yl |z — y[?

+

Z%tzl TNnS:I1 q?‘"YZt(t—lfﬂ-y|)5i(y) (f VA - |g;—z|)§j (Z)ds )ds dt

] Arlz - |

S na(z -G WEGE) 1 e, .
=2y . o (o oy BTy~ - <l

Il 1672z — y|?|z — 2]

v AR o u)RE - e - 21))d)dssds,ds.
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3.5 Discretization via generalized light cones

For the time integral with the derivative in time:
AR =y Rt~ - 2Dt
= [0 = la =yl = te) = 8t~ o =yl = tr)) YR ~ b = 2
= YAz =yl + tmr = |2 = 2[) = YR (|2 =yl + tim = 2 = 2[)
= (H(lz -y +tm1 = |z = 2| = tn1) — H(lz - y[+ tm-1 — |2 = 2| = 1n))
_(H(|x_y|+tm_|I_Z|_tn—l)_H(|x_y|+tm_|x_z|_tn))
= (H(lz -yl =z - 2[+ tm-n) - H(lx -y =[x = 2] + tm-1-n))
= (H(Jz -y = |z = 2| + tms1-n) = H(lz - y| = |z = 2| + t-p))
= XAm—n—l (x7y7 Z) - XAm—n (x7y7 Z) Y
with
L if (2,y,2) € Ay
XAmfn(x‘)y?Z) =

0 ,else ,
where we denote A,,_, as generalized light cone:
Apen ={x,y,z €T i typp + |z —y| 2 |2 = 2] 2 tyep + |2 — Y|}
For the other time integral with integration by parts:
[ AR o=yt - o - 2Dt
~ [T 1z = yltm1) -t = -t )2 = 2| ~ta1) = H(E -l = 2|t )t

[0l vl tet) 30—yl ) EE [ - 2| ~r) [~ 2 -1,)
+HH(t=|x = y|=tm-1) - H(t=|z = y|=tm)) (0(t=|2 - 2| -tp-1) =6 (t— |z = 2|~tn))]dt
=—[(H(lz -yl +tm-1 = & = 2| = tn1) = H(lx = y[ + tm-1 =[x = 2[ = 1)) (|2 = y| + tm-1)
—(H(lz -yl +tm =z — 2| = tp1) —H(lz —yl + tm — |7 = 2[ - t0)) (|l — y[ + 1)

+ (H(|w = z[+tnr = |2 =yl = tm-1) — H(Jx = 2[ + oy = o =yl = tm) ) (|2 — 2] + tn1)
“(H(lz -2+ tn = |z =yl = tm-1) — H(lw = 2| + tn = |z = 2| = tm) ) (|2 — 2| + 1) ]
=-[H(lz -yl - |z - 2|+ tm-n) - H(lz — y| = [z = 2[ + tim-n-1)) (T = Y| + ti-1)

—(H(lz -yl = o = 2|+ tm-ns1) — H(|z = y| = |z = 2[ + L)) (|2 = y[ + )

+ (H(lx - z[ =[x =yl = tm-n) = H(|z = 2 = [ =y = tms1-n) ) (|2 = 2] + 1)

~(H(lz = 2| = |z =yl = tm-n-1) — H(|z = 2| = |z = y| = ti—n) ) (|2 = 2] + tn)]

= =(lz =yl + tm-1)X A1 (2,9, 2) + (|2 = Yl + tm) XA (2,1, 2)

~(A-H(jz -yl - |z -z[+tmn) -1+ H(lz = y| - |z = 2 + tms1-0) ) (|2 = 2[ + tn1)
+(I-H(z-y|l-|x-2|+tmen-1) -1+ H(lx —y| — |z — 2| + t-n) ) (Jx = 2| + t5)
==l =yl + tm1)X A0 (2,9, 2) + (l2 = Y+ tn) X A0 (2,9, 2)

= (Jz =2l + th1)X A0 (7,9, 2) + (|2 = 2+ tn) XA (2,9, 2)

= (|2 =2l =& =yl = tm-n-1)XApper (2,9, 2) + (|2 =yl =& = 2| + tmns1)X A (2,9, 2).
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

Finally:
Ne Ny ne(z -G E(2) 1
m T h
7 - - - —lm-n- -n—
mz;li;qz j]]FXFXF 1672 — yPlz — 2] (|x_y|((lzv 2| |z -yl 1) X Amon1
_ % %s:'qu/[ nx(:z—y)gz(y)gi(z)(|$_z| _¢ x4
L H 7 T'xT'xT' 16772|:U _ y|2|x — Z| |.'1: — y| m-n-— m-n—1
T -z
% % gi ff na (2 = GWE () na(z - 9)& )& ()tmn ds,ds,ds
m=1i=1 ’ ’m n-1 167T2|$—y|3 167T2|x_y|2|x_z| ) ! :
N [[/ nx(:v y)&h(y)fh(Z) nm(x—y){é(y)fi(z)tm—nﬂds ds..ds
men 16m2]z - yf? 1672 - y[?|a - 2] U
We get two generalized lightcones Ap,—,, and Ay,—n-1 and 2 kernels:
nx(x—y) na:(x_y)
1672 - yPP * 1672z - yPlz - 2|

Next, changing ansatz functions from piecewise constant functions in time into piecewise
linear functions in time, i.e.

NtNI

dnac= Y 2 a"BRME () €V,

m=1 i=1

we calculate

. 1 , N Ny
7 LS+ % a6 @8R0) (VE @A 1) )dsadt

m=1i=1
NtNI

=S Y [T [ K@ @R O)(VE ()R (0) )dsede

m=1 i=1

T — J
=SS [ [eare ke f B g

4|z —y|

Nt Ns’

-3 S [T [eineaemon [ BT DR 0

m=1i=1 —y|

3 [T e [ B0 0 i

iz g

- S Sa [T o [ AR

drlw — y|

+ Z qu f f(f ng - (x-y) gh(?/)/BAt(t |z —y|) fh(y),@At(t |x_y|))dsy)x

|z -y 4z - yf? 4l -y

. Yt =z - MKﬂy)
r A7)z -y

dsy)dsydt
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3.5 Discretization via generalized light cones

18 VRt = |z = y)E (y)

- mzl S f [ 6. (@)8R (1)( f gl
N Ns’ 2 t— t

m=13=1 0TXI'xT ) -y T —

1R YR (t - |x—y|>sﬂ<y>

= _Z le ; q" [ ffh(:t?)ﬁm f pEp— dsy)dsgdt

. ne - (-6 1E() [ 1 © m n
DIPW [[fr i (e B ARG C 1 SSGRERR L
v [ AR~ o gDyt o - 2D ) ds.ds,ds,

We get for the identity part:

LSty DGl R NISAC)

X X [ [ @R B S sy s
P8 G@E0) (%

-5 2 Sk [ (7 RO~ o =) dsyds.

Using (9.11) gives:
oL

(At) (|lz - ?/| bm—n+ ) (|7 =yl = tim-n+ )2
+( Br) X (By) 4 S S

Lt N’ 3 (w)é(y) (At) (1 = 4| = tmn)?
[ Zﬂx Y| ( 2(At) )XEpn1 (2, Y)

mlzl

XEm—n+1 (fL’, y))dsydsx .

For the time integrals of the K’ part, we compute first the following time integral:

fow BR(t = |z = y)vA(t — |2 - 2])dt

- [ R =) - Bl )

X

(H(t—|x—z|-th-1) —H(t—|z—2z| - t,))dt

_O/t“‘”(i/‘t) tm”(H(t-@ Yl = tm) = H(t = |z = y| = tms1))x
x (H(t—|x—z|—tp-1) - H(t—|x - 2| —t,))dt .

Using integration by parts twice where the difference of the heaviside function has a
finite support, we get

L7 Bt ke = DR e - 2Dy
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

1,2
ot" — |z —ylt —ttm
=_/0 2 - T (H(t |z -y = tm1) - H(t — |z —y| — tm))x

X (B0t == 2] =) = 6t~ = 2] = £0)) + (5(t — £ =yl ~ 1) = 6(¢ ~ |~ ] ~ )
x(H(t-|r—z|—tph-1)-H(t—|x—2z|-t,))dt

1,2
oo =¢ —|$—y|t—ttm1
+/(; ) At - (H(t_‘x_y|_tm)_H(t_‘x_yl_t"”l))x

(O b= 2l = ) = Bt~ |~ 2] 1)) + (5 ~ [ 91~ ) = 6t ~ | - 3]~ Emen))
x(H(t—|z—z|-tp-1) - H(t— |z — 2| - t,))dt
B _%(tn—l + |z - Z|)2 — o —y|(tn-1 + |z = 2[) = (tn-1 + |2 = 2[)tm1 "
At
< (H(tp-r + ]z — 2| =z -yl = tpm1) - H(tno1 + [z = 2[ = [z — y| = tim))

3 (tnt 2= 2)" — |o —yl(tn + 2 = 2]) = (tn + |2 = 2Dtmr
At
x (H(tn + | = 2| =z -y = tm1) = H(tn + |2 = 2[ = |2 = y| = tm))
3 (tmr + [z = y)? = |z =yl (s + = yl) = (s + 2 = yDbmr
At
X (H(tm-1 + |z =yl = o = 2| = tn1) = H(tmor + [z - y| = |z = 2[ = 0))

3 (tm 1@ = y)? = 2 = yl(tm + 2 = yl) = (b + 2 = gt
At
X (H(tm + e =yl = e = 2| = tn-1) = H(tm + |z = y| = |z = 2| = 1n))

+%(tn—l |z = 2)? = |z~ yl(ta-1 + |z = 2]) = (bnor + |2 = 2t y
At
X (H(tn-1+x =2~z —y|~tm) = H(tn-1+ | - 2| = |2~ y| = tis1))
%(tn +lx - z|)2 —lx —y|(tn +|x = 2|) = (tn + | = 2|)tims1 y
At
x (H(ty + |z — 2| = | —y| = tm) = H(tn + |2 - 2| = |2 - y| = tps1))
+%(tm + |$_y|)2 — |z = yl(tm + [ = y[) = (tm + |2 = Yy tms1 o
At
x (H(tm + v -yl =2 = 2| = th1) = H(tm + |2 -yl - |z - 2[ - 15))

3 (et + [z = y)* = |z =yl (tmer + 2 = l) = (Emer + 2 = yDtmr
At

x (H(tmar + o =yl =2 = 2| = tn1) = H(tmar + o -yl = |2 = 2| = 15))
= —A(H (tn-m + |z - z[ = |z = y|) - H(tn-m-1 + |z - 2| - [z - y]))
+ B(H (tn-ms1 + |2 — 2| =[x = y[) = H(tp-m + |z = 2[ = |z - y]))
—C(Htmn+ |z -yl -z -2]) - H(tm-1-n + |z -yl - |z -2]))

+ D(H (tm-ns1 + e =yl =z =2]) = H(tm-n + |z —y| - |z - 2]))

+ E(H(tn-1-m + |z - z[ =[x = y|) - H(tn-m-2 + |z - 2| = [z - y|))
— F(H(tm-n1 + |z =yl =z = 2[) - H(tyn + |z —y| - |z - 2]))
+G(H (tmnr + |z -yl |z —2]) - H(tmn + |z -yl - |z - 2]))

= Z(H (tm-n+2 + |z -yl = |z = 2]) = H(tms1-n + |z —y| = |z - 2]))
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3.5 Discretization via generalized light cones

=—A(l-H(tm-n+|z -yl -lz-2]) - 1+ H(tm-ns1 + [z —y| - [z - 2]))
+B(1-Htm-n1+|x—yl-|z-2]) -1+ H(tpmn+|x-y|-|r-2]))

= C(H(tmn + |z -yl |z - 2]) - H(tm-1-n + |z —y| - [z - 2]))

+ D(H (tm-ns1 +|x -yl =[x - 2]) = H(tm-n + |z - y| - |z - 2]))

+ E(1 = H(tmern + |z -yl =lw - 2]) =1+ H(tmizn + [z -yl -z - 2]))

— F(H(tm-ns1 + |z =yl = o = 2[) = H(tmn + [z -y - |z -2]))

b G(H (s + |1 = g~ 2= 21) = H(tmn + 2 — 9] ~ 1 2]))

~ Z(H (tm-n+2 + v =yl = |z = 2]) = H(tms1-n + [z - y| = |z - 2]))

= At (@3 2) + By (5,852) = OXa s (5:92) + DXt (2,1, 2)
+ EX A0 (@Y, 2) = FX A (259, 2) + GX A (2,95 2) = ZX A (2,1, 2)

where A, B,C, D, E,F,G, Z are the prefactors of the corresponding heaviside functions
with generalized lightcones A,,_,. For the other time integral, we calculate:

[ R = gD Rt - o - 2Dyt

= [T OB b= ul) =R = o )t e - sl

= 1 (e = g1t )~ H [ = ) ~ | yl—ton) | = 3]~
0

x (H(t—|x—z|—tp-1) - H(t—|x - 2| —t,))dt .

Again with integration by parts:

[ Rt o=y ReE = o - 2Dt

= [T O o=l = ) =200 [yl = ) + 8 = 4] b))

(== 2| = o) = H = b= 2] = ) + (= o =]~ )

DG ~ i~ |~ b H |~ 9]~ )00 ~ o = 2|~ ) =56 ~ 1~ ] ~ )l
=~y + | = 9l) g o =3l = = 21) = H b1+ =3l = o - 21)
2t + | = yl) g (L b + b=yl =i = 2]) = H b+ =3l = o~ 21)
 (tmer + b= o) 3 (H bz i =]~ = 2) = i (tmor i =] = 2)

1
= (b1 + 2 = 2)) 5 (H (b + |2 = 2| = |2 = yl) = 2H (tn-mor + |2 = 2| = [z = )

1
+ H(tnom-a+ |z —2| =z —y])) + (tn + |z - z|)E(H(tn,m+1 +lr -zl -]z -y|)
- 2H(tn—m + |x - Zl - |‘75 _y|) + H(tn—m—l + ‘IE - Z| - |1,‘ _yl))
_(tmoa + |z —yl) (tm + 1z —y]) (e + |z —y))

=l P I +2
At XAm—l—n At XAmfn At XAm—n+1
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

tho1+|lx—2
—M(l—ﬂ(tm_n—|x—z|+|x—y|)—1+H(tm+1_n—|$—z|+|az—y|)

At
1+ H(tmsri-n— |z —2|+|z—y|]) + 1 = H(tmson — |z — 2|+ |2 —9]))
th,+|r—2
+%(1—]—[(@,1_”_1—\x—z]+|x—y\)—1+H(tm_n—|x—z|+|x—y|)
1+ H(tpmn —|x—2|+|z—9y|) + 1 = H(tms1-n — |z — 2| +|z - y|))
(tm-1 + [z - 9]) (tm + |z —y)) (tms1 + ]z -9
= +2— -
At XAm—l—n At Am—n At XAm—nJrl
tho1+t|lx—2 th1+|x—2 th+|lr—2
G ) B (15 el N (75 ) N
At At At
th+|lx—2
At
tm1on + | —y| - |z — 2| ta(m-n)+1 + 2T - y| - 2[z - 2|
= XAm—l—n + XAm—n
At At
tm-ns2 +|T—-y|—|xr—2
- | At | | |XAm+1_n = _IXAm_1_n + JXAm,n _LXAk+1_n (x7y7z) )

where again A,,_, are the generalized light cones and I, J, L are the prefactors of the
corresponding Heaviside functions. Now altogether we get:

Nt Ns’

" ng (2 -y)& W& (2) 1 © n
22;2%F£L[ e T A G DN ER
v [ BB~ Lo -yt - o - 2 dt)ds.ds,ds.

Ny NSI

_ m ([T (@ -0EWE() A B 8.
S¥ey A

|z = y?lz - 2|

m=1i=1 I'xI'xI" Ty
D E F G
+ XAmfn + —XAm+1—n - —XAmfn + XAmfn
|z~ y] |z -y |z~ y] |z -y
Z
- —XAerl—n - IXAm—n—l + ']XA'm—n - LXAerl—n)dszdsydsx
|z =y
_ %t: %’qm fff nz-(x—y)éi(y)ii(Z)( B C I
B R v P P I P A
A D F G E Z
- ( - + - _J)XAm—n+< - _L)XA'erlfn dSZdSdex
lw—yl lz—yl |lz-yl |z-y| [z -yl |z -yl

Nt Ns’

_ Z qum[[/ nm(x—y)éﬁ,,(y)ffi(Z)x

4 — 2]y —
m=1i=1 3% |z - y[?|x — 2|

y ( %ti —tntm_1 + %tfn_l +lpomet|r — 2| + %|x o %|x —y[?

XAm—n— -
(At)]z -yl '
S0 —tp1tmo1 —12 b1+ 52—ttt Hnbime1 o (nom) -1 [ — 2| +Ha -2 = [z -y ?
XAm—n
(At)|z -yl
. %t% —tntmel + %tfml +tpem-1|T — 2| + %|l’ —22- %|m —y[?

ds,dsy,ds, .
(At)|x—y| XAm+1—n) S Sy S
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3.5 Discretization via generalized light cones

We get 3 generalized light cones Apy—n-1, Am-n, Am-n+1 and 4 kernels:

ng (7 - y) ng (T - y) ng(z —y)|x - 2| ng (T - y)
z—yPle -2 7 fr-yP 7 Jr-yPle-z 7 e -yllz -2
a=|x-y|+(At)
b=|X-y|+tk.|
c=|x-y|+ti+
VX eyl
X 3 b

At

Figure 3.1: Generalized light cones after the use of a projection onto the same plane for
ti—i = tn-m = 2(At). For x,y as in this Figure the integral over z exists only
on the intersection of the blue ring with the triangles.

a=|x-y|+t
b=|x-y|-(At)
c=|x-y|+(At)

[x-y]

At

Figure 3.2: Generalized light cones after the use of a projection onto the same plane.
The intersection of the blue ring with the triangles is, where a nonzero
integral may exists for x,y as in this Figure. This is contained in Ag. The
intersection of the first ring beneath the blue ring with the triangles for
the same z,y is a subset of A_; and the intersection of the second triangle
beneath the first ring with the triangles for the same z,y ia a subset of A_s.
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

A great difficulty of implementing A,,_, lies in the fact that the radii of the light-
cones depend on the length of the quadrature points for the corresponding elements
(see Figure 3.1). Therefore we may get entries even for negative t,,—n+1 (see Figure
3.2). This leads to a space time matrix, which loses it’s sparsity. Unfortunately the
generalized lightcones aren’t implemented yet, so first we focus on another way to deal
with (KT q, V' )rur, -

3.6 Discretization via an L’-projection method in space and
time

We consider again ((-3I + K')q,V§')rxr,. We divide them into (-1Iq,V§')rr, +
(K'q,Vd')r«r,. Choosing ansatz functions g a¢ € Vhl’gt as in (3.13) and test functions
G Ar € Vhl’gt as in (3.14), we get for (—%Iqhvm, Vq;, a¢)TxR, the same as in (3.15) below.

For (K'q,V{')rxr,, the idea is to use an L?-projection in space and time. We de-
~ 1

fine for a discretized finite interval [0,7'] the projection Iz : H.([0,T],H 2(T")) —

H'([0,T],H(T")) applied to K’ by

Nt Ns’ .
UpK'q=z2= 3 > 2" (x)1R: (1) -

m=1i=1

We use it as an L2-approximation in:

fo - fF (K'q) (V' )dsydt = fo - fr (T K'q) (V' )dspdt
Ny Ns’

Yy [T ROV . (316)

m=11=1

The integral (3.16) has the same discretization as (3.15) and therefore the same matrix
entries. Further we make use of:

[ooo [r(Z” ~ (K'q)v)dsydt =0 .

Now choosing v = §i(:{:)7zt(t) € Vhl’gt for j=1,...,Ny and n=1,..., N;. gives us the
following discretization:

Ny Ny

> 2 [T [ @@t (dsadi

m=1 =1
Ny NSI

Sy [T K € @R ) @A (Ddssdt =0

m=11i-1
For the retarded adjoint double layer potential we get the same structured space-time
matrix as in Subsection 2.3.2 only with piecewise linear functions in space. We denote
the matrix also as K’. For the other integral we denote the corresponding matrix as P.

Therefore we get:
Pz-K'q=0<z2=P'K'q .
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3.6 Discretization via an L?-projection method in space and time

Now using it above, gives us a matrix which loses it’s sparsity as in the Section before:

* % *\[x 0 O\[f O O q1 * ok ok ql
VTP71K'q =10 =% = 0 * 0 * % 0 : =% * * :
0 0 xJ\O O *J\x =% = qu * & % qu
ZTl,l ZTLQ e ZTLNt ql
ZT ZTyy ... ZT. 2
_ .2,1 .2,2 . ?,Nt q 7 (317>
ZTNt,l ZTNt,2 N ZTNt,Nt th

where Z7T,, ,, are block matrices with entries of VIp-lK'.

Next we want to consider a discretization of the integrals over the interior {2 = Q7. Let
up AL € (Wi’it):g. We describe

up a(z,t) = Z Z ZU BR, (e, (2)

m=1v=1i=1

where B2, (t) is a hat-function in time, 7} (z) is a hat-function in the interior space Q
and €, is the unit vector with the entry 1 on the v-th place.

For the test function, we set Wy a; = nh (2)7%, ()€, € (Wi’gt)g, for i =1,...,Ns, n =

., Ny and p=1,2,3. Then

(G(unan) eWnadase, = [ [ 6(unan): (s dedt

0 N: 3 Ng '
= [T S S SR (5 () G (1)) 71

m=1v=1:=1

=30 Sl ([ e (b @) ([ 8@k o)

m=1v=1i=1

5N (2 b = ol %urlz,z =1
=33 [ o)) @ (@)de) (204
v=li=1 \J{ s n22
3 N lfu,l . n=1
27, )
Z Z (i), (1) (D) -4 g
v=li=1 — - n22
= Auy (3.18)

where A is the discretized stiffness matrix with

ul ,n=1

e Nl

n n-1
= ,n>2

uA:(At)-{

and u™ containing all u]’;.
s
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

For the other part:

o0
(dp,AL, WhAL)Q- xR, = f /{;_ Up At - WhArdxdl

:fooo[_ Z ZZ“ B (D)@, (2)E ) () a, (t)dzdt

m=1v=14=1
Nt 3 Ns

= S Sy ( [ em@am @) ([ B0 O)

m=1v=1i=1

3 N, . . 1 U n=1
= 20, @ ) g o2l =2
e uM—Qu” Yuli? n23
3 N, 1 U =1
Z 2; Moy (n) [y ") i~ 2 =2
o ul’fl - Quff;l + u,’j’f ,n>3
- Muas (3.19)

where M is the discretized mass matrix for the Lamé equation with

ut ,n=1

1
UM=m‘ u2—2u1 ,n:2
u =2 2 >3,

Before beginning with the discretization of the coupling parts we need to divide u™ into

o
(up) )

where (uft) has entries of u" restricted to the boundary I' and (ug\F) has entries

restricted to the interior of Q. Now we begin with [° [((V )y W - ngds,dt with
10 -

qh,At € Vh,ht as in (3.13):

f f(Vq'h,At)TV'Vh,At -ngdsydt

NtNI

/ fﬁ(y)né\r(x)éwx(
I'xI

T AR b )R ()

mlzl

Using a formula from the Appendix (9.3), we get

Nt N / i ! = i l = Ny
f £h(y)77h|r($)€unx dsydsx—[ §h(?/)77h|1“(33)6un:6 ds,ds, ::ZRVng—mqm.
m= lz 1 . 4|z -y dm|z —y|
(3.20)
This leads to the same scheme as in Subsection 2.3.1:
RV 0 q*
RVnl
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3.6 Discretization via an L?-projection method in space and time

For the other coupling part with ¢j A, € Vhl’gt as in (3.14) for n = 1,..., Ny and j =
1,..., Ny, we get for the discretization:

Nt 3 Ng x . ) no(t— _ J
[w )V sdsedi=’ 3 Yo [ [y (LRI 55
"JJr r A7l —y|

m=1v=1i=1

Ny 3 Ns €N )& 0o .
S50y S [ S OIGG) g yon e- o gty ds,

m=1v=1i=1 4l — g

Computing the time integral:

|7 R - le -y = [T (At)mt(t) TR O o -yt

/ (At) YA )AL = |7 = y])dt - [ (At) yglg’l(t)vgt(t — |z —y|)dt .
Using (9.5) twice with switched indices, we get:

Sy AR~ = ) = s s = = ) (2.0)

1 1
* (any Cimonet # =D (2:9) = oy Umtonen =l = gD (29)

1

(At)( tm+1 n-1%1 |ZC y‘)XErrwl n— 1(.'1: y)

_ 1
= (At) (t2(m7H)+1 - 2|f17 - y|)XEm—n (x7y) - (At_) (tm—n—l — |,1j — yDXEm—n—l (:L-7y)

1
- m(thQ—n — |7 =YX B n (2,9) -
Altogether we have 3 lightcones and 2 kernels. This leads to:

Ny 3 N, éynwnﬁllr(ﬂ?)fi(y) 1
m t -2z -
mZ::1 ,;1 ; o /]rxr 47|z - y| ( (At) (ta(m-ny+1 = 202 = Y)X B0 (2,)

1 1
— (At) (tm—n—l - |x - y|)XEm—n—1 ($7 y) - (At) (tm+2_n - |x - y|)XEm+l—n (:U7 y))dsydsz

The integrals exist if the index of Ej is not negative. Therefore in order to understand
the incoming scheme we consider the case n = N; (last timestep) first. We have:

3, N _ éuna:ni r fj Yy 1 - -
> St [ SR Ly oy, ydsydse =RV
=1

=1 2 drlw — y| (At)

and
3 NS /feu%’??;\r(x)fi(y)((t1—2lw—yl)XEo_(tz—lrv—yl)XE1 s, ds, = 1o RV O
v= 12 l 47T|$_y| At (At) v N r ‘

For n = N; -1, we have n RV~ 1(u 1)h Ats ngcRVO(uFt)h A+ and

3 Ng eynx i x
Z f.[r r Zfr\i(_ ;g‘h(y) ( (Alt) (t3 =2z - y)xE, (z,y)

1

_ m(to =z - yDxE (2,y) - ﬁ(ig — |z = yD)xm, (2,y))dsyds, = n,RV' (upt)
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

Altogether we get the following space time matrix:

nRV® n,RVY . oo RV [ (ud)
nRVt ngRVO n,RVY . n RVNTZL (ud)
0 . . : :
0 . 0  nRVE  nRVO )\ (ut)

Next we discuss the discretization of the right hand side (3.7). We begin with the first
term:

—/0 fr((‘)tvim)’y*(wh,mn)dsgcdt: —'[0 ﬁ(@tvincn)fy*(wh’m)dsxdt.

We set f := 9i"n. We approximate f in time via piecewise linear functions, i.e. f =
Ntzl fmBR(t), where f™ = f(x,tp,). Then we get forn=1,...,Nyand I =1,..., Ng:

Ny
_Tr;lﬁfmnh|r x)dsxf 5At(t)’YAt(t)dt
_/;@(fndl_fnl)n;lh“(x)dsx . :

where in space we use a Gauss quadrature. For the discretization of the other term

f f 00 (Vg ar)dspdt |

we choose piecewise constant functions in time and piecewise linear functions in space:

8v'mc N; Ny

)h At=0= Z Zgz WKt(t)f/i(x)

m=1 i=1

to get the same right hand side as in (3.24) with ¢" instead of f™ there. We denote it
with

(=5

v yNet vy (g! G!
O . . . . ~ .
o .o vv)gn) \an
where the block matrices V1,..., V™ are explained in Section 3.7.

Now let us consider the space time system we want to solve. For N, = 1:

A A
(52 ;)A+ anpMarar ((T;)AJF apMarr 0 (ugyr) 0
(24+ @ Mrar (5244 agMrr RVag (| (up) |=|F"

xT

0 neRV? R AN G!
We define the block matrices

(%AJF ﬁM)Q\F o\r ((Ag—t)AJf (At)M)Q\I‘F 0
A A
Klii=| (‘G 4+ dgMrar  (F24+dgrr RVIE |
0 n RV ZT;,

62



3.6 Discretization via an L?-projection method in space and time

(%A_ﬁM)Q\F,Q\F (@A (At)M)Q\FF 0
K2;; = (@A (At)M)F,Q\F ((A;)A (At)M)FF RVn} |

0 TlxRV_ Z,-TZ,]
(( M)o\r,o\r ((At)M)Q\[‘F 0
K35 = (%M)r or  (@pM)rr RV,
0 0 ZT; ;
0 0 0 0 0 0
LB;jr=|0 0 RVRE|, UB;;x=|0 0 0
0 0 ZT;; 0 nRV* ZT,;
and for some arbitrary n=1,..., V¢
(Ug\r) 0
uq” = (up) | - FG" .= | F™
qn Gn

For N; =2
K1171 UB17271 uql _ FGl
K22,1 K1272 uq2 N FG2 ’

For N; > 3, we have

K1171 UBLQJ UBL372 . ce UBLNmNt—l
K2271 Klg}g UBQ’371 e cen UBQ,Nz,Nt—2 uql
K331 K235 Kl33 UB3 4.1 e UBs N, Ni-3 || ug?
LBy13 K349 K243 K144 : :
: . UBNt—l,Nt,l qut
LBn,1,N,-1 e LBn, N33 K3n,N-2 K2n, N1 Klnn,
FG!
| FG?
FGN

An example for the fluid-structure interaction is derived in Section 3.8.
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

3.7 First numerical experiments with V' as test function

In this section we execute first numerical experiments with V applied to the test func-
tion. For py aq € Vhl’gt and gp At € Vhl’gt and a given right hand side f, we solve

(Ph.at, Vinao)rsr, = (f, Vidnat)rsr, - (3.21)

We expect py a¢ to approximate f. The reason for doing this numerical experiment is
to understand the incoming scheme. We write

N¢ N . .
phat= Y, 2P vADE(E) 5 dnar = FA(DE () - (3.22)

m=11i=1

Hence we get:

€h(l’)§h(y)

Vglt(t)ﬁ&(t - |z - 3/|)dtd5yd5z
drlr -y

Nt s
(Ph,at, Vnat)rxr, = f

mlzl

|
[ AP s, ds, - / AN

Cdrlz -yl 4z — g

N, N, £ (
= Z Z¢:n[ —4W|)§h(y)( Emn (T, Y) = XEpp (T, 7)) dsyds,dt
- 2

dsydsy , (3.23)

m= 1 i= 1
m-n-1

where the time integral part is in (9.3) in the Appendix with switched indices n and m.

Let us have a closer look at E,,_,. We begin with the case n = N; (last timestep). Then
every index of E,,_, is negative, except when m = N;. This is the only case where an
integral exists. We obtain:

Nt f é-h(x)gj (y ShATISRRI T g dez — VszNt .
47|z -y

For n = Ny — 1, there exists entries in cases of m = Ny and m = Ny —

ip f G060 dsx&pivt( Ef Mdsydsx;[ GO dsx)

iz -y 4 4z -y 4|z -y

—: VthNt + N let .

Now for arbitrary n, every index beginning from m = n till the last index m = NV; gives
us existing integrals. Altogether we have: ZN b yEpnRNt where VF has the entries

&.(2)€,) &.(2)€, )
[ mdsydsm - [ mdsydsx

Ny—k ENy k-1
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3.7 First numerical experiments with V' as test function

The same occurs for the right hand side as well, if we use the same ansatz for f =~
Zﬁtzl f\:[ s fmy R ()€ (z). Then the space-time linear equation system reads:

yhe Nl oy pl yhNe el by ffL
N | I S O | IS I CE 7Y
6 0 V.Nt p]'Vt O 0 V.Ni f}Vt

where ™ = (f{”,,f]T\Z)T for m = 1,...,N;. Since every V¥ here is symmetric, in

comparison to the V™™ in Subsection 2.3.1 with using piecewise linear functions in
space they differ from a sign. (3.24) contains in both sides the same matrix. In the
FEM-BEM coupling case for the fluid-structure interaction we need it in order to setup
the space time matrix. Now we can use a scheme similar to the MOT-scheme to solve

this linear equation system. For an arbitrary n from IN; backwards to 1, we solve:

N, Sk enki N, Sk kN,
V tp’n:ZV fn—+ t _ van—+ t
k=n k=n

Example 3.1. We set the right hand side f = t*exp(=2t) and compute (3.21) on an
icosahedron with 80 triangles. We set At =0.01 and compute till time 0.5.

In Figure 3.3, we plot the right hand side f and the solution p. Since the right hand
side has no influences in space the solution also has no influences from the space. As
expected the solution p and the right hand side coincide.

0.025 :
+solution p :
0.02 - —right hand side f |
q_>0015 ’ _
=
T o001+ |
0.005 - i
0 L 1
0 0.1 0.2 0.3 0.4 0.5

Time

Figure 3.3: The solution and the right hand side for the computation of (3.21) for
Example 3.1.

In the next experiment we compare the solution g of (=3 I+K")q, Vd')rur, = (f, Vd')rxr,
with ( —%I+ K")q,q" Yyrxr, = (f,d")rxr,. We solve ( —%I+ K")q,V{')rxgr, in two ways.
One way is by taking directly the matrices of (—%I +K') in the ansatz and V in the test
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

function for piecewise constant ansatz and test functions in space and time, whereas for
the matrix of (-1 + K"') see Subsection 2.3.2 (we denote the matrix with (-3 +K') as
well) and for the matrix of V' in the test function see (3.15) with (3.24) as the structure.
We solve the linear equation system

f/T(—%uK')q: vTy. (3.25)

The other way is by using the L2-Approximation. We use for ¢’, ¢, z, v piecewise constant
functions in space and time. This leads us to the linear equation system:

- 1 ~
VT(—§I+P‘1K’)q =vTf. (3.26)

Example 3.2. We set f(x,t) = t*exp(-2t) and solve (3.25) and (3.26) on an icosa-
hedron with 80 triangles, approximating the unit sphere. We choose At = 0.01 and

compute till T = 4. In case of an unit sphere the exact solution of (—%I +K'q=7f1s
known by Veit in his Phd thesis [09]:

1t/2] 1t/2]

p(t) = -2 Z f(t-2k)+2 Z f ~(=2R) (- ) dr

We observe in Figure 3.4 that the systems (3.25) and (3.26) behaves similar. In Figures
3.5 resp. 3.6 we zoomed the Figure 3.4 at timestep 1.5 resp. 3.1. We notice only small
differences between the solutions of (3.25) and (3.26). Due to geometric approximation
errors, the curve for (—%I + K'")p = f has greater differences to the solution of (3.25)
and (3.26). In Figure 3.7 we consider (3.25) and (3.26), but without V7 = V7 at the
right hand side. In this case as well, we observe only small differences (see Figure 3.8).

0 =

—(—1/2 I +K')p=fona un‘it sphere; exact
—VT(—1/2 I +K')q = VT f on an icosahedron with 80 triangles i
VT(-1/2 1 +P1 K')q = V'f on an icosahedron with 80 triangles| 4

Figure 3.4: Results of the Example 3.2.
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-0.28 ‘
==(-1/2 | +K')p= f on a unit sphere; exact
.0.285- ™V'(-1/2 1 +K")q = V'f on an icosahedron with 80 triangles ]
vT(-1/2 1 +pt K')g = V'f on an icosahedron with 80 triangles
-0.29% 1
[0)
=.0.295 —
>
-0.3 \ |
-0.305 - et
-0.31 ‘ ‘
1.4 1.45 1.5 1.55 1.6

Figure 3.5: Results of the Example 3.2

-0.195

-0.2
2

3.7 First numerical experiments with V' as test function

Time

zoomed at time 1.5.

==(-1/2 | +K')p= f on a unit sphere; exact
=VT(-1/2 | +K')q = V' f on an icosahedron with 80 triangles

VT(-1/2 1 +PL K')g = V' on an icosahedron with 80 triangles

.9 3 3.1 3.2

Time

3.3

Figure 3.6: Results of the Example 3.2 zoomed at time 3.1.

500

-500

value

-1000

-1500

-2000
0

Figure 3.7: Results of the Example 3.2 without V7 = V7T at the right hand side.

=VT(-1/21+K')q = f
=V(-121+P ! K')q =f

0.5 1 1.5 2 2.5 3 3.5
Time
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

=55 =V'(-1/21+K)q = f
890 =V (-1/21+P K')q =f |

-895+
Q
=-900
©

-905

-910 -

-915r

-920 I I I I
1.88 1.89 1.9 1.91 1.92 1.93 1.94

Time

Figure 3.8: Results of the Example 3.2, without V7 = VT at the right hand side, zoomed
at time 1.9.

3.8 Derivation of a numerical example for a fluid-strucuture
interaction problem

Before showing our results of the fluid-structure interaction problem, we derive an exact
solution. We know for the Cauchy-Problem:

0*v
ﬁ—Av:O (x,t) e R* xR,

v(z,0) =vo(z]) =0 in R?
o(2,0) =v1(Jz)) =0  in R3

that the solution has the following form:
1
(@, t) = [z (@(|z] + ) + (| - 1)) = ~(o(r+t) —(r-1))

with ¢ and 1) real functions on R and r := |z|. Taking the spherical Laplacian in R?

Av = 86—22 + 28@)@ one can proof easier that the homogenous wave equation is satisfied.
T T or

Then with the initial conditons we get:

v(@,0) = |l (¢(|2]) + ¥ (|e])) = vo(lz]) = 0.,
0(x,0) = |2 (¢ (|2]) = ¥'(|2])) = v1(l2]) = 0.

Now we can write down:

O(|2]) + P (lz]) = [alvo(lz]) = ¢'(|2]) + &' (|2[) = (l[vo(])" (3.28)
¢(jal)" = o' () = |afvr (2]) - (3.29)
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3.8 Derivation of a numerical example for a fluid-strucuture interaction problem
Adding resp. subtracting (3.28) and (3.29) leads to:

¢'(lz]) =
W' (Jzl) =

((alvo(l21))" + (lzlvr(|21)))
((alvo(l2))" = (lzlvr(|21))) -

N~ N~

Now by integration, where C',Cy are constants:

(1) = Laluo(lel) + + [ roi(rar
w(lel) = Sfelenlel) ~ 2 [ ron(ryar+ Gy

we get the following form for the solution v:

vl 1) === (] + )vo(fa] +1) + = fo'm'” ror(r)dr + O

2|z|
+ (|z| = t)vo(|z| - t) - = / roy(r)dr + 02)

For t = 0 the integral parts remove themselves and we get the following equation:

G Oy

1
(2|3?\Uo(\9€\)+01+02) ’Uo(|96|)+2|| ol

where C] = —C) follows. We get:

v(z,0) = vo(lzl) ,

v(z,t) = ((|a:|+t)vo(|a:|+t)+—/| o roy(r)dr

2a]
+ (Ja] - tyvo 2] - t)-—f' o (rar)

For deriving an example of an exact solution of the fluid-structure interaction problem,
we set v1(|z]) =0 and for some fixed R >0 we set

() = 1+c0s(%) , for |z| < R
vo(|z
,else ;e |z|> R .

Then we get as the exact solution:

o) = o ,(<|x|+t>vo<|x|+t> (2] - tyvo(la] - 1)) -

With the Heaviside-function we choose a down the solution of the Cauchy-Problem as:

v(z,t) = (lzl = )vo (|| - £))

:|§||;|t(1+co (“'w]'% ))) (R-lel ~1])

1
2Ja]

69



3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

We compute numerical experiments on an unit cube, i.e. Q=[-1, 1]3. For getting zero
initial conditions for v, x € Q¢ should satisfy |z| > 1 > R. Choosing R = 0.9 v is zero at
time 0. Now taking the time-derivative of v:

ov -1 m(|z[-1t)
a(az,t) = m (1 + cos (T) H(R -~ ||z] - t|))

; |3“”2||—;|t (% sin (W) H(R - || - t|))

i |x2||—;|t (1 *cos (@)) §(R—lz| - t]) - (-1) - sign(|z| - t) ,

where 0 is the d—Distribution. Using again t = 0, we get:

v _ -t + cos M — T
E(x,o)_zm| 1 ( R )H(R II))
2 (o (") o)
+% 1+cos(ﬂ-]|§|)))5(R—|x|)-(—1)'3i9n(|w|)'

Remember that |z| > 1> R = 0.9, means every part above disappears and we get a zero
initial condition for the time-derivative of v. Altogether (3.1) is fulfilled. Next we want
to get an example of the interior part of the fluid-structure interaction problem. The
following plane wave with o = /X + 2u satisfies the Lame equation with p; = 1:

ft-) 1
u(x,t) = 0 with z = | 29
0 T3
L) 2p-E) 0 0
Since divu = =L f/(t - £1) and V(divu) = 0 , vu = 0 0 0f,
0 0 0 0
2=
Au = div(Vu) = 0 and
0
u(z,t) - A%(u) =t - pAu- (A + p)V(diva)
P (R L)
= 0 - 0 -(A+p) 0
0 0 0
ney 1 (s _ 1
e N G DI
= 0 g 0 =10
0 i W 0

Choosing u as:

(sin(r-(t-2)) ) (H@E +t-5)-B@R +1-5))|  (wi.0)
u(z,t) = 0 uz(z,t) |,
0 us(x,t)
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3.8 Derivation of a numerical example for a fluid-strucuture interaction problem

where 1 =1,A=2 (= «a=2), R'=-1 and R"” = -3 the initial condition for u is satisfied,
because

5
(sin(—ﬂ-(%)))(H(—l—%)—H(—3—%)) 0
u(x,0)= 0 =|01,
0

0

since the argument of the Heaviside-function is negative for x; € [-1,1] (remember that
reQ=[-1,1]%). Taking the derivative in time of u and considering only the first entry
gives

57r(sin(7r(t— %)))4008 (m(t- %)) (H(—l +t- %) -H(-3+t- %))
+ (sin (w(t - %)))5 (5(—1 o) 5(-3 1 %))

Setting again ¢ = 0:
: 1 \\4 T T 1
57r(sm (71'(—?))) cos (7’[‘(—?)) (H(—l - ?) -H(-3- ?))

. (sm(w(-%)))5 (5(-1 ) b(-3- %)) .

Since again for x; € [-1,1] the argument of the Heaviside-function and the delta-

Distribution are negative. Therefore we get zero initial condition for %—;‘. Hence (3.2)

is satisfied. Now we have to set the tranmission conditions. We have to compute

g(u) = (A(diva))E+2pue(u), with e(u) = %((Vu) +(vu)?) and E the 3x3 unit matrix.

Since our given u uses only the first component  and maps only in it’s first component
U

we just need to compute g—xl(aﬁ,t):

ou

oy 0D = "%(Sin(”(t‘ %)))4”5 (m(t - %)) (H(—l +t- %) ~H(-3+1- %))

We get:

o)
4g_E(x7t)nl
g(u)-n= Zg—g(m,t)ng
255 (z,1)ng

We also need:

(|l - 1)
0.9

m(lz[-t)

sin(T)) H(0.9 - ||| - t]).

x| -t 7
2|z| 0.9

ov 1
Dty =[-——0
5 (z,t) ( 2|x|( + cos(

) +

As the first transmission condition we get:

v 42—2(1‘,1')711 + %(x7t)nl
G(u) n+ = (a,t) n = 288 (2, t)ng + Z2(w, t)na | (3.30)
Qg_gi(%t)n:% + %(xat)n?)
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

Next we consider the second transmission condition. We need %(m,t) fori=1,2,3:

Ov gy [ L2 (|| - t) ty mz (x| -t)
8_x,~(x )= (2| |3(1+c0( 0.9 )) (2 2|JU|)09|$|SH1( 09 ))H(0.9—||x|—t|).

Next we need

ou 57r(sin(7r(t— = ))4cos(w(t— I (H(-1+t-%) - H(-3+t-2.))
E(x>t)= 8

As our second tranmission condition we get:

g—ltl(:c,t)n+§—v(x,t) :57r(sm(7r(t_ﬂ)))“cos(ﬂ(t—%)) (H(—1+t—%)—H(—3+t—%))n1

(g o) - G - gt sin ) ) 19— -t
(g1 cos ('“7' D)= G- g =) 109~ el )
{0 cos ("””' e~ G g g D) HOI el =t

(3.31)

We will use these tranmission conditions as our right hand side in our Example 3.4 as
well as in Example 4.3.

3.9 Numerical experiments

We begin with the a Dirichlet Lame-problem in the interior Q = [~1,1]3, in order to
check the implementation and the behaviour of the interior solution u.

Pu_ ey (2,1) € Q x (0, 00) (3.32a)
- = o0 .
atQ ) )
u(z,0) = a(z,0)=0 inQ (3.32b)
yu=f onIx(0,00) (3.32¢)

For o = 0 the variational formulation reads: Find u e (H'(R,, H'(Q)))? such that

fooo/(;&(u):5(v‘v)dwdt+f0°ofgiivvdxdt=foof5 v u) -n(y w)dsydt
f f f)-n(y"W)dsydt

for all w e (H*(Ry, H'(9)))3. We discretize the left hand side as in Section 3.6 (3.18)
and (3.19). For the right hand side we use an approximation f(z,t) » Z L fTBRL(E),
where ™ = f(x,tn).
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3.9 Numerical experiments

(¢) Mesh with 125 nodes, 320 tetrahedrals, 192 triangles (d) Mesh with 729 nodes, 2560 tetrahedrals, 768 tri-
angles

Figure 3.9: Mesh of the unit cube for (a) N =1, (b) N=2,(c) N=4 and (d) N =38

5
Example 3.3. We set the right hand side into f(xz,t) = (sin(w(t - %))) (H(-1+t-
L) -~ H(-3+t— %)) the Problem as in (3.18) and (3.19) on an unit cube Q =[-1,1]°
(see Figure 3.9) till time T = 4. We consider uniformly refined space time meshes, where

5
the CFL is hold at 0.1414. The exact solution is as well (sin(ﬁ(t - %))) (H(-1+t-
D)-H(-3+t-3)).

In Figure 3.10 we compare different solvers at the point (-1,-1,-1) for a mesh with 40
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

tetrahedrals, i.e. N =2 and At =0.2. We notice that solving a space time matrix with
GMRES leads to unreasonable solutions, whereas using a MOT-scheme with GMRES
as solver leads to almost the same solution as solving the space time matrix with Gauss.
Therefore we use mainly Gauss or in cases of a MOT-scheme GMRES as solver.

In Figure 3.11, we plotted the L?~Norm in space of the numerical solutions against
the exact solution. Here we solved these systems with the MOT-scheme with GMRES
as solver. While till time 1.3 the L?~Norm in space of the numerical solution seems
close to the L?~Norm in space of the exact solution, we notice that after time 3.2 we
get quite far away from it. We observe the same in Figure 3.12, where we plotted the
L?—error in time. In Figure 3.13 we computed the L?-error in space and time. Hence
we need a highly refined mesh. We get a convergence rate about 0.27. An alternative is
trying Newmark’s method out as a time stepping scheme instead of (3.18) and (3.19),
which resembles central differential coefficients.

1

o
)

© .
©
o 05 L —exact solution
= —whole system solved with GMRES
> —whole system solved with GAUSS
- MOT-scheme with GMRES as solver
10 0.5 1 1.5 2 25 3 3.5 4

Time
Figure 3.10: Value of u at (-1,-1,-1) for N = 2, i.e. 40 tetrahedrals and At = 0.2 of
the Example 3.3, where different solvers where used.

0-7 T T
—N=2, DT=0.2
0.6 - —N=4, DT=0.1 ,
N=8, DT=0.05
05" —N=16, DT=0.025 ,
e —N=32, DT=0.0125
©
304
£
503
o
~, 0.2
0.1+
0
0 0.5 1 1.5 2 25 3 35 4

Time

Figure 3.12: Error plot of the Example 3.3.
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3.9 Numerical experiments

1.5

.

—exact norm
—n=2, DT=0.2
n=4, DT=0.1
—n=8; DT=0.05
—n=16; DT=0.025
n=32; DT=0.0125

L2-Norm in space
o
o

0 0.57 1 1.5 2 2.5 3 3.5 4
Time

Figure 3.11: L?-norm of the Example 3.3 for CFL 0.1414 .

—_
o
T

L2-Error in space and time

10°

107 108

1072 R

103 10* 108

DOF

Figure 3.13: Convergence plot of the Example 3.3.

Next we consider an example for the fluid-structure interaction problem.

Example 3.4. Now taking the right hand sides (3.30) and (3.31), we finally compute
the FSI problem on the unit cube. Since we are forced to use the whole the system, we
solve it with Gauss. We compute for At = 0.2,0.1 and N = 2,4, i.e. 40 tetrahedrals
resp. 320 tetrahedrals (see Figure 3.9).

In Figure 3.14 we compare the solution in the interior u with the numerical solutions.
We remark, that the solution behaves very different at all. Neither the exact solution
is approximated nor similarities for N = 2 and At = 0.2 with N = 4 and A¢ = 0.1
are seen. Besides possible errors in the implementation, the whole idea of using a
L?- approximation together with other approximations could lead to big errors. An
alternative approach is done in Chapter 4 with the corresponding Example 4.3.
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3 FEM-BEM coupling in time domain I: retarded single layer potential as test function

8 T 1

—n=2, DT=0.
6 —n=4, DT=0.1 7
4

exact value

'\ ANIAS
o EAVANSE

0 0.5 1 1.5 2 25 3 35 4
Time

value of u at (-1,-1,-1)
)]

o & A
T
L

Figure 3.14: Result of u for the FSI problem in the corner (-1,-1,-1) for Example 3.4.
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4 FEM-BEM coupling in time domain |l :
Fluid structure interaction with
symmetric coupling

4.1 Introduction

This chapter uses the ideas and the continuous bilinear form given in Hsiao, Sanchez-
Vizuet, Sayas in [63] and Hsiao, Sayas, Weinacht in [6]. The well-posedness of the fluid
structure interaction (FSI) problem (4.1) is proven in frequency domain in [63] and [64].
Therefore by applying an inverse Fourier transform we obtain the well-posedness of (4.1)
in time domain (see [57, 90]). In the current chapter, like in the frequency domain in
[63], we derive a coercivity estimate in time domain. We prove a priori and a posteriori
error estimates in the space time domain and perform numerical experiments based on
the bilinearform (4.6).

Let us consider again the following problem with Q= = Q and QF = Q¢ = R3\I':

0%u .
p— —A'u=0 (x,t)eQx(0,00), (4.1a)
ot?

@—AU_O (z,t) € Q°x (0, 00) (4.1b)

8t2 - ) ’ ’ .
u(z,0) =u(z,0)=0 inQ, (4.1c)
v(z,0) =0(z,0)=0 in Q°, (4.1d)
p20(y u) -n+ a;;n = —81(;; n  onI x(0,00), (4.1e)

ﬁv’un . v, _ _(%i"c
ot on on

where n = n, is the unit normal vector, pointing always towards €2°. On the one hand

on I'x (0,00) , (4.1f)

for z e I' we define v v(z,t) = vi(2,t) = xlelgizrp_)mv(x’,t) the limit of v to the boundary
I" from the exterior Q¢ = QF and on the other hand vy v(x,t) := v_(x,t) = gcrelgi)quv(x,’ t)
the limit of v to the boundary I' from the bounded Lipschitz domain €2 = Q7. Further
vy u(z,t):= lim wu(z’,t) the limit of the vector valued u to the boundary T' from the

e —x

bounded domain © = Q7. As in Chapter 2, 9} v(z,t) := %%(:L’,t) = lim  ng - Vou(2',t)

z'eQ—x
and O, v(z,t) := %Ln‘(x,t) = ligrzn ng - Vu(a',t). p1 and py are constants. Here p; = 1
r'eQ-x
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4 FEM-BEM coupling in time domain II: FSI with symmetric coupling

and py = 1. A*u = pAu+ (A + p)V(diva) = div(d(u)) with Lamé constants p > 0 and
A such that 3\ +2u >0 and 6(u) = (A divu)E +2pue(u),e(u) = 3((vu) + (vu)?), with
FE the 3 x 3 unit matrix. We describe 1;; with the retarded Pomcare Steklov operator
S (see (2.16)), using it for (4.1f):

_ﬁv_un_ vy _ ovine _87_un_SU B vine
ot on  On ot Toon

Next by setting ¢ = vy — v_, where v is extended into €2 by zero, we can write the
retarded Poincaré-Steklov operator S as follows:

~Weo+ (KT -1nx=-2=

_814
(3I-K)p+VA=0

on

=-Sp=-W¢— (K" - %I)V’I(K - %I)¢

Altogether we get the following problem:

o*u
w—A u=0 ($,t)EQX(0,00) s (42&)
u(z,0) =ua(z,0)=0 inQ, (4.2b)
o(xz,t) = d(x,t) = A(x,t) =0  on T x (-00,0] , (4.2¢)
p20(y u) -n+ ?;f —a%n on I'x (0,00) , (4.2d)
%I¢—K¢+V)\:O on T x (0, 00) | (4.2¢)

O u
ot
Using Betti’s formula with a test function w in HX(R*, H'(Q))? for o > 0:

inc
ovY

n—W¢+KT)\—%)\= on I'x (0, 00) . (4.2f)

(G(v ),y Wirare o = 2(5(1),6(W))a7xr+ 0 £ (A"U, W)arxR+ o
yields for all w in HL(R*, H(27))?3

(6(1),e(W))a-xrr o + (1, W)a <m0 + (¢ +00), 7 W n)rers o
= (6(7 1) n, 7 W)rxr+ o~ (A0, W) - xR+ o+ (@, W) - xR+, +((¢+vmc) Y Wn) xR o
(G 0) 1y W)reme o+ (64 07) W g o 2 0.
We define:
a(u,w) := (6(u),e(W))a-xr+ o + (1, W) xR+ &
Altogether we have:

< inc

a(“? W) + <¢7 ’7_W : n)FXR‘f,U o 77 w - n)FX]R+ . (43)
Now using another test function w in H:(R*, H/*(T")) we get with (4.2f):

- (’y*u 'n, w)I‘XR-F’o-—(W(b, w)FXR+7U+<(KT—1/QI))\, w)FxR’go: <8;’Uinc, w)FxR*,cr . (44)
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4.2 Preliminaries

Using another test function m in H:(R*, H~Y?(T")) we get with (4.2¢)
<(1/2I - K)gb,m)FxRta + <V)\, T.TL)FXRJrJ =0. (45)
By adding (4.3), (4.4) and (4.5) we have the following variational formulation: Find
(u,9,A\) € X = HY(R*, H'(Q))? x HY(R*, HY*(I")) x HX(R*, H~'/?(T")) such that
. L . . . 1 .
a(u, W)+(¢, 7" W - n)rurio—(Y u'7%W)FxRta-<W¢,w)FxRta-<(§f—KT)A,w)FxRta

1 . : .4 . ne -
+<(§I—K)¢, M)rxRte VA, Mg o= (010, Y™ W)pxrs ot (0, v, W) xRt o (4.6)

hold for all (w,w,m)? e X.

4.2 Preliminaries

Let Zh,(At)CH;(RhHl(Q))g: Yh,(At)CH;(RM H'2 (1)), Xh,(At)CH;(RH H~'2(I)) be the
finite element spaces with the same properties as in Section 3.2. In order to state an a
priori and a posteriori error estimate, we need a coercivity estimate first. The strategy
is to derive an equivalent bilinearform, for which we prove the coercivity estimate with
the help of an energy norm.

Proposition 4.1. Let (u,¢,\) € Zp, (ar) x Yy, (ar) % X, (ar) Satisfy

inc

a(uw, w) + (¢ + 0" v w- n)rxrie =0 YV WeZp Ay (4.7a)

_. 1 ;
- <’}/ u- n,w)pxRta—(W(b,w)pxRtgﬂ(KT— 5[))\,w>pxR+70 = (a;vlnc,w>FXRto- Yw € Yh,(At)v

(4.7b)
1
((51 - K)¢,m)rur+o + (VA m)rxrro =0 ¥ me Xy (ap (4.7¢)
with
v=D¢p-S\, (4.8)
where for x e R3\T and t e R, (see also (2.4) and (2.5))
1 (x - t— |z - b(y,t — |z —
Dé(a.1) :=_fny (z-y) (¢(y7 Iﬂf2 ), ey t-le yl))dsy’
dr Jr o -yl [z =yl [z =y
" R SYOREI)
Yyt—r-y
SA(z,t) = — f A9t g
(,) 4 Jr |z -y %y
Then (u,v) € Zp (a¢) X HI(R,, HY(R3\I)) satisfies the following problem:
a(u,w) + (8[[;:]] + 0 N Tw n)rxrto =0 YW € Zp (Ap (4.9a)
—Av+8—2“—o in R\ (4.9b)
otz ’ ’
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4 FEM-BEM coupling in time domain II: FSI with symmetric coupling

[vo] € Ya,(at) (4.9¢)
[Onv] € Xp (at) » (4.94)
. N 8vinc
— (Y a-n,w)rsrse — (00, W)rxr+ o = <W’ W)rsrte YW €Yy (Ap) (4.9e)
(’y_v, m)FxR*,a =0 Vme Xh,(At) R (49f)

where [yv] =y v -~y"v and [O,v] = 0 v - O v.
Conversely, if (u,¢,\) = (u,[vv], [Onv]) € Zp, (ar) X Y (at) X Xn,(ar) satisfies (4.9) then
(4.8) and (4.7) hold.

Proof. Let (0, ¢, ) € Zp, (ar) % Yn,(ar) X Xp (a¢) fulfill (4.7) and (4.8). With v = D¢p—SA
(4.9b) holds. Now going onto the boundary with the jump relations (Theorem 2.1):

0= (D9) - (8X) = (51 + K)o~ VA,
0= (D) = (SN = (5T + K)o~ VA
We get:
[y0] = 7" -0 = (K + %I)gb VA (K - %I)gb YVA= eV an . (4.10)

So [yv] € Yy, (ar), i-e. (4.9¢) hold. Now using it on (4.7a) yields (4.9a). Considering the
normal derivative of v, we obtain with the jump relations:

0t0 =7 (D) -7 (SA) = W - KTA+ %u ,

v =0,(D¢) -0, (S\) =We¢- K\ - %D\ :
We get:

[Onv] = 8w - 0,0 =W¢—- KA+ %I)\ ~We+ KA+ %IA =XeXp(an - (411)
So [0nv] € X, (Ap), i-e. (4.9d) holds. From (4.7b) with
—Ofv=-Weo+ K- %m ,
(4.9¢) holds. With (4.7c) and
-y v= (%I—K)¢+V)\ ,

(4.9f) hold. Altogether (4.9) holds.

Now let us define (u,,)) = (u,[vv], [0nv]) € Zp (ar) * Yi,(at) * Xp(ar), Where u
and v fulfill (4.9). Since v satisfies the wave equation (4.9b), we get (4.8) by making
use of the representation formula:

v=D[yv] - S[0v]=D¢p-SA.
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4.2 Preliminaries

Since (4.9¢) holds, using the jump relation on 9;v yields (4.7b). Analogously since
(4.9f) holds, using the jump relation on vy~ v yields (4.7c). We get (4.7a) by using ¢ in
the equation (4.9a). O

Proposition 4.2. Let Zj (ap={ve H(R.,H(R\D)) : [yv] € Yy (ar),0r v, m)ruriso = 0
Vm e Xp, (ar)}- Problem (4.9) is equivalent to:
Find (u,v) € Zp, (ap) % zh,(At) such that

A((w,0), (w,w)) = f((w,w)) Y (W,w) € Zy (ae) % Zn(at) - (4.12)

Here

A((u,v), (w,w)) = (&(u)7€(w))Q‘XR+,0’ + (ﬁvw)Q‘XR+,o‘ + (VU, Vw)]l@\Fx]R*,a

I[yv]
ot

+ (’U, w)]R3\F><]R+,0 - <'77u -n, [h/w}])FXR*,cr + < 7’)/7W : n)FxR*,cr

and ,
mnc

F((w,w)) = =(0" "W n)rureo + <8—:z’ [ywDrsr+o -

Proof. First, (4.9) holds with (u,¢,)) € Z), (a¢) X Y3, (ar) X Xp,ar). Since (4.9c) and
(4.9f) hold, we know that (u,v) € Z (as) % Zhy(m). Now for all w € Zh,(m) using (4.9d)
with ([O,v], 7" w)r«r+ =0, Green’s formula and (4.9b) lead to

(v, [yw])rxrro = —(Opv, Y W — ¥ W)rkR*o = (00,7 WPkt o — (Op v, Y W) xR+ 0
= (Opv + 0,0 = Oy v, 7 WPk e — (Oh0, Y W)PxR* &
= (0,0, W)rxR+o = (OpV,7 W)IxR*o U], Y W)rxR+o
(0 ) (0,7 w) +{[Onv] )
= (0,0, 7 W)rxr+o — (040, Y W) xR+ o
= (Vu, Vw)g-xr+ + (Av, w)o-xr+ + (VU, VW)@t xR+ o + (AV, W)+ xR o
9%v
= (Vv, VW) s\rxrto + (@7 W)R3xR* o -

Therefore testing (4.9e) with [yw] for w e ZL’(M),

_Ou dvine
_<zy E -n+ a:l—’(} + a;:L s [[’yw}DFXRtU =0 y
we get for all w e Zm(m)
_Ou 827) +,,inc
- <’)/ E'TL, [h/w]])FxR*,a"'(vvvVw)R3\F><R+,o+(ﬁawh@xﬂ%*,o: <an1} s [[vw}])pxRtU. (413)
With (4.9a) we have
d[yv _ ¥ _
a(u, W) + <(M), Y W n)FXR+’U = —<1):L'_nc, Y W n)pxR+,U. (414)

ot
Now adding together (4.13) and (4.14) yields A((u,v), (w,w)) = f((w,w)).
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4 FEM-BEM coupling in time domain II: FSI with symmetric coupling

Conversely, let A((u,v),(w,w)) = f((w,w)) hold. (4.13) still holds. Testing with
a function w € Zh,( At)s With compact support in R3\T, yields

2
(5 )it (V0 Ty~ (i, [y D)k =050, Pyl
With Green’s formula:
(g—z,w)RsxRﬂg + (00,7 W)rxr o — (Av, W)Q-xr+ o — (AV, W)+ xR+ o
—{(Bh v,y W), = (Y01, [yw]) e o = (050" [yw])rxes,o-

Since w has a compact support in R3*\T', we see that

(8 )t~ (Ao, w)aoypries =0
Therefore )
(-Av + %, W)RH\Txr+o = 0 -
and hence 2,
-Av + T 0 in R\

So we get (4.9b). Next

(0,0, W)rkro = (050, 7" W)rur o = (Y01, [Yw])rxre o = (050, [yw])rures -
Adding zero:
(0,07 W)rxree = (Oh V7 WrxReot (05 0,7 Wk = (Op 7 Wrxree — (00, [yw] Jrxreo
= (050", yw])rugs,o
with

(0,v=0p v,y W)rxrso =~ ([Onv] Y W)rxreos (07 v,y W=y Wirxree =—(0nv, W] )rxrso

there holds
(050, [Yw])rsrr, o= ([0n0], 7 W) rxrr 0= (Y 00, [Yw]) k0= (050", [YW])rxrro -

We get
inc

_(artv + ’Y_il n+ ﬁa [’yw}]>FXR+,0’ - <|Ianv]]77_w>FxR+,o =0. (415)

The equation (4.15) holds for all w € Zh,(At)' We first choose [yw] = 0. In this case we
get
([[8,111}], 7_w>FXR*,a =0.

Therefore since y~w lies in the orthogonal space of X}, (a4), we get [0,v] € X, (a¢) , i-€.
(4.9d). Second, choose w € Zh,(m) such that y7w = 0. Yielding from [yw] € Y}, (a4 and
(4.15):

inc

+
— xRho =0
2 b

—(Ofv+yTa-n+
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4.3 A priori error estimate

Hence we conclude (4.9¢). From the definition of Zh,(At) we already get (4.9f) and
(4.9¢). By (4.14)

d[yv]
ot

which contains the remaining 3 terms of (4.12), we deduce (4.9a). O

a(u,w) +( = (o}

777W'n>FxR+,a = Uy 77 W n)FXR* o

Propositions 4.1 and 4.2 hold analogously as well, if we take instead of the finite element
spaces the whole space X.

Now we define the energy norm:
2 - .. ..
I(a,0)[I” = (6(u),e(u))a xr+o + (0, 1) xr+o + (VO, VU)R\TxR*o + (U, 0)R3\xRY o -

Therefore we get:

A((u,0), (0,0)) = (6(0),£())0-xrro + (8, W) o xR0 + (VO, VO)rs\ xR0

I[v]
ot
= (6(u),e(1))o-xr+o + (i, W)Q-xr* 0 + (VU, VO)R3\ PRt o + (U, 0)R3\xRA, o

f f o(u) :e(a)dxe” 20tdt+f / wudze 27t dt
+/ VovVodze” QUtdtJr[ [ vodze 27t dt
0 ]R?’\

_ /O 5@( fﬂ 5(u) : e(u)da)e 2 tdt + fo 5@( [Q viadz)e 2 dt

1 —20t > 1 . . —20t
+ [0 §at(.[R3\F VuVudx)e 7 dt + ./0 §8t(f]1§3\rvvdx)e dt .

With integration by parts in time and using the conditions that u and v at time 0 are

+ (U’ ij)Rk"’\l"xR*,a - (7_11 .z [[Vi}}])FXR*,U + ( 7’7_1‘1 : n)FxR*,U

zero and that with ¢ - oo, €72°? tends to zero, we get:

A((u ), (6,0) = f f 5(u): (u)dx)@t(e_zat)dt > f [ iz )0y (720t

—20t _ - . —20t
" vovedz)a(e2)dt > fo ( [R PO

R3\T

_5 0

= * ~ . d —20'tdt fOO f ' d _2Utdt
U(fo (fﬂff(U) e(u)dx)e + . ( i z)e

o [T voveda)e e [ ([ ovda)e )
0 R3\D 0 R3\D

2 2 2
= all(w, )" 2 [ufg1,0- + [vlo1,0 -

Hence we derived a coercivity estimate.

4.3 A priori error estimate

We state an a priori error estimate:
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4 FEM-BEM coupling in time domain II: FSI with symmetric coupling

Theorem 4.1. Let (u,¢,)\) € X satisfy (4.6) and (p, n, An) € Zpar X Yo ar X Xp At
satisfy (4.7) and (4.8). Then

2
0,-1/2,T,% So
1 , 1

1
inf (1+———)|u- L+———) [ p—n 1+——)|A-
(W}L,IIPI}IL,HEL):_(At)z)Hu Wh 171,Q+( +(At)2)”¢ wh||1,1/2,1“,*+( +(At)2)|| /-‘Lh

Zh,at*Yh, ae*Xn, At

2 2
la - uhHo,l,Q + ¢~ on 0,1/2,0,+ T IA=An

|2
1,-1/2,T %"

Proof. Let (u,¢,\) € X satisfy (4.6) and (up, ¢p, An) € Zn At x Y ar x Xn a¢ satisfy (4.7)
and (4.8), then with (W, ¢, \) € Zp a¢ x Yi ar ¥ Xp Ap

010+ o-dn
Slu-W[g o+ IW-upg1q+]o-¢

+A=A

[u-u, 0.1/2.0 + 1A= AnlG 1o p s

2 7 2
0.1/2.0% + 19 =Pnlojor

2 3 2
|0,—1/2,F,* + A= An 0,-1/2,0,% -

So we focus on estimates for HVNV—uhHaLQ +| - ”(2),1/2,1“7* +] A= )‘hH(Q),—1/27F7*‘ We know
the following properties from the Proposition 4.1: v, v, satisfy the wave equation with
v=D¢—-S\ vy =Dop— SAp. T := D¢~> — S\ satisfies also the wave equation. Further
[vor], [77] € Yo ae, [Onvn], [On] € Xpae and (v v, m)rxree = 0, (Y77, m)rur+o = 0.
Now using the trace theorem and estimating with the energy norm, we get with the
Galerkin orthogonality and Green’s formula:

W~ uh”g,l,ﬁ +]o- ¢h”3,1/2,r,* + A= )‘h||3,—1/2,1“,>+ S [w- uhH%,l,Q + |7 - UhHg71,R3\F

~ T 3 T
SU|||(V~V_uh,f_@h>|||2=A((V7Z_]‘;h) ’(3552’!-‘13)) )

) ) ) )
( __;) v(aét(:;—_;hf) )

6_20t{ ] g(w—u):e(0(W-up))dx + [Q OE(W — )0y (W - uyp,)dz
Q

Il
=

< 21

Il
=

< 21

+

— T3

V(7 = 0) V(8 (7 — vp))d + /af(f—v)at(f—vh)dx
R3\I R3\I

- [ 7@ ~w) (@ - ) lds + [ [h(@(f—v))ﬂf(@(vv—uh))-ndsx}dt
r r

o0

-/ 2{ Qf 5% — ) : (0w~ wp))da + [ R - W)W - w,)d

0

" Ff 0% (7 = 0) [1((F - vn)) Idsa - Ff (O ) - [y (O (F - vn)) I dse

+[[[’Y(at(7:—v))ﬂ7(3t(VV—uh))-ndsz}dt.

r
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4.3 A priori error estimate

Now using the jump relation on 8} (7 - v) = W(¢ - ¢) - (KT - %I)(S\ -)), (4.10) and
(4.7¢c), we obtain

e_%t{/c}(ﬁ/—u):s(ﬁt(VV—uh))dx+fgatz(fv—u)at(v?/—uh)dx
Q
(W(3-6) - (K" = )= 0) (015 - dn)dss

¢ [(GI-E)(@-6)+ VA-)@( - A)dss

e e

- [ 7@ - w) (@1 (8- on)ds, + [ <at<¢3—¢>>v-<at<€v—uh>>-ndsm}dt.
T

T

We estimate every term separately. The first two terms can be estimated as in the proof
of the a priori error estimator in Section 3.3. We obtain with a small € > 0

\’8

et f 5(W - ) : £(On(W - up) ) + fQ O (W ~ W)y (W ~ uy)da bt
Q

o W -ulg o +elWw-ul g

N ©

We are able to combine €|W —u2 ; o, with the left hand side. Next we estimate

[ e [0 -0) - (KT = S X))@ - o)t
0 r

S 1V (3 9) - (KT = 2D - )

SUW(o-9¢)

0-1/271(0:(6 = ) o.1/2.r «
1
0,-1/2,0 T H(KT - 51)()\ -A)

0,-1/2,7") |6~ bn

1,1/2,0,% -

Using the following inverse estimate as in (3.182) in [53] for ¢ in the finite element
spaces:

¢

1 -
l1,1/2,0,% S E”d)”(),l/Z,F,* .
yields

/e—ZUtf(W(qg_gb)_(KT_%[)(S\—A))(at(é_gbh))dsxdt
0

r
~ 1.~ 1, -
So (IW(6 = d)loajor + [(KT = 5D (A= 2) lo-1/2.,0) 5519 = Pnllo,i2r .-

Now using mapping properties (see Theorem 2.2) with Young’s inequality, we see

fe_QUtf(W(Qg_QZ)) _ (KT_ %[)(X—A))(@t(cf;—ﬁbh))dsxdt
0

r

¢ - on

S e 16 = 6151 /0.0 + mﬂj\ -A

1 -
< _
o ﬁt”d) ¢ 1,1/2,T,%

1 .
Lt — A=A
0,1/2,T, +At”

16— o,

2 - 2
L1204 T €l = Bnl5 124 -

1,-1/2,1,* 0,1/2,T,
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4 FEM-BEM coupling in time domain II: FSI with symmetric coupling

Again we are able to combine | ¢ — onll3 j2.r.« With the left hand side. For the fourth
term:

L [ G100+ Va-)@6- My

S I(GI-K)(G-9) + V(-

0,1/2710:(A = Ap)

1 ~ - -
S (||(§I ~K)(@=®)o1/20+ [VN=No1/2,0) A= An

lo,~1/2,0

1,-1/2,0,% -
Now using the mapping properties, we further estimate:
L7 1\h— N— N— <(llp—
(GL-E)G- o 15 VO~ Wy 1) RNy, S
With the inverse estimate, (in (3.182) [53]):

17%71_‘,*—}_ H)\ - )\”]-7_ %rv*) ”A - )\h”l’_ %’F’* ’

5 1
A=A _ LS—A=A _ .
[ rll1-1/2,r, AL [ rllo~1/2r,

we obtain together with Young’s inequality:

T T Y P e Lot NP e Se1 D S cPPYS ) SEVA O

Now we can combine it again with the left hand side. For the fifth term:
f e [ @ =) non(d - on)ds.at

So |7 (O(W —u))-n ‘0,—1/2,I‘ ||<9t(q3 - én)
Sl (W =w)|112rl6 = nlii/2r -

lo,1/2,7

With the inverse estimate, the trace theorem and Young’s inequality, we get

Iy (% =) 115,016 = Snlajor § s 19— u

%,1,9 +elo - (ﬁh”g,l/z,r,* ’

where we combine e\\$—¢h||g 12,1, With the left hand side. For the last term, analogously
with the trace theorem, the inverse estimate and Young’s inequality:

fo " 2ot ﬁ 04(& - D)7 (0u(W - up)) - ndsydt
So 10:(d = @) o.1/2,0 17 (O (W —up)) -

lo,~1/2,0

S =110 (W =-up)110
1 -
S Az |6 = &l1,1/2,0 (W =un)]o10

7 2 - 2
S m o~ ¢H1,1/2,F,* +e (W -up) ||0,1,Q .
We combine €| (W - uh)”%,l,ﬂ again with the left hand side. Altogether

W - uh”g,l,ﬁ +]o- ¢h||3,1/2,1“,* + A= )‘h||3,—1/2,1“,>e
1 1

~ 1 _
~ 2 2 2
So (At)Q HW —Ujg1,.0t _(At)2 ||¢ - ¢ 1,1/2,1,* + W”)\ -A 1,-1/2,T,%
1 ~ 9 1 . )
+ [ 6= &% /o0 + @n? A=A 1jors

I - 1 -
+ (At)2 HW—uH%,I,Q + (At)2 HQS_¢”%1/2’F’* .
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4.4 A posteriori error estimate

Therefore

lu - uh”g,l,ﬂ +] o~ ¢h||(%,1/2,r,* +[A- )‘h||(2),—1/2,1“,>+

1

So (1+ W)(”VNV - u”%,l,Q +]¢ - ¢H%,1/2,r,* + A - )‘”%,—1/2,1“,*) .

Now taking the infimum gives the assertion. O

4.4 A posteriori error estimate

From Section 4.2 we concluded
.. 2
A((u,v), (4,9)) = of|(w,v)|" . (4.16)
Due to Proposition 4.2, (4.9) is equivalent to: Find (up,vy) € Z a¢ x Zh,At such that

A((up, vy), (Wi, p)) = f((Whoton)) Y (Whowh) € Zp Aty X Zn,(Ar)»
and analogously the continuous equation is equivalent to: Find u e H}(R*, H*(Q2))3
and w e {w e HY(R*, HY(R*\I"))? : [yw] e H:(R* , HY*(T)), (Y w,m)rxg+o =0 VYm e
HY(R*, H'/2(I"))} such that
A((uv U)a (Wa w)) = f((wv w))
for all w e {w € HL(R*, HY(R3\I"))? : [yw] € HL(R* , HY/2(T)), (Y w, m)rxg+o =0 Y €
HYR*, HY/2(I'))} and w e H:(R*, H'(Q))?.
With the representation formula
v=D¢p—-S\ , vp=D¢p—-S\, .
We conclude with (4.10) and (4.11)

¢—én=[v(v-v)] =7 (v-vp) =7 (v=-vs) =7 (v-vp), (4.17a)

ov  Ovy, ofv 0%y, Ov Owv,, O0'v 0O
= [Ty (20 (2l 2v 4.17b
A=An [Gn anﬂ ( on on )~ on on ) on on’ ( )

where we remember with this ansatz, we extended v and vy, to the interior by zero, see
Section 2.2 after (2.5). With (4.16) we have

oll(u-up,v-vp)|* = A((u-up,v-vp), (0 -i,0-03)) , (4.18)
and using
2
l(w=up,v=vp)l” 2 [u-uy (2),1,97 +]v - Uh||(2),1,R3\F ) (4.19)
with (4.17) and the trace theorem, we obtain
2
o= enl oy 2o 6= 013+ 1A= Ml (4.20)
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4 FEM-BEM coupling in time domain II: FSI with symmetric coupling

Let w € Zp A and 7 € Zh, A¢ with 7 satisfying the wave equation. Therefore with gzNS €Yy At
and \ € Xh.at we write 7 = D¢ - SX. With (4.18) and the Galerkin orthogonality, we
deduce

oll(a=ay,v—v)I” = A((w,0), (i =, = 04)) = A((wp, vp), (0= 1y, 5 = 0))

= f(a—ap, o - 0p) = A((up, vp), (0 = 0p, 0 = 3p))

= f(O(u—-wW),0,(v—=7)) + f(O(W —up), 0 (T —vp))

= A((ap,vp), (Or(u-W), 0 (v -7))) = A((an,vp), (Or(W = up), 0 (F = vp)))

= f(O(u-w),0,(v-7)) = A((up,vp), (O (u-W),d(v-T)))
=125 0 (u=W)) )00+ Op vV (B (0= F)rukr,o — (0 () e(9 (@=W)) xro
- 07,0, (u=W)) aur 0 = (VU VU= VP pa\rxr+ o — (07 0h, Ot(V = F) )pa\rxg+ o

+ (v O, [y(0(v = 7)) Do = ([70i0n ], 7 (0 (u = W) - n)rugeo -
With v, vy, satisfying the wave equation, v=v, =0 in QxR and Green’s formula, we get

— (Von, Vo= Vi) pa\rxreg = G, © = F)Ra\rxRee == (VUh, VO = VF) Qb xRio = (0h, 0= 7) 0 xito
= —(Vvh, V?) - vr;)Q*x]R*,o— — (A’Uh,f} — 7Ln)Q*x]R*,g = (8:1—’(}}“’)/4—(2'} - ,;:)>F><R+,O' . (421)

Now using v* (0 - 7) =7 (9) =y () = gb—qg and [y0p,] = ¢p, we get with (4.21)

oll(u-up, v=vn)[* = ("7~ (Op@=W)) n)rcke o+ Or 0™ (6= 6) )raio
= (n) (B @=F ) axrso— (07 un,0 (=W ))axrro + (9, 0h, 0(d = §))rxrro
+ <7_uh "M, 6t(¢) - é))FxRﬁU - <¢ha 7_(615(11 - ‘X/)) ’ n)FxR*,a .

Further with the jump relation 9} vp, = W(bh—(KT—%I))\h and 0=~ vy, = (—%I+K)¢h—V)\h:

oll—up,v-vp) P = (0%~ @1 @+ W) Ym0 0" O (b= P Nruiio
- (G Wp).e @ -W))axreo— 07 W, 0 @-W)) xir ot (Wdh — (K =3 1) M, 0 (0 D))rxreco
+{(vapn, (G- Drxrio—(Pny” Or@—W) n)rxrso + (K =21V A, O:(A= X)) rxrr,o

eQUt{—fa(uh):e(@t(u—W))daz—f@fuhat(u—\if)d:v
Q

Q

+ [ (O™ + Wy, — (KT = D)Xy + 7700wy - n)0y (¢ - ¢)ds,

+

Tt~ 7Y~ "3

(=0 — Byp) - (v~ (B(u - W))) + f (K = ) = V)9 (A - S\)dsx}dt .
I

Analogously as in Section 3.4 in the proof of Theorem 3.3 we use Betti’s formula:
(G(y"u) - n, Yy W)rkr+ o = (6(1),e(W))a-xr+ 0 + (A"U, W) xR+ o

on each tetrahedron €, where we define T; as the face of one €; and [v] denoting the
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4.4 A posteriori error estimate

jump into the face T;.

oll =y, v —op)|J*

o0

_f —ZJt{Zf( ~0Puy, + A uy) (9 (0 - W))da+ Y /[—5(uh)-n](3t(u—W))d3x

0 T;nI'= @T

f( G(up) -n— 0" n - dgp -n) (7 (Op(u-W)))dsy

+ f(@;vmc + W — (KT = 51Xy +7 0y, - n) (0:(¢ - ) )ds.
r

+ /((K - %I)Qbh = V) (0e(A - X))dsx}dt )
r

Now estimating with the duality:

oll(u -y, v —vp)|?

~UZH ~0fup + A up 00,0, (9 (u-%)) oo+ D [[6(un)n]
T,nI'=g

+[(=o(up) -n = 0w - n = 0sdn -n) 1,007 (Fe(u—-W))|-10r
||3r+zvmc +Wop - (K - %I)/\h +7 Oy, - n||1,—1/2,r 10: (¢ — &) ||—1,1/2,F
+ [ (K = 31)¢n - (815()\—/\))” 1,-1/2,0

S -07uy, + A [6(an)-n]l10m u-Wloor
o

(u=-w))|-10m;

inc

TnI‘rz

ZTLC

+ (=6 (up) -n - O}
+ |05+ Wy, — (KT = 1)\ + 770,
+ (K = 31 - A

In order to use Lemma 3.1, we choose W = uy, + ITj, o ITa;(u—1uy) for the second and the
third term. Further we choose w = uy, for the first term and ¢ = ¢p, A = \,. We obtain:

oll(u—up, v —vy)|*

S l=0up+ Aaplo o [u=unloper Y- 1[5 (an)-n]liom max{At, k- wpo o,
Q; Tin'=z

+|(=6(un) -1 = O - m = Dy - m) 1,00 max{At, K}y (a = up) o120
+ Hé’;vmc +Wop - (KT - %I)Ah +5 0up - nf 1120 ¢ = dullo/2r
+ | (K = 31)én -

Now using the trace theorem and Young’s inequality gives

oll(a=uap,v-vp) $3[-07uy + A [6(up)n]| o7, max{At, h}
o

TnF 1%]
+ [ (=5 (up) - Qi n — By - n)|3 o r max{At, h}
+ 050" + Wy = (KT = D) A + v 0w n[[§ _y o p+ [(K = 3D dn = VAnlT 1 or

+[[(u- uh)”%,l,ﬂ + ¢ - ¢hH(2),1/2,1“ +]A- )‘h”g,—l/Q,F .
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4 FEM-BEM coupling in time domain II: FSI with symmetric coupling

Estimating of|(u - u, v — vy )||> from below by (4.19) and (4.20) and combining them
with |(u - uh)”(2),1,9 +]o - onl? 1or * 1A= Anl2 _1j2,r We have proved the following a
posteriori error estimate:

Theorem 4.2. Let (u,¢,)) € X satisfy (4.6) and (p, ¢n, An) € Zpar X Yo ar ¥ Xp At
satisfy (4.7) and (4.8). Let Uj]\isl(ﬁQj) =T = U, T;, where each T; is a face of one €;
with Q being discretized as in Section 3.2. With [v] denoting the jump into a face T;,
it holds

2
01,0+ |9 on

2 2 2 2. .2, 9 2
I(u-up) 0.1/2,0 * A= Anlo—1yo,0 So mi +m2 + 13 + 15 + 705

where

nt =Y -0fun + Ay |G o0, -
Q;

> 3 (un)n]|% 0,7, max{At, h}
T;NC=g
77?2> = (- (upn) -n- 8tvinc ‘1= Ogdp - m) H%,O,F max{At, h} ,
i = |00+ Wy = (KT = DA+ 7 0wn 0|7 i o
ng = ”(K - %I)(bh - V)‘h”il/Q,F .

s

4.5 Discretization and MOT-Algorithm

In the following we want to discretize the equations (4.3), (4.4) and (4.5). We use the
same discretization spaces as in Chapter 3. We set o = 0. Then the discretization of
the interior part results in (3.18) and (3.19) by choosing the ansatz function as

Nt 3 Ng
k pk S g 1,1
uh,At(x7t) = Z Z Zuu,iﬂAt(t)eanzz(x) € (Wh,At)B
k=1v=1i=1

and the test function as W, a¢ = 1), (2)7%, (£)€,, € (Wi’gt)?), fori=1,...,Ng,n=1,..., NV

n

and p=1,2,3. We divide for a timestep n the solution vector ", with entries u, ,, into

ur
the entries on the boundary.

n
u . . . . .
( ri), where “g\r contains the entries of the interior elements whereas up: contains

For the discretization of the boundary integral operators, we begin with the retarded
hypersingular operator. We choose the ansatz function
Ne Ty ; 1,1
Pnar(z,t) = 3 Yo BR(DEL () €V,

m=1 =1

and the test function wp Ay = Wzt(t)ﬁi(x) € Vhl”gt for 1 <n < Nyand 1<j < Ng. Then
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4.5 Discretization and MOT-Algorithm

the discretization is already calculated in Subsection 2.3.4. We get:

N By (N - ny)fz(y)ﬁi(x)
(W dn,At, Wh At)TxR, = m21 ZZ; [ / (A0 ylin dsydsy

n—m

(ns - 1y)&;,(9)€,(2) (s - 1y) &4 (1)) (@)
2 / (At)|z — yldr dsydse - / (At) |z — yldr dsydsm]
(curlr &§)(y) - (curle £)(2)) 1 M & nem, m
+leZZ;<Pz ]]F r dr|z -yl Y doydsa = lezZWj’i 7
Ny
= Z_l Wn—m(pm ,

where

V' (a,y) = (2(A0)) 7 (e -y - 2 - yl(n - m+ 1)(AL) + ((n=m + 1)(A1)))xE, .,
+(2(A0)) 7 (Jo ~ y* - 2]z ~yl(n = m = 2)(At) + ((n ~m = 2)(A1)*)XE, s
+(2(A0) 7N (=2lz — P + 2]z~ y((n ~m = 1)(AL) + (n - m)(At))
—(((n=m=1)(A1))* + ((n ~m)(At))*) + 2(A1)*)XE, s -

We continue with the discretization of the retarded single layer potential. For the ansatz
function we use piecewise linear functions in space and time.
Ny NSI )
Anat(@,t) = 30 > N BRI()E (@) -

m=11=1

As test function we use piecewise constant functions in time and piecewise linear func-
. . . i 1,0 . .
tions in space, i.e. mpar = YR, (8)& () € Vias for 1 <n <Ny and 1< j < Ny. This

gives after some computation

(V An,At, Tp, At)TxR, =/0 fFV)\hAt(ﬂf,t)'mh,At(UC,t)dsxdt

Ny Nor x ‘ e
-3 E)‘:n[Ef[ (—(n—m+ fh(y)fh( ) ghiiziht() ))dsydsz

m=1 i=1 dmz -yl
ANACINADIAC)
;ﬂ ((2(71— m)—-1) }217T|x y h47T(Aht) )dsydsz
A IRADAC) NNy N
' // ( -2 Zﬂx Yl h47T(Aht) )dsydsx]:gugvﬂ . :;7;1‘/ A

Next with (=51 +KT) Ay at, Wnae)rxr, = (-5 1A At Wnat)rxr, + (K7 Ap At Wh,At) xR,
we get for the retarded adjoint double layer potential after some computation:

(KT Np. Aty Whoat)TxR, = /0 fr KT\ avtion ardsdt
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4 FEM-BEM coupling in time domain II: FSI with symmetric coupling

N & Mg - (X — n-m
-3 [ S G g @ sy,
N GWEE)  GWE @)
+Tnzlzzl)\ [/nw (=-y) (( - )ZTF|£L'—hy|2 _47rh(At)|}.;:—y|)d8ydsx
GWEE)  GWEE)
/R y)( (Gl =m) =1 o 4W'2At>|§-y|)d5yd8x
W& @) §WE (@)
+En_[7[2 ng - (- y) ((n—m—2) ZTr|:1; —hy|2 _ 47Th(At)|};_y|)dsydsx]
N; Ny N¢
Z Z(KT)n m)\m_ Z KTn_m)\m
m=1 =1 m=1
and
1 1 [ o NNy
(Gwavinadeee. =5 [ [ 3 3 X ORDERAE ()dssd
0 m 1
N; Ny
=5 2 SN[ G@E @ [ Bk
1 (At) [N n=1
PR EIOHOUNES {A? 1 mas
N
=%F1QMI=%LM
with

(At) [ A ;=1
A= —>
2 At .

Further ((1-K)¢p at, n,at)rxr, =(510n At Tk, At ) TxR,— (K Bh, At Ty AL) KR, :

(K dn.at, T)Tur, = [ [ K bp astivn, ardsodt

Ni Nor I (g i e
S S //ny (o y)( R 1) CACO A CNSAC) ) dsyda

4|z —y[3 ®WAﬂM—yP

m=1 i=1
SWeE () . W (v)
Eff ny'(x_y)(@("_ QRUE = '24w?At>|Z—y\2)dsydsw

ANAC IR ANAC)
[f ny - (x - Z/)( (n—m- )Zw|x—hy|3 +4W?At)|;_y|2)dsyd‘9””]

nm2

S Yo L iy Mfgf)fx 08 @y ] TG O @y

m=1i=1 En-m-1
ny (x y) J n-m, _m L n-m, _m
T = K . .= K
N/ pr A h(@)dsyds: | mzlz; il = 2 KT

nm2
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4.5 Discretization and MOT-Algorithm

and

Ly j —1°°NtN’mt t)&l (x)dsydt

(GTnanimadea. =5 [ [ 50 3@l R0 RAOE )ds
13 . 0

=5 L[ E@E@s([ AR R

1 N No go-l ,n=1
5 ([ @ @ds) {7
27712::; " ‘ (el =y n>2
13 1
= 5 Z;IngOI = 5190]
1=
with
_Spl , = 1
wr=
—"+ "l n>2 .
Now let us look at the coupling contributions. For j=1,..., Ny

o0
(Up,AL -, Wi, AL)TXR, =[ fﬁh,At'nwh,AtdSzdt

3 j n=1
z ( f mhlr(2)e, - n € (@)ds:) |
v=1 V,z v,1 » 10 = 2
3 N
=: E Z(anm)(l v), ]uT = RInmuT
v=11i=1
with
1
U ,n=1
ur = . n—1
up — up ,m>2 .

For the other coupling part:

(Ph.at Y Wh AL)TxR, =f0 /Fd;h,m'nv_wh,mdsxdt

N,/ 1
s . . - oy ,nm=1
=S ([ @ nflr@euds) {7
i=1 YT oy = i > 2
N,
= ) (naRI)i myer = naRlor
i=1
with
et =1
e Ot -t n>2 .
Now we look at the right hand side briefly. We set h = 9*n and g = ag—gc. We

approximate the time integral with the trapezoidal rule, i.e. we get:

7 - - At n— j n n—
—(0"n, W)rxr, = —(h,Y W)r«g, = —% /F(h”+h 1)77fl|1~(:1:)eudsgC = H"+H"!

mnc
ovY

on

(P8 e = (gt = B [ (g7 g el (s, = 6w G
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4 FEM-BEM coupling in time domain II: FSI with symmetric coupling

where h" = h(z,t,) and g" = g(x,t,). Finally we solve the following equation:

Nt Nt _ 1
Auy + Muyr - RIngup +ngRIpp = > W™+ 3 KT A™ - Z [

m=1 m=1 2
+21¢1—ZK”m<pm+ZV”m)\m H'+H" ' +G"+ G . (4.22)

m=1

We remark that W*, K* K Tk, V¥ vanishes if the index k is negative. Therefore we get
for (4.22) in the first timestep (n =1):

ABD L Rl s naRTe - WO 4 KTO!
2 (At)
; (A;)nl % K%'+ VN =G + G+ H' + HY

We can write it down as a system of linear equations:

B4+ AsM [0,n,RIT 0 A\ (Y s HO
[0, - Rin,] RUCEEEY CaracOy g | 2l B Reinyely |
0 K- 31 Vo A 0

which we need to solve first. Next for the second timestep (n = 2) we obtain:

A 2 -m, 6 _m
( 5 )( ) +M(At) (u2 —2u1) —Rlnx(u2 —ul) +anI(cp2 —gol) - Z w? %
m=1
2 r2em (At) 2, 2 2 o
w3 R m 28 2ty I(g0+<p) S KZmm 3 pRmmym
m=1 m=1 m=1

:G2+G1+H2+H1.

Since we already computed the first time step, we have the values for u', o' and A!. So
again we get the same matrix-vector system with a changed right hand side, which has
to be solved:

BRA+A5M [0,n,RI)T 0 W2\ (H2+H'- A@uuMmu +ngRIp
[0,-RIn,] w0 KTLEN 0% |5 |G G R Inul + Wi+ KT AL+ <At>m :
0 ~KO-11 po' e K'o'-11pt —vIN

For an arbitrary timestep n > 3 we need to solve:

i (At) (’LL v 1)+M (un_2un—1+ ) - RIn, (uF n-— 1) +7’LIRI((,OTL— SDn—l)_z: Wn—mgpm

@9

m=1
" n-m 1 A 7
+ 3 KT ( t)I()\" X1yt ST 4" 3 KM Z v
m=1 m=1

=G+ GV HY - gL
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4.6 Numerical results

Since we already computed u™, ™, A\™ for all m =1,...,n—1 altogether we get:
S2A+ M [0,nRITT 0 un
[0, -RiIn,] w0 KT 1O en
0 -K°-3I Ve A"
H" + H"! A(At)u" b M Esun - Mg u? 4 ngRIQ"!

=[Gm+ G+ Ringup + gt wrempm - gt Ty 1ED pyn-t
z?nlll Kn—m m ;Igpn 1 Z?nzll yn-mym

We solve this system repeatedly until our desired timestep N; > 3 is reached.

4.6 Numerical results

Example 4.1. We solve a fluid-structure interaction problem on an unit cube £ =
-1, see Figure 3.9) with vanishing interior u and the exterior v given as
1,1]3 Fi 3.9) with vanishing interi d the exteri ‘

1

il -0
T |><1+°‘°S< )H(0.9~la] - #)).

v(x,t) = (=

Hence, the transmission conditions are % n in (3.30) and 61;; in (3.31). We hold

the CFL at 0.1414. We refine the mesh uniformly and compute numerical solutions till
time 4.

In Figure 4.1 we plot the L?-norm of the exact solution of the exterior v and the
vanishing interior u against the numerical solutions. The numerical solutions give quite
good approximations of the exact solutions v and u, as we refine in space and time. We
also observe that the difference of the L?-norms stays below a threshhold value. For
example at N =16 (20480 tetrahedrals and 3048 triangles) and (At) = DT = 0.025, the
difference for v stays in all times below 1073, see Figure 4.2. The same behaviour is

seen for u

In Figure 4.3 we present a convergence plot in L? space time in terms of degree of
freedom. The convergence rate for higher degrees of freedom are approximately 0.5.
We notice that the error for the exterior part is significantly higher than the error for
the interior part. This could be due to edge and corner singularities of the cube. The
same behaviour occurs if we compare instead of the degree of freedom, the refinement
in space in h as the diameter of a triangle, see Figure 4.4. The convergence rate for
smaller h is 1.76.
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4 FEM-BEM coupling in time domain II: FSI with symmetric coupling

Fluid-strcuture-interaction on a unit cube, exterior part, CFL=0.1414
T T T T

0.8 \ \ I
== exact solution
——n=1,DT=0.4
© 0.6 - n=2, DT=0.2
] ——n=4, DT=0.1
a ~——n=8, DT=0.05
S04 ~——n=16, DT=0.025
E
o
c
0.2 - B
-
0 | | | | 1, —
0 0.5 1 1.5 2 25 3 35 4
Time
0.02 Fluid-structure-interaction on a unit cube, interior part, CFL=0.1414
. T T T T T I
= exact solution
——n=1,DT=0.4
L n=2, DT=0.2 L
g 0015 ——n=4, DT=0.1
8 ——n=8, DT=0.05
@ ——n=16, DT=0.025
£ 001 =
£
o
-
4 0.005
N e

0 0.5 1 15 2 25 3 35 4
Time

Figure 4.1: L2-Norm of the numerical solution of Example 4.1

Fluid-structure-interaction on a unit cube, Error of the exterior part, CFL=0.1414
T T T T

~N— —

=——n=1, DT=0.4

=——n=2, DT=0.2
n=4, DT=0.1

=—n=8, DT=0.05

——n=16, DT=0.025 E
! I ! ! ! !

0.5 1 1.5 2 25 3 35 4
Time

Fluid-structure-interaction on a unit cube, Error of the interior part, CFL=0.1414
T T T T T T

S ——

—n=1,DT=04 g
—n=2, DT=02
n=4, DT=0.1

=—n=8, DT=0.05
==n=16, DT=0.025 3
0.5 1 15 2 25 3 3.5 4
Time

Figure 4.2: Error of the L2-Norm of the numerical solution of Example 4.1
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4.6 Numerical results

o _ Fluid-structure-interaction on an unit cube, Convergenceplot of the exterior and interior part, CFL=0.1414
— T - T T — T

r -e-slope of the exterior error 1
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[ slope of the interior+exterior error I
(0]
£ 107 F 7
- L ]
g r ]
5 r ]
PN [ ]
[&]
S L |
Q.
%] b 4
£
210'25 E
® i ]
o r 1
- L 4
-3 L R | L R | L R | L Lol L L
10
102 10° 104 10° 108 107

Time
Figure 4.3: The complete error of the fluid-structure interaction problem as function of
DOF, Example 4.1

10° . ‘ ‘ ‘ — ‘ ‘ ‘ ey
[ |===slope of exterior+interior error ]
r |~¢slope of interior error 1
r slope of exterior error ]
©
£t E
he] [ ]
c
© r 4
© r J
o
8 L
Q
@ L J
£
S . .-
S102F E
T ]
N [ ]
| L ]
1073 - . . . L 5 . . . P, 1
10 10 10

Figure 4.4: The complete error of the fluid-structure interaction problem as function of
h, Example 4.1
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4 FEM-BEM coupling in time domain II: FSI with symmetric coupling

Example 4.2. We solve a fluid-structure interaction problem on an unit cube £ =
[-1,1]® (see Figure 3.9)with a vanishing exterior v and an interior u given by

(Sin(ﬁ(t— %)))5(11(—1 +t- L)~ H(-3+t- %))
u= 0

0

The transmission conditions are (u)-n in (3.30) and %—;‘ ‘n in (3.31). We hold the
CFL at 0.1414. We refine the mesh uniformly and compute numerical solutions till
time 4.

In Figure 4.5 we plot the L?—norm of the exact solution of the vanishing exterior v and
the interior u against the numerical solutions. In contrary to Figure 4.1 the numerical
solutions differ significantly from the L?-norm of the exact solution, in particular the
exterior part v. The interior part suffers from the same problems as in Example 3.3,
see Figure 4.6 and Figure 4.7 for a zoom. We still observe that the difference in the L2-
norms decreases, as we refine in space and time, but we can’t expect a high convergence
rate as in Example 4.1. In Figures 4.8 resp. 4.9 we see a convergence rate in terms of
degree of freedom at approximately 0.32 resp. in terms of h at approximately 1.1 for
higher degree of freedom resp. for smaller diameters h. As in Figures 4.3 and 4.4 the
error for the exterior part is higher than the error in the interior part. At least in the
numerical example of 4.1 in comparison to the numerical example of 4.2, the influence,
coming only from the exterior, don’t affect the interior as much as an influence, coming
from the interior, affecting the exterior.

fluid-structure-interaction on an unit cube, exterior part, CFL=0.1414
T T

1.5 T T T T
© —exact solution
S —n=1,DT=0.4
o 1r- n=2, DT=0.2 3
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g 05| |—n=16,DT=0025
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-
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0 0.5 1 15 2 2.5 3 3.5 4
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o5 fluid-structure-interaction on an unit cube, interior part, CFL=0.1414
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n
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—n=1, DT=0.4
n=2, DT=0.2
—n=4, DT=0.1
—n=8, DT=0.05
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Figure 4.5: L2-Norm of the numerical solution of Example 4.2
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Fluid-structure-interaction on an unit cube, Error of the exterior part, CFL=0.1414
T T T

4.6 Numerical results
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Figure 4.6: Error

Fluid-structure-interaction on an unit cube, Error of the exterior part, CFL=0.1414
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of the numerical solution of Example 4.2
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Figure 4.7: Figure 4.6 zoomed, error of the numerical solution of Example 4.2
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4 FEM-BEM coupling in time domain II: FSI with symmetric coupling
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Figure 4.8: The complete error of the fluid-structure interaction problem as function of
DOF, Example 4.2
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h, Example 4.2
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4.6 Numerical results

Example 4.3. We combine both the exterior part from Example 4.1 and the interior
part from Example 4.2 to get a fluid-structure interaction problem on the unit cube (see
Figure 3.9), where the interior as well as the exterior influences each other. Hence we
use (3.30) and (3.31) as transmission conditions. We compute a numerical solutions
till time 4 for a refinement of space and time, where a CFL of 0.1414 is hold. The finest
mesh consists 69120 tetrahedrals with 6912 triangles (N = 24) and At = DT = 0.0166667.

Figure 4.10 shows the exact solution of the interior u at the corner (-1,-1,-1) against
numerical solutions. N = 2 and dt = 0.05 (40 tetrahedrals with 48 triangles) with a
CFL around 0.03536 clearly differs from the corresponding mesh with CFL of 0.1414.
In this case we have a large discretization error. For N =1 (5 tetrahedrals with 12
triangles) and dt = 0.4 the refinement is too coarse, to get a good approximation. The
numerical solutions for CFL 0.1414 approximate the exact solution at (-1,-1,-1) more
accurate as we refine in space time. For larger times, the approximation differs more,
as in Example 3.3. We see this behaviour in Figure 4.11 as well, where we look at the
L?-norms of the solutions. For small times, we achieve an excellent approximation of
the exact L2-norms. After time 1 we get a small gap between the exact interior L?-norm
and the numerical results, which also affects the exterior in a later time about 1.7. The
difference of the L?-norms in space, which is plotted in Figure 4.12 aren’t as high as in
Example 4.2 Figure 4.6 for the exterior, see e.g. in time 2. The behaviour of the interior
numerical solutions resemble the behaviour of the numerical solutions for Example 4.2
as well. It seems like the exterior solution of this FSI problem doesn’t influences the
interior solution as much as vice versa.

Fluid-structure interaction (interior part at (-1,-1,-1))
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Figure 4.10: Numerical solutions of the interior against the exact solution of the interior
at (-1,-1,-1), Example 4.3
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4 FEM-BEM coupling in time domain II: FSI with symmetric coupling
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4.6 Numerical results

In Figure 4.13, 4.14 we plot various convergence plots for the L?—error in space time
in terms of degrees of freedom resp. in terms of the diameter h with respect to the
time. The curve till the time 2.0 (marker V) has a higher interior space time error
than the exterior. The exterior curve has a higher convergence rate as well. After time
2.8 (marker <) the exterior space time error becomes higher than the interior. For
time 3.6 and 4 (marker >, A) the convergence plots are almost identical. We receive a
convergence rate of 0.17 in terms of degrees of freedom resp. 0.58 of the diameter h.
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Figure 4.13: The L?-error in space and time of the fluid-structure interaction problem
as function of DOF, Example 4.3
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5 FEM-BEM coupling in time domain IIl :
The treatment of a wave propagation
interface problem

5.1 Introduction

This chapter deals with a finite element — boundary element coupling of a wave propa-
gation interface problem. We couple the wave equation in the interior {2 =: 2~ together
with the wave equation in the exterior Q* := Q¢ := R3\Q, where Q is a bounded, ori-
entable Lipschitz domain. Further we impose homogenous initial conditions in both
domains. Then on the boundary I' xR, we impose transmission conditons. Altogether
we get the wave interface problem

1 0%u
——=-Au=0 t)eQ x (0 5.1
2o A0 (@) X (0,0). (5.12)
1 0%
gw—A’UZO (iE,t)EQ+X(0,00) s (51b)
u(z,0) =u(x,0)=0 inQ, (5.1c)
v(x,0) =0v(z,0) =0 in Q°, (5.1d)
yu-y'v=f onIx(0,00), (5.1e)
O u-0yv=g onlx(0,00), (5.1f)
where n = n, is the unit normal vector, always pointing towards Q* = Q°. For z ¢ T’
on the one hand, we define v v(z,t) = vi(z,t) := lgizm v(z’,t) the limit of v to
'eQt -z

the boundary I' := 9Q from the exterior Q¢ = Q% and on the other hand, we define
v u(z,t) =u_(z,t) = lim wu(a’,t) the limit of u to the boundary I" from the interior

z'eQQ >z

Q™ = Q. Further 0} v(x,t) = %(w,t) = xlelgi)rp_)x ng-Vo(a',t) and 9, v(x,t) := %LT:(:U,L‘) =
x'elsi)m—)x ng - Vo(z',t). The well-posedness of (5.1) in the frequency domain is done in
[70]. Appyling an inverse Fourier transform, we obtain the well posedness of (5.1) in the
time domain, see [57, 90]. In the following the wave velocities are set to ¢; = co = 1. We
use retarded potentials to formulate the interface problem (5.1) as a coupled domain /
boundary integral equation. We address the interface problem (5.1) with a symmetric

coupling.

Other approaches in order to deal with the interface problem have been considered:
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5 FEM-BEM coupling in time domain III: wave-wave coupling

coupling discontinuous Galerkin methods with retarded potentials in [1], an energetic
FEM-BEM coupling in [5], a symmetric FEM-BEM coupling in [59] and a Costabel-
Stephan system of boundary integral equations in [37].

5.2 Symmetric wave-wave coupling

We consider the problem (5.1). The goal is to derive a bilinearform satisfying the
coercivity, in order to state an a priori and an a posteriori error estimate.

We take the approach of [2] and extend it from 2D to 3D. We begin with the definition
of the energy for the wave equation in Q€ for ¢ € R*:

1
Eqc(t) = = / |2 + 2d .
0e(t) = 5 [ 16 + Ve
We remember Green’s formula for a test function w € HY (R, H'(QF))
(07 v,y w)rxr, = £(Vv, Vw)gexr, + (Au, w)oe xR, -

Considering the derivative of the energy, with Green’s formula and the solution v to
the the wave equation in Q*:

9Eq:(t)

p 2] (Vv -Vv) +0(v-0)dx = [ VvV +0-vdz

= /Cv‘v—Av-vd:E— fFE);{v'y Vdsg = —frﬁgv’y vds, = —(0pv, v 0)r
Therefore we get for a time T
Eqe(T) = ~(0pv,7 0)ruqo1] - (5.2)
Next we need some observations from Chapter 2.
SO = KGN V@), S@00) =W - K@) (53)

Taking the derivative in time of the first equation and testing with ;v and testing the
second equation of (5.3) with v" 0, we get:

S (0707 0) o) = (K (), 0500y = OV (O0)), 0oy » (5.0
;(3 v, U)FX[OT <W(7 V), U)Fx[o ]~ <(K,(3;U))a7+i})rx[o,T] . (5.5)

We get the equations

= {0 (K (")), 0pv )Fx[OT (0:(V(05v)), Opv )Fx[o T] ——<3 v,y U)Fx[o T] > (5.6)

= (W(’Y U)”Y U)FX[OT ((K (8%)),7 U)FX[OT] - —(8 v,y U)FX[OT] . (5.7)
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5.2 Symmetric wave-wave coupling
Now we test (5.6) and (5.7) with test functions m ¢ H'([0,T], H"/?(I")) and w €
H'([0,T], H'*(T")) to obtain

1

= (0(K (v 0)), m)rxjo,r) = (0:(V(0,0)), m)rufo,r] = §<’Y+@am>rx[o,T] : (5.8)

0= (W (7" )& 1 ~ (7 00)),&)rsor - 505 ) epory - (5.9

We continue by testing (5.1a) with a test function w e H*([0,T], H'()), where we use
w. We observe with Green’s formula:

T T T T T
f [ iinidadt f [ Awrbdzdt= [ [ iinidadt+ f [ Vuvidzdt - f f - urytivds .
0 Q 0 Q 0 Q 0 Q 07T

(5.10)

We define
T T
a(u,w) = f / tnbdxdt + / f VuVwdzdt .
0 Q 0 Q
For w = u as the test function, we get the relationship to the energy in the interior €2
Eq(T) =a(u,u) . (5.11)

Therefore we get the equation

a(u, w) = {0y u, v W)rxpor] = 0 - (5.12)
Subtracting (5.8) and (5.9), from (5.12), we get:

Cl(’LL, U}) - <a7_7,ua V_w)Fx[O,T]

~((K (™)), m)rx[o,T] + (@(V(azv)),m)Fx[o,T] + —<7+@»m>rx[0,T]

2
(W (), oy + (O (050)), o) + 50050 o) =0 (51
First by integration by parts in time:
a(u, w) = (0, u, " W)rx[o,1]
(KO 0) e ~ (V00 o - 3070 ibeagory

|
~{0pv,W)rx[o,r1 =0 -

- (W), >F><OT ((K(3+U)) )FxoT] 9

Next by using (5.1f)

a(u,w) = (g, 7" W)rx[o.7] ~ {050, 7 W) puio1]
1
+{K (v v),m)ryo,r) — (V(950), 1) rxo,1) —5(7 U, M) x(0,7]

. 1 )
(W(V v), >F>< 0,7] ((K/(agv))ywﬁx[o,f’] + —(8:{an>rx[o,T] =0.

2
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5 FEM-BEM coupling in time domain III: wave-wave coupling

Now adding 0 = _%(7+U7m>Fx[O,T] s(vtv ,M)ru(o,7]> We get

a(u, w) = {g,7 W)rx0,r] ~ (Onv, Y W)r[o,1]
+ . 1 + .
+ (K (v"v),m)rxpo,r) = (V(0pv)s M) ruqo,r) = (770, ) pfo,r) +§(7 U, M) u(0,7]

1 :
—(W ("), 0)ruqo,r) + ((K'(850)), @) rsor] + §<a;vvw>Fx[0,T] =0.
Using (5.1e) gives

a(u, w) = (g, 7" W)rx0,r] = (Onv, Y W)rxjo,r] + (K (Y 0), M) ry(0.1]

—(V(0,v), ) rxfo,r] = {7t ) rxfo,r] + (f> 1) rxjo,r) + 5V 0, ) pxfo,1]

2
+ + Lo .
— (W (v ), @)rxjor + ((K'(9,0)), @) rxo,1] + §<anvvw>Fx[0,T] =0.
Finally the weak formulation with ¢ = y"v and 9; v = A reads: For g € H?([0, T],H_% ™))
and f ¢ H2([0,T],H2()) find u ¢ H'([0,T], H(Q)), ¢ ¢ H([0,T], H?(T)) and
Ae Hl([O,T],H_%(F)) such that
A((U, b, )‘)7 (waw7m)) = a(uvw) - (Aafy_w>Fx[O T]

+ (K¢, m)rxo,r) — (VA m)rxqo,r) = (7 U ) 1xq0,1) <¢7 ) rx[0,7]

) 1 )
— (W, )rxfo,r] + (K'A, @)rxfo,r] + §</\7W)F><[O,T]

= (9,7 W)rxjo,r7 — (fsM)rx077 - (5.14)

holds for all w e H'([0,T], H(Q)), w e H'([0,T], H2(T)) and m e H*([0,T], H 2 (T")).
Considering A((u,y v, 0, v), (u,y"v,0}v)), doing the same steps back to (5.13), we get
a(ua U) - <a7_1u77_a>Fx[O,T]

1 .
- <3t(K(’Y+U))7 8:1-U>F><[O,T] + (@(V(a;?)))’ 8;U>FX[O,T] + §<’Y+07 a;”)Fx[O,T]

. 1 )
— (W ), v 0)rwpor) + (K (9,0)), 7 0)rxfo,r] + 5(6;v77+v>FX[U,T] =0. (5.15)

By using (5.1e) and (5.1f) we obtain

G(Uau)—@”fﬁ)rx[o,T] ~ (90,7 U)rx[oT <3t(K(’Y v)), 0, 0)rx[0,1]
+ (0 (V(950)), 05 0)rxforr) + (Vi O 0)rwjor) — (2 05 0)rxfor
—(W(y ),y U)rx 0,7] +<(K’(8* ), )Fx[o,T] —0- (5.16)

Therefore with integration by parts in time for the right hand side f:

a(u,u)
{0 (K (v"v)), 0,0 >F><[OT (@(V(agv))va;U)Fx[OT]

- (W(v'v),y U)rx 0,77 ((K’((9+ ))a’YW)rx[o,T] (9,7 U)rx 0,77 —{(f, 05 0)rx [0,17 -
(5.17)
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5.2 Symmetric wave-wave coupling

Now using (5.4), (5.5) and (5.11) we obtain a connection to the energy

Eq(T) + Eqe(T) = (9,7 Wrx([0,r] = {f> On¥)rxfor] - (5.18)

Defining the energy norm with [|(u,v)||* := Eq(T) + Eq-(T), we get with v = D¢ — S,
¢=~"v, A=0}v, (5.14) and (5.18):

T T
1 1
(. )| = Bo(T) + Eoo(T) = 5 [ [ il + |Vl dadt + f [ 16 +|vofazat
0 Qe

= (ga’y u)Fx[ (faa U)Fx 0,T] .A((U ¢’)‘) (u ¢7)‘)) (519)

Hence we have a coercivity for A.

We consider the same discretization as in Section 3.2. Therefore the Galerkin discretiza-

tion of (5.14) reads: Find uy, € W,f,lA"?, on € Vlﬁggjf? and \j, € Vﬁgg such that

A((un, @ny An)s (Whywn, mp)) = (9,7 Wn)rxfo,r) = (> ) rx(o,1] (5.20)
VPQ#]Q Vp3#13

for all wy, € W}TA’?, wh € Vi AL and my, € V) Ab-

5.2.1 A priori error estimate

We state an a priori error estimate

Theorem 5.1. Let (u,$, \) e H ([0, T], H'Q)) x H'(0,T],H2()) x H([0,T], H 2(T"))
solve (5.14) and (up, dn, Ap) € WA x V,f’?gf VﬁAqi’ satisfy the corresponding Galerkin
equation (5.20). Then there hold

2 2 2
0,1,x[0,7] T o~ ¢h”o,1/2,rx[0,T] +]A- )‘h||0,—1/2,1"><[0,T] S

|u—up,

wh Yy
P1,91 p2 a5 P3,43
Wh At Vh’ At Vh’ At

inf o (1+ (At)z ){‘U wh“o 1,Qx[0,T7] + o ¢hH1 ,1/2,T'x[0,T7] ”)‘_:u’h”i—l/Q,Fx[O,T]}’

Proof. Let (u,,\)e H'([0,T], H'(Q))x H'([0,T], H/?@C))x H'([0,T], H'/2(I")) solve
(5.14) and (up, dn, An) € W}?A"? X V,ﬁzgf X V,fig’ff satisfy the corresponding Galerkin
equation (5.20). Then with (@,,\) € Wy'Ri < Vie R x Vid &y we get with the triangle
inequality

”u uh”O,leOT ||§Z5 ¢h”Q L I'x[0,7],% H)‘ )\hHO,—lFx[OT ~||u uHQleOT-’-”u uh||Q1Q><0T]

H¢ QZ)HQ T'x[0,T], Hd) ¢h||q L T'x[0,T7],* ”)‘ >‘||0_11">< 0,77, * ”)‘ AhHQ—lFXOT]

With 7 := Dp— S\ and vy, := Dy, — S\, with yH(T-vp) = -y, and oy (F-vp) = A=\p, we

109



5 FEM-BEM coupling in time domain III: wave-wave coupling

consider with the trace theorem (Lemma 9.4, 9.5), (5.19) and the Galerkin orthogonality

Ha_uhu(2),1,Q><[0,T]+H¢_¢hHQ L 5[0, T} +H)\ )\hH2 L P[0, T S - UhHQLonTJf”” UhHQl,QCx[O T]

S (GRS NGERVST

_ T, T 5 T, T T, T
W= un w= w-u w=un W= "tn W= tn
=A([¢-¢n| .| o- ¢ )=A(|¢-¢| | ¢-¢n| )+ A(E-dn| s|P-on| )
A= Ap A=A A—A A=A A=A A=A
N T, T
i-u = up,
:A( ?_4) ) ?_d)h )
i-a) \aoy,

Now consider every term separately

/;T/;laf(ﬂ—u)at(ﬂ—uh)dmdt+/(;ngv(ﬂ_u)v(at(ﬂ_uh))dxdt

<107 @) o-1.0x (0110 @)l oxp, 17+ NE-) |og0x 11| VO @—un)lanoxo,r]
S lla - U||0,1,Qx[o,T] I(@ —up)|| 1,1,0x[0,7] + i~ U||0,1,Qx[0,T] [(% —up)|| 1,1,Qx[0,T]

S [ = ullo,1,0xp0,7 108 = un) [1,1,0x[0,77 -

With the inverse estimate and Young’s inequality we get for small € > 0:

2
0,1,0x[0,T] *

2 ~
0,1,x[0,7] T €[ (@ - up)

lo.1.0x[0,711(@ = un) |, 1.0x[0.77  zapz 1@ —u

2 —u
Next for the first coupling contribution, with the inverse estimate and Young’s inequality

~ (A=A (- up)))rxo,1] S (@ =un)o,1/2,rx[0,1]
S A= Ao~1/2,0x0,17
S IA = AMo,-1/2,rx0,1] (A (@ - up) lo,1,0x[0,7]

9 2
(0,77, + €l(@=un)llg 1 oxo,r -

[0,T] S Ix- Mo,-1/2,0x10,77 1% = un |l 1,1.0x[0,7]

Now estimating the retarded single and double layer potential:
1. - - -
((K+ 5—7)(¢ =¢)=V(A=X),0i(\ - Ah))Fx[O,T]

1 - s 5
S+ —I)(<Z5 = 3) = V(A=) o,1/2,0x10,7110: (A = An) lo,~1/2,0x[0,7]

+V(A- /\)||01/2F><0T)H/\ Anll1,-1/2,rx[0,77,%

x[0.7).+ )

<{0T)» |

S G(At [O,T],* €(At [0,T],* [0,7],% >

where we used the mapping properties of V and K, the inverse estimate and Young’s
inequality. We continue with the other coupling contribution:

— (v (@=u), %A= X)) rxgorr] S 17 (@ = w)]o.1 /21107710 (A -

S [la—

(0,77]

[0,T] +€”5‘_)‘h”(2),—1/2,I‘><[0,T],>e’

l0,1,7x[0,7] ”5‘_>‘h”1,—1/2,1“><[0,T],* S Apz i
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5.2 Symmetric wave-wave coupling

where we used the trace theorem, the inverse estimate and Young’s inequality. Next
- 1 . - -
(-W(p-0)+ (K + 51)()\ =A);0t(é = dn))rxjo1]
- 1. - - -
SI-Wip-o)+(K'+ §I)(>‘_)‘)||0,—%,Fx[0,T] 10:@=bnlo, 1 rupo.1110:@=bnlo L rxp.11
s (]

7 2 3 2 7 2
N mllqﬁ - ¢”1,1/2,F><[0,T],>e + m A= )‘”1,—1/2,F><[O,T],>e +elo- ¢h”071/2,Fx[07T]7*1

1 ~ -
+ 5-’)()\ = Mlo,-12,0xp0,71) ¢ = Dnll1,1/2,rx[0,17

where we used the mapping properties of W and K’, the inverse estimate and Young’s in-

equality. At last combining alleH&—uhHO LOXO,T] e||¢ on Ho | Pu0.T ¢ €| A- )\h|| LI,
with the left hand side, gives
~ 2
|@ - up 0,1,0x[0,T] ”ff) ¢h”0 ,1/2,I'x[0,T7], H)\ Ah”o -1/2, Fx[O T],*
1 1
(At)g - HOleOT (At)Q ||¢ ¢”1 ,1/2,T'x[0,T], (At) ”)‘ )‘H1 ~1/2,Tx[0,T],
Therefore
2
||u_uh”0,1,ﬂ><[0T lo - ¢h”0 ,1/2,0x[0,T7,% [0,T],*
S(1+ (At) o) (- 0,1,Qx0T (0,7, [0,77,+) -
Taking the infimum yields the assertion. O

5.2.2 A posteriori error estimate

We state the following a posteriori error estimate

Theorem 5.2. Let (u, ¢, \) € HX([0,T], HY(Q))x H*([0,T], H2(D)) x H([0, T], H" 2 (T'))
and (up, dn, Ap) € WilA’qtl X V,f,Q’Aq?, V,f,g’gi’ satisfy the wave wave coupling problem (5.14)
resp. the corresponding Galerkin equation (5.20). Let Ujj\isl(?Qj =T = ui, T;, where each
T; is a face of one Q. With [v], a jump into a face T; the following a posteriori error
estimate holds:

(s u”g,l,ﬂx[O,T] + [ on - <75H(2),1/2,1“X[O,T] + [ An - AH?};I/ZFX[O,T] S 77% + 77% + 77:% + 772 + 7752,

where
- Z”uh Aun[5.0.0,4(0.7):

2
= ZH G ] ”10T><OT max{At,h},
T;,nI'=g

s = H—Ah—g+a;uhuio,rxm] max{At,h}
n; =

1
75 = (K" + DA = Wenli 1o rgorr) -

(0,17 »
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5 FEM-BEM coupling in time domain III: wave-wave coupling

Proof. Let (u,$,\) € HY([0,T], H(Q)) x H'([0,T], HY*(T")) x H'([0,T], H *?(I"))
and (up, dn, \p) € WilA’qtl V,f,z e V}f’,?’ ) satisfy (5.14) resp. the corresponding Galerkin
discretization (5.20). We define v := Dp—S\ and vy, := Doy — S\, with v (v—vy) = -y,
and 0 (v—vp) = A= Ap. Then by using the trace theorem together with (5.19)

Huh_uHaLQx[O,T] + H¢h_¢HQ T'x[0,7] H)‘h )‘H2 1 1 0x[0,7] Huh uHQLQx 0,77 th v”O,l Qex[0,7]

T T
Up — U Up — U

S un—v), @n—o)I° = A(| ¢n -0 | | on-0| )
Ap— A Ap— A

T T T T T T T
Up Up — U u Up — U Up Up — U up — U
=A(l on|:|on-2|)-A( ¢|.|on-0|)=A(|dn]| | tn-0|)-F(|drn-0]|)
Ah A=A A Ap— A Ah A=A A=A
T AT T - T AT - T
Uup, up — U up, u—u up — U u-u
Al an| fon-o|raden| Jo-o|r-Fon-s| )-rdé-o| ).
Ah AL — A Ah A=A AR — A A=A

By using the Galerkin orthogonality above, we get

I(Cun—), @r =)

T, T - T
u — uUu—-u T
adon|-[5-0])-rd5-0 |- [ inoa-wda+ [ vun(au(a-u)da
Ah A=A A=A 0 Q Q

—/F)\h'y_(ﬁt(ﬂ—u))dsw+fF(K+%I)qﬁhat(j\—)\)dsx—/I;V)\hﬁt(S\—)\)dsz
- [ @A Vs~ [Wnd (G- d)dsa+ [(K+ DMDUG - 6)dss
—frg 7’(3t(ft—U))dsx+fFf Ay (A= N)dsy bt
:/OT{g;/Qiﬁhat(@—u)dx+(fVuhv(ﬁt(ﬂ—u))dx—/F()\h+g)8t(ﬁ—u)dsm

+ Ff ((K+%I)qﬁh—wh—v‘(uh)+f)6t<X—A)dsm+ Ff ((K’+%I)Ah—wh)at(é—@dsm}dt :

Next using integration by parts on each §2;, and estimating

Il ((un—), =)
=fOT{QZifQi(uh—Auh)at(a—u)dm >[I0 - w)ds

TmF:QTi
b [ g+ Sy @ - w)dse [+ DoV A=y () + DA - Vs,

b [+ ST = W) (6 - 9)ds, i
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5.2 Symmetric wave-wave coupling

auh

(- U)”quoT Z Il

z TmFQa

+]=An—g+ 87;uh”1,0,1“><[0,T] |77 (0e(@ - u)) ||—1,0,rx[0,T]

1 B .
+ (K + §D¢h_V)\h_'Y (up)+f 1,%,F><[O,T]Hat(/\_)‘) ||_1,_%,rx[o,T]

]”LO,T x[0,T] |0 (@—w)] - L,07;x[0,7]

;1 -
+ [ (K" + 51))% = Wonl1,-172,0x10,1719:(& = &) -1,1/2,rx[0,7]

I
Q;

ouy,
Z H[a ]||10Tx0T||U u”OOTx[OT]
Tinr=g 91

[0,T]
1
+[|(K + 51)%— V-

[0,7]

1
+ H(K'+§I))\h—

(0,77 -

Next choose @ = uyp, + IIj, o IIa;(u — up) for the second and third term in order to do
Lemma 3.1. Further choose 4 = uy, for the first term and ¢ = ¢, and A = Ap.

I ((un—2), wn—v)|I* $ Yoliin = Aup lo.0,0,x[0,77 1 un — v

Q;
¢ T IS,

T;nI'=x a

0,1,0:x[0,77]

un = ullo 1 j2,r, max{At, /2

117 (un = w)llo1/2,rx0,7] Mmax{At, h?

1 _

+[ (K + 5—7)% =V =9 (un) + fll1,1/2,0x[0,771A = Mo,~1/2,1
1

+ (K" + 5—7))% =~ Wonl1,-12,0x10,171 00 = llo,1/2,0x[0,17 -

Using Young’s inequality and the trace theorem
8uh
I (Cun =), @n-v)” <Z||Uh Aup[fo, <oyt 2 5= 11 a7 xjo,7y max{At, b}
T;nI'=g
+ =M =g+ 0 unl g p .z max{AL, By + (K + §I)¢h =V An =7 (un) + FI3 1j2.0xj01)
+||(K’+21) W¢h||1 1/2F><[OT]
+ |én = 815 1 /0,0x[0.07 * |20 -

2
o]+ un - UHo,1,Qx[o,T] :
Combining the last three terms with the left hand side yields the estimate. O
5.2.3 Discretization of the symmetric wave-wave coupling

We choose as ansatz and test functions in space and time:

® upAL= Zm 1Zz Sul B, () (x) € Wh A; Piecewise linear in time and piecewise
linear in the interior space Q
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5 FEM-BEM coupling in time domain III: wave-wave coupling
® Wy At = né(m)’ygt(t) € W,i ’gt piecewise constant in time and in piecewise linear in
the interior space Q with [ =1,...,Nyand n=1,..., N,

® \At = Zanﬂ Y A BRL(1)E () € Vhl, ’it piecewise linear in time and pieceweise
linear in space I

o wpar = YR(B)EL () € Vh1 ’gt piecewiese constant in time and piecewise linear in
space in ' forn=1,... Ny and j=1,..., Ny

® dpaL = Z%‘zl f\zfsl P B (1)E () € V}i’it piecewise linear in time and piecewise

linear in space I

o thpar = YR, (1)E () € Vh1 ’gt piecewise constant in time and piecewise linear in
space ' forn=1,...N;and i=1,..., Ny

We begin with the discretization of a(u,w):

a(uh,At,wh,At)=fR+fgﬁh,mwh,m+V(uh,At)V(wh,At)d$dt

we perform the calculation in the same way as in Section 3.6. The second term gives
forl=1,...Ngsand n=1,..., Ny

f0°° /Q_ V(un,at)V(in,a¢)dodt
o N: N, |
B fo f_ > > s B, () (Vi (2)) V (11, (2))) YR () ddt

k=11=1
ALELA ; ! ok
SN R CAGNCEN S | AEORIOT)
k=1i=1 Q 0
Ns . lul , = 1
=3 V)Y @) ) () {2
i=1 -+ ,m>2
Ny su} ,n=1
=D A (At) | G ynt
i=1 oR ,n>2
= Auy (5.21)
where A is the stiffness matrix for the Laplacian with
11
1 n=1
wa= (A4
) > 2

and u* containing all uf
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5.2 Symmetric wave-wave coupling

Considering the first term

oo oo Nt Ng . )
= [ f_ Up, At - WhArdrdt = f /_ Z Zufﬁgt(t)n?l(w)né(x)vgt(t)dmdt
0 /e 0 JO i

Nt 3 Ns i . I [T
-3 3 Yk [ n@k@ds) ([ Aoy o)
k=1v=1i=1 0
N, ull ,n=1
i l
= 2, (f_ n,’l(x)nh(ac)dac) (A_t) u? - 2u; =2
ul =2ul v u? n>3
N, ) uzl ,n=1
D My Ay Ul - 2y ;=2
&0 A L
ul = 2u T+ ,n>3
= Muyy (5.22)
where M is the mass matrix with
ul ,n=1
1
- )2 o1 _
UN (&) u - 2u ,n=2

w20t w2 n>3.

u'fb
We divide u™ into ((( QAI;)) The coupling part will need (uft). The boundary element
ur
part is discretized in the same way as in Subsection 2.3.6. The discretization of the
coupling part is as follows: Forn=1,... Ny, j=1,... Ny and [ =1,..., Ny, we obtain
Ny N

> i [hle@e@dso( [ 8RR (B

m=11i=1

o n n— At i j At n n-
=Y [+ w ) Skl @)g] (2)dss = RIS (uf+ u ™)
i=1

N¢ Ny

> SN [ G@nir@ds. ([ 8RO 0d)

m=1i=1
o n n- Ati At n n-—
=Y [N S )bl (@) s, = RIS (4477
=1

For the right hand side:

. At n n— n n—
[R frgwh,mdsxdtz%[r(g +g 1)77fl|r(x)dsx =G+ GV, (5.23)

f + fF Frivpavdsydt = fr (f"L = Y (2)dsy = —F" + F77L (5.24)
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5 FEM-BEM coupling in time domain III: wave-wave coupling

where ¢" = g(2,t,),9~ X0L, g™BR, (1) and 7 = f(z,tn), f & TN, AR (L).

Altogether we obtain a marching-on-in time scheme: For n=1:

StA+ LM [0,-4LRI)T 0 ) (G'+G°
-0, 5L RI] -v0 KO-ir||At|=|F'-F°
0 (KO +14tr  —wo J\g! 0
Forn=2:
StA+ LM [0,-5ERI)T 0 u?
[0, &L RI] -v0 KO-1r|\2
0 (KN+ 38t —wO J\¢?
G?+Gl - %Au1 + A%Mule[O; %RI)\l]T
=| F2- F' + §'RIuf + VN - K1g! - 119!
1.1 1y1 _ 1At71y1
Whe! — (K')IAL - $5LTA
Forn>3:
StA+ &M [0,-5LRI)T 0 u"
[0, §tRI] -v0 KO- Irf|an

0 (KN + 45t -w J\¢"
G"+ G - St A+ 2 Munt - L M40, §ERINT
= | - Pl SERIuE + S Vrrmam -y Knmem - L g
St WG — S (K) A - g S

5.2.4 Derivation of a numerical example for the wave wave coupling

We derive a numerical example for the unit cube 2 = [-1,1]3. For the exterior solution
we use the same as in Section 3.8:

o(z,t) = 'Z'l—;'t(1+COS(W))H(0.9—||Q;|-¢|) .

As the interior solution, we choose for x = (x1,z2,23):
5
w(z,t) = f(t=21) = (sin((t-w1)m)) (H(-1+t-21) - H(-3+t-21)) . (5.25)

By choosing u(z,t) = f(t — z1) the homogenous wave equation is satisfied. For (5.25)
on an unit cube one observes u(z,0) =0 and @(x,0) = 0. Next for the first transmission

condition, we get:

um—v* = (sin((t—2)m)) (H(-1+t—21) - H(-3+t 1))

Czl-t (1+COS(7T(|_JOC.|S;IS)))H(O.9—||x|—t|) =

116



5.3 Numerical results

whereas the second transmission condition is:

%—%ﬂsz'n—wﬁn
:—57r(sin((t—xl)ﬂ))4cos((t—x1)7r)(H(—1+t—a:1)—H(—3+t—x1))-n1
(g1 eosTUE ) = = oyt i) ) 0.9 - -ty

_ ;(BTTB(I+COS(7T(|:S|9 =)y (%_ﬁ)ﬁ;sin(”('?;)) H(0.9~ ||| - t])ns

. ;(CTT?)(lJrcos( ity (%—ﬁ)g;;sin(ﬂﬂggt)) H(0.9— |[2] ~ H)ns =i g -

In Section 5.3 we perform numerical experiments, coming from these transmission con-
ditions.

5.3 Numerical results

Analogously to Section 3.9 we begin with a Dirichlet problem for the wave equation
given on an unit cube in order to check the implementation and the behaviour of the
interior solution u. We set = [-1,1]3.

2
%—Au 0 (z,t)eQx[0,T], (5.26a)
u(z,0) = (z,0) =0 inQ, (5.26b)
u=f onI'x[0,T]. (5.26¢)

The variational formulation reads: For f € H2([0,T], H'(Q)) find u e H*([0,T], H'(Q2))
such that

T T

f[V(u)v(w)dxdtJr[[im';dxdt:[Tf%(w_w)dszdt
Q 0 T

0 Q 0

for all w e H*([0,T], H'(R2)). We discretize the left hand side as in Subsection (5.21)
and (5.22). For the right hand side we use an approximation f(z,t) » Z L T BR (L),
where f = f(x,t,,), where we use a Gauss quadrature for the integral over T.

5
Example 5.1. We set f(x,t) = (sin(ﬂ(t - xl))) (H(-1+t-21)-H(-3+t-x1)) and
solve the wave equation in = [-1,1]3 (see Figure 3.9) till time T = 4. We refine the
space time mesh uniformly, where we hold the CFL at 0.2828.

In Figure 5.1 and Figure 5.2 we plotted the L?-norm in space of the exact solution
against the L?-norms of the numerical solutions. Here we obtain similar difficulties as
in Example 3.3. In Figure 5.3 we consider the difference of the L2-norm in space between
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5 FEM-BEM coupling in time domain III: wave-wave coupling

the exact solution and the numerical results. The curves show a similar progress. In
Figure 5.4 we make a convergence plot for the L?-error in space and time,which show
a rate of 0.27. Here we left out the first data N = 2, (At) = dt = 0.4 (40 tetrahedrals
with 48 triangles), since the mesh seems not to be fine enough. Due to the expeience,
achieved in Example 3.3, we didn’t expect a high convergence rate at all. Other time
iteration methods like Newmark’s method could lead to better solutions.

6
—exact
5 ~n=2 DT=0.4
n=4 DT=0.2
o ~n=8 DT=0.1
S4r —n=16 DT=0.05 ]
& n=32 DT=0.025
c3l —n=64 DT=0.0125 |
€
(@]
21
[a\}
—
1 L
0
0

Time

Figure 5.1: L?-norm of the numerical solutions for Example 5.1.

2 !
—exact
~-n=2 DT=0.4
n=4 DT=0.2
1.5+ —-—n=8 DT=0.1 .
3 —~n=16 DT=0.05
g n=32 DT=0.025
[ —n=64 DT=0.0125
S 1t §
£
(@]
<
05 1
0 | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4

Time

Figure 5.2: L%norm of the numerical solutions for Example 5.1 (zoomed).
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10%¢
S
= 0L
< 10
5
<107 ¢
=
S ~-n=2, DT=0.4
w107 ~n=4, DT=0.2
_ ; n=8, DT=0.1
El i ~n=16, DT=0.05 :
= 10} ~-n=32, DT=0.025
g i n=64, DT=0.0125 ]
1 0 '8 i 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4
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Figure 5.3: L?-error of the numerical solutions for Example 5.1.
0%
()
E
©
c
©
3107 ¢
m L
S i
)
£
S
P
A
-
10'2 L M| L M| L P caaal il

103 104 10° pop 10° 107 108

Figure 5.4: Convergence plot of the Example 5.1 for N =4,8,16, 32, 64.

Next we continue with the whole wave-wave coupling system

Example 5.2. We compute a wave-wave coupling system with the discretization as in
Subsection 5.2.3 on the unit cube (see Figure 3.9). We set the first transmission data
as
-1 -t
u —v" = f(z,t) = —m(l + COS(M))(H(OQ = || - ¢])
2|z 0.9
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5 FEM-BEM coupling in time domain III: wave-wave coupling

and the second the tranmission data as %L - G- =g(z,t)
- (g - - 5 0”;1| smﬂ'gg ) 09 o]~ e
(g o™ (|$| “)) G- 5gas B 19 ol s
- (%(1 +cos (”“3'9 Dyy- (5- ﬁ ol sm(”(lfﬂg‘ £) )) H(0.9- |[2] - t])ns
The ezact solution is known with v =0 and
v= |L82||—;|t(1 + cos(%))(H(O.Q — x| = t]) .

The mesh is again the unit cube Q = [-1,1]3. We refine the space time mesh uniformly,
where we hold the CFL at 0.2828. We compute till time T =5 is reached.

5 | Wave-wave coupling ; exterior part
= T T T T T
i) ——exact
3 ——n=2, dt=0.4
_q:.> n=4, dt=0.2
=05 —n=8, dt=0.1 N
1} ——n=16, dt=0.05
E
<]
< n —— .
£ 0 ‘
= 0 0.5 1 1.5 2 25 3 35 4 45 5
R Time
g . Wave-wave coupling ; normal derivative of exterior
% T T T T T T
= s ——normal derivative of exact .
2 —n=2, dt=0.4
g n=4, dt=0.2 7
sl ——n=8, dt=0.1 -
£, ——n=16, dt=0.05
s 0
g 0 0.5 1 15 2 25 3 35 4 4.5 5
z Time
=
< Wave-wave coupling ; interior part
o T T T ;
Ke} L ——exact |
5 0.1 ——n=2, dt=0.4
£0.08 - n=4,dt=02 |-
g ——n=8, dt=0.1
%’ 0.06 — ~——n=16, dt=0.05
€ 0.04 — 7
<]
<0.02 - ==
g 0 T e — T T | } | — [
] 0 0.5 1 1.5 2 25 3 35 4 4.5 5

Tima

Figure 5.5: L?-norm in space of the numerical solutions for the exterior, the normal
derivative of the exterior, and the interior, Example 5.2.

In Figure 5.5 we plot the L2-norms in space for the solutions of the wave-wave coupling
problem treated as in Subsection 5.2.3. The numerical solutions seems to approximate
the exact solution in a reliable way. As expected for larger times the error becomes
higher, see Figure 5.6. We remark that for the normal derivative after time 2.5, we
are doing almost constant errors of about 0.2 for n = 16 and dt = 0.05. In Figure 5.7
we made a convergence plot. We observe that the L?-error in space and time for the
interior is higher than the exterior part in contrary to the examples of the fluid-structure
interaction problem in Chapter 4. But the L2-error in space and time for the exterior
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5.3 Numerical results

normal derivative is higher than the error for the interior, as we expected from Figure
5.6. The convergence rate for the exterior normal derivative though is around 0.38
higher than the convergence rate of 0.22 for the interior. The convergence rate for the
exterior part is around 0.75.

wave-wave coupling; exterior part
T T

0.4 \ T T T
0.3+ —n=2, dt=0.4 _
T ——n=4, dt=0.2
8 o2k n=8, dt=0.1
aQ ' ——n=16, dt=0.05
wv
g 0ir
£ | e ety ) \ | — s .
— 0 -
§ 0 0.5 1. 1.5 2 25 3 3.5 4 4.5 5
Al Time
= : wave-wave coupling; normal derivative of exterior
8] T T T T T 1
= —n=2,dt=0.4
= ——n=4, dt=0.2
= 2L n=8,dt=0.1 [
Z. ——n=16, dt=0.05
g 1+ |
O
aQ
2 T~ —
- 0 " i L —_— T T T )
é 0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
5 Time
= wave-wave coupling; interior part
Ny 0.15F T T T I =
= ——n=2,dt=0.4
9 ——n=4, dt=0.2
2 01F n=8,dt=0.1 [
8 ——n=16, dt=0.05
0.05 —
. \_r/\/\/\ e ; <_><
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Time

Figure 5.6: Absolute difference of the L2norm in space of the numerical solutions
against the L2-norm in space of the exact solutions for the exterior, the
normal derivative of the exterior, and the interior, Example 5.2.

10" ¢ ; B ; —— ; e
r -©-slope for the interior 1
b -=-slope for the exterior ]
slope for interior+exterior —
F -#-slope for the normal derivative of exterior ,
100 E
[0} [ ]
E i ]
s [ ]
c
S ]
8ot~ T—e———— Tl
L el E
o L ]
@ [ ]
£ F 1
§ L ]
s L ]
w
~y1072F 5
10-3 73 4 5 - 6
10 10 10 10

DOF

Figure 5.7: Convergence plot of Example 5.2.
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6 Time domain BEM: graded meshes and
hp-version on quasi-uniform meshes

6.1 Introduction

The asymptotic behaviour of solutions for elliptic and parabolic equations near the
edges and corners of a polyhedral domain has been studied, see e.g. in [11, 90]. The
explicit singular expansions allow to recover optimal convergence rates for finite [7, &]
and boundary element methods [50, , ]. We consider the homogeneous wave
equation on a screen I' c R? with connected complement € = R3\T', i.e. the problem

OPu(z,t) — Au(z,t) =0 in QxR*
u(z,0) =u(z,0) =0 in Q,
Bu =g onlI' .

We consider Dirichlet boundary conditions (Bu = u, on I') as well as Neumann bound-
ary conditions (Bu = d;u on I'), where 0u and u, are defined in Section 2.1 with n
the unit normal vector pointing towards {2. Since the mesh is a screen we denote with
0w := Opu = Opu|r and uy := u|p. Solutions to the wave equation in the exterior of a
polyhedral domain or a screen in R? also exhibit singular behaviour from the edges and
corners. Plamenevskii and coauthors obtained in [68, 69, 79, 80] a similar asymptotic
behaviour for the wave equation in domains with conical or wedge singularities. The
wave equation is transformed into the Helmholtz equation, where they considered the
eigenvalues and eigenfunctions. Then they prove an asymptotic expansion of u, for a
Neumann problem resp. 0;u for a Dirichlet problem. Using an inverse Fourier trans-
form we achieve the asymptotic expansions in time domain. We deduce from [10], that
the asymptotic expansion of the solution to the wave equation holds the same exponent
as for the elliptic equations for fixed times.

Furthermore p and hp—versions of the boundary element method for the wave equation
are considered in [19]. For p and hp-versions of the finite element method fast ap-
proximations of geometric singularities and smooth solutions for elliptic problems are
gained by incresing the polynomial degree p of the elements together with an increasing
of the refinement of the given quasi-uniform mesh [9, 10, 36, 37]. For the boundary
element method they are introduced in [93, 94]. For screens and polyhedral surfaces in
3D optimal convergence rates have been achieved, see e.g. in [20, 24, 23, 21, 22].

This chapter presents the main results and numerical experiments based on the paper
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6 Time domain BEM: graded meshes and hp-version on quasi-uniform meshes

Figure 6.1: B-graded meshes for (a) square and (b) circular screens, with 8 = 2. Figure
1 in [40]

jointly with H. Gimperlein, F. Meyer, D. Stark and E. P. Stephan [46] and the submitted
paper jointly with H. Gimperlein, D. Stark and E. P. Stephan [19].

6.2 (-graded meshes

We begin with the construction of a S—graded mesh on a square. Since the mesh is
symmetric , it is enough to consider the mesh with a graduation parameter g > 0 for
[-1,0]. We define the nodes of the S-graded mesh on the square in one direction as

yk:$k=—1+(%)ﬁ fork=1,...,N; . (6.1)

Therefore (zx,y;), k,0=1,...,N; is the set of all nodes of this mesh. In case of 5 =1,
we have a uniform square. The 2—graded mesh on a square is depicted in the left of
Figure 6.1.

A [B-graded L-shape is build by taking 3 S—-graded squares and combining them into
an L-shape.

For a circular screen with radius 1, the nodes are given on concentric circles. We get
for a B-graded mesh on concentric circles the following S—graduated radii:

k
rk:1—(ﬁl)ﬁ for k=0,...,N; - 1. (6.2)

In case of 8 =1, we get a uniform mesh with nodes on 1 - (%), with £=0,...,N; - 1.
The 2-graded mesh on a circular screen is depicted in the right of Figure 6.1.
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6.3 Asymptotic expansions and numerical approximation

6.3 Asymptotic expansions and numerical approximation

6.3.1 Singularities for circular screens and approximation for graded meshes

We consider the circular screen {(z1,z2,0) € R® : 22 + 22 < 1}. From [46] and [95] we
get the following asymptotic expansions near the edge {(x1,72,0) € R? : 22 + 23 = 1}
with the polar coordinates (r,6) in the x1 —zo-plane, y =7 -1 and z = 6 for a, b smooth
for smooth boundary conditions and v, ¥ regular terms :

wy = u(y,t,2)|e = at, 2)|y|? +9(y, 1, 2) | (6.3)
L1
Ohui=Opu(y,t, 2)l0 = b(t, 2) |y 2 + (y, 2, 1) - (6.4)
The analysis from T. von Petersdorff in [101] in the elliptic case is expanded to the
hyperbolic case in [10] in order to reach optimal convergence approximation properties

for graded meshes. The theorem below gives the convergence for circular screens for
Dirichlet and Neumann conditions.

Theorem 6.1 ([16], Theorem 15). Lete >0. a) Let u be a strong solution to the homo-
geneous wave equation with inhomogeneous Neumann boundary conditions Opulr = ¢,

with g smooth. Further, let qbimbe the best approximation in the norm of H;(]Rfﬁ%_s(r))
to the Dirichlet trace ulp in Vhl’gt on a B-graded spatial mesh with At § h®. Then

u - gbg At”r 1 py < Cﬁjahmi“{ﬁ(%“)’%”}‘e, where s € [0, %] and r €[0,p).

2

b) Let u be a strong solution to the homogeneous wave equation with inhomogeneous
Dirichlet boundary conditions u|p = g, with g smooth. Further, let w,f Ay e the best

approximation in the norm of HZ;(R*,ﬁ_%(F)) to the Neumann trace Opulr in V}?’gt

on a B-graded spatial mesh with At S hP. Then ||0,u - wf L Cg,ehmin{gv%}‘a,
bl bl 27 b
where r € [0,p+1).

Due to Theorem 6.1 we also achieve results for the retarded single layer integral equation
and the retarded hypersingular integral equation on the circular screen.

Corollary 6.2 ([16], Corollary 16). Let € >0. a) Let ¢ be the solution to the retarded
hypersingular integral equation (2.42) and gbg Ay the best approximation in the norm

of Hg(RJr,ITI%_S(F)) to ¢ in f/hl’gt on a B-graded spatial mesh with At S hP. Then
lo - ¢§ At ”T,%—s,l",* < Cg,ghmin{ﬁ(%ﬂ)’%ﬂ}_g, where s € [0, %] and r € [0,p).

b) Let 1) be the solution to the retarded single layer integral equation (2.27) and ¢£ Ay the
best approzimation in the norm of HL (R, fl_%(f‘)) to 1 in V}g’gt on a [3-graded spatial
mesh with At S hP. Then | - ¢£ Al < CB,Ehmin{gv%}’E, where r € [0,p+1).

b b 27 b

On a screen the retarded double layer potential and the retarded adjoint double layer
potential vanish. The solutions to the integral equations with Neumann condition is
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6 Time domain BEM: graded meshes and hp-version on quasi-uniform meshes

¢ = [u], whereas the solutions to the integral equations with Dirichlet condition is
¥ = [Opu], where [-] is defined in (2.6).

6.3.2 Singularities for circular screens and approximation for hp-version

Due to the decomposition (6.3) and (6.4), the following theorem states a quasi-optimal
convergence of the hp—version for an arbitrary small € > 0 on circular screens.

Theorem 6.3 ([19], Theorem 15). Let ¢ > 0. a) Let u be a solution to the homo-
geneous wave equation with inhomogeneous Neumann boundary conditions Onulr = g,
with g € HX(R*, H3(T")) for some o, B, so that the regular part v € H¥(R*, H'(T)) in
the singular expansion of ulp, with n, p sufficiently large. Further, let ¢p ¢ be the best
approximation in the norm of Hc’;(RJr,I?%_S(F)) to the Dirichlet trace ulp in f/}f”gt on
a quasi-uniform spatial mesh with At S h. Then 7

h Lis—e h —14s+n At p+s—r—3
wenes(m) G 5

lw = dn A

where r € [0,p).

b) Let u be a solution to the homogeneous wave equation with inhomogeneous Dirichlet
boundary conditions ulp = g, with g € HY(R™, HP(T)) for some o, B, so that the regular
part v € HY(R*, H'(T")) in the singular expansion of Onulr, with n, u sufficiently large.
Further, let ¢ a¢ be the best approzimation in the norm of Hg(RJr,IA:f*%(F)) to the
Neumann trace Opulr in V,f’gt on a quasi-uniform spatial mesh with At $h. Then

1_ 71+ ﬁt a
h c h 2™ a !
(9 A r—=,1 *< | 2 p+1 p ]‘

where r € [0,p+1).

Due to Theorem 6.3, we gain analogous results for the hp—version of the retarded single
layer integral equations and the retarded hypersingular integral equations on circular
screens.

Corollary 6.4 ([19], Corollary 16). Let € >0. a) Let ¢ be the solution to the retarded
hypersingular integral equation (2.42) and ¢p ar the best approzimation in the norm of
Hg(RJr,fI%_S(F)) to ¢ in V,ﬁ’gt on a quasi-uniform spatial mesh with At S h. Assume
that the right hand side g € HS(R*, H?(I')) for some a,, so that the regular part
v e HY(R*, H'(T)) in the singular expansion of ulr, with 0, u sufficiently large. Then

h g+s—e h —§+stn At p+s—r—3%
lo-onadesres(z) <) (5] T

where 1€ [0,p), s €[0,3].
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6.3 Asymptotic expansions and numerical approximation

b) Let 1) be the solution to the retarded single layer integral equation (2.27) and 1y s+ the
best approrimation in the norm of Hg(R*,fNI_%(F)) to 1 in V/f,’gt on a quasi-uniform
spatial mesh with At S h. Assume that the right hand side f ¢ HX(R*, HP(T)) for some
o, B, so that the regular part v € HY (R, H'(T)) in the singular expansion of dpu|r, with
n, i sufficiently large. Then for r € [0,p+1)

1 1
h 27¢ h \2*7 At \HHL-T
- < | — )
v wh’At”T’_%’F’*N((erl)Q) +(p+1) +(p+1)

6.3.3 Singularities for polygonal screens and approximation for graded
meshes

We consider a polygonal screen. From [16] we get the following asymptotic expansions
in terms of the polar coordinates (r,6) near the vertex (0,0) with a,b;, by smooth
for smooth boundary conditions, x,x € C7° are cut-off functions with y,x =1 in a
neighborhood of 0 and vg, ¥ are regular terms:

u(t,z)|p = vo(t,r,0) + x(r)r’a(t,0) + )Z(H)bl(t,r)(sin(e))%

+ (= 0)ba(t,7)(cos())? (6.5)
Buu(t,)lr = do(t,r,0) + x(r)r" " a(t,0) + X(0)by (t,r)r " (sin(0)) "2
+ (= 0)ba(t, r)r (cos(8)) 7 . (6.6)

Here ~ denotes the singular exponent. The square screen I' = (0,1) x (0,1) x {0}
gives at the corner (0,0) an exponent v ~ 0.2966, whereas an L-shaped screen T' =
[-1,1]% x {0}\[0,1]* x {0} gives at the corner (0,0) an exponent 7 ~ 0.8146, see [30].
In [79], the authors handled the remainder terms with an elliptic a priori weighted
estimates near the singularities.

These decompositions are crucial in order to obtain optimal convergence on graded
meshes for polygonal screens. The following theorem states the convergence for polyg-
onal screens for 3 large enough, depending on +.

Theorem 6.5 ([10], Theorem 20). Let e > 0. a) Let u be a strong solution to the homo-

geneous wave equation with inhomogeneous Neumann boundary conditions Opulr = ¢,
~1

with g smooth. Further, let ‘bffmbe the best approzimation in the norm of HYR™ H27*(T))

to the Dirichlet trace ulp in f/'hl’ﬁt on a B-graded spatial mesh with At S h? and

B> 2. Then Hu—gf)'g Al < Cﬁ,ghmin{g’%}“_‘s, where s €[0,1] and r € [0,p).

2 1
2(7+%) r5=s,I*

b) Let u be a strong solution to the homogeneous wave equation with inhomogeneous
Dirichlet boundary conditions ulp = g, with g smooth. Further, let z/;,ﬁl Ay be the best

approzimation in the norm of HQ(R+,FI_%(F)) to the Neumann trace Onulr in V}?’gt

on a B-graded spatial mesh with At S hP and B> —3+. Then |0,u - 1/)5 asl

<
2(y+3)

1 >
7‘7_571_‘)*

C@Ehmi“{g’%}’s, where r € [0,p+1).
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6 Time domain BEM: graded meshes and hp-version on quasi-uniform meshes

We achieve an analogous result for the retarded single layer integral equations and the
retarded hypersingular integral equations from Theorem 6.5.

Corollary 6.6 ([10], Corollary 21). Let ¢ >0. a) Let ¢ be the solution to the retarded
hypersingular integral equation (2.42) and gbg Az the best approximation in the norm of

HI (R, ﬁ%‘s(I‘)) to ¢ in f/hl’ﬁt on a 3-graded spatial mesh with At S hP and > 2(7:11)'
: 2

Then |¢ - ¢§,At ”7",%—8,F,>(— < Cﬁﬁhmin{ﬁ(%”)’%ﬂ}*ﬂ where s € [0,1] and r € [0,p).

b) Let ¢ be the solution to the retarded single layer integral equation (2.27) and ¢£ At
the best approximation in the norm of H;(R*,fl_%(lj)) to Y in V}?’gt on a B-graded

. . 3 B ; ﬁ’E _
spatial mesh with At < hP and 8 > 204D Then | - wh,At ”r,—%,ﬂ* < C’@Ehmm@ 5) €

where r € [0,p+1).

6.3.4 Singularities for polygonal screens and approximation for hp-version

Due to the decomposition given in (6.5) and (6.6), the following theorem states the
convergence of the hp—version for an arbitrary small € > 0 on polygonal screens.

Theorem 6.7 ([19], Theorem 19). Lete > 0. a) Let u be a solution to the homogeneous
wave equation with inhomogeneous Neumann boundary conditions Onulp = g, with g €
HY(R*,H(T')) for some a,B, so that the regular part vy € HE(RY,H"(I')) in the
singular expansion of ulr, with n,p sufficiently large. Further, let ¢p ar be the best
approximation in the norm of Hg(R*,fI%_S(F)) to the Dirichlet trace ulp in Vlf,’gt on
a quasi-uniform spatial mesh with At S h. Then

h %erin{'y,(]}Jrsfs h 7%+s+n At ,u+s—r—%
) GGy
p

b= ol s ore 5 (7 ;

where r € [0,p).

b) Let u be a solution to the homogeneous wave equation with inhomogeneous Dirichlet
boundary conditions ulp = g, with g € H*(R*, H?(T")) for some a, 8, so that the regular
part Yo € HY(RY, H'(T)) in the singular expansion of Ouulr, with 0, p sufficiently large.
Further, let ¢p A be the best approzimation in the norm of Hg(]RJr,ﬁ_%(F)) to the
Neumann trace Opulr in Vf”gt on a quasi-uniform spatial mesh with At < h. Then

h %-#min{%O}—s h %+77 At ptl-r
1O =Y atl,_1p ., S —3 +( ) +( ) ;
T (p+1)2 p+1 p+1

where r € [0,p+1).

From Theorem 6.7 analogous results follow for the hp—version of the retarded single
layer equations and the retarded hypersingular integral equations on polygonal screens.
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6.4 Numerical experiments

Corollary 6.8 ([19], Corollary 20). Let e >0. a) Let ¢ be the solution to the retarded
hypersingular integral equation (2.42) and ¢p ¢ the best approxzimation in the norm of
HI(R™, .FNI%_S(F)) to ¢ in f/}f,’gt on a quasi-uniform spatial mesh with At S h. Assume
that the right hand side g € Hg‘(RJr,ﬁfB(F)) for some o, B, so that the regular part
vy € HY(R*, H'(T')) in the singular expansion of ulp, with 1, u sufficiently large. Then

h %erin{'y,O}Jrsfs h 7%+s+n At ,u+s—r—%
) GGy
p

J6 = 6natlyare 5 (5 ;

where r € [0,p), s €0, %]

b) Let 1 be the solution to the retarded single layer integral equation (2.27) and 1y ar the
best approzimation in the norm of Hg(RJ',ﬁ*%(F)) to Y in V,ﬁ’gt on a quasi-uniform
spatial mesh with At $ h. Assume that the right hand side f € H*(R*, H?(T')) for some
a, B, so that the regqular part ¢y € HY (R, H"(I')) in the singular expansion of dpulr,
with n, p sufficiently large. Then

l+min{770}_5 l+ +1—r

2 n o

1 = Ynatll, 10, S h +( h )2 +(At) ’
’ T, PR (p+1)2 p+1 p+1

where r € [0,p+1) and the reqular part 1y € H (R*, H'(T")) of the singular expansion
of ¥ = Opulr, with n, i sufficiently large.

6.4 Numerical experiments

6.4.1 Single layer potential for graded meshes

Example 6.1. We compute the solution to the retarded single layer integral equation
Vi = f on T xR* for the circular screen T' = {(z,y,0) : 0 < /22 +y? < 1} with
the discretization from Subsection 2.3.1. The weak form (2.49) with constant ansatz
and test functions in space and time are used. The right hand side is specified with
f(x,t) = cos(|k|t — k- z) exp(~1/(10t?)), where k = (0.2,0.2,0.2). We choose At =0.005
and compute the solution till’T = 1. The finest graded mesh in our computation contains
2662 triangles with At =0.005 and 8 =2, where it serves as a reference solution.

Figure 6.2 shows the density along a cross-section of the reference solution at time 0.5.
The figure displays the expected edge singularities known by the decomposition (6.4).
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6 Time domain BEM: graded meshes and hp-version on quasi-uniform meshes

. [ -
0 |
|
. ' 2L J

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

H N W A~ U1 OO N 0 O

Figure 6.2: Solution of the single layer equation at 1" = 0.5 along y = 0 on the circular
screen, Example 6.1. Figure 3 in [10]

In Figure 6.3 the numerical density of the reference solution at times 0.5,0.75,1.0 are
plotted against the distance to the edge at (1,0) along the x-axis. The numerical
solutions are in close agreement with the theoretical value of —% of (6.4) for the edge
singularities. We remark that we can’t deduce from the convergence of the boundary
element method in the energy norm a corresponding convergence of the numerically
computed singular exponents.

We finally consider the relative energy error compared to the reference solution. We
can’t expect a convergence in L?([0,T] x ') since the solution exhibits a low spatial
regularity. Therefore we consider the energy norm, as in (2.56), E(T) = YV - 24 f
for T = 1 with the solution vector v after solving the MOT-scheme (2.54) till T = 1.
HY(R", s (T")) is comparable or stronger than the energy norm. Figure 6.4 describes
the relative energy error against the degrees of freedom. We computed the relative
energy error with

|Enum(T) B Emf(T)|
| Eres (T)] ’

where Eyyum is the discretized energy of the numerical solutions, whereas Eref is the
discretized energy of the reference solution. We see for the 2-graded mesh a rate of
—0.52, whereas the uniform mesh shows a rate —0.26. The error behaves in agreement
to the expected approximation properties proportional to h (equivalently ~ DOF -1/ 2)
on the 2-graded mesh resp. ~ h!/? (~ DOF‘1/4) on the uniform mesh.

130



6.4 Numerical experiments

T=0.5; a=-0.53
10'h T=0.75; a=-0.54 |
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distance to (1,0); y=0

Figure 6.3: Asymptotic behavior of the solution to the single layer equation near edge
along y = 0, Example 6.1, Figure 4 in [1(]

10°¢

~-uniform; «a=-0.26 1
- (-graded, (=2; a=-0.52 ||
—O(DOF -0.25 ) §
—-O(DOF %)

relative energy error
>
T

Figure 6.4: Energy error for single layer equation on circular screen, Example 6.1, Figure

5 [40]

Example 6.2. We compute the solution to the retarded single layer integral equation
Vi = f on TxR* for the square screen T = [~1,1]2x{0} with the discretization from Sub-
section 2.5.1. The weak form (2.49) with constant ansatz and test functions in space and
time are used. The right hand side is specified with f(x,t)=cos(|k|t—k-z) exp(~1/(10t?)),
where k = (0.2,0.2,0.2). We choose At =0.005 and compute the solution tillT =1. The
finest graded mesh in our computation contains 2312 triangles with At = 0.005 and
B =2, where it serves as a reference solution.

Figures 6.5 and 6.6 show the density along the diagonal z = y and along the x-axis of
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6 Time domain BEM: graded meshes and hp-version on quasi-uniform meshes

the reference solution at time 7" = 0.5. The figures display the expected corner and
edge singularities known by the decomposition (6.6). In Figure 6.7 the density along
y = z of the reference solution is compared to 2 uniform meshes with 8000 and 20000
triangles each with At = 0.005. The 2-graded mesh exhibits a higher resolution of the

corner singularities than the uniform meshes.

1 60
50 50
0.5
40 40
0 30 ‘@30
20 20
-0.5
10 10
1 0 L o
-1 -0.5 0 0.5 1 - -0. .

Figure 6.5: Solution of the single layer equation at 7" = 0.5 along y =  on the square
screen, Example 6.2, Figure 6 in [1(]

1 14 T T T
50 12
05 40 10
> 8
0 30 g
% 6
20
05 4
10 ol /
x%e eageﬂy
1 0
-1 -0.5 0 0.5 1

-1 -0.5 0.5 1

density

x O

Figure 6.6: Solution of the single layer equation at T' = 0.5 along y = 0 on the square
screen, Example 6.2, Figure 7 in [1()]
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—uniform, 800 triangles
—uniform, 20000 triangles
50 | —fB-graded, (=2, 2312 triangles i

oF | ‘ J

-1 -0.5 0 0.5 1

Figure 6.7: Numerical computation of the corner singularity along diagonal from
(-1,-1) to (1,1) at time 7" = 0.5, Example 6.2, Figure 8 in [1(]

In Figure 6.8 the numerical density of the reference solution at times 0.5,0.75,1.0 are
plotted against the distance to the corner at (1,1) along x = y. The singular exponents
are around —0.78, where the theoretical exponent gives v -1 = 0.2966 — 1 = 0.7034.
In Figure 6.9 the numerical density of the reference solution at times 0.5,0.75,1.0 are
plotted against the distance to the edge at (1,0) along the x-axis. The singular expo-
nents are in close agreement with the theoretical value of —%. We remember that we
can’t deduce from the convergence of the boundary element method in the energy a

convergence of the numerically computed singular exponents.

102 -
: +T=05; a=-0.78 |]
«T=0.75; a=-0.78 ]
~T=1; a=-0.79
10'F ]
>
7]
c
[0]
©
1005 E
107" ‘ ‘
1078 1072 107" 10°

distance to (1,1); y=x

Figure 6.8: Asymptotic behavior of the solution to the single layer equation near corner

along y = z, Example 6.2, Figure 9 in [10]
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Figure 6.9: Asymptotic behavior of the solution to the single layer equation near edge
along y = 0, Example 6.2, Figure 10 in [10]
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Figure 6.10: Relative energy error for the single layer equation on square screen, Ex-
ample 6.2, Figure 11 in [10]

We finally consider the relative energy error compared to the reference solution. We
can’t expect a convergence in L?([0,7] x I'), since the solution exhibits a low spatial
regularity. Therefore we consider the energy norm, as in (2.56), E(T) = YV — 20 f
for T = 1 with the solution vector ¢ after solving the MOT-scheme (2.54) till T = 1.
HO(R* H -3 (")) is comparable or stronger than the energy norm. Figure 6.10 describes
the relative energy error against the degrees of freedom. We see for the 2-graded mesh
a rate of —0.54, whereas the uniform mesh shows a rate of —0.27. The error behaves
in agreement to the expected approximation properties proportional to h (equivalently
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6.4 Numerical experiments

~ DOF~'2) on the 2-graded mesh resp. ~ h/? (~ DOF~"4) on the uniform mesh.

Next we consider the Lo—norm in time of the sound pressure evaluated in a point by
computing S¢p A¢. Figure 6.11 presents the Lo—error in time of the sound pressure
evaluated at (1,1,0.004), (0.75,0.75,1) and (1,1.25,0.25). Each of the points exhibit a
convergence rate proportional to h? resp. h as for the energy norm. However the error
in (1,1,0.004) with distance 0.004 to the corner of the screen is higher than the other
points.

10°¢ - I
[ --uniform, (1,1,0.004)
- p-graded, (=2, (1,1,0.004)
-~-uniform, (0.75,0.75,1)
(B-graded, (=2, (0.75,0.75,1)
10-1 L uniform, (1,1,0.25)
-~-(-graded, (=2, (1,1.25,0.25)
[0)
=
E 10 _2 = —
o
@

/

10°F

10—4 . . L] . . L L
4 5 6 7
10 10 DOF 10 10

Figure 6.11: Lo([0,T'])-error for the sound pressure in three points outside square
screen, computed from single layer equation, Example 6.2, Figure 12 in

[40]

Example 6.3. We compute the solution to the retarded single layer integral equation
Vip = f on I' x R for the L-shaped screen T' = [-1,1]% x {0}\[0,1]? x {0} with the
discretization from Subsection 2.53.1. The weak form (2.49) with constant ansatz and
test functions in space and time are used. The right hand side is specified with f(x,t) =
cos(|klt — k - z) exp(~1/(10t?)), where k = (0.2,0.2,0.2). We choose At = 0.005 and
compute the solution till T = 1. The finest graded mesh in our computation contains
6936 triangles with At =0.005 and B =2, where it serves as a reference solution.

Figure 6.12 shows the density along the diagonal (-1,-1) to (0,0) of the reference
solution at time 0.5. The Figure exhibits a stronger corner singularity at (0,0) than at

(-1,-1).

In Figure 6.13 the numerical density of the reference solution at times 0.5,0.75,1.0 are
plotted against the distance to the corner at (0,0) along the diagonal. The singular
exponents are around —0.22, which is expected to be v -1 = 0.8146 — 1 = -0.1854.
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6 Time domain BEM: graded meshes and hp-version on quasi-uniform meshes

In Figure 6.14 the numerical density of the reference solution at times 0.5,0.75,1.0
are plotted against the distance to the corner at (-1,-1) along the diagonal. The
singular exponents are around —0.71, which is very close to the theoretical value of
v—-1=10.2966 -1 = 0.7034. We achieve here a better approximation of the singular
exponents than in Example 6.2, since we use a more refined mesh. We remember that
we can’t deduce from the convergence of the boundary element method in the energy
norm a convergence of the numerically computed singular exponents.
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- 80
0.6
20 60
0.4
0.2 60 50
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y=X, x € [-1,1]
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Figure 6.12: Solution of the single layer equation at 7' = 0.5 along y = z on the L-shaped
screen, Example 6.3
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Figure 6.13: Asymptotic behavior of the solution to the single layer equation near the
corner (0,0) along y = z, Example 6.3
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Figure 6.14: Asymptotic behavior of the solution to the single layer equation near the
corner (-1,-1) along y = z, Example 6.3

We finally consider the relative energy error compared to the reference solution. We
can’t expect a convergence in L?([0,T] x I') since the solution exhibits a low spatial
regularity. Therefore we consider the energy norm as in (2.56), E(T) = YV — 20 f
for T = 1 with the solution vector ¢ after solving the MOT-scheme (2.54) till T = 1.
HY(R*, H -2 (I')) is comparable or stronger than the energy norm. Figure 6.15 describes
the relative energy error against the degrees of freedom. We see for the 2-graded mesh
a rate of —0.5, whereas the uniform mesh shows a rate of —0.26. The error behaves
in agreement to the expected approximation properties proportional to h (equivalently
~ DOF~'2) on the 2-graded mesh resp. ~ h'/? (~ DOF~'/*) on the uniform mesh.
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Figure 6.15: Energy error norm for single layer equation on L-shaped screen, Example
6.3
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6 Time domain BEM: graded meshes and hp-version on quasi-uniform meshes

(a) Mesh with 8 triangular elements and 9 nodes, (b) Mesh with 18 triangular elements and 16 nodes.
Figure 2 in [19]

Figure 6.16: Mesh of a square screen
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#p=7, DT=0.5, 8 triangles

Energy(t)

Figure 6.17: Energy as a function of time for time-singular f4, Example 6.4. Figure 5
in [19]

6.4.2 Single layer potential for p-version

Example 6.4. We compute the solution to the retarded single layer integral equation
Vi = f on I'x R for the square screen I = [—%, %]2 x {0}, discretized with piecewise
polynomials of degree p as in [91, 90]. We study the convergence of the numerical
solution 1, for At =0.5 with 8 triangles and At = % with 18 triangles (see Figure 6.16),
till T = 4 in terms of an increasing polynomial degree p. We compare various right hand
sides in the square-root of the discretized energy EP(T) =1/ —;bpf/pwp, where f/p is the

corresponding space time matriz for the polynomial degree p.
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Figure 6.18: Relative error in energy norm for the single-layer equation on a square
screen, Example 6.4. Figure 4 in [19]

We define the right hand sides:

fi(t, (2,y,2)) =sin®(1)2?

fo(t, (z,y,2)) = exp(=2/t*)cos(wt — k- (z,5,2)) , with k=(2,0.5,0.1) and w = |k| ,
fa(t, (z,y,2)) = exp(=2/t*)cos(wt — k- (x,y,2)) , with k= (6,0.5,0.1) and w = |k ,
fa(t, (z,y,2)) = sin®(¢)|1 - t|* cos(k - (x,y,2)) , with a = % and k = (6,0.5,0.1) .

Figure 6.17 displays the discretized energy Ep(t) for t € [0,4] of f4 at multiples of times
At = 0.5 with 8 triangles for p = 1,3,5,7 and At = % with 18 triangles for p = 1,3,5.
While p =1 for At = % differs greatly from the other curves p = 1 for At = 0.5 is close
to the other curves at times 0.5 and 1. After the kink of the right hand side at ¢ = 1
only higher polynomials within the same At are close to each other. For the time 2,4,
where all the curves meet, the curves for p=5 At =0.5, p=5 At = % and p=7 At =0.5
are close to each other. The different At in the computations are noticed in particular
for the time interval [2.5,3.5], where there is almost no change in the energy.

Figure 6.18 depicts the convergence in the squar-root of the discretized energy as a
function depending on the polynomial degree for fi,...,fs At = 0.5 8 triangles, fi
At = 1.0 8 triangles and fi, fy At = %, 18 triangles. The convergence rate for the p-
version is expected to be twice as the convergence rate of the h-version. We used an
Aitken extrapolation as the reference for the relative energy error. While for f; At =0.5
resp. At = 1.0, we have a convergence rate approximately at 1.02 resp. 1.12. We get for
At = % a convergence rate of 1.01. For fo, At =0.5 we have a convergence rate of 1.02.
For f3, At =0.5 we have a convergence rate for higher p around 1.01. For fy, At =0.5,
2

we have a convergence rate for higher p around —0.95, whereas for At = £, we have a

convergence rate of approximately 1.02.
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Figure 6.19: Relative error in the square of the energy norm for the single-layer equation
on a square screen, h-version for p = 1,2, 3, Example 6.5. Figure 6 in [19]

The next example studies the h-version for different polynomial degrees p.

Example 6.5. We compute the solution to the retarded single layer integral equation
Vip = f onT'xR* on the square screen T' = [—%, %] discretized with piecewise polynomials
of degree p as in [91, 96]. We study the convergence of the numerical solution v, in a
discretized energynorm till time 2. We use solutions for At = % and 288 triangles for

p=1, At =0.25 and 128 triangles for p = 2,3 as benchmarks for each p.

In Figure 6.19 we plotted the relative error of the square of the discretized energy
for f1, f4 depending on the degrees of freedom. We expect from the approximation
properties a rate proportional to h (equivalently ~ DOF -1/ 2). The points in the curves
for p = 1 corresponds to the mesh At = 0.4 50 triangles, At = % 72 triangles, At = 0.25
128 triangles and At = 0.2 200 triangles. The curves for p = 2 corresponds to At = % 18
triangles, At = 0.5 32 triangles, At = 0.4 50 triangles and At = % 72 triangles. Finally
for p = 3, we use At =1.0 8 triangles, At = % 18 triangles, At = % 72 triangles. For p=3
and f1, we get a convergence rate of 0.52, whereas for f; we get 0.468. For p = 2 and
f1 resp. fi we get a convergence rate of 0.48 resp. 0.425. The mesh At = % with 72
triangles is close to the benchmark mesh, which explains the kink at the last point. The
same occurs for At =0.2 and 200 triangle for p = 1. For p = 1 we suffer from very coarse
meshes, whereas the polynomial degree isn’t high enough to compensate it. Altogether,
the numerical results confirm the theoretical conclusion that the p-version converges
twice as fast as the h—version.
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6.4 Numerical experiments

6.4.3 Hypersingular operator for graded meshes

Example 6.6. We compute the solution to the retarded hypersingular integral equation
We¢ =g on T xRY on the circular screen T' = {(x,y,0) : 0 < /22 +y2 < 1} with the
discretization from Subsection 2.5.4. The weak form (2.62) with linear ansatz and test
functions in space and linear ansatz and constant test functions in time are used. The

right hand side is specified

g(x,t) = (—% +cos(g(4-1t))+ 5sin(5(4-1)) - %l(cos(w(4 —t))+wsin(w(4-1))))x
x[H(4-1)-H(-t)],

where H is the Heaviside function. We choose At =0.01 and compute till T = 4. The
finest graded mesh in our computation contains 2662 triangles with At =0.01 and 5 = 2,
where it serves as a reference solution.
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1 0.5 0 0.5 1 -1 0.5 0 0.5 1

Figure 6.20: Solution of the hypersingular equation at 7" = 2 along y = 0 on the circular
screen, Example 6.6, Figure 13 in [1(]

Figure 6.20 shows the density along a cross-section of the reference solution at time 2.
The figure shows the expected edge singularities known by the decomposition (6.3).
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Figure 6.21: Asymptotic behavior of the solution to the hypersingular equation near
edge along y = 0, Example 6.6, Figure 14 in [10]

In Figure 6.21 the numerical density of the reference solution at times 0.5,1,1.5,2,2.5
are plotted against the distance to the edge at (1,0), along the x-axis. The numerical
solution are in close agreement with the theoretical value of %, where for earlier times
the difference is greater.
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Figure 6.22: L2([0,T], L2(T")) and energy error for hypersingular equation on circular
screen, Example 6.6, Figure 15 in [10]

Figure 6.22 describes the relative energy error and the Ls-error compared to the ref-
erence solution in terms of degrees of freedom. We see for the 2-graded mesh a con-
vergence rate of —0.47 in energy and -0.93 in L9([0,7T], L2(T")). The error behaves
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6.4 Numerical experiments

in agreement with the expected approximation properties in the energy norm propor-
tional to h (equivalently ~ DOF -1/ 2) in the energy and ~ h? (equivalently ~ DOF™!)
in Ly([0,T], L2(T")). For the uniform mesh, we get a rate of —0.18 in energy and —0.33
in Lo, where we expect a rate proportional to h'/? (equivalently ~ DOF -1 4) in energy
and ~ h (equivalently ~ DOF~'/2) in L.

Example 6.7. We compute the solution to the retarded hypersingular integral equation
W =g on T xR* for the square screen T' = [-1,1]% x {0} with the discretization from
Subsection 2.5.4. The weak form (2.62) with linear ansatz and test functions in space
and linear ansatz and constant test functions in time are used. The right hand side is
specified

g(z,t) = (—% +cos(g(4-1t))+5sin(5(4-1)) - %(cos(w(él —t)) +mwsin(w(4-1t))))x
x[H(4-1)-H(-t)],

where H is the Heaviside function. We choose At =0.01 and compute till T = 4. The
finest graded mesh in our computation contains 2312 triangles with At =0.01 and 5 = 2,
where it serves as a reference solution.

Figure 6.23 and 6.24 show the density along the diagonal z = y and along the x-
axis of the reference solution at time 2. The figures display the expected corner and
edge singularities known by the decomposition. Since the solution of the hypersingular
integral equation lies in H;/ 2 (R*, H'/2(T")), the conforming numerical approximation
tends to zero at both edges and corners.

AN N\ ~ -0.5"
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-1 -0.5 0 0.5 1

Figure 6.23: Solution of the hypersingular equation at T = 2 along y = x on the square
screen, Example 6.7, Figure 16 in [10]
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0.5 0 05 1

Figure 6.24: Solution of the hypersingular equation at 7' = 2 along y = 0 on the square
screen, Example 6.7, Figure 17 in [10]

In Figure 6.25 the numerical density of the reference solution at times 0.5,1,1.5,2,2.5
are plotted against the distance to the corner at (1,1) along x = y. The singular
exponents are between 0.65 and 0.71, which do not show a good agreement with the

exact corner exponent vy = 0.2966.

In Figure 6.26 the numerical densities of the reference solution are plotted at the same
times against the distance to the edge at (1,0) along the x-axis. The singular exponents
are between 0.46 and 0.49, which do show a good agreement with the theoretical value
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Figure 6.25: Asymptotic behavior of the solution to the hypersingular equation near
corner along y = z, Example 6.6, Figure 18 in [10]
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Figure 6.26: Asymptotic behavior of the solution to the hypersingular equation near
edge along y = 0, Example 6.6, Figure 19 in [10]
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Figure 6.27: Ly([0,T], L2(T")) and energy error for hypersingular equation on square
screen, Example 6.7, Figure 20 in [10]

Finally, Figure 6.27 shows the error in both the energy and L2([0,7], L2(T"))-norms
with respect to the benchmark solution. The convergence rate in terms of the degrees
of freedom on the 2-graded mesh is —0.51 in energy and —-1.05 in Ly. On the uniform
mesh the rate is —0.26 in energy and —0.50 in Lo. The rates on the 2-graded meshes are
in close agreement with a convergence proportional to ~ h (equivalently, ~ DOF~/?)
predicted by the approximation properties in the energy norm, and ~ h'/? (~DOF -1/ 4
on uniform meshes. Also in the Lo-norm, the convergence corresponds to the expected
rates: Approximately ~ h? (equivalently, ~ DOF~!) on 2-graded meshes, ~ h (equiva-
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6 Time domain BEM: graded meshes and hp-version on quasi-uniform meshes

lently, ~ DOF -1/ 2) on uniform meshes. In all cases the convergence is twice as fast on
the 2-graded meshes compared to the uniform meshes.

Figure 6.27 describes the relative energy error and the Lo—error compared to the refer-
ence solution in terms of degrees of freedom. We see for the 2-graded mesh a convergence
rate of —0.51 in energy and —1.05 in Ly. The error behaves in close agreement with the
expected approximation properties in the energy norm proportional to ~ h (equivalently
~ DOF™"?) and in Ly ~ h? (equivalently ~ DOF™). For the uniform mesh we get a
rate of —0.26 in energy and —0.5 in Lo which is in good agreement with the expected
rate proportional to h'/2 (equivalently ~ DOF _1/4) in energy and ~ h (equivalently
~ DOF~'2) in Lo.

Example 6.8. We compute the solution to the retarded hypersingular integral equation
W¢ =g on I x RY for the L-shaped screen T' = [-1,1]* x {0}\[0,1]? x {0} with the
discretization from Subsection 2.3.4. The weak form (2.62) with linear ansatz and test
functions in space and linear ansatz and constant test functions in time are used. The
right hand side is specified

g(x,t) = (—% +cos(g(4-1t))+5sin(5(4-1)) - %(COS(W(ZL —t))+msin(w(4-1))))x
x [H(4-t) - H(-t)],

where H is the Heaviside function. We choose At = 0.01 and compute till T = 4. The
finest graded mesh in our computation contains 6936 triangles with At = 0.01 and 8 =2,
where it serves as a reference solution.
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Figure 6.28: Solution of the hypersingular equation at 7' = 2 along y = x on the L-shaped
screen, Example 6.8
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Figure 6.29: Asymptotic behavior of the solution to the hypersingular equation near
the corner (0,0) along y = x, Example 6.8

Figure 6.28 shows the density along the diagonal (-1,-1) to (0,0) of the reference
solution at time 2. The figure exhibits a stronger corner singularity at (0,0) than
at (-1,-1). Since the solution of the retarded hypersingular integral equation lies
in H* (R*, H'%(T)), the conforming numerical approximation tends to zero at both

corners.
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Figure 6.30: Asymptotic behavior of the solution to the hypersingular equation near
the corner (-1,-1) along y = xz, Example 6.8

In Figure 6.29 the numerical density of the reference solution at times 0.5,1,1.5,2,2.5
are plotted against the distance to the corner at (0,0) along the diagonal. The singular
exponents lie between 0.27 and 0.31, which do not show a good agreement with the
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6 Time domain BEM: graded meshes and hp-version on quasi-uniform meshes

exact corner exponent vy ~ 0.8146.

In Figure 6.30 the numerical density of the reference solution at times 0.5,1,1.5,2,2.5
are plotted against the distance to the corner (-1,-1) along the diagonal. The singular
exponents are similar to Figure 6.25, where both do not show a good agreement with
the exact corner exponent v ~ 0.2966.

Figure 6.31 describes the relative energy error compared to the reference solution in
terms of degrees of freedom. We see for the 2-graded mesh a convergence rate of —0.5,
where the uniform mesh admits a convergence rate —0.26. Both are in good agreement
with the expected rates proportional to h (equivalently ~ DOF -1/ 2) for the 2-graded
mesh and ~ h'/? (equivalently ~ DOF~'/4) for the uniform mesh.

—-uniform ; «a=-0.26
—~-graded, (=2; a=-0.5 ||
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\w

relative energy error
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Figure 6.31: Energy error for the hypersingular equation on the L-shaped screen, Ex-
ample 6.8

6.4.4 Dirichlet-to-Neumann operator for graded meshes

At last we consider the Poincaré-Steklov operator on screens. We will use the form
given in Subsection 2.3.5 to compute this operator.

Example 6.9. We compute the solution to the integral equation Su =h on T'x R* for
the square screen T' = [-1,1]% x {0} with the discretization from Subsection 2.8.5. The
right hand side is specified

h(x,t) = (—% +cos(g(4-1t))+5sin(5(4-1)) - %l(COS(W(4 —t))+wsin(w(4-1))))x
x[H(4-t) - H(-1)],

where H is the Heaviside function. We choose At = 0.01 and compute till T = 0.65.
The finest mesh in our computation contains 2312 triangles with At = 0.01 and 8 = 2,
where it serves as a reference solution.
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Figure 6.32 and 6.33 show the density along the diagonal = = y and along the longi-
tudinal y at « = —0.8754 of the reference solution at time 0.65. The figures display
the expected corner and edge singularities known by the decomposition (6.5). Since
the solution of the Poincaré-Steklov operator lies in oY 2(R+, H'2(T')), the conforming
numerical approximation is zero at the edges and corners.
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Figure 6.32: Solution of the Dirichlet-to-Neumann equation at 7' = 0.65 along y = x on
the square screen, Example 6.9, Figure 21 in [10]
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Figure 6.33: Solution of the Dirichlet-to-Neumann equation at T = 0.65 along x =
-0.8754 on the square screen, Example 6.9, Figure 22 in [10]

In Figure 6.34 the numerical density of the reference solution at times 0.25,0.5,0.6,0.65
are plotted against the distance to the corner at (1,1) along the x = y. The singular
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exponents rise from 0.54 for 7' = 0.25 up to 0.65,0.66,0.67 for times 0.5,0.6,0.65, similar
in Figure 6.25, which significantly differs from the exact value v ~ 0.2966.

In Figure 6.35 the numerical density of the reference solution at times 0.25,0.5,0.6,0.65
are plotted against the distance to the edge at (-0.8754,1), along the longitudinal y
for a fixed z = —0.8754. The singular exponents rise from 0.35 for T = 0.25 up to
0.40,0.41,0.41 for times 0.5,0.6,0.65, which is in qualitative agreement with the exact
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Figure 6.34: Asymptotic behavior of the solution to the Dirichlet-to-Neumann equation
near corner along y =z, Example 6.9, Figure 23 in [10]
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Figure 6.35: Asymptotic behavior of the solution to the Dirichlet-to-Neumann equation
near edge along = = -0.8754, Example 6.9, Figure 24 in [10]
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Figure 6.36: Error in Ls([0,7"], L2(T")) norm for Dirichlet-to-Neumann equation on
square screen, Example 6.9, Figure 25 in [10]

Figure 6.36 describes the relative error in Lo ([0,T], L2(T")) compared to the reference
solution in terms of degrees of freedom. We see for the 2-graded mesh a convergence
rate around -1.01, where the uniform mesh admits a convergence rate —0.48. Both
rates are in good agreement with the expected rates proportional to h? (equivalently
~ DOF™!) for the 2-graded mesh and proportional to h (equivalently ~ DOF -1/ 2) for
the uniform mesh. These results are also similar to the retarded hypersingular integral
equation on the square screen (see Example 6.7).
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7 Unilateral contact problems: Punch
problems / Crack problems

7.1 Introduction

Contact between objects is ubiquitous in mechanics, yet the analysis and the computa-
tions pose severe challenges. Contact problems have a wide range of applications like in
fracture dynamics, crash analysis, biomechanics and thermo-electro-mechanical contact
[103]. We consider a unilateral contact at the interface of two materials. We assume
that if contact takes place, there is no penetration of the elasic material. In [67] uni-
lateral contact has been studied for various types, like static, quasi-static and dynamic
contact problems. For time-dependent contact problems one can find computations in
[38, 39, 60, 61, 66, 58]. But a study of time-dependent contact problems is difficult
[10], and existence of weak solutions is shown in few cases, such as viscoelasticity or
modified contact conditions [31]. The existence of solutions in time-dependent cases
is at least known for flat contact areas [33, 71]. To our knowledge for curved surfaces
there is no proof for existence of solutions for time-dependent contact problems, without
dissipation in the equation.

In this chapter we follow the steps based on the paper jointly with H. Gimperlein,
F. Meyer and E. P. Stephan [17]. The analysis and the a priori error estimates for
punch and crack problems are done for the half-space case in 3 dimensions. Numerical
experiments for flat contact and non-flat contact surfaces on the unit cube are done for
3 dimensions as well, where we solve it with a space-time Uzawa algorithm.

Let o = (2/,23) := (21,72,23) € R the coordinates, where we consider the half-space
Q = R3, with the third coordinate x3 is positive, or = R, with the third coordinate
x3 is negative. Then the flat contact area G is a Lipshitz subdomain of T = 9 = R? x 0,
modeling a crack in G between the material in  and the other material in R3\(. Since
we won’t allow penetration, we describe the condition with w* —w™ > 0, where w* resp.
w~ is a displacement of the upper face resp. the lower face in G. For areas without

) - _ - e i N _
contact, i.e. w* —w~ >0, the tractions o := —,udas’ = —ud,x’;, oL = —M%—;" = _”%TZ,U

vanish, where p is a constant, n is the unit normal vector pointing in the same direction

+ . ~ - . ~
as x3 and %(z,t) = limgp3 L ger gng(x,t) and %71;(30,15) = limgeps_, per g—;‘;(az,t). Now

we prescribe the opening crack to be symmetric with respect to G. Therefore w* = —w

and o, = -0, . Hence it is enough to consider the positive half-space Q = R3 with
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7 Unilateral contact problems: Punch problems / Crack problems

+ . . .
w:=w" and o, = —,uaa—é” = —u%. For given forces g the contact conditions are:

w(x,t) >0 for (z,t) e G xR* |

—ug—;‘:(l‘,t) >g(xz,t) for (z,t) e GxR*

w(z,t) >0 for (z,t) e GxR" = —ug—l:(:n,t) =g(x,t),
w(x,t) =0 for (z,t) € (T\G) xR* .

Therefore we get the crack problem

%QT‘Q”—AU) =0 for (z,t) e Q xR* |
w(z,0) =w(x,0) = for z e Q|

w(x,t) =0 for (z,t) € (T\G) xR* |
w(x,t) >0 for (z,t) e G xR* |
—ug—";‘l’(ac,t) >g(x,t) for (x,t) e GxR" |
(—u%—%’(w,t) —g(x,t)w(x,t) = for (z,t) e G xR* .

Now we extend w to negative terms by zero as well and using the continuity of w, we
consider the following crack problem:

%%”—Aw = for (z,t) e QxR |

w(x,t) = for x € Q,t € (—00,0],

w(x,t) =0 for (z,t) € (T\G) xR* | (7.1)
w(x,t) >0 for (z,t) e G xR* |

—ug—";':(x,t) >g(x,t) for (x,t) e GxR" |

(—ug—i‘;(x,t) —g(x,t)w(x,t) =0 for (z,t) e G xR* .

The physical crack problem involves instead of the scalar wave equation used here,
the time-dependent Lame equation, with analogous contact conditions for the normal
component of the displacement and the stress. But we still refer to (7.1) as the crack
problem, even though it is simplified.

Punch (stamp) problems, considered in [26, 12, 73], model a punch hitting an elastic
material, where the punch doesn’t penetrate the elastic material. In this case we don’t
have the information on where contact between the punch and the elastic material
appears. We study the punch problem for a half-space Q = R? and T' = 9Q = R?x{0} with
the scalar wave equation instead of the time-dependent Lame equation. The boundary
conditions also involve the displacement w and the traction o, := —,u‘g—‘;; = —ug—;’;,
instead of the corresponding normal component of the displacement and the stress
in the time-dependent Lame case. We still refer to this simplified problem as punch
problem. We describe the surface of the punch with x5 = ¢((z1,22),t) < 0. Further
we state the assumption ¢((0,0),t) =0, ¢((x1,22),t) - —oo for \/x? + 23 — oo, which
means that we consider the punch on a bounded domain with the tip at (0,0). Let G
denote the flat unknown contact area and 7 denote the displacement of the punch in
xz—direction. Then in the contact area with g(z,t) = (2, t) +n(x,t) with 2’ = (21, x2),
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7.2 Boundary integral formulation and well-posedness for the crack problem

we get the contact conditions:

0z, (z,t) 20 for (x,t)
w(z,t)  >2g(x,t) for (z,t)
Oz, (z,t) >0 for (x,t)
Oz, (z,t) =0 for (z,t)

Therefore we get the punch problem:

%2712“ - Aw =0
w(z,0) =w(xz,0) =0
0z, (x,t) =0
Oz, (z,1) >0
w(x,t) g(x,t)
(U) - g)o'acn =0

e G xRY |

e G xRY |
€eGxR" = w(x,t) =g(z,t),
e (I\G) xR* .

for (z,t) e QA xR* |
for x € Q|

for (z,t) e T\G xR* |
for (z,t) e GxR" |
for (z,t) e GxR" |
for (z,t) e GxR* .

Again extending w to negative times by zero as well and using the continuity of w, we

get
%2712” -Aw =0
w(x,t) =0
Oz, (z,1) =0
Oz, (2,1) >0
w(x,t) g(x,t)
(w-g)og, =0

for (z,t) e A xR* |
for x € Q,t € (-00,0] ,
for (z,t) e T\G xR" |
for (z,t) e G xR* |
for (z,t) e G xR" |
for (z,t) e GxR* .

In order to analyze these problems we remember the set of nonnegative distributions
for r e R HL(R*, HY/2(G))* and the restriction pg to @ = G x R. We will need them

in the following.

7.2 Boundary integral formulation and well-posedness for the

crack problem

We proceed as in Cooper |

] by considering a regularized contact problem with pa-

rameter o > 0, where the analysis allow with ¢ — 07 at the end an existence of weak
solutions for the Crack problem (7.1). We define w, := e ‘w and the right hand side
go = € %tg. Then we obtain the following problem:

2
(%-FO') Wo = AWy
wy =0
we 20 7—/1852” 2 Jo
(—Maé“f{’—ga) we =0
wge =0

for (z,t) e QxR ,

on N\GxR ,

on GxR,

on G xR,

for (z,t) € 2 x (-00,0) .

(7.3)
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7 Unilateral contact problems: Punch problems / Crack problems

Through the application of the Fourier transform in (z',t) with 2’ = (21, z2) (for details

see [17, 88]), we define the Dirichlet-to-Neumann operator S, by:
0wy
So wall"xR = p) (74)
n
with S, a generalized pseudodifferential operator with symbol —iul'(-,-)
Sotg = (2m) [ MO (LD (g + 0, €))io (€0, € ) dEodET . (75)

where T'(&y +i0,&") = \/c;2(& +i0)2 = |¢']2, & = (&1,&). For the half-space Q = R?, we
get mapping properties and a coercivity estimate to the Dirichlet-to-Neumann operator.
Further we use the restriction to pg to @ = G xR

Theorem 7.1 ([17], Theorem 5). po S, : HE(R*, H2(G)) » HE(R*, H 2(G)) contin-

wously and |81, , 5o (9@ Sa6,0)o 5 1612, ,

N =

An application of (7.4) to the boundary conditions on G x R, we obtain an equivalent
inequality with the trace u, = we|r: Find u, with supp u, ¢ Qo = G x R" satisfying

U 20, Sotg > 9o and (Sp s — gs) U =00n Q=G xR . (7.6)

Using the restriction pg and testing with v € H;/2(R+,FII/2(G))+, we get for smooth
go a variational inequality:

1 ~ 1 ~
Find u, € H2 (R*, H3(G))* satistying Vv ¢ H2 (R*, H2(G))*:
<pQSa' uUav_uU>GXR+,J 2 <go'av_u0'>G><R+,U . (77)

Theorem 7.2 ([17], Theorem 6). The contact problem (7.3) is equivalent to the vari-
ational inequality (7.7).

Proof. Tt is enough to prove the equivalence of (7.6) and (7.7). In order to derive (7.7)
from (7.6), we test the second inequality of (7.6) by v > 0:

(pQ So U = 9o, V)GxR* o > 0.

By the third equality in (7.6) and choosing v = u, we see (pQ S¢ Uy — go, Us ) GxR* o = 0.
Therefore we obtain the variational inequality (7.7).

Conversely assume that (7.7) holds. Since u, € H;/2(R+,f[1/2(G))+, we need to prove
the second and third (in-)equalities of (7.6). We choose v « H;/z(R+,];~Il/2(G))+
in (7.7) such that v —u, = v" > 0 to obtain (pgSs s — go, V' )Gxr+,s > 0. There-
fore S;us — go > 0 follows. Now setting on the one hand v = 2u, > 0 in (7.7)
to get (pQ S Us, Us)GxR o > (JosUo)Gxr* o and on the other hand v = 0 in (7.7)
to get (pQ So Uo,Us)axR* 0 < (Jos Uo)GxR* 5, We deduce (pg So s = go,Us)GxR* o = 0.
Since the first and the second inequalities already hold, we get the remaining equality
(So Uy — go)ug = 0. O

>
2
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7.3 Discretization and a priori error estimates for the crack problem

3
Theorem 7.3 ([17], Theorem 7 [33], p 450). Let g € Hz (RJ',H_%(G)). Then there
exists a unique solution u, € H2 (R*, Jig (G))" of (7.7).

3
Theorem 7.4 ([17], Theorem 8, [33], p. 451) Let ge H (R*,H _%(G)) Then there
1

exists a unique w(-, x3) € C(Rxd, HZ (R*, H2 (R?)) n HY(R*, H'(R?)) satisfying (7.3).

7.3 Discretization and a priori error estimates for the crack
problem

For the discretization spaces, we refer to Section 2.3 and assume that the triangulation
to be compatible with the contact area G, such that for I'; nG # @ for all i =1,..., Ny,
then int I'; ¢ G. Therefore we have VP(G) c VP(G) c VP(T'). For up as € VPL, we will
use the same functions in space and time as in Subsection 2.3.5. ’

We recapltulate the continuous variational 1nequahty

Find u, € HZ (RY, i (G))* such that for all v e HZ (R*, %( G))*, there holds

<pQ Sauaav_ua>GxR+,o 2 (gav_uU>GxR*,o— . (78)

Let K ;; AL C V}f” ’g . be the subspace of nonnegative piecewise polynomials. The discretized

variational inequality reads: Find up a; € K ;{ A; such that for all vy A € f(,f As there
holds

(PQSotn AL, Vn, At = Un,AL)GxRY .o 2 (s Un, At = U At)GxR* o - (7.9)

For the theoretical analysis, S, can be computed from the retarded integral operators
V,K,K' W, like in Subsection 2.3.5, where o > 0 is required. As in Falk [13] in the
elliptic case, we state an a priori error estimate for the variational inequality for a
conforming ansatz space.

3 1 ~
Theorem 7.5 ([17], Theorem 10). Letg e H2 (R*, H 2(G)) and letu e HZ (R*, H2(G))",
respectively up ¢ € Kh ALC H2 (R, iz (G))™ be the solutions of (7.8), respectively (7.9).
Then the following estimate holds:

HU—Uh,At”%lla*ﬁo inf (]lg- PQ So U”l_lgHU ¢hAtH_77g*+||u ¢hAt||1 10*)~
2207 g areK) Ay 2 '

(7.10)

Proof. Let g € HQ(]R+ H” 2(G)) and u € H?(R+ H'?(@))* be the solution of (7.8).
Testing (7.8) with ¢ € H2 (R*, i (G))" we divide

<pQ Sou,p— U)G’X]Rﬂa = <pQ Sou, ¢)G><]R+,a - (pQ Sou, U)Gx]R*,a
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7 Unilateral contact problems: Punch problems / Crack problems

Now shifting (pg S u, ¢)Gxr+,» to the right hand side of the inequality (7.8), we get

—(pQ Sot, u)Gxr* o 2 (9, — U)axR+ 0 — (PQ So U, P)GxR* o -
Therefore

(PQ So u, u)axrr 0 < {9, = P)Gxr+ o + (PQ So U, D) xR o - (7.11)
Analogously for (7.9) testing with ¢5 a¢ € K A We note that

(PQ So un AL, Un,AL)GxRY o < (s U AL — Oh AL)GxR* 0 + (DQ So Uh At OhAL)GxRY o (7.12)

Using the coercivity in Theorem 7.1, we obtain with (7.11) and (7.12)

|lu = up, At H%%,%,w So (PQ So (U —upat), = Up At)GxR* o
=(pQ So(u —upat), u)axrt o = (PQ So (U — Un At), Un,AL) GxR* o
= (PQSsu,u) GxR% o — (PQSoUn, AL, U) GxR% o —(PQSo U, U, At) GxR% o +(PQSoUh, At Uk, AL) GxREe
<{g,u = @)axrio + (G, Un, At = Ph,AL)GxREe + (DQ So Un At Ph,AL) GxREs
+(pQ So U, ) GxRto — (PQ So Uy Up At)GxREe = (PQ So Un Aty U)GxR%o
=(g,u = @)axrio + (G, Un,At — Oh,AL)GxREe + (DQ So Uy @ — Un At)GxR%o

+{pQ So Un Aty Ph,At — U)GxREs-
We add 0 = (pg So u, u = o, At)GxR%e — (PQ So U, U = dp AL)GxR%o intO:
(PQSsun,AL:DR,AL — U)GxREe = (PQSHU—UR AL U — Oh AL)GxRYe — (PQSHUU— Pl AL)GxRYo -
Hence, we get

|u = un,A H%%é,w So (9, u = B)axreo +{gs Un, At = Ph,AL)GxRAo H(PQ So Uy @ — Un At)GxR%o

+(pQ So(u—upAt), U — PnAt)axRie — (PQ So U, U — Op AL)GxRY e

=(g,u)axrto =) D) axRio +{G,Un,AL) GxRto —{9:Ph,At) xR0 +(PQSo U, ) xR0

—(PQSsuun AL) xR e H(PQSo(U—Un, ALl U—On AL) GxR* o

~ (PQSoU,u) GxRto +{PQSAU,PhAL) GxR Yo

= (g, un.at — P)axrto — (PQ So Us Ph,AL — O)GxR%o + (G, U — On AL)GxRY o

—(pQ So U, u— Py At)GxRYe + (PQ So (U — Un,AL), U — Op AL)GxRY e

=(9 - So U, U~ Pp At)axR e +{9 = PQ So Un,Ats Un,At — P)GxREe
+(pQ So (U —up,AL), U — Ph AL)GxRYo-

Because of the conforming discretization, we may choose ¢ = uj a; and conclude
v —up, A ||2%,%707* So (9-PQSot u=0n At) GxRe + (PQSo(U—tn,AL) U=Ph AL) GxR%e- (7-13)
We estimate both terms by duality:

lu=unatl?y 1, Solg-paSaully 1 o lu=dnatl 31 #IPoSotu=nan 1 s, lu=dnaily .-
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7.4 Mixed formulation of the crack problem

_1 ~ _1
With the continuity of po Sy : H, 2 (R*, H2(G)) - H, 2 (R*, H"3(G)), in Theorem 7.1

with s = —%, we obtain

2

lu=unadlZs s, Solg=peSsuls 1, lu=dnatl 11, Hlu-unadl 1

— 5 ;0% l@*”u_gbh,At”llm*-

) 29

We conclude with the help of Young’s inequality for small ¢ > 0 and combining €|u —

U, At \E 1, with the left hand side
727 b

=

lu=wnadl®s s, Solg=peSouls 1 lu=dnatl 11+ lu=dnadis, .-

ag,*

It follows the statement by taking the infimum over all ¢p, A O

7.4 Mixed formulation of the crack problem

We define the Lagrange multiplier A := S, u —g. Then A describes the difference of the

traction S, = —uag;;’ and the given forces g in G. It determines the additional forces

occuring during actual contact, and therefore we are interested in a formulation, where
A as well as u appears.

3
Theorem 7.6 (Mixed formulation, [17], Theorem 14). Let g € HZ? (R*,H%(G)). The
variational inequality formulation (7.8) is equivalent to the following formulation:

1 ~ 1
Find (u,\) € HZ (R*, H2(G)) x HZ (R*, H"2(G))* such that

{(a)) <SU u,’U)GX]RJ;g - ()\7U>GXR+,0' = <ga U>G><]R+:O' ’ (714)

(b (’LL, m—= A)GXR*,U 2 0,

1 ~ 1 1 1
for all (v, u) € HZ (R*, H3 (G)) x HZ (R*, H™3(G))".

Proof. First, we observe an equivalence of (7.8) to the following problem: Find u €
1 ~ 1 ~
H; (]RJf,H%(G))Jr such that for all v e H7 (RJ’,H%(G))*, u solves

{(a) <SU ’U,,U)G’X]R",O' = (gvu)GXRtU ’ (715)

(b) (So U7U>GxR+,o 2 (g,U>GxR+,a-

This is due to setting v = 2u on the one hand and v = 0 on the hand in the variational
inequality (7.8). We get

(Sou, u)axris 2 (9, U)axrts , and (S u, u)axrte < (9, U)GxREo
Therefore (7.15a) holds. Using (7.15a) on (7.8) we obtain:
<SO' u, U)GXR*,U - <SO' u, u)GxR*’,U 2 <97 U)GXR*,U - (97 U)GXR*,U ’

where (7.15b) follows. Conversely, we subtract (7.15a) from (7.15b) in order to get (7.8)
from (7.15).
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7 Unilateral contact problems: Punch problems / Crack problems

For getting (7.15) from (7. 8) we prove (7.15) = (7.14). With (7.15b) for A = S,u - g,
we get for all v € HQ(]R+ H2(G))+ 0 < (Sou—9g,0)axr* 0 = (A, V)GxR* o Since v > 0,

we deduce A > 0 and therefore \ € H2 (R*, H"(G))+ (7.14a) holds by substracting
(X, v)GxRr+o of the left hand side of (7.15b) and using the definition of A.
Via (7 15a) we see (A, u)Gxrto = 0 and hence, (u, it = \)gxrto = (U, 1) GxR%e 2 0, because

we HE(R', F3(G))" and ue HE (RY, - 3(Q))".
1 ~ 1
Conversely we prove (7.14) = (7.8). Let (u,\) € H2Z (R*, H2(G)) x HZ (R*, H 3 (G))*

be the solution to (7.14). Again setting on the one hand p = 2\ and on the other hand
p =0, we get (u, \)gxrts 20, (U, A\)gxrto < 0. Therefore (u, \)gxr+os = 0.

1
If we assume that w is not > 0, then there exists p € Hg (RJ“,H_%(G))Jr such that
(u, t)exr+e < 0, and we observe from (7.14b) the contradiction

0 < (u, b= A)axrio = (U, ) axRie — (U A)axRis = (U, 1) GxREe <0 .

1 ~ 1 ~
Therefore u € H? (R*, i (G))*. Applying v-u as win (7.14b) for v e HZ (R™, i (G)H,
we get (V—u, A)axrto = (U, A) xRt — (U, A)axrte = (U, A)axrte > 0. Testing (7.14a) with
v — u, we obtain

(Sou, v = u)Gxrie = (A, U = U)GxrYe = (9,0 = U)GxR%o
or equivalently
(SU uUu—g,v— u)GxRtU = <)\, V- u)GxRtg > 0.

So we get (7.8) and therefore (7.15), too. O

The discrete formulation reads as follows: Find (un, At,, Ahy,Aty) € Vhl’ Aty (V£20At2)+

. . 71,1 0,0 +
satisfying for all (vp, Ay, fhg ALy) € Vhl,Atl X (VhQ,Atz)

{(a) (So Uhy Aty Vhi Aty ) GxRYe = (Aha,Ats> Uhy Aty )GxREe = {9, Vhy Aty )GxRYo (7.16)
(b) <uh1,At1 y Hho Aty — )‘h27At2>GXRJ§U 20 .
Next in [47] for sufficiently different meshes to the Lagrange multiplier Ay, a¢, and the

solution up, A¢, a discrete inf-sup condition is obtained:

Theorem 7.7 ([17], Theorem 15). Let C' > 0 sufficiently small, and % <C.

Then there exists a >0 such that for all \p, Aty :

<uh1 LAt )‘hz,AtQ >G><]R+,O'

sup > Ay atsllo 14 - (7.17)
Phy, Aty | Hhy, Aty ”0,%,0,* :
The existence of an unique solution of (7.16) is done in [17]. Now we state an a priori

error estimate for the mixed formulation (7.16).
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7.4 Mixed formulation of the crack problem

1 ~ 1
Theorem 7.8 ([17], Theorem 16). Let (u,\) € HZ (R*, H3(G)) x HZ (R*, H 2 (G))*
solve (7.14) and (Un, Aty Aho,Ats) € V;;}Atl x (‘/}?2’(]A7€2)Jr solve (7.16). Then the following
a priori error estimates hold:

. S _1
A=Az atollo 105 If [A=Dnyarsllo 1 o+ (A1) Z|u—unan | 11,5 (718)
ho,Aty

u— Uhy Aty H_%,%@* So " inf fu- UhlAh‘

11
51510,%
1,At1 27277

+ _inf {Hj‘hz,AtQ “Al1 1o+ 1At = Aks.ar, ||;,_;,0} . (7.19)
Xy, Aty 272 272

Proof. In order to prove the a priori error estimate for the Lagrange multiplier (7.18),
we take advantage of (7.14) and (7.16) to observe

(Mo, Aty = Ao, Aty Uhy Aty ) GxRo
= (Solny Aty > Vhi, Aty )GxREe = (G, Vhy Aty )o = (Aha,Ato Vny A ) GxRY e
= <SO'uh1,At17 vh1,At1>GXR*’,O’ - <Sau7 Uh1,At1>G><R+,O'+ ()\7 vh1,At1>GXR+,U - <Ah27At27 /Uhl,Atl)GXR*',U

= (So (Uny Aty = 1), Uhy Aty )xRte + (A= Ang Atys Uy AL ) GxREo - (7.20)
Then using (7.17) in Theorem 7.7 and (7.20), we obtain:

<)‘h2,At2 - Ahz,AtQ? Vh1,Aty )GxRﬁo‘

aHAhQ,AtQ - :\h2,At2 HO,*%’U < sup

Vhy Aty ”UhhAtl ”0,%,0,*
= sup (Sa(uhhAh B u)’ Uhy,Aty >G><R+,U + ()‘ — 5‘h27At2 » Uhy, Aty >GXR+’U
Vhq,Atq ||Uh17At1 ||07%70'a*

From duality, the mapping properties in Theorem 7.1 and an inverse estimate in time
=1,1
for v, Aty € Vhl’,AtI” see [53] (3.177):

1

lonae 11,8 W’\vhl,ml lo.2 0 >

we have for the first term

(So (s, Aty =), Vhy an ) Gxrio| S |So(uny,an —w)l 1 1 olvnanly 1, .
_1
S lunyan —ul 11 o (A8) 72 [ony At o1 o -

Estimating the second term with the duality:

(A = Mo ata Uy At Y Gmsal $ 1A = Mo ata o -1 o 10180 o, 3 0 -

With the triangle inequality, we get

03,0 + “)‘h27At2 = Ahg, At

—=

[A =Ko, a0 0,1 5 < A = Ao, 010

v _1
SIA=Ansanlo 1o+ (A0) 72 [un an —ul 11,
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7 Unilateral contact problems: Punch problems / Crack problems

Therefore taking the infimum over S\hQ,Atg yields the a priori error estimate (7.18).

_1
0ot (A0 Flun an —ul_y 1, . (721)

)

[A=Anoatallo 1o 5 _inf A= Aha. At
ho,Aty

In order to prove (7.19) we note the Galerkin orthogonality

<SO'(U - uhl,Atl )7 vhl,Atl >GXR+,O‘ = ()\ - )\hQ,AtQ ) Uhl,Atl )GXR*;U .

Using the coercivity of the Dirichlet-to-Neumann operator in Theorem 7.1, we get for

all v, A, and Ap, At

[yt = vhanlZy 1 o So (So(Unan =V an), th At = Vhy At )oxkso

= (SU(U/ - vhl,Atl )7 uhl,Atl - Uhl,Atl )GXR*’,O’ + (SG(uhl,Atl - U), uhl,Atl - vhl,Atl )GXR*}U

= <Sa(u_vh17At1)7 Uhq, At~ vh17At1>G><R*,0+( )‘hz,Atz_ A+ )‘thtz_ )‘thtz ) uhl,Atl_vhhAh)GXR*ﬁ‘

The mapping properties in Theorem 7.1 and the duality, yield

luny At = vny Al ”%%’%’ So [u=vn, a4 | 1l |uny Aty = Vny A H,%é@*

o, %
| Ang,aes Al i-1o Huhl,Atl_vfu,Atln_%,%,a,;"”)‘hz,Ah_)‘hQ,AtQ” 1-i0 |wny At vn, At -1ioxe

Dividing by [un, At, = Vh At |1 1, leads to
2727 b
luny ati=vn an |11 5. Solu=vhy anl1 1 5 #HAms at=AlL 1 HAny At=Ans a1 1 -
With the triangle inequality and estimating with the stronger norm, we get

lu=unyan 1 1 50 < lu=vnanl 115+ [0nan v anl 11,

So lu=vn a6 11 5 H [ Ao, ata=AlL 1 o+ [ Ano,ats= Ao, an |1 215 -

Taking the infimum yields (7.19). O

7.5 A variational inequality for the punch problem

We consider the punch problem, described in (7.2) with a retarded single layer potential
ansatz w = So,, = Su with u = 05, and the shearing strains vanish in the half-space.
With the jump relation of S, we write the punch conditions

u(x,t) >0 for (x,t
(Vu)(z,t) >g(z,t) for (z,t
u(x,t) >0 for (x,t
u(x,t) =0 for (x,t

eGxR,

eGxR,

eGxR=—= (Vu)(z,t)=g,
eI'\GxR.

— N N

We can write (7.2) as:
1
Find u e H? (]R+,H_%(G)) with supp u c Qo = G x R such that

u>20, w=Vuz2g, (w=(¢+n))u=(Vu-g)lu=00on GxR . (7.22)
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7.5 A variational inequality for the punch problem

1
Using the restriction pg to @ and testing with v € H7 (R, H3 (G))*, we get for smooth
g the variational formulation:

1 ~ 1 ~
Find u e H2Z (R*, 2 (G))* such that for all v e HZ (R*, H2(G))*:

<pQVU7 U= u)GxR*,o‘ 2 <g, v - u)GxR*,o‘ . (723)

For flat contact area, Q2 = R, we use the following estimates known from [33, 56], which
doesn’t include a time derivative:

18121 _1 .0 S0 (PQV S, D)o S 1013 1, (7.24)

20
The following theorem is only stated in [17], but proven here.

Theorem 7.9 ([17], Theorem 17). The punch problem (7.2) is equivalent to the vari-
ational inequality (7.23).

Proof. The proof goes analogous to Theorem 7.2. It is enough to prove the equivalence
of (7.22) and (7.23). In order to derive (7.23) from (7.22), we test the second inequality
of (7.22) by v > 0:
(poVu—g,v)axr* o > 0.

By the third equality in (7.22) and choosing v = u, we see (poVu — g,u)Gxr+s = 0.
Therefore we obtain the variational inequality (7.23).

Conversely (7.23) holds. Since u € H;/Q(R+,f[_1/2(G))+, we need to prove the second
and third (in-)equalities of (7.22). We choose v € H;/Q(Rﬂ]717_1/2(6*))+ in (7.23) such
that v —u = v" > 0 to obtain (poVu - g,v" )gxr+ s > 0. Therefore Vu — g > 0 follows.
Now setting on the one hand v = 2u > 0 in (7.23) to get (poVu, u)axr+ o > (g, U)GxR* o
and on the other hand v =0 in (7.23) to get (poVu,u)axr* o < (9, U)GxR* 0, We deduce
(pQVu—-g,u)gxr+ s = 0. Since the first and the second inequalities already hold, we get
the remaining equality (Vu - g)u = 0. O

As for the variational inequality for the Dirichlet-to-Neumann operator, a coercivity
estimate for V' in the half space is known. Therefore a unique solution exists:

3

Theorem 7.10 ([17], Theorem 18, [33], p. 456). Let o >0 and h € H? (RJ’,H%(G)).
1 ~

Then there exists a unique classical solution u e Hg (]R+,H_%(G))+ of (7.23).

The corresponding discretized variational inequality reads:
Find up At € IN(,jAt such that for all v, A € R’,:At.:

(PQVun Aty Uh At — Un AL)GxR* o = (R Vn, AL — Un,AL)GXR* o - (7.25)

We get the following a priori error estimate.
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7 Unilateral contact problems: Punch problems / Crack problems

3 1 —~
Theorem 7.11 ([17], Theorem 19). Let ge HZ (R*, H2(G)), and let ue HZ (R*, H™2 (G))*,
Up At € f(;;m be the solutions of (7.23), respectively (7.25). Then the following estimate
holds:

2 : 2
lu=unaelZs s, Szh’;gﬁq (A|t|g —pQVuly s lu=dnarl s 1, +lu-dnacli_1,.)-

(7.26)

By using the mapping properties of V' in the half space, as in Theorem 2.3, and (7.24)
the steps of the proof are analogous to the proof of Theorem 7.5. The proof is missing
in [17], so we complete it here.

3 1 ~
Proof. Let g e H3 (R+,H%(G)) and u € H2 (R*, HY2(G))* be the solution of (7.23).
1 —~
Testing (7.23) with ¢ € H2 (R*, H2(G))* we divide

(PQVu, ¢ —u)axr+ o = (PQV U, O)axr* o — (PQV U, U)GxR* o -

Now shifting (poVu, ®)axr+ + to the right hand side of the inequality (7.23), we get

—(poVu,u)axr+ o 2 (9,0 — u)gxr+ 0 = (PQV U, ®)GxR* 0

Therefore
(PQVu, u)axr* o < {9, U— O)axr* o + (PQVU, P)axr* o - (7.27)

Analogously for (7.25) testing with ¢, A+ € K;{ Az We note that

(PQVun,At, Un At)GxR* o < (G, Un At — Oh,AL)GxR o + (PQV UK AL, Oh AL)GxR* o (T.28)

Using the coercivity in (7.24), we obtain with (7.27) and (7.28)

|l = up At H%%’_%’w So (PQV (u = up,At), u = Up AL)GxR* o

= (pQV (u—upat), u)axr+ o = (PQV (U = un AL), Un At)GxR* o
= (pQVu,u) axrto = (PQVUR, AL U) GxR o — (PQVUUR AL ) GxREe +(PQVUR AL, UR,AL) GR %o
<{9,u~ @)GxR4o + (9, Un,At = Ph,At)GxR:o + (PQV UR AL Ph,AL)GxR Y0
+(PQVu, @)oxrio = (PQV U, Un,At)GxRto = (PQV Un,AL, U)GxR Yo
=(9,u ~ @)axr4o + (9, Un,At = Ph,At)GxR:o + (PQV U, § — Un At)GxRYo

+(poVun At, Oh At — UW)GxRYo-
We add 0 = <pQV/u” U - th,At)GxRto' - <pQVU, u— ¢h,At>GxRﬁa’ into:

(PQVun At 0n At — W) GxRYe = {(PQVU—un AL U — Op AL)GxRYe = (PQVUU—Dh AL) GxR*o -
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7.5 A variational inequality for the punch problem
Hence, we get

|u —upac]® 1 11,50 (9,u— D)axrio+{(9, Un.At — Phat)GxRie+H{(PQV U, @ — Un AL)GxRYo

+(pQV (u = un,At), U = OpAL)GxREe = (PQV U, U = Op AL) GxRYo
=(g,u) xR0 (9, D) axRro +(9,Un,At)GxREo — (9P, At) GxR o +(PQVU, ) GxR% o
— PV, un At)axR4o H(PQVU—Un AL U= Dn At) GxRY o
— (PQVuu,u) Gur%o +(PQViL,Oh AL ) GxR% o
= (g, un,at — P)Gxrio — (PQV U, Ph.At — P)axrie + (95 U — Ph AL GxRYEs
~(PQVu,u — dp at)axrio +{PQV (U — U AL), U — OpAt)GxRYo
= (9 - pQVu,u — dp At)axrio+{9 = PQV UK AL Un At — O) xR
+(pQV (u — up,At), U — Op AL) GxR*o-
Because of the conforming discretization, we may choose ¢ = uj, o+ and conclude
lu = un,at H%%

los S0 (9—PQVu u=dp At)axrio + (PQVU—un A U= Ph At)Gxrio- (7-29)

We estimate both terms by duality:

||u—uh,At||%%,1 Sollg=pVuuls 1 u=dnatl 1154 lpQVu—unadl 1 1glu=dnatlss,,.

With the mapping properties of V', we obtain

lu=unael2s 1, Solg=paVuly s olu=dnadl 1 1o tlu-unarls 1o lu-dnatls 1.

We conclude with Young’s inequality for small € > 0 and combine €|u —up At ||2;
2

1
_570-7*
with the left hand side
2 2
lu—unaelZs 1,0 Solg=poVuly s olu=dnadl s 10, +lu=-onacli s, ..
It follows the statement by taking the infimum over all ¢, A;- O

Analogously to the contact problem we consider a mixed formulation, where the equiv-
alence is proven here:

3
Theorem 7.12 (Mixed formulation, [17], Theorem 20). Let g € HZ (R, H%(G)) The
variational mequalzty formulation ( 7.23) is equivalent to the following formulation:

Find (u,\) € Hz(]RJr H- 2(G)) x HQ(RJr H2(G))Jr such that

{(a) (Vu,?))Gx]R*,cr - <)‘vv>GxR*,0 = <h,U>G><IR+,cr (7.30)

(b) (u,,u - A)GXR",J 2 07

for all (v,p) € H2 (R, H™3(G)) x HZ (R*, H2 (G))*.
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7 Unilateral contact problems: Punch problems / Crack problems

Proof Flrst we observe an equivalence of (7.23) to the following problem: Find u €
H2 (R*, H™ 2 (G))" such that for all v e H2 (R*, H‘ﬁ(G))+ u solves

{(a) (Vu,u)oxrio = (9, u)Gxrto (7.31)

(b) <Vu7 U)GXR*,U 2 <97/U>G><]R+,o-
This is due to setting v = 2u on the one hand and v = 0 on the hand in the variational

inequality (7.23). We get

(Vu, u)axrio 2 (9, u)axrto , and (Vu, u)axrto < (9, U)axrYo

Therefore (7.31a) holds. Using (7.31a) on (7.23) we obtain:

(Vu,v)axrto — (Vu, u)oxrro 2 (9, V)axrte — (9, W) axrYo

where (7.31b) follows. Conversely, we subtract (7.31a) from (7.31b) in order to get
(7.23) from (7.31).

For getting (7.31) from (7.23), we prove (7.31) = (7.30). With (7.31b) for A = Vu - g,
we get for all v € HQ(RJr ~_§(G))+ 0 < (Vu—-g,v)axr+ 0 = (A, V)Gxr* 0. Since v > 0,

we deduce A\ > 0 and therefore \ € H, Q(R+ H? (G))*. (7.30a) holds by substracting
(A, v)Gxr+o of the left hand side of (7.31b) and using the definition of .
Via (7 3la) we see (A, u)Gxris = 0 and hence, (u, 1= A\)gxrto = (U, 1) GxR%e > 0, because

we HZ(R*, H(Q))* and e HE (R, B 3(GQ))*.

1 ~ 1
Conversely we prove (7.30) = (7.23). Let (u,\) € HZ (R", i (G))xHZ (R, H 3 (G)*
be the solution to (7.30). Again setting on the one hand p = 2\ and on the other hand
p =0, we get (u, \)gxrts >0, (u, A\)gxrto < 0. Therefore (u, \)gxr+e = 0.

1
If we assume that « is not > 0, then there exists p € H7 (R+,H_%(G))+ such that
(u, t)axr+e < 0, and we observe from (7.30b) the contradiction

0 < (u, pt = Naxrio = (U, ) axrio = (U, A)axrio = (U, f1)axrio <0 .
1 ~ 1 ~
Therefore u € HZ (R*, i (G))*. Applying v—u as win (7.30b) for v € HZ (R*, i3 (G)*,
we get (V—u, A)gxris = (U, A) xRt = (U, A)Gxris = (U, A)axrte > 0. Testing (7.30a) with

v — u, we obtain

(Vu, v —u)gxrto — (A0 = u)gxrto = (9,0 — UW)GxRYo -

or equivalently

(Vu-g,v—u)gxrto = (A, 0 - uU)gxrte 2 0.

So we get (7.23) and therefore (7.31), too. O
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7.5 A variational inequality for the punch problem

The discrete formulation reads as follows:
. 1,1 1,1 Nt s 1,1
Find (un,, Aty Ay aty) € Vi ag, % (th,AtQ) satisfying for all (vn,,Aty; Hho,ats) € Vi as, X
L1 N+
(VhQ,Atz)

{(a) (Vun, Aty Ut At )GxR* o = {Aho,Ata> Vhi Aty )GxR* o = (G, Vhy Aty )GxRY o (7.32)

(b) (uhlyAt17/’Lh27At2 - )‘h27At2)GxR+yU 2 0.

Next for sufficiently different meshes to the Lagrange multiplier A, A¢, and the solution
Up,,At, We obtain another discrete inf-sup condition, which we will need to prove the a

priori error estimate:

Theorem 7.13. Let C' > 0 sufficiently small, and
a >0 such that for all Ap, Aty

max{hi,At1}

min{ha Aba} < C. Then there ezists

A
sup (1 Aty s Ay Aty )GxR* o > 05||>\h2,At2H%,—%,a . (7.33)

Hhy,Atq ||/“[/h17At1 ||_%a_%70—7*

Proof. We proceed similarly to [17]. Let z be a solution of

2-022-Az=0 in QxR", 2(z,0)=2(x,0)=0 inQ,

zlg = Myat, on GxRY Zng =0 onT\GxR", 2z—0 fort—oo in .
The coercivity of the Dirichlet-to-Neumann operator yields:

||ZH%1/271/27U So <SJZ, Z)GxR*,o = (8n27 Z>G><R*,a = <8nza )\hQ,AtQ )GxR*,o . (7-34)
Now we choose ¢ such that |0nz|_1/2-1/245,+ < 0. Due to the approximation properties
in [53, Proposition 3.56], we get fip, ¢, such that
~ é
|0nz ~ Khy, Aty ||—1/2,—1/2,a S (max{hi, At1}) ||8n2||—1/2,—1/2+5,a .

From [17, Proof of Theorem 5] (||S52(|-1/2,-1/2,0 S [2]-1/2,1/2,0) together with the inverse

estimate in [53] (i.e. |Anyanl-1/21/2460 S mllm,mz l-1/2,1/2,6)5 We get

_ (max{hy, At;})°
877/ - — — o 5
H z lu’hl,Atl || 1/27 1/27 (mln{h2’At2})6

1 Ana,ats | -1/2,1/2,0 - (7.35)
Altogether, we conclude:

|itny At -1/2,-1/2,0 < 1002 = fing At 21721720 + 19n2]21/2,-1/2,0

max hl,Atl 0
< ((min{{hg Atg}}))‘5 [ Ana,Ats ||—1/2,1/2,a + [ Any, At ||—1/2,1/2,o

_ (max{hl,Atl})‘s

= (minlha,At2})? 0 VE obtain

Taking advantage of fix, a¢, as above and defining K :

<Mh17At1 > )‘h27At2 )GXR+,U (l&’hhAtl ) )‘hz,At2 >G><R+»U

sup > =
N H:“hl,Ah ”—1/2,—1/2,0 ”Mh«l,Atl H—1/2,—1/2,o

(ﬂhl,Atl 3 )‘hz,Atg )GXR*

" K[ Any, Aty H—1/2,1/2,a + [ Any, Aty H—1/2,1/2,a
1

>
1+ K) | Any,ats [ -1/2,1/2,0

(<8nzv )\hQ,AtQ)GXR+,O' - <anz - /lhl,Atl 9 Ahg,Atg)GXR*,O’) .
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7 Unilateral contact problems: Punch problems / Crack problems

Estimating (0r,2, Ay Aty )GxR* o With (7.34) and the other term with (7.35)

(Onz = finy Aty s Mo, Aty )axR* o S 002 = fing Aty -1/2,-1/2,0 | Ana, At 1172,1/2,0

S K| Angats-1/2,1/2,0 [ Ana.ats 172,172,065
we further estimate

(:u’hl,Atl ) )\hQ,AtQ >G><R+,CT

sup
Ahy, Aty ||Nh1,At1 H—l/2,—1/2,o

Mot 12121 2.0 + K Ao ata | -1/2,1/2.0 1Ana, 880 [172,1/2.0)
(1+ K)[Any, Aty H—1/2,1/2,o

N (RYINS H—1/2,1/2,0 + K[ Any Aty H1/2,1/2,a
- (1+K)

~

> ol Any Aty l1y2,1/2,0 -

Next we prove an a priori error estimate:

Theorem 7.14. Let (u,\) solve the mized formulation (7.30) and (Wn, Aty Nhoy,Aty)
solve the discrete mized formulation (7.32). Then the following a priori error estimate
hold:

A= Anparll1 1 8 inf A= Mg, Aty | 11, (At) = un, A | 115, (7.36)
ho, Aty

1 . . X
lu=unyanl 1 1 o So (1 557) Uhllr}itl\\u = Uny, AL | %,_%,a,*thlfi@ [A=An a1 1 5

(7.37)

Proof. In order to prove the a priori error estimate for the Lagrange multiplier (7.36),
we take advantage of (7.30) and (7.32) to observe

(Ahz,aty = Ay Atys Uhy Aty )GxRo

= <Vuh1,At1 9 vhl,Atl )GXRJZU - <97 Uhl,Atl >0’ - ()‘hQ,AtQ ) UhLAtl >G><]R+,O'

= (Vupy, Aty Ui, At) GxREe = (VU Uy At GxRe (A Uy At) GxRY o = ( Ahg, Atgs Uhy A1) GxREs

= (V(uny Aty = 1), Uny Aty YGxREe + (N = My Ats Uny Aty )OxRY o (7.38)

Then using (7.33) in Theorem 7.13 and (7.38), we obtain:

<>\h2,At2 - )\hQ,AtQ 5 Uhl,Atl )GXR*,O’

Oé”)\hQ,AtQ - 5\h27At2 || %7%70' < Sup
Vhq,Atq ||’Uh1:At1 ||—%,_%70'7*
= sup (V (uny,an, =), 0y a0 )@xRie + (A= My Aty Vhy Al ) GxRio
o, lvny,at ”—%,—%,a,*

From duality, the mapping properties of V' and an inverse estimate in time for vy, A, €
Vhll’lAt17 see [11, Lemma 2 and the proof of the following corollary]

1
lonanls 1.8 m”vhl,ml [NETETp
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7.5 A variational inequality for the punch problem

we have for the first term
(V (uny,an =) Ony, At )axrsol SV (ungan =) 11 g lvmanls 15,
-1
S lunyan —uly 1 o (A8) onan 1 15
Estimating the second term with the duality:
(A = A At ny Aty Yoo | < A= Ay 2| 11 lomanlis 1
With the triangle inequality, we get
A= Mngatalls 1o < 1A= Mngatal1 1o+ Aot = Anpata 11 4
SIN=Anpatally 1o+ (At) " unan —ully 214 -
Therefore taking the infimum over 5\;127 At, yields the a priori error estimate (7.36).

. 1 -1
H)\ - AhQ,AtQ “0’7%’0 S 5 inf H)\ - )\hQ,AtQ ”0’7%’0 + (Atl) 2 ||Uh1,At1 - UH7%’%’G7* . (739)
ho,Atg

In order to prove (7.37) we note the Galerkin orthogonality
(V(u - uh1,At1)7 Uhl,Atl )GXR"’,O’ = <A - )‘hz,At27 Uhl,Atl >G><R+,O' .
Using the coercivity of V', we get for all vy, a¢, and S\hg,AtQ

”uhletl - /UhlyAtl H%l 154 sO' V(uh1,At1 - Uhl,Atl )7 uhl,Atl - Uhl,Atl >G><R+,O'
27270.7

= (V(u = Uhy,Aty )7 Uhy, Aty ~ Uhy,Aty >G><R+,U + (V(uhhﬁtl - u)v Uhy,Aty ~ Uhy,Aty >G><R+,U

= (V(U_UhhAtl)v uhLAh_thAh)GXRﬁfﬁ'( AhQ,Atz - uhLAh_thAtl)GXRﬁU'

The mapping properties of V' and the duality, yield

‘uhhAtl - Uhl,Atl ”,l _1

2
lunae = vnanlZs 1 g0 Slu=vnanl 11, L 1w

FIA = Ao a0l 1 1 o luny arvnanl 1 1,

T

Dividing by |un, at, — Vb At H_%’_%’a’* leads to

luny ati=vnan 1 21 g Sollu=vn anl 1 15+ 1A= Anpasl1 1,

With the triangle inequality, estimating with the stronger norm and (7.36), we get

lu=tnyan 1 150 <lu=vnan 1 1.+ lonan —unanl 1 1,
So lu=vnan 1 15 4 1A= Ano o1 15

1
Slu=vnanl s 15+ 1A= Ao anlt 15+ @maylu=onanls 1.

)

S+ aplu-vhanls 1o+ 1A= Moa6l11 4.

Taking the infimum yields (7.37). O
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7 Unilateral contact problems: Punch problems / Crack problems

7.6 Algorithmic considerations and space time Uzawa
algorithm

The crack problem requires a consideration of the Poincaré-Steklov operator on the con-
3
tact region G. We repeat the variational formulation: For given g € H7 (R, H_%(F)),
1 ~ 1 —~
find g € H2 (R*, Hz(T)),pe HZ (R*, H2(T")) such that

o0

[ W (K~ tn)p, g dt = [{g,i)de
0
0
[ Wvp.dwhe = (K - $1)¢, 0w)al s = o,
0

1 ~ 1 ~
holds for all w e HZ (R*, H2(T)), we HZ (R*, H3(I)).

We use the Poincaré-Steklov operator discretized in the same way as in Subsection 2.3.5

for o = 0. We remember using for the ansatz functions ¢p, ar(z ) = Y0 f\flgo;”ﬁgt tE (@) €

Vbl and (z,t) = N,
h,At Prat\Z,T) =

. j j 1,0

Wpar = YaL(1)E () € Vh’At and what = YA ()&, (x) € Vi 5, each for 1 < my < Ny

and 1 < j < Ng. This discretization leads to the marching-on in time scheme, where we

1pl mARL () (z) € Vhl’it and for the test functions

solve for each n; = 1,..., N; the system:
(Pnt Gnt ni—1 ©
WG B ) o
)= ) 2 ’ (7.40)
where gy At = X0 97 BR, & g with ¢ = g(z,t,,), (th)fr(g”f +g”f‘1)§i(x)dsx =G,

Mo_( WO _KT%%@I) Ml_( w! —(KT)1+%%I)
- ) - 1,1 1
_KO_%I VO -K +§I Vv
_K’Vlt—m Vnt—m

ne—m _ T\ng—m
and M"™ = ( W (K7) ) )

We solve the discrete mixed formulation (7.16) with a space-time Uzawa algorithm.

choose p > 0:
k=0:y®=0
while stopping criterion not satisfied do
solve: Sz(F) = g 4 ¢(F)
compute: y**D = Prr(y*® - pz()) where (Prgy); = max{y;,0}

k<k+1
end while
Algorithm 5: Space-time Uzawa algorithm
Lemma 7.1 ([17], Lemma 22). The space-time Uzawa algorithm converges, provided

that 0 < p < 2C,. Here C, is the coercivity constant in Theorem 7.1.

170



7.7 Numerical experiments

For the computation of the mixed variational formulation (7 16) an Uzawa algorithm
in space-time is used With the ansatz functions z(*) (z, 1) = Z_l(zm)kﬂ T (@) €
Vhlit and d®) (z,t) = 2N ZZNSl A BT ()€ () € Vh{’it in order to obtain a marching-
on-in time scheme as in (7.40). With a given stopping criterion and choosing the
AR

Lagrange multiplier as piecewise linear functions in space and time, ie. A} At =

y k) = Z i 1(yZ )kﬂm(t)gh(x) we get to solve with the corresponding test function
YR (1)L (3:) € Vh’At for 1 <my < Ny and 1<j < Ng:

(S AR 000y = X ) BB AR I 000+ (E 9" ORI,

mz

(7.41)

Therefore we solve for every ng = 1,..., Ny with (z2™)* = (1), .. ,(z]T(,‘s)k)T , (y™)k =
(- ()5 and (™) = ((dm)k S (dy N

5t M m(gczi:% ) (%I((y”t‘l)’zl+(y’”)’“‘1))+(%n). (7.42)

m=1

The mixed formulation for the punch problem (7.30) is discretized with piecewise con-
stant ansatz functions in space and time z(*) = Zﬁff 1 (zm)]’W (t)wh(m) for the

Lagrange multiplier A\, Ay = y*) = ZNt i 1(yZ )kﬁAt¢h and for 1 < n; < Ny and
1< j < Ng, we solve

(Vz(k) 7'.)/Zttwib>l—‘x(0,oo) = ( Z(y:n)kilﬁgltngygttgi)Fx(O,oo)+<Z gmBTAntfthtfi)Fx(O,oo)‘

(7.43)
Therefore analogously as above we solve for n; =1,..., Ny
s At
> vy = CO ety gy v an (749
m=1

For the Lagrange multiplier, Atht:y(k):Z (y;”)k'ygnt(t)wz(x), piecewise constant in
m,i

T(y™ k-1
space and time, the first term on the right hand side of (7.42) becomes At( (y O) )
The computation of the space time matrices M*, resp. V* is the most time consuming
contribution of this algorithm. In terms of memory allocation we also need every
nonzero matrix MF¥, resp. V*. Here since we use a MOT-scheme, experience tells us
that it is fine to solve the system with GMRES, see also Example 3.3.

7.7 Numerical experiments

We begin with the numerical experiments for the contact problem (7.7) discretized as
in Section 7.6.
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7 Unilateral contact problems: Punch problems / Crack problems
7.7.1 Numerical experiments for the crack problem

Example 7.1. We solve the nonlinear contact problem (7.7) by solving (7.42) on a
uniform square T' = [-2,2] x {0} with contact area G = [-1,1]?> x {0} for times up to
T =6 with the CFL ratio % ~ 1.06. The right hand side is prescribed by:

g(z,t) = e ¥t cos(2mr1) cos(2mw2) X[-0.25,0.25] (1) X[0.25,0.25] (22) -

The reference solution is given by 12800 triangles, where we use At = 0.075. For the
Uzawa algorithm we set p =20. We stop the Uzawa iterations if the relative difference
is less than 10711,

Figure 7.1 illustrates the solution up A; (left column) and the corresponding Lagrange
multiplier A\, a¢ (right column) for the reference solution at times 0.075, 2.55,4.275, 5.025.
The solution exhibits a bump in the center of the contact area, where the Lagrange mul-
tiplier vanishes (see t = 2.55). As time passes the solution in the center becomes smaller,
but the Lagrange multiplier gets greater than zero on the whole contact area. It shows
the contact forces here for times 4.275 and 5.025.

In Figure 7.2 the relative error in L?((0,7) xG) of the solutions for coarser meshes com-
pared to the reference solution is displayed. We get a convergence rate of approximately
a ~ 0.8 in terms of degrees of freedom.

o 2 a 6 o 0.5 1 o 0.005 001  0.015  0.02 1 0.5 o

°
&

gy .y

1 -1

(c) t=4.275 (d) t=5.025

Figure 7.1: Evolution of u and X in G = [~1,1]? x {0} for the contact problem, Example
7.1. Figure 4 in [17]
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7.7 Numerical experiments

10°

107 ¢ -

Relative L , error in space-time

10-3 L L L
10° 102 10° 104 10°
Degrees of Freedom

Figure 7.2: Relative L2([0,T] x G)-error vs. degrees of freedom of the solutions to the
contact problem for fixed %, Example 7.1. Figure 5 in [17]

Next we consider a cube, where we have contact on three faces. We imagine a rigid
cube, where the 3 other faces are fixed.

Example 7.2. We solve the nonlinear contact problem (7.7) by solving (7.42) on the
surface a uniform cube [-2,2]% with contact area G as the top, front and right faces for
times up to T = 6, with the CFL ratio % ~ 0.53. The right hand side on each contact
face is prescribed as:

e~ cos(2mr1) cos(2m2) X[-0.25,0.25] (T1) X[-0.25,0.25] (T2) o the top face,

g(z,t) ={e 2t cos(27mw2) cos(2mw3) X [-0.25,0.25] (T2) X[-0.25,0.25] (¥3)  on the front face,

e 2t cos(2may) cos(27r3) X [-0.25,0.25] (¥1) X[-0.25,0.25](¥3)  on the right face.

We use a benchmark obtained by extrapolation. For the Uzawa algorithm the same p
and the same stopping criterion as in Example 7.1 are used.

Figure 7.3 illustrates the solution uj A¢ (left column) and the corresponding Lagrange
multiplier Ap At (right column) at the top face of the cube consisting 10800 triangles
on the boundary at times 0.1,3,5,6. We see the solution uj a; spreading to the corner
(2,-2) at time ¢t = 5. As time passes the Lagrange multiplier gets nonzero entries near
the corner (-2,2) at time ¢ = 6. It indicates to a strong contact near that corner.
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7 Unilateral contact problems:

Punch problems / Crack problems
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0.04

0.035
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0.015

0.01
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Figure 7.3: Evolution of v and X in [-2,2]? x {2} for the contact problem on [-2,2]?,

In Figure 7.4 the relative error in L?((0,7) x G) of the solution compared to the bench-
mark is displayed. We get a convergence rate of a » 0.6. The considered meshes here

are not necessarily refinements of each other, which could explain the kink at the third

point.

Figure 7.4:
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7.7 Numerical experiments

Next we continue with the punch problem (7.23) discretized as in Section 7.6.

7.7.2 Numerical experiments for the punch problem

Example 7.3. We solve the punch problem (7.23) by solving (7.44) on a uniform square
screen T' = [-2,2]? x {0} with the contact area G = [-1,2,1.2]? x {0} for times up to
T =6 with the CFL ratio % ~ 1.06. The right hand side is prescribed by

g(x,t) = et cos(2mw1) cos(2mr2) X[0.25,0.25] (¥1) X[-0.25,0.25] (¥2) -

The reference solution is given by 12800 triangles, where we use At = 0.075. For the
Uzawa algorithm, we set p = 0.01. we stop the Uzawa iterations if the relative difference
is less than 10712, or if the L°°-norm is less than 10719,

Figure 7.5 illustrates the solution up A¢ (left column) and the corresponding Lagrange
multiplier Ay A¢ (right column) for the reference solution at times 0.075,1.05,3,6. For
the solution, we observe a bump in the center of the contact area. Since the Lagrange
multiplier is not zero at these times, we have contact for the displayed times.

o 5 10 o 2 4 6 o 0.2 0.4 0.6 0.8 1 o 0.01 0.02 0.03

2.5 0.25 25 a.25
15 0.15

0.5 0.05

%107

(c) t=3 (d) t=6

Figure 7.5: Evolution of v and X for the punch problem on G = [-1.2,1.2]% x {0}, Ex-
ample (7.3). Figure 9 in [17]
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7 Unilateral contact problems: Punch problems / Crack problems

Due to the low spatial regularity of the solution, we consider the error in the discretized
energy as in (2.56). In Figure 7.6 the relative error in energy (2.56) of the solution for
coarser meshes compared to the reference solution is displayed. We get a convergence
rate of approximately 0.76 in terms of degrees of freedom.

10°%¢ >

-
o
T

Relative Energy Error
5
S
T

L Co ol L ool Ll L I | L Lo
101 102 10° 104 10° 108
Degrees of Freedom

Figure 7.6: Relative energy error for the punch problem for fixed %, Example 7.3.
Figure 10 in [17]

Next we consider a cube, where we have contact on the entire surface of the cube.

Example 7.4. We solve the punch problem (7.23) by solving (7.44) on the surface of
an uniform cube [-2,2]3, where also contact takes place for times up to T = 3.6. The
right hand side is prescribed as in Example 7.2. We compare the numerical results with
a benchmark of the energy obtained by extrapolation. For the Uzawa algorithm, we use
the same p and the same stopping criterion as in Example 7.3 is used.

Figure 7.7 illustrates the solution up A; (left column) and the corresponding Lagrange
multiplier A, a¢ (right column) on the top of the cube with 19200 triangles and At = 0.01
at times 0.1, 2, 3,3.6. The CFL ratio is % ~ 0.7. We observe contact at all these times,
where from ¢ = 2 we see the contact forces focusing on the center, where in later times
it scatters. The solution behaves similar to Figure 7.5.

In Figure 7.8 the relative error in the discretized energy of the solution compared to
the benchmark is displayed. The considered meshes correspond to ﬁ—; ~ 0.53. The
convergence rate is roughly approximated with 0.9 from the last 4 points in terms of
degrees of freedom.They are not necessarily refinements of each other. That could
explain the kink at the third point.
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=107 %107

o 0.5 1 1.5 [ 0.02 0.04 0.06 o 0.2 0.4 0.6 0.8 0 0.01 0.02 0.03 0.04 0.05
I L

(c) t=3 (d) t=3.6

Figure 7.7: Evolution of u and A in [-2,2]? x {2} for the punch problem on [-2,2]?,
Example 7.4. Figure 11 in [17]

1071 E

Relative Energy Error

1072 :
103 10 10° 10°©
Degrees of Freedom

Figure 7.8: Relative error of the energy for the punch problem for fixed %, Example
7.4. Figure 12 in [17]
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8 Applications to sound emission of tyres

8.1 Introduction

Traffic noise is an omnipresent problem causing harm to people and environment. The
dominant factor, where highway traffic noise emerges, comes from the interaction of
tyres and the pavement (street) [19]. Hence there is research interest on how to reduce
the traffic noise emitting from tyres, see [100]. In our case we are interested in the
treatment of sound radiation of tyres. In detail we consider a model problem based
on the wave equation on an exterior domain, and solve it with the boundary element
method for given incident waves.

Let Q c R? be a bounded, orientable Lipschitz domain on the positive half-space with a
connected Lipschitz exterior Q¢ = R3\Q. We denote T' = 9Q and T'w, = R% x {0}. Hence
we consider the following problem for a given g:

04 (x,t) - Au(z,t) =0 in Q° xR,

u(z,0) = u(z,0) =0 in Q°, 51)
9u | (z,t) - a(a:) “Ip(z,t)  =g(z,t) onDxR", ‘
8n|roo (z,t) - oo 2 B Yip (z,t) =0 on I'e xRT,

where n = n, denotes the unit normal vector always pomtlng towards Q° W1th “|p(z,t) =
lim Vu(z',t) -ng, ulp(z,t) = lim (' t) and Fnlre (z,1) = hm Vu(ac t) ng,

z'eQc—xel’ z'eQc—xel z’eQC—

ulp,(z,t) =  lim wu(a2’,t), a € L(T') and , as € C. Since we have conditions on
2'eQ¢—zel o

the half-space, we get a slightly modified fundamental solution taking the reflections
into account, see [83]. An a priori error analysis of (8.1) is done in [418]. Numerical
experiments are done in [15] on passenger car tyres as well as truck tyres for v = 0 and
Qoo =0, which leads to Neumann boundary conditions on I' and on the street I'o,

In this chapter we consider Neumann boundary conditions on I' (i.e. set a = 0) as
well, but with ae > 0, which resembles an absorbing street. We derive a variational
formulation and present numerical results based on the joint works with H. Gimperlein
and E. P. Stephan in [51] and H. Gimperlein, F. Meyer, D. Stark and E. P. Stephan in
[16] on a graded tyre.
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8 Applications to sound emission of tyres

8.2 Boundary integral formulation

In order to use the boundary element method on problem (8.1), we require a funda-
mental solution . While for R3, G is known as:

G(Jj’yvt) = (siir;—zﬂy(sy)?))

in the half-space case R3, it is given in [33]:

_o(t—r(y3) . o(t-r(-ys) .
Glry,t) = Amr(ys) Arr(-ys3) -

with
_ Qo O H(t-7(-y3))

21 0\t (s + 49) 2 + (0 - DI

for H denoting the Heaviside function, r(+y3)? = R? + (x3 F y3)? and R% = (1 —y1)% +
(22 —y3)? with z = (21, 72,73) and y = (y1,%2,¥3). The additional two terms describe
the reflection of the plane R? x {0}.

With a retarded single layer potential ansatz, we write the solution wu as:

u(z,t) = .[FxR+ G(z,y,t —71)po(y,T)drdsy =2 Sp(z,t) .

We consider Neumann boundary conditions on I', using the jump relation, we get the
retarded integral equation

1
(—§I+K’)SO =9,
with the retarded adjoint double layer potential:

o6
xR+ Ong

- [ A s, [ LD o s,

xR+ Ong 4|z —y| xR+ Ong — 4w|z -y

K,SO = (xvyvt_T)SO(va)desy

pM
’ .[F R g (z,y,t = 7)oy, T)drdsy = K1p(w,t) + Kop(w,t) + K3p(x,t)
xR+ 0Ny

with 3’ = (y1,%2,—y3). While K; and K are similar to the case in R3:

Kl@(x,t)ziﬁng'(y_m)(@(t_|x_y|’y)+Sb(y’t_|l‘_y|))dsy,

4m |z -y |z -y |z -y

1 T, r_ t— ] . t— o
Kw(x,t)z_fnx W —2) eyt —lz—y) ¢yt-|z yl))dsy’

dr Jr |z -y lz -y’ |z -]

we get for K3 with integration by parts in time:

oo
Kzp(z,t) = o

o 2D i,

xR+ Ong A(t,T)
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8.3 Numerical experiments

where A(t,7) :=\/(t - T + Qeov3)? + (a2, — 1) R2 with v3 = 23 + y3. In a first approxima-
tion, we neglect the derivative in space of A, as the corresponding delayed reflection
waves are much smaller than the main term coming from the derivative of the Heaviside
function. This approximation simplifies the implementation significantly, as it neglects
contributions away from the lightcone.

0 (H(t-7-le-yl)

[ ny-(z-y)o(t-7-lz -y
g A(t,7)

- -melepltir il

Altogether, we use:

0w nI-(z-y)

K t
D = S e ylAt = =)

otz -y, y)dsy .

Now the variational formulation reads ([51]): Find ¢ € Y 2(R+,ﬁ “1/2(I")) such that
for all ¢ e HL/?(R*, H'Y/2(T)) there holds, with g € Ho/*(R*, H-Y2(TI")):

1
<(_§I+ K,)Soaw)FXR+,O' = <gaw>FXR*,0’ .

Next we use the same discretization spaces as in Section 2.3 and choose piecewise
. . . . n I 0,0 _
constant ansatz and test functions in space and time, i.e. yX,(t)¥}(z) € Vh’At for n =

1,...,N;and i=1,...,N,. For a detailed discussion of the discretization of K5, where
reflected lightcones E;,_ . E!_  for y’ appear, we refer to [15]. The discretization of

K is the same as in Subsection 2.3.2. The discretization of K3 leads to the lightcones
Em
Subsection 2.3.2 the corresponding system is solved with a MOT-scheme. For n =

and E) ., as well, but with a different kernel, containing . Similar to

1,..., Ny, solve:

~ TL—I ~
((R7) = SAND" =67 = 5 (K'Y (32)

with (K')* the corresponding matrix for lightcones Ey, Fy_; and E, Ei_ and G* the
right hand side for time k£ and I the mass matrix in space on the boundary T.

8.3 Numerical experiments

8.3.1 Numerical experiments on a sphere

In our first experiment we consider the unit sphere with the center at (0,0,1.63) with
1280 triangle and At = 0.1, where the whole sphere lies in R3. For a, = 0 we have Neu-
mann boundary conditions on R3, which physically refers to a hard scatterer, whereas
for as > 0, we have an absorbing scatterer. Here for a bounded g—z, we can write the
boundary condition %Irw - amg—ﬂpw =0 as:

1 Ou ou

Qoo

AT T 8.3
/T * gy (8.3)
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8 Applications to sound emission of tyres

0.4
—e—a=0 ; Neumann
p —o=0.1
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—+—oi=c0 ; Dirichlet

//

Sound Pressure
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Figure 8.1: Sound pressure at (%,O, %) in R? as a function of the reflectivity a.
Figure 5.7 in [51]

For ao, — 00, we get the condition %|Fw = 0. Using the homogeneous initial condition,
we get a Dirichlet problem u|r = 0 after all. Therefore we refer ae = oo as a Dirich-
let problem, which is physically a soft scattering problem. On I', we use Neumann
boundary conditions g—Zh“ =g. In case of a =0, we use the exact solution from [32]:

r_—t
2r_

u(w,t)zrgT

+

[1+cos(@)]ﬂ(3—|m—t|)+ [1+COS($)]H(R—|T_—H)

with ry = | (21, 22,23 - 1.63)|| and r_ = ||(z1, 22,73 + 1.63)| and R = 0.9. Then we get
the Neumann boundary condition on I' with

g(z,t) = [% (1 +cos(7r(7”%— t))) B %T;rzt sin(ﬂ(T;{ t))]H(R— —
22+ 22-1.632 . — e ol
M’ . 163 ([% (1+COS(%)) % 2T_t sin( ( I 2 ):| H(R—|7’_—t|)).

The exact solutions for the absorbing scatterer and the soft scatterer are not known.

In Figure 8.1, we plot the evaluated sound pressure uj a¢(x,t) at the point x = (%, 0, %)

as a function of t for various ... Till time 1.5, all numerical solutions for different ce,
behave identical. The reflected waves don’t reach the point (%, 0, %) until 1.5. After

1.5 as « is increasing, the sound pressure up A; at (%,07 %) tends from the solution
for the Neumann boundary condition on ', to a Dirichlet boundary condition on I'w.
We also notice a strong interference between direct and reflected waves. For the sound
emission of tyres, with a horn geometry due to the tyre thread, similar effects have been
observed in [15].
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8.3 Numerical experiments

Figure 8.2: Mesh of the passenger car tire, Figure 5.9 in [51]

8.3.2 Numerical experiments on a tyre

In our next numerical experiment, we consider a sound emission by a Dirac point source
located at ys. = (0.08,0,0):

Ll ed) | O(t=lo =gl
47T|1‘ _ysrcl 47T|:L'_y;rc|

(8.4)

The street I's, amplifies the sound source. Hence we are interested in a computation of

the amplification for broad band frequencies [15, 16]. Since we use piecewise constant
I

test functions, we get with g(x,t) = %th‘(l',t)

[ [ oty @) ds i
- / Nz (Ysre =) 5o 1! (Ysre - ) {C(tn_l) B C(tn)} | .

FiﬁE(ysrc) 7T|.I' - ys'rc|3 ﬂ-t%—l 7rt721

where E(ysye)={z €T : ;-1 <|x = Ysre| < tn} the domain of influence of yg.¢, I'; = supp 1%
the corresponding triangle, ((¢) the length of the curve I'; n{|x —ysc| = t} inside the tri-
angle I';. Furthermore after solving (8.2) we evaluate the sound pressure at (2.8,0,1.0).
For details on the computation of (8.5), see [15]. We consider in this experiment Dirich-
let and Neumann boundary conditions on the street ', with ISO10844 surface. The
grown slick 205/55R16 passenger car tyre of diameter 60cm at 2 bar pressure contains
6027 nodes and is subject to at 3415N axle load a 50 km/h (see Figure 8.2). The tyre
is lifted 2.1cm above the street with At =0.01. Therefore we get % ~ 0.2,

In Figure 8.3 we illustrate the density at time steps 100,200,300 for the Dirichlet
problem. In [15] we find a similar density for the Neumann problem.

183



8 Applications to sound emission of tyres

600

(a) (b) (c)
Figure 8.3: Visualization of the density for At=0.01, time step: 100 (a),200 (b), 300 (c).
Figure 5.10 in [51]
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0.5~ ‘
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Figure 8.4: Sound pressure at (2.8m,0,1.0m) as emitted by a car tire, Dirichlet or
Neumann boundary conditions on the street. Figure 5.8 in [51]

In Figure 8.4 the sound pressure uj a¢ at (2.8,0,1.0) is plotted. For short times the
Dirichlet and Neumann boundary conditions are the same. Once the reflected wave
reaches the point (2.8,0,1.0), we observe the influence of the different boundary con-
ditions. For long times both sound pressures go to zero.

In Figure 8.5 we present the absolute value of a fast Fourier transform of the sound
pressure for times > 5.145. For approximately 4800Hz we observe a broad peak for
the Dirichlet problem, whereas for the Neumann problem broad peaks are observed
in 100Hz and 1000Hz. These results are in agreement with direct computations for
passenger car tyres and a truck tyre lifted 1mm above the street with a Neumann
boundary condition on the street (see [15]). Further the human perception of the tyre
noise are considered. We use an A-weighted sound pressure (see [62, 19]) in order to
simulate the human perception, which has been plotted in Figure 8.6 up to 2000Hz
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8.3 Numerical experiments

averaged over 321 points on the positive half-sphere {z € R3 : |2]5 = 2}. From 300Hz to
800Hz Dirichlet and Neumann conditions show similar average noise emission. Above
800Hz the Neumann boundary condition exhibits a higher noise level than the Dirichlet
boundary condition.
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Figure 8.5: Sound pressure at (2.8m,0,1.0m) in frequency domain, as emitted by a car
tire. Figure 5.11 in [51]
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Figure 8.6: A-weighted sound pressure for Dirichlet and Neumann conditions, averaged
over 321 points., Figure 5.12 in [51]
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8 Applications to sound emission of tyres

8.3.3 Numerical experiments on a graded tyre

Using the same right hand side as in Subsection 8.3.2, we consider a tyre, depicted in
Figure 8.7(b), where the refinement is focused at the part, where in genereal the tyre
meets the street I'o. We denote this tyre as the graded tyre. We compare the graded
tyre (see Figure 8.7(b)) with the other (uniform) tyre (see Figure 8.7(a)) in the Example
before. The time step size is given with At = 0.005,0.01,0.04 for the graded tyre and
At =0.005 for the uniform tyre. We state the Neumann boundary condition on I's, and

evaluate the sound pressure at x s, = (1,0,0). The amplification factor in [16, Eq. 7] is
given via

~ ~1
) + )
ALH(UJ) = 2010g10 |U(w x{f) P (w xfp)| )
P! (w, 2 pp)l

where @ and p’ are the Fourier transform of the sound pressure and the incident field

and are computed using a discrete fast Fourier transform with the same time step size
as for the discretization.
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Figure 8.7: Mesh of (a) slick 205/55R16 tire and (b) graded refinement. Figure 27 in
[46]
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AL, [dB]

— At=0.04, graded
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Figure 8.8: Amplification due to horn effect: Graded mesh approximations for different

At, compared to a uniform mesh approximation. Figure 28 in [1(]

In Figure 8.8 we plot the amplification factors ALg. Up to 100Hz we notice a similar
behaviour of all the curves. Above 1000Hz we observe several resonances for different
approximations. Therefore we consider the difference of the approximations in Figures
8.9 and 8.10. Figure 8.9 displays the difference between the graded meshes and the
uniform mesh. Especially in 1300Hz we see a strong resonance, where a greater differ-
ence for small At with the graded mesh is observed as the reflections are resolved more
accurately. Figure 8.10 compares the difference of the amplification ALy within the
graded mesh. In 1300Hz the difference of At = 0.005 with At = 0.01 are around 6dB
and in 1900Hz around 8dB. These differences are significant for the human perception
of the noise and show the value of a graded mesh for the sound emission.

— At=0.04
6 [ At=0.01
— At=0.005

|graded - uniform|

200 400 600 800 1000 1200 1400
freq [Hz]

Figure 8.9: Differences of amplification factors in dB between graded and uniform
meshes for fixed At. Figure 29 in [10]
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8 Applications to sound
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Figure 8.10: Differences of amplification factors in d B within graded meshes for different
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9 Appendix

9.1 The computation of the retarded time integrals

In this section we focus on the computation of the retarded time integrals, which we
used throughout this thesis. The time interval is divided into equidistant intervals of
length (At). We denote t,, = n(At). Let 7 = t—|z—y|. Then we begin with the derivative
of piecewise constant functions with piecewise constant functions:

[T R0t = [T Gt =ta1)=8(t=t0)) dt =1y (ta-1 =) = 1R (ta -]
0 0

= H(tp-1-[z—yl-tm-1)-H(tn-1-[z—y|-tm) - H(tn-|z=y|-tm-1) + H(tn—[z-y|-1n) .
(9.1)

We have

th1 —tm-1 = (n=1)(At) = (m-1)(At) = (n—1-(m-1))(A&t) = (n-m)(At) = tnm,
tn —tm-1=(n)(At)—(m-1)(Aat)=(n-(m-1))(Aat)=(n-m+1)(At) = ty-m+1,
b~ = (= 1)(88) = (m)(58) = (0~ 1~ () (A1) = (0=~ 1)(AE) = b1,
b=t = (0)(&8) — () () = (1 (m))(51) = (1~ ) (BE) = by

This yields for (9.1):

fYTAnt(T);YZt(t)dt:H(tn—m_|x_y|)_H(tn—m—l_|5U_y|)_H(tn—mﬂ_|x_y|)+H(tn—m_|$_y|)-
0

1 3 |'CC - y| < tl . .
, we can define the acoustic lightcone:

Since H(t; — |z -y|) =
0 ,else

E={(z,y)eTxT:t;<|x—y| <ty cTxT .

1 ,z€eA
Let x be an indicator function y4 = { 1 }, then we get at last for the time
0 ,x¢
integral:
[ AR RO = X (509) = X (219) (92
Via integration by parts we get as well:
| AR DVROE = x5 (@) + X (@0) 93)
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9 Appendix

Next considering the derivative of piecewise linear functions with the derivative of piece-
wise constant functions:

L7 Rt = [ @07 08 -8 ()R 0t
- [T @O TRE RO - [T AD T ()R (0t

Now we can use (9.1)
[ DRt =y ([~ =D~ H o= =D~ o= gD H -~ =)
0

~ 5 (H tmoa =l = 9D) = H (b=l = y1) = H (tn-m = o=y + H (tn 1~ |2 -y])
= @5 XBrma (2,9) + 2XE, s (2,9) = XE, L (2,9)) - (94)

Next we have a look at the time integral with piecewise constant functions:

[ee) tn tn
[ AR = [ AR = [ H @ =yl ) = HE = o=yl = o)t
0 tn-1 tn-1

At At
:fH(ertn_m—|1:—y|)—H(s+1‘n_m_1 —|z-y|)ds =ﬁ'H(s+tn_m—|:c—y|)—H(s+tn_m_1—|x—y|)ds
0 0

At

L A e 1) iy GO L CRE A )
0

= (A (H((A) + o — |2 = y]) = H(AL) + to s ~ 2 - y]))

- /(;oo s ((5(5 +tpem — T —y|) = 0(s+ tpom-1 — |2 - y|))(H(s) -H(s- (At)))ds

= (M) (H(tn-m 1 ~l7=y) = H((tn-m~l2-y)) -

505+t m o~y (H ()~ H (s— (A1) ds

o0

. f $6(5 + tmet — [z — ) (H(s) - H(s ~ (A1) )ds
0

= (AOXE, - @ 1)~ (=Yl ~tn) (H (2 =y|~tnm) = H ([ =y ~tn-ms1) )
+(j =yl tu-m-) (= ~tam1) = H (2=l ~to-m) -

Here we used the substitution s = ¢t — t,-; and integration by parts. Now writing
1=H(t)+ H(-t) for every t except 0, we have

[0 YR D VArE)dt = (AOX B, (@9)+ En-m= =Y )X B @:9) + (2= Y| ~tn-m-1) X B, (1)
= (tn_m+1 - |x - y|)XEnfm (.’1:, y) + (_tn—m—l + |x - yl)XEn—m—l (Q:, y) :

So we get:

fo YA (T)YA () At = (tnemet = |2 = YD) X B (T,Y) + (tnem1 + |2 = Y)X B (T,Y) -
(9.5)
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9.1 The computation of the retarded time integrals

For the time integral of the derivative of piecewise linear functions with piecewise con-
stant functions:

[ BRI R D= [T AOT (R =R ()Rt

- [T @O RRBd - [ AT ()R (0

Now using the same steps as in (9.5)
fo BRyORO)dE = G5 (st =12 =YX @ 1) + agy (Pt =YD X 1@ 3)
- (ALt)(tn—m - |l’ - y|)XEn,m,1 (CL', y) - (A_lt)(_tn—m—Z + |-T - yl)XEn—m72 (xa y)
= (Tlt)(tn_m"'l - |x - yl)XEnfm (x7 y) + (Tlt)(tn_m_Q - |x - y|)XEn—7n—2 ('/L" y)

+ (Tlt)(_tZ(nfm)fl + 2"%. - y’)XEn—m—l (x7 y) . (96)

Since we have functions with compact support, we can use integration by parts, which
gives the same lightcones, except for another sign.

[BRATY R0t = ~(AD ™ nmer = | = Y)X o (9)
0

— (A (tpemez = 2 = YD) XBa (2,9) = (A (~toinomy-1 + 21T = Y X Epos (T, Y) -
(9.7)

Next, the time integral of piecewise linear functions with piecewise constant functions:

B DRt = (o =yt Rl =) €=yl =t R o~y D)k, €t
0 0

=ﬁf(t—lw—yl—tm—1)7£”t(t—Irc—yl)vﬁt(t)dt—ﬁf(t—Ix—yl—tm+1)7£”§1(t—lx—yl)vﬁt(t)dt :
0 0

For the computation of these both integrals, let us introduce a v € Z and consider the
following integral:

oo tn
L@l =3l =t ) Bt =l =D ROt = [ (= o=yl =t 9B (= o =yt

n-1

- ft eyl b (4]~ ) = (= =]~ 1) (9.8)

n—1

With the substitution s(t) =t —t,-1 and integration by parts together with —t; =¢_:
(At)
(9.8) = fo (s =l =yl = tmsv-n+s1 ) [H (s = |2 = y| = tim-n) = H(s = [ = y| = tim-ns+1)]ds
(At)
= [0 (s=lz=yl+tn-m-v-1)[H(s=|z=y|+ta-m-v-1) —H (5= |z y[+ts-m-1)]ds

(At)
= /0‘ (s =z =yl + tp-m-v-1)[H(s = |z = y| + tp-m) = H(s = |z = y| + tp-m-1)]ds

(at)
S—|T—y|+ tn-m-r- 2
:[( | |2 D) (H(s =z =yl +tn-m) —H(s = |z -yl + tn-m-1))
s=0
A1) (s =& = y| + tpomr-1)?
fo - y|2 D (505 — i = 41+ ) = 65 ~ |~ 4] + b m1))ds
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We first consider the part without an integral.

At
(5~ 12— 5]+ trmese1)? (20

2

(H (s~ 2~y + tom) —H(s—|m—y|+tnm1>>]
s=0

_ e R
B (H«At)—\x—y|+tn_m>—H«At>—|x—y|+tn-m—1>>]

i 0-|z—- +tn-m-v- 2

[ (O—|z -yl . 1) (H(0_|x_y|+tnm)—H(0—|SC—y|+tnm1))]
[(t, - |2z - +ln—m-v— §

_ ( 1 | y|2 1) (H(t1_|x_y|+tn_m)—H(t1—|$—y|+tn—m—1)):|

2

- o2
| (e = |z~ ) (H(tn_m_|x_y|)—H(tn_m_1—|x—y|))]

- ZXEn_m_l (z,y)
[ ln-m—v—|T— 2 G :
- =XEn-m (z,y)
tn—m—u —|r—-vy 2 7fn—m—l/— — |-y 2
ooy 22l gy - e 2 e

2 2

Next we consider the integral part. Here we again use 1 = H(t) + H(-t) for every ¢
except zero.

(A1) (s =z —y|+ tnom-p-1)>
fo (s—lz -yl D (55— = g+ toom) — 8(s &~ Y| + 1) )ds

2
XS—|T-Y|+ln-m-v- 2
= [ e 5 ) ) Gyl ) 005l ) ds
© (s—|z- 1)
=[0 (s—| yl;tnm 1) (H(s) - H(s— (A1) 6(s = |z - y| + tnom)ds
®© (s—|x - Cmeve1)?
_fo C y|;tn m-v-1) (H(s)-H(s—-(At)))0(s—|z—y| +tp-m-1)ds

—y|~tp—m T=Y|=tr—m =T —=Y|+Tr—ry—r— 2
|gcﬂﬁyﬁlt/|j (lz—yl~tn-m |2 Yl+tn-m-v1) (H(z—y|~tn—m ) — H(z—y|~tnm—t1))
“Yl=ln-m-1

_ (|$_y|_tn—m—l _|x_y’+tn—m—u—1)2

2
. 2
_ ( tz/2+1) [H(x—y|-th-m) - H|z—y|-tpn-m+1)] -

H(-t)=1-H(1) (tys1)?
.

(H(z=y|=tr-m-1) = H(z=y|~tr-m-1-11))

(_tV)Q
2

1- H(tn_m - |35 - y|) -1+ H(tn—m+1 - |.CU - y|):|

[H(’.I’—yl _tn—m—l) _H(lx_y‘ _fﬂ—m)]

2
(t) S 1= H(tpome1 — |z - y]) = 1+ H(tnom — |z - )]

(tu+1) [H(tn (V)Q
5 —ma =T~y = Htn-m~ 2~y = Htn-m ~ |2 ~y[) ~ Htr -1~ 2~y
2
= @mnm(%y) (t ;) XEn-m-1 (T,Y) -
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9.1 The computation of the retarded time integrals

Now we get with both parts:

< m n (tn—m—l/_’x_y‘)2
P B B O e N )

_(tn—m—v—l_|$_y|)2 ( )2
2
=%(t,%_m_,,—2|x—y|fﬂ_m_,,+|x—y|2— V+1)XEn—m(x’ Y)
5= 2e=yltn-mv+lo—yl~t) X5, ., @, 9)
=2 (z=yP -2l =yltn-m-v+ Cr =t ) X B (@ Y)
%(|x—y[ =2|lz-yltn-m- +(ti—m—u—l_t3))XEn_m_1 (@,y) .

) (V+].)

XEp 1 (@Y X Bt (T, 9)

T X B (T, Y) 5

Using it with » =0 and v = -1

oom n - 1
fﬁAt(T)mt(t)dt = (At) 1(5(\96 —y1* = 20 = Yltnomet + o)) X B (2,Y)

1
- 5=y =24 = pltem + (B = )X (2,0)

1
- §(|‘T - y|2 - 2|‘/B - y‘tn,(m+1) + (ti—(m+1) - t%))XEn_(m_H) (.’L’, y)

1
*‘5(@*—yﬁ'—2h*—yﬁn-on+n—1+ti0n+n1)XE¢(M¢D1($,y))

t2,=t7 -
= 2(A0)) (2 =y =2 = yltnome + 1) X B (,9)
+ (2(At))_1(|x - y|2 - 2|x - y|tn—m—2 + ti*m*Q)XEn—nL—Q (l‘, y)
+ (2(A0)) T (2l =y + 20—yl (tn-m+tn-m-1) = o ) +2(A8) )X,y @9) -
(9.9)
On the other hand considering the retarded contribution in the piecewise constant

function:

Of BR ()R ()t = O/ g (=530 = (= te)y™ )3t~ o = )t

tm tm+1

—f (At)(t b ) YA (- Iw—yl)dt—f (Alt)(t tme ) VAL (= |2 = y])dt .

m-1

Let’s have a look at the first term of the time integral. Substituting s = ¢ —¢,,-1 and

with integration by parts:

(At)(t tm) (H(t = |z —y| —tn1) - H(t - |z —y|—t,))dt
At
:[ (At)(s_(At)) (H(s—|z-y|- mn)—H(s—|x—y|_tm_n_1))]0
(At)

-/ 575 o~ (A (5= 1=l o) = 8o Y]~ b)) ds
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9 Appendix

The summand without the integral gives:

[y (e~ (A0 (H(s - o -]~ bnn) = s ==l = tn ) |

(At)

- e == o) = s = o= u)) = -5

XEn m— l(x y)

The summand with the integral

- s (it) (5 (A)5(slz g1t -)ds+ | AtTZ@(S — (AD)26(5—|r—y| bt )ds

- )7 S (s~ (A0 H (s~ (A0))B(s = =]~ -0 s

w7 e (s (AOYCH() = Hls = (A0l =l = tyea)ds

= 5tk (=Yl ~tmn —t0) 2 (Hz ~y|~ ) = H(z ~y|~tm_n 1)

+ 50k (29|~ tmn1 =122 (Hz =] ~tm-n1)~ H(z=y|~tm 1 —11)

= s =y )H e e~y DA (e e~ ) H e =)

= (eltnnn )y (ayy) + e ()

Altogether we get:

tm

[ Gt Ri - lo-yhat
tm 1
A xT m-n+ T m-n
=80 ol y) - el (g4 )y () (9.10)

Now let us consider (9.10) with m =m + 1, we get immediately:

tm+1
S A -t b= it =

“tm-n+1)>
X B (T,Y) = %XEW”(%?J) .

(lz=yl=tm- n+2)
2(At)

— BB (T, y) +

Substracting gives:

o077’1 n A x m—n+. m-n,
f BRL )R, o -yDdt=-5xp,, . ,@y)- %mm ) SR CY)

(At) (|z*y"tmfn+2)2 (|x7y|7tm,n+1)

X Ep- n(‘/L‘ y) + WXEm—nJrl (:’C y) - WXETI’L n(‘/I" y)

=<—%J>+WT1;*’J)XEm R O e PN ) B o s N )

(9.11)

Next we consider using piecewise linear functions in time against pw. linear functions.

[ ()R (0t - [ 887) gy (i) =7 ()i

)

L n n 1 r m n+
=29 Of BRAAO - x5 0[ BT (TR (1)t
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9.2 Important theorems

Now using (9.9) twice:

RGO
1 ) )

- 2(At)2 (|$ - yl - 2|$ - yltn—m+1 + tn—m+1)XEn_m (:C, y)
1 ) ,

* Q(At)2 (|IE - yl B 2|$ B y|tn_m_2 + t”—m—Q)XEn—mﬂ (x’ y)
! 2 2 2 9

* gany Ao ol 2l =it + tremed) = o+ ) + 2 ADXE, o (29)
1 ) )

- 2(At)? (Jz = yl” = 2@ = yltn-me2 + 1 ns2) X B (T, 9)
1 ) ,

= 2tanz @ = = A= yltnme + o)X B (09)
1 ) , ) ,

= gtanye 2=+ 2 =yl + o) = (G + o) + 2AA0*)XE 0 (29)
1 ) )

= _2(At)2 (|x - yl - 2|1,‘ - yltn_m_Q + tnfm72)XEn_m_2 (1" y)
1 ) )

TIoE (2 =y = 202 = Yltn-msa + 12 _ns2) X B0 (2, 9)
1

T o(Ar)? (| =y = 202 = yltn-mer +nomes

+ 20z = y* = 20z = Y| (tnr1-m + tnom) + (tre1om + tnom) = 2080 x5, . (2,9)
1

- |:C - y|2 + 2|SU - y|tn—m—l - ti—m—l)XEnfmfl (l‘, y)

_1 2 1 5

= 2(At)2 (tn—m—Z - |-T - yl) XEn,m,Q(l‘,y) - m(tn-m+2 - |$ - y|) XEp-mas1 (-’E,y)
1

* oiapy Gt =le =3)* = 2080+ (tum = o = 9)*)xE (.9)
1 ) , ,

= giapy (trmm =l =)” + 20tnmos = o = o) = 2(AO)xE s (2:9) -

9.2 Important theorems

In this section we mention important theorems, used throughout this thesis. Let  c R?

be a bounded, orientable Lipschitz domain. We begin with the trace theorems.

Lemma 9.1 ([57]). For all u e H'(Q) and w € {w € C;Imw > o > 0}, there ezists a
positive contant C' depending on  and oy such that:

lyulijzwr < Cluliwe

where vy denotes the trace operator in H'(Q).
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Lemma 9.2 ([57]). For all ¢ € H'?(Q) and w € {w € C;Imw > o > 0}, there exists
ue HY(Q) and a positive contant C depending on Q and oy such that:

lul1w.0 < Clelyzwr -

Lemma 9.3 ([57]). For all u € H'(Q) fulfilling the homogeneous Helmholtz equation in
Q and w € {w € C;Imw > og > 0}, there exists a positive contant C' depending on Q and
oo such that:

ou
Ha—nHA/z,w,F <Clluliwa
where ”'”_1/27“}7]_" 18 the dual norm of H‘H]_/Q,w’F.
Next in order to state the Paley-Wiener theorem and Parseval theorem, we need to
proceed as in [57] and define for a Hilbert space E
LT(0,E):={f e D,(E),e "' f ¢ S.(E)},

where D', (E) resp. S, (E) denote the sets of distributions resp. tempered distributions
on R with values in E and support in [0,00). For o <o, LT (0,E) c LT (¢', E), there
exists o(f) = inf{o : f € LT(0,E)}. The set of Laplace transformable distributions
with values in F is denoted by

LT(E) = Uyer LT (0, E) .

For o > o(f) and w = n + io the Fourier-Laplace transform of f € LT(E) in the half
plane {w € C: Imw > o(f)} with Imw denotes the imaginary part of w is given by

Flw) = F(e L) () = f : G F(t)dt .

Theorem 9.1 (Paley-Wiener theorem, [57], [17]). The following statements are equiv-
alent:

(i) h(w) = f(w) with values in E is the Fourier-Laplace transfom of f € LT(E)
(i) (a) h is holomorphic in some half plane {w € C;Imw > w¥} with values in E and
(b) 3w1 >w?, C >0 andk >0 such that ||h(w)||g < C(1+|w]) Vw with Im(w) > w;.
Theorem 9.2 ([57]). The following statements are equivalent:
(i) (i) of the Paley-Wiener theorem hold and additionally with supp f c [T, oo|
(ii) (ii) and (a) of the Paley-Wiener theorem hold and 3 wy >w?, C > 0 and
k>0 such that ||h(w)||g < C(1 + |w])*eT™ENT v with Im(w) > w;.

Theorem 9.3 (Parseval theorem, [57]). If f,ge L} (Ry, E)n LT(E), it yields:

loc

1 [oo+iwl<f(w),g(W)>E diw = /:: e-%ﬁ(f(t),g(t))Edt )

2 co+iwy

where (-,-)g is the hermitian product of E and wy > max(w(f),w(g))-
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9.3 Road map with spaces and norms

9.3 Road map with spaces and norms

In this section, we write a brief translation of the norms and spaces used in this thesis
with the one used by Ha-Duong in the lecture notes [57]. Ha-Duong defines the Hilbert
space

HYL = {ue LT(o, H(Q)) : f i 10w < 00}
’ R+io

with
2 ~ 112
[l = [ lalfode

whereas it corresponds to Definition 2.4 except for the infimum of o:

HYR,H Q) = {ue LT(H (Q)): |u

l0,1,0,0 <00}

with

ulosoo= ([ il od)

and [|@] 1,0 as in (2.21). Furthermore using Parseval’s equality Ha-Duong derives:
ue€ H;’gz < ueLT(o, H(Q)) and f e~20t /Q |Vu(z, t))? +|a(x, t)|Pdedt < oo .

Therefore e 'u e L2(R, H'(Q)) n HY(R, L?(Q2)). Hence it is used to define for finite
times:

oHY 1 (Qx[0,T]) = {ue L*([0,T], H' (2)) n H' ([0, T], L*(2)) with u(-,0) = 0}
with the norm as in Lions, Magenes [72, Chapter 4.2]
T /2
(a3 go.rp.m ) * Il i o2 00) ™ = ( fo |ul g oydt + ||UH§11([0,T],L2(Q))) ;
(9.12)

where H*([0,T], L?(Q)) is defined as H*([0,T]) for s > 0. Here we say u needs to be
" H1(Q) in space” and " H'([0,77]) in time”. Due to Cauchy-Schwarz inequality

t t

Jue, 1) 2= | f u(m,r)dr|2:| f l-u(x,r)drré ( f 1dr)( f e, ) dr) < o f e, ) dr)
0 0 0

0 0

the energy norm
fTE(u)(t)dt—le(f|Vu|2+|u|2dx)dt
0 “Jo 2 Ja

is equivalent to the norm (9.12) in this space.
In this thesis however for a finite time interval, we have
HO([0,T], H'(Q)) = {Vu and @ are square integrable in Q and [0, 7] with u(-,0) = 0},

where the norm is defined as well in Lions, Magenes [72, Chapter 4.2]

T 1/2
oaxtor) = ([ Tulipqaydt+ [ Jul? qoryde)

1w
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For the trace spaces, Ha-Duong defines
HI22 ~ fy e LT (0, H'(T)) / (@2 5., pdw < 00} |
whereas in Definition 2.4 except for the infimum of o:

HY(R,H'2(T)) = {u e LT(H'*(I)) :

1/2
_ ~ 112
| ([ Jilur) -

Here the definition of |if;/ ., r = [4/1/2,,,r coincide.

with the norm

For a finite time interval [0,7'], Ha-Duong passes the definition of o H!(Q2 x [0,7]) on
the trace space of o H11(Q x [0,T1]):

oH' P x [0,T7) = L*([0,T], H*(1)) noH'*([0,T], L*(T))
where the subscript 0 indicates for u regular enough in time u(-,0) = 0.

Therefore we say in this case u needs to be ” H'/2(T') in space” and ”HY?([0,T]) in
time”. In this thesis we write

T 1/2
0 1/2 L. _ 2 2
HO(0, T, HY(T)):= {u:u(-,0) =0, (fo ol +L“u“Hl/2([O7T])d$) < 00}

with the norm

1/2
o jorstor = ([ byt [ ll3psgoryyi)

The space H°([0,T], H-'/2(I")) is defined as the dual space of H°([0,T], H'/?*(I))
Similarly with ”uHO,—l/Q,FX[O,T] the dual norm of HUHO,I/Q,FX[O,T]‘

Further Ha-Duong considers the Hilbert space for k € Ny
k,1/2,1/2 1/2
Hygl P2 = {u e LT(HPD)) ¢ [ul 1000 < 00)
with the norm
ki~
= dw .
lulgiyinare = f, ot e

With Imw > g9 > 0 and

1 2
(l? + €272 < (1 + wP) M2+ (14 [2) 2 < 2(—5 ) P2 (Juf? + [g[2) /2 |
0
we get that e tu ¢ HF(R, H'/2(I")) n H**/2(R, L*(T")). For example k = 1

Y2 = fue LT(HYA(D)) i e HYE?Y = fue LT(HYA(D))  [ul oo < 00}
) o,

= H' (R, H'(T")) n H*?*(R, L*(T"))
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9.3 Road map with spaces and norms

possesses the norm

lul e = [, el jordeo

since a Fourier transform leads a time derivative to |w|. Therefore we say u has to be

0,1/2,1/2 1/2,1/2
I H .

”H1/2(F) in space” and ” H3/2(R) in time”. H corresponds to H_ '

We define the spaces in this thesis as in Definition 2.4
Hy (R, H'(1)) = {ue LT(H'(T)) : [ully1/5,0,r < o0}

with the norm

2k~ 12 1/2
fulispor = ([ Pl d)

Analogously for a finite time interval, Ha-Duong defines for k € N

H*([0,7], H'*(T)) n o H*2([0, T, LA(T))
= {u:u(-,0) = 0,u™ e HO([0,T], H*(T')) n H'*([0,T], L*(T"))}

where f)(z,t) = 9F f(x,t) denotes the k—th derivative in time, and with the norm
(Ul o,y * Nulipwoars o zaer)™? -
Therefore for k € Ny, > 0 we consider the space
H*([0,T], H'(T")) noH**"([0,T], L*(T))
with the following norm:
2 2 1/2
(lulZeqory.rmryy * 1l o2 -
This corresponds in this thesis the space

H*([0,T], H'(T)) = {u: u(-,0) =0 ( T||uH2 dt+ | |ul? s )1/2 < o0}
9 ) . 9 9 0 HT(F) r Hk+r(|:0,T]) T

with the norm

T
ko Ix[0,7] = (fo ||U||12qrr(r)ﬂl“r /F||U||12qk+r([o,T])d8:c)1/2 :

u

For negative indices k, 7 we use the dual space together with the dual norm of |[u|_ _, r«o,77-

Altogether we write a brief translation of the norms
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9 Appendix

In this thesis In the lecture notes of Ha-Duong in [57]
|u

0,1,5,Q |u1,1,0
HU||H1/2,1/2
o,

| ] g
HUHO,LQX[O,T] HUHLz(oT] o)t HUHHl(oT] 2@)°~ fo HUHHl(Q)dt+”UHH1(OT 12(Q)
lullo,2 rxrory | Iul? +ul?, = Jo lul?,  dt+]u H2

L2QILHA) | HEO.1),L2 () HA(T) 3(0,17,L2()

”uHs,r,FX[O,T] ”UHL2(0 0,7],H"T)) HU’HHS”([OT L2I)” fo ||uHHT(F)dt+HuHHS+T(O 0,7],L2(T))

With this setting, we get the trace theorem for a finite time interval [0,T'].

Lemma 9.4 (Chapter 4, Lemma 5 in [55]). Forue H°([0,T], H'(Q)) , the trace of u,
ulrxjo,ry s well-defined, which fulfills for a constant C' depending on the space @ and T

HU|F><[O,T]

[ ’ ] - [O’T]

Lemma 9.5 (Chapter 4, Lemma 7 in [55]). Forue H°([0,T], H(Q)) with u satisfying
the homogeneous wave equation in ) x [0,T], the normal derivative of the trace g—z i
well defined in HO([0,T], H-Y(T)), fulfilling with a constant C depending on

u
I n lo,~1/2,rx[0,77 < Clulo1,0x00,1]

Remark 9.1. In the proof of this lemma in [55], we require test functions to be
zero at the boundaries 0 and T. Therefore we need the dual space of functions in
HO(0, T], H/2(I")) with v(,0) = v(,T)=0. This space is a subspace of H°([0,T], H'/*(I"))
and hence we may estimate further by taking the dual space of HO([0,T], H'*(I)).

9.4 Computation of the retarded single layer potential with
o>0

In this section, together with the discretization spaces as in Section 2.3, we consider
the retarded single layer potential as in Subsection 2.3.1 with ¢ > 0. We use piecewise
constant ansatz function in space and in time, i.e.

Nt Ns
; 0,0
prac(@,t) = 30 Y o YR(OYL(2) €V, A,

m=1i=1
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9.4 Computation of the retarded single layer potential with o >0

and piecewise constant test functions in space and time, i.e gy a¢(x,t) = ”YZt(t)T/fi(l’) €
V)R, for 1<n< Ny and 1< j < N,. We obtain for the left hand side:

Ny Ns T —
DN / 720t'[/1: L oypy(t- | y)¥i(y) . An (6 (1) ds,dsydt

m=11=1 ZJ|
N¢ N, i J
_ e m —2Ut m :n wh(y)wh(x)
-3 > L m(t—w—ymt(t)dt]—4ﬂ|x_y| dsyds, . (9.13)

For the time integral, we receive:
[ Bt - gD iR (e = [ R (o= y) (3~ t) (2~ b))l
0 0

—20tp_1..mMm

=e VR (o1 = |z = yl) = e >R (b — |z = y]) =€ > xp, 0 — €7 XE, L, -
Altogether we get for (9.13):
AR Ui ()Yl (x)
- n— - n h
ZIZ;p;n(fF_[F[e 20t 1XEn—m71 — e 20t XEn_m] m dsydsx)
m=11=
_ Nt 5 f lbh(y)d}h(fv) e20tn1 g ds — [ wﬁ(y)%(w) ds. ds e—QJtn)
= x x .
m= 12 1 47T|.’L‘ y| Y 47T|:E—y‘ Y

'n m—1 n-m

We approximate the right hand side f as Z 1 SR () with f™ = f(x,t,). We get

[ ”“(Zf TR ()R (D] (@) dsdt
- mz [T R A (0 5] (@) ds,

Ny 00 .
=mZ:1 fr( fo e 2R ()3 (t = tno1) = 8(t — ty)dt) )] (x)ds

Ny )

= 2 [ R ) = € R () ()
m=1

We remember

m 1 ifn=m
’YAt(tn):{O .

else

Therefore we obtain

fr (frle 2t a2yl (1) ds, (9.14)

We compute (9.14) with the standard Gauss-quadrature. Now for n = 1 (first timestep),

remember that the integral over Ej disappears if k is a negative integer. We get for the
left hand side:

Ny Ny A LACH J—- Ui () ¥ () ooty

P (fm eyl € dsdeI‘Elfm e )
wh(y)wh(x) —2<7t1

__Z ([[Eo 47| - y| dsydsa)
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9 Appendix

So we need to solve:

Ne UAOIAC ) 90t ) otin
—;p (ffEO Th T Th o2 dsydsz)—jl:(fo—fle 201 )T (1) s .

4w —y|

For an arbitrary timestep n, we need to solve:

_ % %S:p;n( [ ¢z(y)wi(x)e‘2“t"*1dsyd f wh(y)dﬂ () o~ 20tn dsydsx)

m=14=1 ~ 4z -y 47T|$ Yl

_ ‘/I:(fn—le—20'tn_1 _ fne—QUtn )¢¥L(f1f')d$x )

Now dividing through e 27%».

% §Vn_mp;n N Ns f Ui (y)(x) 278D s ds, / M ds dsm)

Arlz - y| Arlz - y|

nml n-m

= [N -y @)ds, = B

m=1i=1 m= 11 1

where V"™ is a matrix with entries containing the two integrals over lightcones E,,_,—1
and E,,_p,. Now we can solve this system with a MOT (marching-on-in-time) scheme.

Therefore for each timestep n=1,2,..., N;, we solve:
n n—1
Z Vn—mpm = F" o VO (O Z Vn—mpm )
m=1 m=1

The implementation is almost the same as in Algorithm 1 with the difference that the

integral over E,,_, and the term f"~! are multiplied with e20(At),

We continue with a numerical example.

Example 9.1. We set the right hand side f(x,t) = f(t) = t*e™?. The exact solution
is in case of an unit sphere given in the Phd thesis of Veit [99] with p(xz,t) = p(t) =
230 t/Q (t 2k) . The numerical solutions are computed for At = 0.01 till time 16, with
an zcosahedmn with 320 triangles approximating the unit sphere.

Figure 9.1 presents the L?-norm of the exact solution together with the numerical
solutions for o = 0,0.01,0.5. We observe that the solution for ¢ = 0 is almost identical
as the solution for o > 0. Therefore it seems reasonable to use o = 0 for all retarded
potential boundary integral equations, since the implementation gets easier. For this
computation the L?-norm of the numerical solution differs from the L?-norm of the
exact solution more for larger times. This could be due to the fact that the geometric
errors are accumulating more as more time passes.
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9.5 A documentation of the operators used in maiprogs

320 triangles with DT=0.01 and rhs t* exp(-2 t)
T T

1 T T T
==exact solution by Veit on a sphere; Vp=f
mmo=0
0.9~ —o=0.5 i
0=0.01
0.8+ ‘l -
20.7- § -
"
S
Jo6- § 1
©
&
glsr § ]
§0.4* f 4 i
5] : ) ] [/
; \‘ * d V: y l“ :
N, 030 \ {8 o 40 o8N o8 AR 2
! d ' 3 : Al 8 : i f [}
0.2} 14 44 44 3 R\ IRV
\ | E R
f ] h
0.1h | ‘ ¥ M M ‘§‘ 3 .
¥ i I T 1] § ‘ v
i ! ! y i h
o4 ‘ i Lo I Lo I 7]
0 2 4 6 8 10 12 14 16

Time

Figure 9.1: L2-Norm of the numerical solution of Example 9.1

9.5 A documentation of the operators used in maiprogs

In this section we write a listing of the scripts to run the computations with MAIPROGS.
MAIPROGS is a batch control language (bcl). A bcl-script in MAIPROGS has com-
mands, which are translated into Fortran90/95 commands. In order to implement our
own code, we need to understand the syntax of Fortran90/95 and see [76]. In order to
optimize the code an understanding of parallelization is very helpful. For details about
MAIPROGS, see [76, 85, 77]. In our case the bcl-scipts are executed by typing in the
corresponding folder in a console:(path to folder fo3c)/maicoup3 (somebclscript).coup3.

9.5.1 A bcl-script for the retarded single layer potential

T IIIIIIIIIIIIIIIIILILLLILL LI I ] ]

! RETARDED SINGLE LAYER POTENTIAL (RV)
T T T DA D A

! here rhs = g(t) = t* x exp(-2 * t) ; R=8000

defproblem(’Laplace’,’DTSRC15°,315, Dirichlet BEM, transient sound radiation’,3)
setprob(spline="D’,mat="D.RV.D’,dat="D=u0’)

setsp(’D’,(/2,3/),0,0,1,1,1)

defmatriz(’RV’, ’sparse-row’,’RV’)

enddefproblem
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9 Appendix

ISet variables

I1=1600 Inumber of time intervalls 1600

DT=0.01 116.0/1 !Time step size

MZERO=100

REF=2! is used later in icosahedron to get 320 triangles

K=1 lis later used in the loop for the right hand side

! ANZ=16 Inumber of subdivisions in space mesh (commented, may used for other
meshes like a screen or a cube)

R=8000 ! a number which is later used to find the right hand side
QUADK=8! Amount of Gauss quadrature points for the matrices
QUAD=8

I geometry(’Square’,0,bmode=(/2,3/),gm="gm’) defines a screen mesh (commented)

#ti

problem(’Laplace’,315)
icosahedron("uniform’,refine=REF,p=0,spline="D’)
timemesh(deltaT=DT,noint=I,ansatz=0,test=-1,ctyp=0)
setretoperator(’RV’,0,-1,0,0) Ipw. constant vs pw. constant
elemsize(’D’)

! open(1) ’exdaten/meshl.dat’

! #taf. 'D’

! #px. 'D’

! close(1)

open(2) ‘I2normsinglelayerpwconstant.’//1//°°//REF//’_.dat’

write(2) '# DOF, NoTimelntervalls, hmaz, DeltaT, CFL’

write(2) "#°//DOF,I, MYHMAX,DELTAT, CFL

write(2) '# Time, Timestep, Norm, Matriz-CPU, Matriz-WALL, Performance’
timediff(0)

settime(1)
setquadpara(quadpoints=QUADK,ijn_radius=5,ijn_angle=5,sigma=0.17)
matriz(quadrature="numeric’,gqgna=QUADK,gqnb=QUADK,ijn=>5,sigma=0.17);
T=SEC;WT=WSEC

PER=T/WT

! open(1) ‘exdaten/matriz_parallel0.dat’

! #fk. "RV’ thin’

! close(1)

! symch 'RV’

Ishow(’sparse’)

Ift 24 R-R
solve(eps=1.0d-13,mdi="r=0",mit="CG’,abrflag=1,quiet=1)

open(1) ’ddd’//1//°_’//REF//’.dat’

! #taf. D’ ! #px. D’ #cx. D’
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9.5 A documentation of the operators used in maiprogs

close(1)

defspline(’D[1]=Spline(D)’)
eval(’D[1]=D’)

#no. ‘L2’ 'D[1]’

I#err. 16 R 'L2° 0 'D[1]’
TIME=1*DT

write(2) TIME,1,NORM, T, WT,PER
! write(2) TIME,1,NORM,T

do N=2,1

settime(N)

J=N-1

timediff(J)

ITest if lightcone passed body

!if (MZERO>0); then

defmatriz(’'RV[J]’, 'sparse-row’,’RV")

! ZEIT1=SEC
setquadpara(quadpoints=QUAD,ijn_radius=5,ijn_angle=>5,sigma=0.17)
matriz(quadrature="numeric’,gqgna=QUAD,gqnb=QUAD,ijn=>5,sigma=0.17,
arg="D.RV[J].D’); T=SEC; WT=WSEC
PER=T/WT

! open(1) ‘exdaten/matriz_parallel2’//J//’.dat’
! #fk. 'RV[J]’ ’thin’

! close(1)

! ZEIT2=SEC

zeromatriz(’RV[J]’)

! symch 'RV[’//J//)]

! show(’sparse’)

! else

! K=K+1

! ZEIT1=0

! ZEIT2=0

! show(’sparse’)

I'fi

Ift 9R - R

!Compute rhs (MOT-scheme)

do M=K,N-1

MN=N-M
eval(’Rhs(D)=Rhs(D)-Matriz(RV[MN])*D[M]’)
continue
solve(eps=1.0d-10,mdi="r=0",mit="CG’,abrflag=1,quiet=1)
#rno.

defspline(’D[N]=Spline(D)’)
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eval(’D[N]=D’)

#no. ‘L2’ 'D[N]’

! #err. 16 R L2’ 0 'D[J]’

open(1) ’ddd’//N//"-’//REF//’.dat’
! #taf. 'D’

! #pzx. D’

#cx. 'D’

close(1)

TIME=N*DT

write(2) TIME,N,NORM,T,WT,PER
I write(2) TIME,N,NORM,T
continue

end

9.5.2 A bcl-script for the retarded double layer potential

T LI L LI N ]

! RETARDED DOUBLE LAYER POTENTIAL (RI+RK)=(11 + K)
i

! hier: rhs= sin(2*t)? *t * exp(~t) ; R=8010

defproblem(’Laplace’,’DTSRC15°,330, 'Dirichlet direct BEM, transient sound radiation’,3)
setprob(spline="D’ mat="D.RK.D:DT*D.RI.D’,dat="D=u0’)
setsp(’D’,(/2,3/),0,0,1,1,1,’D’)

defmatriz(’RK’, sparse-row’,’RK’)
defmatriz(’RI’, ’sparse-row’,’R1’)
enddefproblem

ISet variables

1=1000 Inumber of time intervalls
DT=0.01 I'Time step size
MZERO=100

K=1

L=1

QUAD=S8

QUADK=8

R=8000

#ti

#time BEGINN WBEGINN
problem(’Laplace’,330)
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9.5 A documentation of the operators used in maiprogs

icosahedron("uniform’,refine=1,p=0,spline="D"’)

lopen(1) 'meshl.dat’
! #taf. D’

I#pnod. ’D’
lelose(1)

timemesh(delta T=DT,noint=I,ansatz=0,test=0,ctyp=0)
Ift 2/ R - R

setretoperator(’RK’,0,0,0,0)

elemsize(’D’)

open(4) ’setretoperator(0,0,0,0)_rhsgamma_monomials_pwconst’//DT:5//".dat’
write(4) > # DOF, NoTimelntervalls, hmaz, DeltaT, CFL ’

write(4) * #//DOF,I, MYHMAX,DELTAT,CFL ’

write(4) ’ # Time, Timestep, Norm, Error ’

timediff(0)

settime(1)

setquadpara(quadpoints=QUADK ijn_radius=5,1jn_angle=5,sigma=0.17)
matriz(quadrature="numeric’,gqgna=QUADK,gqnb=QUADK,ijn=>5,sigma=0.17);
T=SEC;WT=WSEC

solve(eps=1.0d-10,mdi="z=0",mit="GMRES’,abrflag=1,quiet=1)
#1rno.

defspline(’D[1]=Spline(D)’)

eval(’D[1]=D’)

lopen(1) ’indirect_discsoll.dat’
I#taf. D’

I#pnod. ’D’

I#rci. °D’

I#tcx. °D’

I#cnod. D’

Iclose(1)

#no. ‘L2 "D[1]’

TIME=1*DT
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write(4) TIME, 1, NORM,T,WT

do F=2,1

! open(1) “indirect_discsol’//F//’.dat’
settime(F)

J=F-1

timediff(J)

ITest if lightcone passed body

Pif (100> 0); then
defmatriz(’RK[J]’,’sparse-row’,’RK"’)

setquadpara(quadpoints=QUAD,ijn_radius=5,ijn_angle=5,sigma=0.17)
matriz(quadrature="numeric’,gqgna=QUAD,gqnb=QUAD,ijn=>5,s1gma=0.17,
arg="D.RK[J].D’); TRK=SEC; WTRK=WSEC

zeromatriz(’RK[J]’)

! else
! K=K+1
I'fi

ft 2/ R - R

!Compute rhs: add retarded double layer pot. to rhs
do M=K, F-1

MF=F-M
eval(’Rhs(D)=Rhs(D)-Matrix(RK[MF])*D[M]’)
continue

solve(eps=1.0d-10,mdi="r=0",mit="GMRES’,abrflag=1,quiet=1)
#rno.

defspline(’D[F]=Spline(D)’)

eval(’D[F]=D’)

! open(1) “indirect_discsol’//F//’.dat’
I#taf. 'D’

I#pnod. D’

I#rci. ’D’

! #cx. D’

! #cnod. ’D’

! close(1)

#no. 'L2" 'D[F]’
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9.5 A documentation of the operators used in maiprogs

TIME=F*DT

write(4) TIME,F,NORM, WTRK, WTRKIM
continue

#time ENDE WENDE

print "Dauer : °//ENDE-BEGINN

end

9.5.3 A bcl-scriot for the adjoint double layer potential

THITIIIII I ]

! RETARDED ADJOINT DOUBLE LAYER POTENTIAL (—RI+RK):(—%I +K')
I LTI LTI 0A0

Ihier: rhs = t* x exp(-2 * t) ; R=8000

defproblem(’Laplace’,’DTSRC157,330, Neumann direct BEM, transient sound radiation’,3)
setprob(spline="D’,mat="D.RKd.D:-DT*D.RI.D’,dat="D=t0")
setsp(’D’,(/2,3/),0,0,1,1,1,’D’)

defmatriz(’RKd’, sparse-row’,’RKd’)
defmatriz(’RI’, 'sparse-row’,’RI’)
enddefproblem

ISet variables
=480 Inumber of time intervalls
DT=0.025 !'Time step size
MZERO=100
K=1
L=1
QUAD=8
QUADK=8
R=8000

i
#time BEGINN WBEGINN
problem(’Laplace’,330)

icosahedron("uniform’,refine=1,p=0,spline="D"’)
open(1) 'meshl.dat’
! #taf. D’

! #taf. 'N’
#pnod. D’
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close(1)
timemesh(deltaT=DT,noint=I,ansatz=1,test=0,ctyp=0)
Ift 24 R-R

setretoperator(’RKd’,0,0,0,0)

elemsize(’D’)

open(4) ’indirect_neumann_sphere_openmp’//DT:5//°_4.dat’
write(4) '# DOF, NoTimelntervalls, hmaz, DeltaT, CFL’
write(4) "#°//DOF,[, MYHMAX,DELTAT,CFL

write(4) '# Time, Timestep, Norm, Error’

timediff(0)

settime(1)

setquadpara(quadpoints=QUADK,ijn_radius=5,ijn_angle=>5,sigma=0.17)
matriz(quadrature="numeric’,ggma=QUADK,gqnb=QUADK,ijn=>5
,sigma=0.17); T=SEC; WT=WSEC

solve(eps=1.0d-10,mdi="r=0",mit="GMRES’,abrflag=1,quiet=1)
#1rno.

defspline(’D[1]=Spline(D)’)

eval(’D[1]=D’)

open(1) ’indirect_discsoll.dat’
#taf. 'D’; #pnod. 'D’; #rci. 'D’; #cx. 'D’; #cnod. 'D’; close(1)

#no. °L2" °D[1]’

TIME=1*DT
write(4) TIME,1, NORM,T, WT

do F=2,1

! open(1) “indirect_discsol’//F//’.dat’

settime(F)

J=F-1

timediff(J)

ITest if lightcone passed body

Iif ( 100>0); then

defmatriz(’RKd[J]’, ’sparse-row’,’RKd’)
setquadpara(quadpoints=QUAD,ijn_radius=5,ijn_angle=5,sigma=0.17)
matriz(quadrature="numeric’,gqgna=QUAD,gqnb=QUAD,ijn=>5,s1gma=0.17,
arg="D.RKd[J].D’);TRK=SEC; WTRK=WSEC
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zeromatriz(’RKd[J]’)
I# else I# K=K+1 I# fi
Ift 2/ R - R

ICompute rhs: add retarded single layer pot. to rhs
do M=K, F-1

MF=F-M
eval(’Rhs(D)=Rhs(D)-Matriz(RKd[MF])*D[M]’)

continue

solve(eps=1.0d-10,mdi="z=0",mit="GMRES’,abrflag=1,quiet=1)
#rno.

defspline(’D[F]=Spline(D)’)

eval(’D[F]=D’)

! #taf. ’D’; #pnod. 'D’; #rci. 'D’; #cx. 'D’; close(1)

#no. 'L2’ 'D[F]’

TIME=F*DT

write(4) TIME,F,NORM, WTRK, WTRKIM
continue

#time ENDE WENDE

print "Dauer : ’//ENDE-BEGINN

end

9.5.4 A bcl-script for the retarded hypersingular integral operator

THITIIIIII I LI I D]

| HYPERSINGULARER OPERATOR AUF DER KUGEL (RW)
I I LI LI LI IL LTI L LI LI ]

defproblem(’Laplace’,’DTSRC15°,330, Neumann direct BEM, transient sound radiation’,3)
setprob(spline="D’,mat="D.RW.D’,dat="D=t0’)

setsp(’D’,(/2,3/),3,1,1,1,1,’D’)

defmatriz(’RW’, sparse-row’,’RW’)

enddefproblem

ISet variables

I=120 Inumber of time intervalls
DT=0.1 'Time step size
MZERO=100

K=1
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R=8000 !Right hand side function
QUAD=8

QUADK=8

REF=11!3

i
#time BEGINN WBEGINN
problem(’Laplace’,330)

icosahedron(uniform’,refine=REF,p=1,spline="D’)
timemesh(deltaT=DT,noint=I,ansatz=1,test=0,ctyp=1)
setretoperator(’RW”’,1,0,1,0)

elemsize(’D’)

open(1) 'mesh_’//REF//’.dat’

#taf. D’

#px. D’

#pnod. D’

close(1)

pause

open(2) 'TEST_-CCCC-CFL_Refine=1_indirect_neumann_sphere’//I//"°//DT:5//°.dat’
write(2) '# DOF, NoTimelntervalls, hmaz, DeltaT, CFL’

write(2) "#’//DOF,I, M\YHMAX,DELTAT, CFL,

write(2) '# Time, Timestep, Norm, Matriz-CPU, Matriz-WALL, Performance, Berech-
nungszeit’

timediff(0)

settime(1)

#time ZEITSTART

setquadpara(quadpoints=QUADK ijn_radius=5,ijn_angle=5,sigma=0.17)
matriz(quadrature="numeric’,ggna=QUADK,gqnb=QUADK,ijn=5,sigma=0.17)
T=SEC;WT=WSEC

Ift 24 R - R

lopen(1) ’rhs’//1//’.dat’
I#lx. D’

lelose(1)

! wrspringlich ’thin’

lopen(1) 'matrizWtest_’//1//°-°//DT:5//°_"//REF//’.dat’
! #fk. "RW’ ’dense’

Iclose(1)

show(’sparse’)

PER=1!T/WT

symch 'RW’
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solve(eps=1.0d-13,mdi="r=0",mit="GMRES’,abrflag=1,quiet=1)
defspline(’D[1]=Spline(D)’)
eval(’D[1]=D’)

open(1) ’indirect_hyper_sphere_discsoll.dat’

#taf. 'D’; #pnod. ’D’; #rci. 'D’; #cx. ’D’; #cnod. "D’ ! #c. ’D’ same as #cux.
close(1)

#time ZEITENDE

#no. ‘L2’ 'D[1]’

TIME=1*DT

write(2) TIME,1,NORM, T,WT,PER,ZEITENDE-ZEITSTART

do F=2,1

settime(F')

J=F-1

timediff(J)

ITest if lightcone passed body

if (MZERO>0); then

defmatriz(’RW[J]’, sparse-row’,”’RW’)

#time ZEITSTART
setquadpara(quadpoints=QUAD,ijn_radius=1,ijn_angle=5,sigma=0.17)
matriz(quadrature= numeric’,gqna=QUAD,gqnb=QUAD,ijn=>5,sigma=0.17,
arg="D.RW[J].D’); T=SEC; WT=WSEC

show(’sparse’)
PER=1IT/WT
zeromatriz(’RW/[J]’)

symch "RW['//1//]

else

K=K+1

fi

ift 24 R - R
Irhs(gql=24,ltyp=R,ltypv=R)
I#lx. °D’

Fi1=F-1

ICompute rhs: add retarded single layer pot. to rhs
do M=K, F-1

MF=F-M
eval(’Rhs(D)=Rhs(D)-Matriz(RW[MF])*D[M]’)

continue
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solve(eps=1.0d-10,mdi="r=0",mit="GMRES’,abrflag=1,quiet=1)
#time ZEITENDE

defspline(’D[F]=Spline(D)’)

eval(’D[F]=D’)

! open(1) “indirect_hyper_shiftedsphere_discsol’//F//’.dat’

! #taf. 'D’; #pnod. 'D’; #rci. 'D’; #cx. 'D’;

! close(1)

#no. ‘L2’ ’D[F/’

TIME=F*DT

write(2) TIME,F, NORM,T,WT,PER,ZEITENDE-ZEITSTART
continue

#time ENDE WENDE

print "Dauer : °//ENDE-BEGINN
end

9.5.5 A bcl-script for the retarded Poincaré-Steklov operator

T ] ]

I POINCARE-STEKLOV OPERATOR (PS)
T II LTI LI T

defproblem(’Laplace’,’DTSRC15°,330, Poincare-Steklov’,3)
setprob(spline="D:v=D’,mat="D.RW.D:(-1)*D.RKd.v:0.5*DT/2*D.RI.v:
(-1)*v.RK.D:(-1)*0.5*v.RI.D:(-1)*v.RV.v’,dat="D=u0:9=0’)
setsp(’D’,(/2,3/),3,1,1,1,1,’D’)
setsp(v’,(/2,3/),3,1,1,1,1,"v’)

defmatriz(’RW’, ’sparse-row’,’RW’)

defmatriz(’RV’, sparse-row’,’RV’)

defmatriz(’RK’, sparse-row’,’RK’)

defmatriz(’RKd’, ’sparse-row’,’RKd’)

defmatriz(’RI’, sparse-row’,’RI’)

enddefproblem

ISet variables

I1=60 Inumber of time intervalls urspringlich 200

DT=0.05 !'Time step size urspringlich 0.05

LT=DT/2

MZERO=100

K=1

R=9003 ! first row: f =tsin(2t)?exp(~t) in mydlapf; second row: g =0 in mynlapf
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QUAD=§
QUADK=8

#time ZEITSTART

problem(’Laplace’,330)
licosahedron("uniform’,refine=2,p=1,spline="D")
geometry(’Cube’,bmode=(/2,3/),gm="Dg’);

mesh( uniform’,n=4,p=1,elements="triangle’,spline="D’,gm="Dg’)
lgeometry(’Cube’,bmode=(/3,3/),gm="Dg’)
Imesh(uniform’,n=4,p=1,elements="tetrahedral’,spline="D’,gm="Dg’)
lgeometry(’Cube’,bmode=(/2,3/),gm="ug’);
Imesh(uniform’,n=4,p=1,elements="triangle’, spline="u’,gm="ug’)
open(1) 'mesh_tracecube.dat’

#taf. 'D’

#px. 'D’

#pnod. D’

close(1)

timemesh(delta T=DT,noint=I,ansatz=1,test=0,ctyp=0)

setretoperator(’RW”,1,0,1,0)

setretoperator(’'RV’,1,-1,1,0)

setretoperator(’RK’,1,-1,1,0)

setretoperator(’'RKd’,1,0,1,0)

timediff(0)

settime(1)
setquadpara(quadpoints=QUADK,ijn_radius=5,ijn_angle=>5,sigma=0.17)
elemsize(’D’)

It 24 R - R

matriz(quadrature="numeric’,ggna=QUADK,gqnb=QUADK,ijn=>5,sigma=0.17)

#ti
#time BEGINN WBEGINN

open(3) normV.dat’

Isolve(eps=1.0d-13,mdi="v=0",mit="GMRES’,abrflag=1,quiet=1)
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solve(eps=1.0d-13,mdi="r=0",mit="GAUSS’,abrflag=1,quiet=1)
defspline(’D[1]=Spline(D)’)

defspline(’v[1]=Spline(v)’)

eval(’D[1]=D’)

eval("v[1]=v’)

open(2) 'TESTPS’//1//°°//DT:5// . dat’

write(2) '# DOF, NoTimelntervalls, hmaz, DeltaT, CFL’

write(2) '#°//DOF,I, MYHMIN,DELTAT,CFL,

write(2) '# Time, Timestep, Norm, Matriz-CPU, Matriz-WALL, Performance, Berech-
nungszeit’

open(1) ‘leftMatriz.dat’
#fk. 'RV’ ’sparse’
#fk. "RW’ ’sparse’
#fk. "RK’ ’sparse’
#fk. "RKd’ ’sparse’
#fk. 'RI’ ’sparse’
close(1)

open(1) tno’//1// . dat’
#taf. D’

#cx. D’

#cx. v’

#cnod. D’

#lx. D’

#lr. v’

#cnod. D’

close(1)

#no. L2 'D[1)’

#err. 16 R 'L2° 0’ 'D[1)’ ; E[1}=ERR

#time ZEITENDE

TIME=1*DT

write(2) TIME,1,NORM,E/[1],ZEITENDE-ZEITSTART
#no. L2 w[1]’

write(3) NORM

do F=2,1
settime(F)
J=F-1
timediff(J)

defmatriz(’RW[J]’, ’sparse-row’,’RW’)
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defmatriz(’'RV[J]’, sparse-row’,’RV")

defmatriz(’RK[J]’, ’sparse-row’,’RK’)

defmatriz(’RKd[J]’, 'sparse-row’,’RKd’)
setquadpara(quadpoints=QUAD,ijn_radius=1,ijn_angle=>5,sigma=0.17)

matriz(quadrature="numeric’,gqgna=QUAD, gqnb=QUAD,ijn=>5,sigma=0.17,
arg="D.RW[J].D’);
matriz(quadrature="numeric’,ggna=QUAD,gqnb=QUAD,ijn=>5,sigma=0.17,
arg="v.RV[J].v’);
matriz(quadrature="numeric’,ggna=QUAD,gqnb=QUAD,ijn=>5,sigma=0.17,
arg="v.RK[J].D’);
matriz(quadrature="numeric’,gqgna=QUAD,gqnb=QUAD,ijn=>5,sigma=0.17,
arg="D.RKd[J].v’);

open(1) 'motMatriz’//J// . dat’
#fk. 'RV[J]’ “sparse’

#fk. 'RW[J]’ ’sparse’

#fk. "RK[J]’ ’sparse’

#fk. "RKd[J]’ ’sparse’

#fk. 'RI’ ’sparse’

close(1)

#time ZEITSTART
Ift 2/ R-R

do M=K, F-1
MF=F-M

if(M==F-1); then !Identitatsanteil fiir m=n-1
eval(’Rhs(D)=Rhs(D)-Matriz(RW[MF])*D[M]+Matriz(RKd[MF])*v[M]
-0.5*LT*Matriz(RI)*v[M]’)
eval(’Rhs(v)=Rhs(v)+Matriz(RV[MF])*v[M]+Matriz(RK[MF])*D[M]
-0.5*Matriz(RI)*D[M]’)

else
eval(’Rhs(D)=Rhs(D)-Matrix(RW[MF])*D[M]+Matriz(RKd[MF])*v[M]’)
eval(’Rhs(v)=Rhs(v)+Matriz(RV[MF])*v[M]+Matriz(RK[MF])*D[M]’)

fi

continue
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Isolve(eps=1.0d-13,mdi="t=0",mit="GMRES’,abrflag=1,quiet=1)
solve(eps=1.0d-10,mdi="r=0",mit="GAUSS’,abrflag=1,quiet=1)
#time ZEITENDE

defspline(’D[F]=Spline(D)’)

defspline("v[F]=Spline(v)’)

eval(’D[F]=D’)

eval("v[F]=v’)

open(1) tno’//F//’.dat’
#taf. 'D’

#cx. D’

#cnod. D’

#lr. 'D’

close(1)

#no. L2’ 'D[F]’

#err. 16 R 'L2’ 0’ 'D[F]’ ; E[F|=ERR

TIME=F*DT

write(2) TIME,F,NORM,E[F],ZEITENDE-ZEITSTART
#no. ‘L2 w[F]’

write(3) NORM

continue

end

9.5.6 A bcl-script for the retarded inverse Poincaré-Steklov operator

I T ]

I INVERSE POINCARE-STEKLOV OPERATOR (IPS)
I T

defproblem(’Laplace’,’DTSRC15°,330, Poincare-Steklov’,3)
setprob(spline="D:N=D’,mat="(-1)*D.RW.D:(-1)*D.RKd.N:(-1)*DT*0.25*D.RI.N:
N.RK.D:(-1)*0.5*N.RLD:(-1)*N.RV.N’,dat="N=t0:D=0’)
setsp(’D’,(/2,3/),3,1,1,1,1,’D’)
setsp('N’,(/2,3/),3,1,1,1,1,’N’)
Isetsp('uw’,(/3,3/),3,1,3,3,1,"w’)

defmatriz(’RW’, ’sparse-row’,’RW’)

defmatriz(’RV’, ’sparse-row’,’RV’)

defmatriz(’RK’, sparse-row’,’RK’)

defmatriz(’RKd’, sparse-row’,’RKd’)

defmatriz(’RI’, 'sparse-row’,’RI’)

enddefproblem
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ISet variables

I=100 Inumber of time intervalls

DT=0.05 !Time step size urspringlich 0.05

LT=DT/2

MZERO=100

K=1

R=9103 ! first row: f =tsin(2t)%?exp(~t) in mydlapf second row: g =0 in mynlapf
QUAD=8

QUADK=8

#time ZEITSTART

problem(’Laplace’,330)
licosahedron("uniform’,refine=2,p=1,spline="D")
geometry(’Cube’,bmode=(/2,3/),gm="Dg’);
mesh(uniform’ ,n=8,p=1,elements="triangle’,spline="D’,gm="Dg’)
open(1) 'mesh_tracecube.dat’

#taf. ‘D’

#px. D’

#pnod. 'D’

I#taf. u’

I#px. u’

I#pnod. v’

close(1)
timemesh(deltaT=DT,noint=I,ansatz=1,test=0,ctyp=0)

setretoperator(’'RW’,1,0,1,0)

setretoperator(’RV’,1,-1,1,0)

setretoperator(’RK’,1,-1,1,0)

setretoperator(’RKd’,1,0,1,0)

timediff(0)

settime(1)

setquadpara(quadpoints=QUADK ijn_radius=5,ijn_angle=5,sigma=0.17)
elemsize(’D’)

Ift 24 R-R

matriz(quadrature="numeric’,ggna=QUADK,gqnb=QUADK,ijn=>5,sigma=0.17)
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At
#time BEGINN WBEGINN

open(3) mormV.dat’

solve(eps=1.0d-13,mdi="r=0",mit="GMRES’,abrflag=1,quiet=1)
Isolve(eps=1.0d-13,mdi="t=0",mit="GAUSS’,abrflag=1,quiet=1)
defspline(’D[1]=Spline(D)’)

defspline(’N[1]=Spline(N)’)

eval(’D[1]=D’)

eval(’N[1]=N’)

open(2) "TESTIPSCUBE’//R//’-’//DT:5//".dat’

write(2) '# DOF, NoTimelntervalls, hmaz, DeltaT, CFL’

write(2) *#°//DOF,I, MYHMAX,DELTAT, CFL

write(2) '# Time, Timestep, L2-Norm, L2-Fehler, min. EW, maz. EW, Kondition-
szahl, Berechnungszeit’

open(1) ’leftMatriz.dat’
#fk. 'RV’

#fk. 'RW’

#fk. 'RK’ “sparse’
#fk. 'RKd’ ’sparse’
#fk. 'RI’ ’sparse’
close(1)

lopen(1) ’tno’//1//’.dat’
I#taf. 'D’

I#cx. °D’

I#cx. "N’

I#cnod. D’

I#lx. ’D’

I#le. "N’

I#cnod. ’D’

lelose(1)

#no. 'L2’ "D[1];K[1]=NORM

#no. 'L2’ N[1];K[2]=NORM

#err. 16 R 'L2’ 0’ 'N[1]’ ; E[1]=ERR

#time ZEITENDE

TIME=1*DT

write(2) TIME,1,K[1],K[2],E[1],LMIN,LMAX,COND,ZEITENDE-ZEITSTART
I#no. L2’ 'N[1]’

lwrite(3) NORM
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do F=2,1
settime(F)
J=F-1
timediff(J)

defmatriz(’RW[J]’, 'sparse-row’,’RW’)

defmatriz(’'RV[J]’, sparse-row’,’RV")
defmatriz(’RK[J]’,’sparse-row’,’RK’)

defmatriz(’RKd[J]’, sparse-row’,’RKd’)
setquadpara(quadpoints=QUAD,ijn_radius=1,ijn_angle=5,sigma=0.17)
Ishow(’sparse’)

matriz(quadrature="numeric’,gqgna=QUAD, gqnb=QUAD,ijn=>5,sigma=0.17,
arg="D.RW[J].D’);
matriz(quadrature="numeric’,ggna=QUAD,gqnb=QUAD,ijn=>5,sigma=0.17,
arg="N.RV[J].N’);
matriz(quadrature="numeric’,ggna=QUAD,gqnb=QUAD,ijn=>5,sigma=0.17,
arg="N.RK[J].D’);
matriz(quadrature="numeric’,ggna=QUAD,gqnb=QUAD,ijn=>5,sigma=0.17,
arg="D.RKd[J].N’);

lopen(1) 'motMatriz’//J// . dat’
I#fk. 'RV[J]’ ‘sparse’

I#fk. "'RW[J]’ ’sparse’

I#fk. 'RK[J]’ ’sparse’

I#fk. "RKd[J]’ ’sparse’

I#fk. 'RI’ ’sparse’

lelose(1)

#time ZEITSTART
ft 2/ R-R

do M=K,F-1
MF=F-M

if(M==F-1); then !Identitatsanteil fiir m=n-1
eval(’Rhs(D)=Rhs(D)+Matriz(RW[MF])*D[M]+Matriz(RKd[MF])*N[M]
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+DT*0.25*Matriz(RI)*N[M]’)
eval(’Rhs(N)=Rhs(N)+Matriz(RV[MF])*N[M]-Matriz(RK[MF])*D[M]
-0.5*Matriz(RI)*D[M]’)

else
eval(’Rhs(D)=Rhs(D)+Matriz(RW[MF])*D[M]+Matriz(RKd[MF])*N[M]’)
eval(’Rhs(N)=Rhs(N)+Matriz(RV[MF])*N[M]-Matriz(RK[MF])*D[M]’)

fi

continue

solve(eps=1.0d-13,mdi="t=0",mit="GMRES’,abrflag=1,quiet=1)
Isolve(eps=1.0d-10,mdi="v=0",mit="GAUSS’,abrflag=1,quiet=1)
#time ZEITENDE

defspline(’D[F]=Spline(D)’)

defspline(’N[F]=Spline(N)’)

eval(’D[F]=D’)

eval(’N[F]=N’)

lopen(1) ’tno’//F//’.dat’
I#taf. D’

I#cx. D’

I#cnod. D’

I#le. D’

lelose(1)

#no. L2’ 'D[F]’ ; K[1]=NORM

#no. ‘L2’ 'N[F]" ; K[2]=NORM

#err. 16 R 'L2’ 0’ 'N[F]’ ; E[F|=ERR

TIME=F*DT

write(2) TIME,F,K[1],K[2], E[F],LMIN,LMAX,COND,ZEITENDE-ZEITSTART
I#no. ‘L2’ 'N[F]’

lwrite(3) NORM

continue

end

9.5.7 A bcl-script for a time dependent Lame problem with finite elements

i

! Time dependent Lame-Operator with inhomogenous Dirichlet boundary
! conditions with homogenous initial conditions with piecewise linear

! ansatz and test functions in space and piecewise linear ansatz function
! in time with piecewise constant test function in space

!

! Similar to central differential coefficients in time
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!
T LTI LI D ]

defproblem(’Lame’,’FEMNHD’,10,”"FEM with non-homogenous Dirichlet-conditions’,3)
setprob(spline="u:u_bd=Tu’,mat="0.5*DT*u.A.u:1/DT*u.M.u’,dat="u_bd=t0’)
setsp(u’,(/3,3/),3,1,3,3,1,’v’)

setsp('u_bd’,(/2,3/),3,1,3,3,1)

defmatriz(’A’, 'sparse-row’)

defmatriz(’M’, ’sparse-row’)

enddefproblem

open(2) ’solution_nonhom_Dirichlet64.dat’
geometry(’Cube’,0); #ti
problem(’Lame’,nickname="FEMNHD’)

1=20 ! number of time elements
DT=0.2 ! Time Step size
LT=DT**2 | DT**2

R=9006! rhs

I#ep 2000.0 0.3

#lm 2.0 1.0 ! Set Lame constants

J=2

mesh(uniform’,n=J,p=1,elements="tetrahedral’)
timemesh(deltaT=DT,noint=I,ansatz=1,test=0,ctyp=0)

elemsizetetrahedral(u’)

write(2) '# DOF, NoTimelntervalls, hmazx, DeltaT, CFL’

write(2) #°//DOF,[, MYHMAX,DELTAT, CFL

write(2) '# Time, Timestep, Norm, Matriz-CPU, Matriz-WALL, Performance’

settime(1)

lopen(1) 'meshl.dat’
! #taf. D’

I#taf. w’

I#pnod. v’
lelose(1)

matriz('numeric’,ijn==6,sigma=0.17,mu=1.0)
lopen(1) 'matrizA.dat’

I#fk. A’

lclose(1)

lopen(1) 'matrizM.dat’

I#fk. M

lelose(1)
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Ift 16 R 0 R

lopen(1) ’firstrhsi.dat’

I#le. u’

lelose(1)
solve(eps=1.0d-14,mit="CG’); T=SEC
#rno. defspline(’uf1]=Spline(u)’)
eval(uf1]=u’)

#no. ‘L2 ul1]’

TIME=1*DT

write(2) TIME,1,NORM,E[4],E[5],T

do N=2,1

settime(N)

J=N-1

timediff(J)

Ift 9R - R

if(N>=3); then

K=N-2
eval(’Rhs(u)=Rhs(u)-1/DT*Matriz(M)*u[K]’)
fi
eval(’Rhs(u)=Rhs(u)+2/DT*Matriz(M)*u[J]-0.5*DT*Matriz(A) *ulJ]’)
solve(eps=1.0d-14,mit="CG’); T=SEC

#Trno.

defspline("u[N]=Spline(u)’)
eval("u[N]=u’)

#no. ‘L2 u[N]’

#err. SR L2 0w’ w’ ; El4J=ERR
TIME=N*DT

write(2) TIME,1, NORM,E[4],T
continue

close(2)

end

9.5.8 A bcl-script for a time dependent wave equation with finite elements

i

! Time dependent Wave-operator with inhomogenous Dirichlet boundary
! conditions with homogenous initial conditions with piecewise linear

! ansatz and test functions in space and piecewise linear ansatz function
! in time woth piecewise constant test function in space

!

! Similar to central differential coefficients in time
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!
T I ]

defproblem(’Laplace’,’FEMNHD’,10,’FEM with non-homogenous Dirichlet-conditions’,3)
setprob(spline="u:u_bd=Tu’,;mat="0.5*DT*u.A.u:1/DT*u.M.v’,dat="u_bd=u0’)
setsp(u’,(/3,3/),3,1,1,1,1,’w’)

setsp('u_bd’,(/2,3/),3,1,1,1,1)

defmatriz(’A’, 'sparse-row’)

defmatriz(’M’, ’sparse-row’)

enddefproblem

geometry(’Cube’,0); #ti
problem(’Laplace’,nickname="FEMNHD’)

I=10 ! number of time elements
DT=0.4 ! Time Step size
LT=DT**2 | DT**2

R=9006! rhs

J=2

open(2) ’solution_nonhom_Dirichletgaus’//DT//’.dat’
mesh(uniform’,n=J,p=1,elements="tetrahedral’)
timemesh(deltaT=DT,noint=I,ansatz=1,test=0,ctyp=0) ! set dt as timestep
elemsizetetrahedral(u’)

write(2) '# DOF, NoTimelntervalls, hmaz, DeltaT, CFL’

write(2) "#°//DOF,I, MYHMAX,DELTAT, CFL

write(2) '# Time, Timestep, Norm, Matriz-CPU, Matriz-WALL, Performance’

settime(1)

open(1) 'meshl.dat’
! #taf. D’

#taf. v’

#pnod. "u’
close(1)

matriz(’'numeric’,ijn==6,sigma=0.17,mu=1.0)
lopen(1) 'matrizA.dat’

Ik, A

Iclose(1)

lopen(1) 'matrizM.dat’

I M

lclose(1)

Ift 16 R 0R

lopen(1) ’firstrhs1.dat’
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I#lx. v’

lelose(1)
solve(eps=1.0d-14,mit="GMRES’); T=SEC
#rno.

open(1) ’soll.dat’

#cnod. v’

close(1)

defspline(’u[1]=Spline(u)’)
eval(uf1]=u’)

#no. L2 ul1]’

#err. 8 R 'L2° 0 v’ v’ ; E[{]=ERR
TIME=1*DT

write(2) TIME,1,NORM,E[}]

do N=2,1

settime(N)

J=N-1

timediff(J)

Ift 9R - R

lopen(1) ’firstrhs’//N//’.dat’
I#le, u’

lelose(1)

if(N>=38); then

K=N-2
eval(’Rhs(u)=Rhs(u)-1/DT*Matriz(M)*u/K]’)
fi

eval(’Rhs(u)=Rhs(u)+2/DT*Matric(M)*u[J]-0.5*DT*Matriz(A) *u[J]’)

solve(eps=1.0d-14,mit="GMRES’); T=SEC
defspline("u[N]=Spline(u)’)

eval("u/N]=u’)

#no. ‘L2 'u[N]’

#err. 8 R L2 0 v’ v’ ; E[4{|=ERR
TIME=N*DT

write(2) TIME, N, NORM,E[}]

continue

close(2)

end
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9.5.9 A bcl-script for the fluid-structure interaction problem with the
retarded Poincare-Steklov operator

THITIITIII LTI LTI T ]

! Fluid-Structure Interaction (coupling of Lame with wave)
THITIIIIIII LTI LTI I T ]

defproblem(’FluidStructure’,’DTSRC15’,330, Poincare-Steklov’,3)
setprob(spline="D< Tu:N=D:u:u_bd=Tu’,&
mat="0.5*DT*u.ALame.u:1/DT*u.M.u:(-1)*D.RIn.u_bd:u_-bd.nRI.D: &
& (-1)*D.RW.D:D.RKd.N:(-1)*0.5*DT/2*D.RL.N: &

& N.RK.D:0.5*N.RI.D:N.RV.N’,dat="D=u0:N=0:u_bd=t0’)
setsp(’D’,(/2,3/),3,1,1,1,1,’D’)

setsp(’N’,(/2,3/),3,1,1,1,1,’N’)

setsp(u’,(/3,3/),3,1,3,3,1,’u’)

setsp(u-bd’,(/2,3/),3,1,3,3,1)

defmatriz(’RW’, sparse-row’,’RW’)

defmatriz(’RV’, ’sparse-row’,’RV’)

defmatriz(’RK’, ’sparse-row’,’RK’)

defmatriz(’RKd’, sparse-row’,’RKd’)

defmatriz(’RI’, 'sparse-row’,’RI’)

defmatriz(’RIn’, "dense’,’RIn’) ! defined only for dense
defmatriz(’nRI’,’dense’,’nRI’) ! defined only for dense
defmatriz(’ALame’, sparse-row’)

defmatriz(’M’, ’sparse-row’)

enddefproblem

ISet variables

I1=20 Inumber of time intervalls

DT=0.2 I'Time step size

LT=DT/?2

MZERO=100

K=1

R=9005 ! first row: f =tsin(2t)?exp(~t) in mydlapf second row: g =0 in mynlapf
QUAD=8

QUADK=8

#lm 2.0 1.0 ! lambda and mu; Lame constants

#time ZEITSTART
problem(’FluidStructure’,330)

geometry(’Cube’,bmode=(/3,3/),gm="ug’)
mesh(uniform’,n=2,p=1,elements="tetrahedral’,spline="u",gm="ug’)
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open(1) 'mesh_tracecube.dat’

#taf. 'D’

#px. D’

#pnod. ‘D’

#taf. u’

#px. u’

#pnod. "u’

close(1)
timemesh(deltaT=DT,noint=I,ansatz=1,test=0,ctyp=0)

setretoperator(’RW”,1,0,1,0)
setretoperator(’RV’,1,-1,1,0)
setretoperator(’'RK’,1,-1,1,0)

setretoperator(’'RKd’,1,0,1,0)

timediff(0)

settime(1)
setquadpara(quadpoints=QUADK,ijn_radius=5,ijn_angle=5,sigma=0.17)

elemsize(’D’)
elemsizetetrahedral(u’)

ift 24 R-R
matriz(quadrature="numeric’,gqgna=QUADK,gqnb=QUADK,ijn=>5,sigma=0.17)

#ti
#time BEGINN WBEGINN

open(3) normV.dat’

Isolve(eps=1.0d-13,mdi="t=0",mit="GMRES’,abrflag=1,quiet=1)
solve(eps=1.0d-13,mdi="r=0",mit="GAUSS’,abrflag=1,quiet=1)
defspline(’D[1]=Spline(D)’)

defspline(’N[1]=Spline(N)’)

defspline(’u[1]=Spline(u)’)

defspline("u_bd[1]=Spline(u-bd)’)

eval(’D[1]=D’)

eval(’N[1]=N’)

eval("uf1]=u’)

eval("u_bd[1]=u_bd’)

open(2) "TESTPS’//1//°_°//DT:5//".dat’
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write(2) '# DOF, NoTimelntervalls, hmaz, DeltaT, CFL’

write(2) '#°//DOF, I, MYHMAX,DELTAT,CFL

write(2) '# Time, Timestep, Norm, Matriz-CPU, Matriz-WALL, Performance, Berech-
nungszeit’

open(1) ’leftMatriz.dat’
#fk. 'RV’ ’sparse’
#fk. "RW’ ’sparse’
#fk. 'RK’ ’sparse’
#fk. 'RKd’ ’sparse’
#fk. 'RI’ ’sparse’
#fk. "ALame’ ’sparse’
#fk. "M’ ’sparse’
#fk. 'RIn’ ’dense’
#fk. 'nRI’ ’dense’
close(1)

lopen(1) tno’//1//’.dat’
I#taf. 'D’
I#tcx. 'D’
I#cx. "N’
I#cx. u_bd’
I#cx. v’
I#cnod. D’
I#cnod. N’
I#cnod. “u_bd’
I#cenod. "u’
I#lz. "D’
4z, "N’
I#le. "u_bd’
I#le. uw’
lelose(1)

#no. 'L2" 'D[1)’ ; K[1]=NORM

#no. ‘L2 u[1]’ ; K[2]=NORM

#no. °L2’ 'N[1]’ ; K[3]=NORM

#time ZEITENDE

TIME=1*DT

lwrite(2) TIME,1,K[1],K[2] |,E[1],ZEITENDE-ZEITSTART

I#no. 'L2’ "N[1]’

lwrite(3) NORM

write(2) TIME, 1,K[1],K[2],K[3],LMIN,LMAX,COND, ZEITENDE-ZEITSTART
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do F=2,1
settime(F)
J=F-1
timediff(J)

defmatriz(’RW/[J]’, 'sparse-row’,’RW’)

defmatriz(’RV[J]’, sparse-row’,’RV"’)
defmatriz(’RK[J]’,’sparse-row’,’RK")

defmatriz(’RKd[J]’, ’sparse-row’,’RKd’)
setquadpara(quadpoints=QUAD,ijn_radius=1,ijn_angle=5,sigma=0.17)
Ishow(’sparse’)

matriz(quadrature="numeric’,gqgna=QUAD,gqnb=QUAD,ijn=>5,sigma=0.17,
arg="D.RW|[J].D’);
matriz(quadrature="numeric’,gqgna=QUAD,gqnb=QUAD,ijn=>5,sigma=0.17,
arg="N.RV[J].N’);
matriz(quadrature="numeric’,gqgna=QUAD,gqnb=QUAD,ijn=>5,s1gma=0.17,
arg="N.RK[J].D’);
matriz(quadrature="numeric’,gqgna=QUAD,gqnb=QUAD,ijn=>5,s1gma=0.17,
arg="D.RKd[J].N’);

lopen(1) 'motMatrix’//J// . dat’
I#fk. 'RV[J]’ ‘sparse’

I#fk. 'RW[J]’ ’sparse’

I#fk. 'RK[J] ’sparse’

I#fk. "RKd[J]’ ’sparse’

I#fk. 'RI’ ‘sparse’

lelose(1)

#time ZEITSTART

Ift 24 R - R

do L=K,F-1

MF=F-L

if(L==F-1); then !ldentitdtsanteil fir m=n-1

eval(’Rhs(D)=Rhs(D)+Matriz(RW[MF])*D[L]-Matriz(RKd/MF])*N[L]
+LT*0.5*Matriz(RI)*N/L]’)
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eval(’Rhs(D)=Rhs(D)-Matriz(RIn)*u_-bd[L]’)
eval(’Rhs(N)=Rhs(N)-Matriz(RV[MF])*N[L]-Matriz(RK[MF])*D[L]
+0.5*Matriz(RI)*D[L]’)

else
eval(’Rhs(D)=Rhs(D)+Matriz(RW[MF])*D[L]-Matriz(RKd[MF])*N[L]’)
eval(’Rhs(N)=Rhs(N)-Matriz(RV[MF])*N[L]-Matriz(RK[MF])*D[L]’)

fi

continue

if(F>=3); then

P=F-2

eval(’Rhs(u)=Rhs(u)-1/DT*Matriz(M)*u[P]’)

fi

eval(’Rhs(u)=Rhs(u)+2/DT*Matriz(M)*ulJ]-0.5*D T*Matriz(ALame) *ulJ]’)
eval(’Rhs(u_bd)=Rhs(u_bd)+Matriz(nRI)*D[J]’)

solve(eps=1.0d-13,mdi="z=0",mit="GMRES’,abrflag=1,quiet=1)
Isolve(eps=1.0d-10,mdi="t=0",mit="GAUSS’,abrflag=1,quiet=1)
#time ZEITENDE

defspline(’D[F]=Spline(D)’)

defspline(’N[F]=Spline(N)’)

defspline("u[F|=Spline(u)’)

defspline("u_bd[F]=Spline(u_bd)’)

eval(’D[F]=D’)

eval(’N[F]=N")

eval("u[F]=u’)

eval("u_bd[F]=u_bd’)

lopen(1) tno’//F//’.dat’
I#taf. 'D’
Icx. D’
I#cx. 'N’
I#cx. u_bd’
Icx. v’
I#enod. D’
I#cnod. N’
I#cnod. “u_bd’
I#cenod. "u’
I#lz. "D’
I#lx. "N’
I#le. "u_bd’
I#le. w’
lelose(1)
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#no. L2’ 'D[F]’ ; K[1]=NORM

#no. ‘L2 u[F]" ; K[2][=NORM

#no. ‘L2’ 'N[F]" ; K[3]=NORM

TIME=F*DT

write(2) TIME,F,K[1],K[2],K[3], LMIN,LMAX,COND,ZEITENDE-ZEITSTART
continue

end

9.6 Explanation of the Code for the hp-version

This section describes the way how the computations for the hp-version is done. The
idea is to divide the implementation into 3 steps:

e Preprocessing
e Computation
e Postprocessing

The preprocessing and postprocessing are done in MATLAB, whereas the computation
of the matrices are done in MAIPROGS.

In the preprocessing, we prepare everything in order to run the computation. We
construct the space time mesh, where the timestep At is set and the space mesh is
defined. Then we set the polynomial degree for each element and calculate the location
of the time nodes on time intervals (¢x_1,t;) for k =1,..., Ny with t; = kAt and N; the
amount of timesteps. We also define the indexing of the reference basis. Furthermore
we compute the time coefficients for each element. Here our elements are triangles. At
last we save these data in a file, which we load into MAIPROGS for the computation.
The preprocessing step is executed with the MATLAB file monogeom2.m. The output
is monogeom.dat.

Next is the computation step. This step is divided into 2 steps:
1. Computation of the light cone matrices
2. Computation of every block entries for the space time matrix.

Each step here is done in different MAIPROGS packages, since both use the same sub-
routine femcomp2x22 in a Fortran file called compfem22.f90 but with different goals.
The first step is done in the folder CEYHUNS while the second is done in PVer-
sion/PCOMPRESS?2, where each folder uses different compfem22.f90 Fortran code.

In the first step we compute only the matrices for each lightcone. This step requires
the most computation time. It requires more time dependent on the refinement of the
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space time mesh and the polynomial degree. This code is parallelized with OpenMP but
could be faster, e.g. by using MPI in addition as well. We name the output matrices
pre”j”.dat with j=1,..., N;.

In the second step we compute the block matrices of the space time matrix. We load
the time coefficients together with pre”j”.dat for j = 1,..., N; into the program. By
means of an index map we calculate the entries of each block matrix one by one. We
save these matrices calling matrix”j”.dat for j =1,..., N;. We compute the right hand
side for each timestep j with standard Gauss quadrature as well, denoting them as
RHS”j”.dat for j =1,..., N¢.

Finally in the postprocessing we load the block matrices matrix” j”.dat and RHS” j”.dat
for j =1,..., Ny into MATLAB. We build up the space time matrix and the correspond-
ing right hand side. We solve this system with the Gauss algorithm. It is also possible
to solve it with other solvers as well, e.g. a preconditioned GMRES (see [52]). We save
the solution in a file called solvec.dat. Then we compute a discretized energy E(t) like
in (2.55) saving it in a file called outE.dat. Now we may evaluate the results.
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