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1 Summary  

1.1 Abstract (EN) 

The electricity generation from photovoltaic systems (PV) is becoming more relevant from year to year in 

the context of global power generation, with the newly installed capacity exceeding all other forms of 

generation for the first time in 2016. With its triumphal sweep around the globe, it is becoming increasingly 

cheap, more competitive in more places and thus an increasingly important pillar of our energy system. 

This is accompanied by increasing demands on the quality of solar energy yield forecasts, as these form the 

basis for every investment decision. Furthermore, yield forecasts form an important basis for grid operators 

and actors in the energy market, on which the power generated must be brought into line with the power 

consumed at all times. At present, major energy yield forecast uncertainties are caused by the input data – 

time series of global irradiance which are mostly available in one-hour resolution – and by the models 

which convert these data into the irradiance at the PV module level.  

To reduce these uncertainties, this work introduces two new algorithms and validates many existing ones 

with a very large set of measurement data. The validation data-set comprises high-quality measurement 

data of the Baseline Surface Radiation Network (BSRN), covering a large part of the Earth's climate zones. 

The first algorithm synthesizes time series of global irradiance of one minute resolution from time series 

with one hour resolution. Thanks to this algorithm it is possible to simulate PV systems with statistically 

representative, synthetic input data with a resolution of one minute even at locations where only hourly 

measured data is available. Compared to existing algorithms the new approach is capable of producing 

substantially more natural frequency distributions of the global irradiance, of the irradiance gradients and 

of the clear-sky index. The root mean squared deviation (RMSD) of the global irradiance distribution is 

reduced by 61%, the RMSD of the gradients by 52% and the RMSD of the clear-sky index by 71%. 

In addition, a new model for calculating the diffuse fraction of the global irradiance is presented and 

compared with a selection of existing models. The new approach realizes a reduction by 50% of the 

deviations of the modelled from measured diffuse irradiation per year, the RMSD is reduced by 18%. In 

contrast to existing models, the annual deviation of the diffuse irradiation is smaller than 20% in all cases, 

while it is smaller than 10% in 80% of the analyzed test cases. 

It is a complex and time consuming task to implement these two algorithms. In order to be usable by fellow 

researchers, they are publicly available on http://www.pvmodelling.org. 

A comprehensive matrix simulation analysis forms the third part of the thesis. A wide range of available 

irradiance models, different simulation time steps and orientations of the PV modules are combined with 

each other to analyze the effects of the different models on the irradiance on the inclined module surface 

and finally the PV yield. Thanks to this data, it is possible to evaluate the interaction of the models and the 

time step for different PV systems with regard to energy yield simulations. 

The thesis is rounded off by a detailed validation study of models that calculate the global irradiance on 

tilted surfaces. A validation dataset of long-term irradiance measurements at two locations and 19 different 

PV module orientations with one minute resolution is used to evaluate the performance of five 

transposition models. The study helps to answer important questions about the model uncertainties for 

calculating the irradiance for differently oriented PV module. Recommendations for locations with mostly 

cloudless or overcast skies are developed as well.  

Keywords: Photovoltaics, Solar, Irradiance, Modelling, Simulation  
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1.2 Zusammenfassung (DE) 

Titel: Analyse und Weiterentwicklung von Algorithmen zur Strahlungsmodellierung für die Simulation 
photovoltaischer Systeme 

Die Stromerzeugung aus photovoltaischen Anlagen (PV) wird im Kontext der globalen Stromerzeugung 

von Jahr zu Jahr relevanter, die neu installierte Leistung überstieg im Jahr 2016 erstmals alle anderen 

Erzeugungsformen. Mit ihrem Siegeszug rund um den Globus wird sie immer günstiger, an immer mehr 

Orten konkurrenzfähig und so zunehmend zu einer wichtigen Säule unseres Energiesystems. 

Damit gehen steigende Qualitäts-Anforderungen an Ertragsprognosen einher, da diese die Grundlage für 

jede Investitionsentscheidung bilden und eine wichtige Entscheidungshilfe für Akteure des Energiemarkts 

sind. Große Unsicherheitsfaktoren liegen derzeit vor allem in den Eingangsdaten für die Modellierung – 

den zumeist stündlich aufgelösten Globalstrahlungsdaten – und den Modellen, die diese Daten umrechnen 

zur Strahlung auf die PV-Modul-Ebene. 

Um die Unsicherheiten in der Strahlungsmodellierung zu reduzieren, werden in dieser Arbeit zwei neue 

Algorithmen vorgestellt und viele existierende mit einem sehr großen Messdatensatz validiert. Der 

Validierungs-Datensatz umfasst die hochwertigen Messdaten des Baseline Surface Radiation Networks 

(BSRN), die einen Großteil der Klimazonen der Erde abdecken. 

Der erste Algorithmus dient der Synthese von minütlich aufgelösten Zeitreihen aus stündlich aufgelösten 

Zeitreihen der Globalstrahlung vor. Damit ist es möglich, PV-Anlagen auch an Standorten, an denen nur 

stündlich aufgelöste Messdaten vorliegen, mit statistisch repräsentativen synthetischen Daten in einer 

Auflösung von einer Minute zu simulieren. Verglichen mit bestehenden Algorithmen liefert der neue 

Ansatz wesentlich natürlichere Häufigkeitsverteilungen der Globalstrahlung, der Gradienten und des 

Clear-Sky-Indizes. Die mittlere quadratische Abweichung (RMSD) der Globalstrahlungsverteilung wird 

um 61 % reduziert, der RMSD der Strahlungsgradienten um 52 % und der des Clear-Sky-Indizes um 71 %. 

Außerdem wird ein neues Modell zur Berechnung des Diffusanteils vorgestellt und mit einer Auswahl 

bereits existierender Modelle verglichen. Der neue Ansatz erreicht im Mittel eine Reduktion der Abweich-

ungen der modellierten von der gemessenen Diffusstrahlung pro Jahr um 50 %, der RMSD kann um 18 % 

reduziert werden. Im Gegensatz zu den anderen Modellen ist die Abweichung der Jahressummen in keinem 

der untersuchten Fälle größer als 20 %, wobei in 80 % aller Fälle die Abweichung geringer ist als 10 %.   

Die Implementierung dieser beiden Algorithmen ist komplex und zeitaufwändig. Damit sie dennoch 

genutzt werden können, sind sie für Forscher unter http://www.pvmodelling.org öffentlich zugänglich. 

Der dritte Teil der Arbeit ist eine umfassende Matrix-Simulation, in der eine große Auswahl an verfügbaren 

Strahlungsmodellen, verschiedenen Simulations-Zeitschritten und Ausrichtungen der PV-Anlage auf 

immer unterschiedliche Weise miteinander kombiniert wird, um die Auswirkungen der verschiedenen 

Modelle auf die Strahlung auf die geneigte Fläche und schließlich den PV-Ertrag zu analysieren. Dank 

dieser Daten ist es möglich, das Zusammenspiel der Modelle und des Zeitschritts für verschiedene PV-

Systeme in Hinsicht auf die Ertragssimulation auf globaler Ebene zu bewerten.  

Der vierte Teil der Arbeit ist eine detaillierte Validierungsstudie von Modellen, die die Globalstrahlung auf 

die geneigte Ebene berechnen. Es wird ein Datensatz von langjährigen Strahlungsmessungen an zwei 

Standorten mit 19 verschiedenen PV-Modul-Orientierungen und einer Auflösung von einer Minute 

verwendet, um die Performance von fünf Transpositionsmodellen zu bewerten. Die Studie hilft bei der 

Einschätzung von Modellunsicherheiten in Abhängigkeit von der Modulausrichtung und stellt 

Empfehlungen zur Nutzung von Modellen für Standorte mit meist wolkenlosem oder bedecktem Himmel 

vor. 

Schlagworte: Photovoltaik, Solar, Strahlung, Modellierung, Simulation  
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2 Introduction 

2.1 PV Market development and economic aspects of PV simulations 

In their current report, SolarPower Europe (formerly EPIA) states that only a 35 % share of renewable 
energy production by 2030 would be able to keep the EU on the right track to the 2050 decarbonisation 
objectives [5]. For solar electricity systems, the reports estimates a total of newly installed capacity in the 
EU of 62.9 GW in the medium scenario and 98.6 GW in the highest scenario for the next five years until 
2021. 

With levelized costs of electricity (LCOE) of 0.06 €/kWh in Germany, solar electricity systems already 
constitute one of the most cost effective energy generation technologies [5]. A recent study of the US market 
reported comparable LCOE of 0.05 USD/kWh [6]. Another indicator of the recent rapid advances of the PV 
technology is that the energy payback time has fallen below a tenth of the guaranteed PV system lifetime 
nowadays. In the European Union the energy payback time is between 1.2 and 2.1 years depending on the 
annual irradiation [7].  

With photovoltaic systems being cost competitive, zero-emission, with a low technical complexity and low-
maintenance compared to both fossil and other renewable technologies like wind power or geothermal, a 
steep rise of the solar electricity share of the global energy production is probable.  

While the return on assets (ROA) for average grid-connected PV systems with 100 to 120 kWp is in the 
range of comfortable 18 to 20% in upcoming European markets like Greece and Portugal, it can be observed 
that it decreases in markets with a high penetration of installed PV capacity and often lies between 7 and 
10% [8] [5]. This implies that with increasing share of solar electricity the quality and reliability of economic 
calculations of PV systems must be improved in order to minimize uncertainties as much as possible.  

Simulations that estimate the annual energy output of solar systems form the basis of all economic 
calculation and are of paramount importance for the bankability of solar power projects [9]. This is equally 
true for large-scale grid feed-in systems as well as smaller residential systems focused on self-consumption, 
a latter becoming more important in markets with high PV penetration like UK and Germany [5]. 

 

Figure 1. Modelled relative loss of the return on assets (ROA) as a function of the overestimation of the energy yield. If the yearly 
energy yield is overestimated by 5% by the simulation, the ROA will decrease by more than 10%. 
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In the following short example the sensitivity of the ROA on the energy yield simulations is demonstrated. 
A 10 kWp residential standard system in Berlin, Germany, was simulated using PV*SOL [10], resulting in 
an energy yield of 9935 kWh/a. With specific installation costs of 1500 €/kWp, a standard grid feed-in 
tariff according to the German EEG and no further economic aspects, the ROA is 5.1%. The simulation is 
repeated with different soiling loss factors to analyze how the ROA reacts to decreasing energy yields. 
Figure 1 illustrates the relationship of energy yield and ROA in form of a relative loss of ROA as a function 
of a hypothetic overestimation of the energy yield. If, for example, the simulated energy yield was 
9935 kWh/a, but the real value was 5% less, then the ROA would reduce by more than 10%.  

This indicates the importance of high quality solar irradiation data as input of the simulation models on the 
one hand as well as the necessity of high quality simulation models with lowest possible uncertainties. The 
publications presented in this thesis can be classified in the domain of solar simulation models, specifically 
in the subdomain of solar irradiance models and their impact on the electrical output of PV systems. 

 

2.2 Short introduction into the meteorology of solar irradiance 

Since major parts of this work concern the field of solar irradiance on the Earth’s surface for photovoltaic 
applications, important aspects of the interaction of the solar irradiance and the Earth’s atmosphere are 
presented in this section. 

To comply with the common terminology in energy meteorology and to differentiate between the power 
and energy of the solar radiation, the word ‘irradiance’ is used in this work to denote the instantaneous solar 
power per square meter in W/m², whereas the word ‘irradiation’ refers to the integral of the irradiance over 
time, thus denoting the energy of the solar radiation in Ws/m² or kWh/m² [11], [12]. 

The irradiance from the sun reaches the top of the Earth’s atmosphere with a varying intensity of 1360.8 ± 
0.5 W/m² [13]. On its way through the atmosphere, different kinds of interaction alter the intensity, spectral 
composition and direction of the solar irradiance.  

In Figure 2, the irradiance transit through the atmosphere is displayed schematically for conditions that are 
valid for a global yearly average. Absorption, reflection and scattering are the main effects that determine 
the quality and the quantity of the solar irradiance on the Earth’s surface, the global horizontal irradiance 
(GHI). Absorption by aerosols, water vapor and gases like oxygen (O2) and ozone (O3) reduce the annual 
solar radiation by about 19%, whereas the absorption by clouds leads to a reduction by 4%. A fraction of 
30% is reflected by backscattering to space by air molecules (7%), from clouds (16%) and from the ground 
(7%). The annual solar irradiance incident on the Earth’s surface is 161 W/m² in average, or 47% of the 
extraterrestrial total (all [14], [15]). 
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Figure 2. Right: Schema of the absorption and reflection of the incoming solar radiation. The global annual solar radiation energy 
balance is averaged over the Earth’s surface with data from Mar 2000 to May 2004 [15][14]. The actual amount of solar energy 
incident on the Earth’s surface varies strongly dependent on the location, season, time of day and composition of the atmosphere. 
Left: The solar spectrum is affected both quantitatively and qualitatively by aerosols, water vapor and gases like oxygen and ozone. 
The effect of attenuation is subject to the composition of the atmosphere, as well as the Air Mass. The spectra shown here are from 
the ASTM standard [16][17]. 

The spectral composition of the solar irradiance in the ultra-violet, visible and near infra-red spectrum is 
mainly influenced by selective absorption of water vapor (H2O), oxygen (O2) and ozone (O3). The solar 
spectrum at the top of the Earth’s atmosphere is similar to the spectrum of a black body with a temperature 
of 5700 K. The Fraunhofer lines, which are caused by selective absorptions in the sun’s atmosphere 
significantly alter this extraterrestrial spectrum.  Characteristic absorption bands from gases in the Earth’s 
atmosphere further modify the spectrum that is observable at the Earth’s surface, see Figure 2. The 
extinction depends on the composition of the atmosphere and on the path that the sunlight has to travel 
through the atmosphere. The path length for the direct beam is characterized by the Air Mass (AM), which 
is defined as the ratio relative to the path length vertically downwards, i.e. at the zenith. An example of a 
spectrum at the Earth’s surface is given in Figure 2 on the left side for AM1.5. 

The percentages in Figure 2 refer to long-term averages of the annual global radiation budget. The average 
is compiled over the Earth’s surface with data from March 2000 to May 2004 [15]. It should be noted that 
absorption or reflection vary significantly with time and location and therefore differ from these averaged 
values. The most important factors that influence absorption, reflection and scattering in the atmosphere 
are clouds, aerosols, water vapor, oxygen, ozone and other trace gases as well as geometrical factors (e.g. 
sun height, Air Mass). The following sections will give a short overview on these factors and how they affect 
the solar irradiance on its way to the Earth’s surface. 

2.2.1 Clouds 

The presence of clouds, the overall instantaneous cloud coverage, but also their shape, their position in the 
troposphere, their type (cumulus, stratos, etc.), their optical thickness and their microphysical properties 
show the strongest influence on the solar irradiance, both quantitatively and qualitatively. Being the most 
visible expression of the troposphere’s state, it is easily observable that clouds show a strong temporal, 
geometrical and regional variability. Clouds interact with the solar irradiance by reflection, scattering and 
to a lesser extent by absorption. The wavelength-independent Mie scattering dominates the scattering 
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process. Reflection on clouds can also lead to irradiance enhancements, not only extinction, given that the 
geometry of solar angles, cloud position and shape supports it [18], [19].  

 

Figure 3. Illustrative examples of cloud types with varying reflection and absorption characteristics. A. nimbostratus clouds (with 
pannus clouds in the foreground); B. cumulonimbus (with small pileus on top); C. cumulus humilis; D. cirrostratus; E. altostratus; 
F. cumulus with static location. Source of above pictures: Wikipedia, published under CC BY-SA 3.0.  

Both broadband and wavelength-dependent reflection and absorption in clouds are strongly dependent on 
the cloud characteristics and even vary over short time periods within a single observed cloud [20]. Overall 
broadband absorption rates for nimbostratus and cumulonimbus clouds are about 10 to 20%, while fair 
weather cumulus clouds only absorb around 4 to 9%. Thin stratus clouds show absorption rates of 1 to 6% 
only, while altostratus clouds can lead to 8 to 15% of absorbed irradiance. Reflection rates vary between 
45% for thin stratus and up to 90% for cumulonimbus. In singular cases, airborne measurements showed 
instantaneous absorption rates of up to 40% that indicate the presence of hydrophobic aerosol particles in 
clouds that enhance the absorption rate that otherwise would have a theoretical limit of around 20% [21]. 

In addition to the microphysical properties of water or ice clouds (droplet size, ice crystal shape and 
distribution), the spectral reflection, absorption and scattering rates depend strongly on the angle of 
incidence of the solar irradiance [22]. 

2.2.2 Aerosols 

Aerosols are airborne particles of diverse nature. Dust, sea salt, sand, biogenic and anthropogenic emissions 
are the most important [23]. Aerosols vary in size and concentration and there is a strong regional variation 
in the Aerosol Optical Depth (AOD) globally. Recent studies have confirmed that the AOD also varies 
significantly seasonally and even daily, while the AOD values also change with the wavelength [24], [25]. 
Figure 4 shows a heat map of the AOD at 550 nm with 15 years of data from the Terra/Modis satellites [26], 
averaged on a monthly basis, illustrating both the seasonal and regional variations.  

Depending on their particle size and shape, aerosols influence the solar radiation by an interplay of Rayleigh 
and Mie scattering processes as well as absorption [27][28]. The ratio of the scattering coefficient to the total 
extinction coefficient is referred to as the single scattering albedo (SSA), where SSA values of 1 denote that 
the extinction is dominated completely by scattering. SSA values of 0 consequentially imply a complete 
extinction by absorption. The wavelength dependent optical thickness of aerosols ���� can be 
approximatively expressed as  
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where ���� is the optical thickness at the wavelength � and ����� the optical thickness at a second 
wavelength ��. The Ångström exponent � relates the two ratios and is higher for smaller particle sizes [29], 
[30]. 

As a consequence of scattering and absorption, the AOD is not only forcing the total amount of global 
irradiance on the Earth’s surface [31]–[33], but also affects the relation of direct to diffuse irradiance. The 
effect is wavelength dependent and is stronger at shorter wavelengths [34]. The Ångström formula expresses 
this relationship as 

���� � ��
�, 

where � is a dimensionless coefficient for the opacity of a vertical column of the atmosphere. It was found 
that an increase of the AOD at 550 nm is directly correlated to an increase of the broadband diffuse 
irradiance [35]. 

 

Figure 4. The Aerosol Optical Depth (AOD), as averages over 15 years from 2001 to 2015, with data taken from Terra/Modis 
satellites [26]. The AOD shows strong regional and seasonal variation.  

A long-term study of aerosol measurements of the AERONET network [36] revealed that also the nature of 
aerosol particles influences the absorption rate. Absorption rates of desert dust aerosols are very weak above 
550 nm, but pronounced in the blue spectral range (0.92 – 0.93 for wavelengths of 440nm). The optical 
properties of aerosols produced by burning of biomass depend on the type of vegetation and ratio of flaming 
to smoldering combustion. Aerosol absorption is significantly less for forest than grassland fire smokes. 
Anthropogenic aerosols emitted in urban areas feature varying absorption behavior depending on the type 
of industry [37]. 

2.2.3 Water vapor 

Water vapor is omnipresent in the Earth’s atmosphere, with its concentration ranging from about 5% in the 
troposphere to only 1 to 5 parts per million by volume (ppmv) in the stratosphere [38]. The water vapor 
concentration is also varying regionally and seasonally, illustrated by Figure 5. It absorbs the solar 
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irradiance at specific wavelength bands which leads to the characteristic gaps in the terrestrial solar 
spectrum, compare Figure 2. Mie scattering can also be observed on tiny water droplets. 

The spectral absorption bands of water vapor start at wavelengths of around 720 nm and affect the solar 
spectrum towards higher wavelengths significantly, but with varying intensity [39]. Other absorption bands 
that are relevant for solar energy applications on the Earth’s surface are around 810 nm, 930 nm, 1130 nm 
and 1370 nm, compare Table 1. 

Measurements show that both the diffuse and the direct fraction of the solar irradiance are subject to water 
vapor absorption [40].  

 

Figure 5. The column water vapor averaged over 15 years from 2001 to 2015, with data taken from Terra/Modis satellites [41]. 
Like the AOD and other properties of the atmosphere, the water vapor as well shows a strong regional and seasonal variation. 

2.2.4 Oxygen, ozone and other atmospheric gases 

Solar irradiance is also absorbed by oxygen, ozone and other trace gases of smaller concentrations. The 
absorption is wavelength dependent, which leads to a qualitative modification of the terrestrial spectrum 
with typical absorption bands, compare Figure 2. 

The most important atmospheric gases that alter the solar spectrum in the ultra-violet, visible and near 
infra-red range, which forms the spectral range that is relevant for photovoltaic applications, are listed in 
Table 1. 

Table 1. Absorption wavelength bands for selected atmospheric gases in the ultra-violet (UV), visible (VIS) and near infra-red 
spectrum up to wavelengths of 2 µm. From [39]. 

Atmospheric gas Name Absorption wavelengths in µm 
O2 Oxygen 0.1 – 0.18, 0.2 – 0.24 
O3 Ozone 0.22 – 0.29, 0.30 – 0.35, 0.69 – 0.76 
H2O Water 0.72, 0.81, 0.93, 1.13, 1.37, 1.85 
CO2 Carbon dioxide 1.46, 1.6, 2.04 

 

Molecular nitrogen and oxygen in the troposphere are the main agents for Rayleigh scattering. This process 
of elastic scattering – the vector of incident direct irradiance is modified without modifying the wavelength 
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– is the most important source of the diffuse irradiance and the changes in the spectral composition of the 
global irradiance incident on the Earth’s surface [42]–[44].  

2.2.5 Air Mass, Geometry 

Another highly important factor that is influencing the extinction and modification of the solar irradiance 
on its way through the atmosphere is the distance that the solar irradiance has to travel until it reaches the 
surface of the Earth. The distance is expressed in relation to the distance when the solar elevation is 90° (sun 
zenith angle of 0°). This is referred to as the Air Mass (AM). While the AM is not affecting the solar irradiance 
directly, it is the intensity and the spectral effect of absorption, reflection and scattering processes that are 
depending on the AM. The AM itself is obviously depending on the solar elevation angle and hence on its 
daily and seasonal changes. Furthermore, the AM is also subject to the altitude of the location and the actual 
thickness of the atmosphere, if to a limited extent.  

In general, the overall extinction of the solar irradiance increases with increasing AM, and a qualitative 
change in the spectrum is observable, the “red shift”, where shorter wavelengths are typically scattered more 
intensively than longer wavelengths [45]. The AM should not be considered an additional effect that 
influences the solar irradiance, but rather as an amplifier for the other atmospheric effects mentioned above. 

 

Figure 6. Normalized spectra of the global irradiance in one-minute resolution on July 19, 2014, in Berlin, Germany, from 
370 nm to 1000 nm. Each spectrum is normalized to its maximum and color-coded from 0 (blue) to 1 (red). Each recorded 
spectrum is represented by a horizontal row, starting from sunrise (bottom) to sunset (top of plot). Significant shifts of the 
spectral composition are observable in the morning and evening around sunrise and sunset, as well as during phases with broken 
clouds (around 15:00 – 16:00 local time). From [46]. 

2.3 Irradiance components 

This section introduces the most important components of the terrestrial solar irradiance. A schematic 
illustriation is given in Figure 7. 

The total of the solar irradiance incident on the Earth’s sufrace is referred to as the global horizontal 
irradiance (GHI). When reaching the surface, the GHI features a direct and a diffuse fraction. The direct 
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horizontal irradiance is the fraction of the total irradiance whose direction was not altered by scattering or 
reflection. The diffuse horizontal irradiance, in contrast, reaches the surface from various angles, since it 
results from Rayleigh and Mie scattering of air molecules and particles and from reflection by clouds. 

The ratio of the direct and the diffuse irradiance is, as a consequence, dependent on all factors mentioned 
in the section before. 

A third component of the irradiance that is important for PV applications is the ground reflected irradiance. 
The intensity of it is dependent on the ground reflectivity (albedo), the solar angles and the tilt and 
orientation angles of the PV system. 

 

Figure 7. The components of the solar irradiance incident on the tilted plane of a PV system. The direct fraction of the global 
irradiance reaches the module surface directly. Diffuse irradiance with arbitrary direction is reflected and scattered in the 
atmosphere (clouds, aerosols, water vapor, etc.) and reaches the module surface from the whole sky dome. Depending on the 
ground’s reflectivity, the solar zenith angle and the tilt angle of the modules, a fraction of the global horizontal irradiance is reflected 
back upwards and can also reach the module surface as ground reflected irradiance. 

 

2.4 Meteorological modelling for PV system simulations 

In this section the most common model chain for PV system simulations is presented. The system borders 
of the model chains are limited to the electrical output of the PV modules. In full-featured PV system 
simulations, models for DC/AC inverter efficiency, battery storage and load profiles as well as the 
interaction with the grid are also part of the model chain. 

As displayed in Figure 8 and Figure 9, the model chain can be separated into two logic blocks: The irradiance 
processor (Figure 8) and the (electrical) PV simulation model chain (Figure 9). The output of the irradiance 
processor acts as a part of the input of the PV simulation model chain. 
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Figure 8. Schema of input data, model chain and output data of the irradiance processor for time-step based solar system 
simulations. 

 

Figure 9. Schema of input data, model chain and output data of the PV simulation model chain. The irradiance input data is the 
output of the irradiance processor model chain. 

 

From the structure of the model chain it becomes apparent that the main uncertainties are caused by the 
meteorological input data, i.e. the global horizontal irradiance, and the models used to convert the global 
horizontal irradiance to the global irradiance on the tilted PV module. 
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The main steps of the irradiance processor is to decompose the global horizontal irradiance in its direct and 
diffuse components, to convert the direct and diffuse fraction to the tilted plane, and to estimate the ground 
reflected irradiance that can additionally reach the module’s surface. For each of these steps there exists a 
number of models, all of which are subject to uncertainties that can add up or eliminate each other in the 
course through the model chain. For the direct irradiance the calculation follows geometric relations, but 
for the diffuse irradiance more complex models are involved. The amount of publications on the topic of 
solar irradiance decomposition and transposition of diffuse irradiance can be interpreted as an indicator of 
the complexity of the tasks. 

The meteorological input data usually comes in one-hour resolution, e.g. from data providers like 
Meteonorm [47] or SolarGIS [48] or from satellite data like Heliosat [49] or SARAH ed. 2 [50]. The global 
irradiance however is highly volatile and only roughly represented by hourly averaged values. With these 
one-hour averages important effects cannot be simulated [51], [52]. Since high quality one-minute 
measurement data is not available on a global scale with sufficient spatial resolution, there is the need for 
synthesizing one-minute data from hourly averages. 

2.5 The challenge of model validation 

One aspect that is important to highlight in the context of simulation models is model validation. The most 
inherent problem of a number of models and algorithms that have been developed in the past is the limited 
dataset that they have been validated against. The development of irradiance models that are used in the PV 
industry started in the 1960, when only few measurements of the solar irradiance were available and also 
the computational power was in a very early stage of development. 

Over the years, both the availability of datasets with hourly resolution and the computational power 
increased, leading to a wider range of possibilities in model development and validation. Table 2 outlines a 
short exemplary evolution of the development and validation datasets for selected decomposition models 
that estimate the diffuse fraction of the global horizontal irradiance. The models listed here are still part of 
the most well-known and most widely used algorithms today. 

Table 2: Evolution of development and validation datasets of well-known diffuse fraction models over time. 

Model Year Resolution of data 
No. of 
Locations 

Covered countries 
Time range 
(in years) 

Liu-Jordan [53] 1960 Daily 1 USA 10 

Orgill & Hollands [54] 1977 Hourly 1 Canada 5 

Skartveit & Olseth [55] 1987 Hourly 3 Norway, Canada 22 

Reind [56] 1990 Hourly 6 USA, Denmark, Germany, 
Spain and Norway 

9 

Perez [57] 1990 Hourly, partly 
15min 

13 USA, Switzerland and France 17 

Skartveit & Olseth [58] 1998 Hourly 5 Norway, Portugal, UK, France, 
Sweden 

37 

 

A number of enhancements can be observed from the compilation in Table 2. Over time, the number of 
validation datasets increased, as well as the spread of locations. The resolution developed from daily to 15-
minute datasets. Also, the years of measurements available to the model developers increased continuously.  

However, the provenance of the data remained Northern America and Europe, covering only a small subset 
of the multitude of the world’s climate zones. According to the classification by Köppen [59], [60] there is a 



2.6  Introduction — Preparation of the measurement database 

  19 

total of 29 climate zones around the world, only 10 or 11 of which can be found in Northern America and 
Europe. 

Due to the highly empirical nature of both decomposition and transposition models it is not evident, 
unfortunately, that a model developed for Northern America or Europe is performing just as well for 
locations in the other parts of the world. Another consequence of the empirical nature of the models, being 
developed mostly for hourly averaged input data, is that their application on one-minute time series of 
global horizontal irradiance data is questionable and demands thorough validation. 

Hence, one of the main aspects of my work presented here is the attempt to develop models on a broad basis 
of high resolution measurement data and to offer validation of existing models against the same data. 

2.6 Preparation of the measurement database 

2.6.1 Description of the measurement data mainly used in the presented papers 

As outlined in the previous section, a main goal of my work consists of the analyses of existing models and 
the development of new models on a broad basis of high resolution measurements. The Baseline Surface 
Radiation Network (BSRN) provides an unprecedented publicly available database of WMO quality 
measurements from 1992 until today [61]. 

 

 

Figure 10. Overview of the measurement stations that form the BSRN, as of 2013. 

The BSRN comprises 58 locations worldwide, spread across a high range of latitudes and altitudes, 
representing a variety of climatic conditions, from arid, desert like regions over tropical climates to 
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moderate continental climates. Figure 10 gives an overview over the spatial distribution of the locations 
that are additionally listed in Table 3. 

At each location, different meteorological entities are measured: global horizontal irradiance, diffuse 
horizontal irradiance, direct normal irradiance, ambient temperature, relative humidity, atmospheric 
pressure etc. The resolution of the data is 60 s for most time series, but also 180 s or 1 h can be found. 

Table 3. Complete list of BSRN locations and their three-character labels. Only stations that were part of the snapshot of 2013 are 
displayed. A complete up-to-date list can be obtained at https://www.pangaea.de/ddi?request=bsrn/BSRNEvent 
&format=html&title=BSRN+Stations  

Location 
Location 
Label 

Location name Latitude Longitude Elevation 

Alert ALE Lincoln Sea 82.49 −62.42 127 

Alice Springs ASP Macdonnell Ranges, Northern 
Territory, Australia 

−23.798 133.888 547 

Barrow BAR Alaska, USA 71.323 −156.607 8 

Bermuda BER Bermuda 32.267 −64.667 8 

Billings BIL Oklahoma, USA 36.605 −97.516 317 

Bondville BON Illinois, USA 40.0667 −88.3667 213 

Boulder BOU Colorado, USA 40.05 −105.007 1577 

Boulder BOS Colorado, USA 40.125 −105.237 1689 

Brasilia BRB Brasilia City, Distrito Federal, Brazil −15.601 −47.713 1023 

Cabauw CAB The Netherlands 51.9711 4.9267 0 

Camborne CAM United Kingdom 50.2167 −5.3167 88 

Carpentras CAR France 44.083 5.059 100 

Cener CNR Spain, Sarriguren, Navarra 42.816 −1.601 471 

Chesapeake Light CLH North Atlantic Ocean 36.905 −75.713 37 

Cocos Island COC Cocos (Keeling) Islands −12.193 96.835 6 

Concordia Station, 
Dome C 

DOM Antarctica −75.1 123.383 3233 

Darwin DAR Australia −12.425 130.891 30 

Darwin Met Office DWN Australia −12.424 130.8925 32 

De Aar DAA South Africa −30.667 23.993 1287 

Desert Rock DRA Nevada, USA 36.626 −116.018 1007 

Eureka EUR Ellesmere Island, Canadian Arctic 
Archipelago 

79.989 −85.9404 85 

Florianopolis FLO South Atlantic Ocean −27.605 −48.5227 11 

Fort Peck FPE Montana, USA 48.3167 −105.1 634 

Fukuoka FUA Japan 33.5822 130.3764 3 

Georg von Neumayer GVN Dronning Maud Land, Antarctica −70.65 −8.25 42 

Gobabeb GOB Namib Desert, Namibia −23.561 15.042 407 
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Goodwin Creek GCR Mississippi, USA 34.2547 −89.8729 98 

Ilorin ILO Nigeria 8.5333 4.5667 350 

Ishigakijima ISH Japan 24.3367 124.1644 6 

Izaña IZA Tenerife, Spain 28.3093 −16.4993 2373 

Kwajalein KWA North Pacific Ocean 8.72 167.731 10 

Langley Research 
Center 

LRC Hampton, Virginia, USA 37.1038 −76.3872 3 

Lauder LAU New Zealand −45.045 169.689 350 

Lerwick LER Shetland Island, UK 60.1389 −1.1847 80 

Lindenberg LIN Germany 52.21 14.122 125 

Minamitorishima MNM Minami-Torishima 24.2883 153.9833 7 

Momote MAN Papua New Guinea −2.058 147.425 6 

Nauru Island NAU Nauru −0.521 166.9167 7 

Ny-Ålesund NYA Ny-Ålesund, Spitsbergen 78.925 11.93 11 

Palaiseau, SIRTA 
Observatory 

PAL France 48.713 2.208 156 

Payerne PAY Switzerland 46.815 6.944 491 

Petrolina PTR Brazil −9.068 −40.319 387 

Regina REG Canada 50.205 −104.713 578 

Rock Springs PSU Pennsylvania, USA 40.72 −77.9333 376 

Rolim de Moura RLM Brazil −11.582 −61.773 252 

Sapporo SAP Japan 43.06 141.3286 17 

Sede Boqer SBO Israel 30.8597 34.7794 500 

Sioux Falls SXF South Dakota, USA 43.73 −96.62 473 

Solar Village SOV Saudi Arabia 24.91 46.41 650 

South Pole SPO Antarctica −89.983 −24.799 2800 

Southern Great Plains E13 Oklahoma, USA 36.605 −97.485 318 

Syowa SYO Cosmonaut Sea −69.005 39.589 18 

São Martinho da Serra SMS Brazil −29.443 −53.8231 489 

Tamanrasset TAM Algeria 22.7903 5.5292 1385 

Tateno TAT Japan 36.0581 140.1258 25 

Tiksi TIK Siberia, Russia 71.5862 128.9188 48 

Tiruvallur TIR India 13.0923 79.9738 36 

Toravere TOR Estonia 58.254 26.462 70 

Xianghe XIA China 39.754 116.962 32 
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2.6.2 Structure 

For this work the snapshot of 2013 was chosen, having undergone quality checks and plausibility routines 
[62]. The measurement data of the BSRN is available in the form of text files that contain the actual 
measurement values as well as meta information, e.g. on the used sensors. 

In order to facilitate and speed up the data access the BSRN snapshot of 2013 was preprocessed into a high 
speed versatile MySQL database. The structure of the database is detailed in the following sections. 

2.6.2.1 Locations 

In the locations table all location specific information is stored. The structure of the table is listed in Table 
4. A primary key is set on the ID field that corresponds to the BSRN location labels of Table 3. The values 
for each location were parsed from the header of the data files. The climate zone according to Köppen [59] 
was retrieved automatically from the world map by Kottek et al. of 2006 [60]. An example of a table entry 
is given in Table 5.  

Table 4. Structure of the locations table with field names and data types.  

# Field name (key) Data type 

1 ID varchar(4) 

2 Name varchar(50) 

3 Latitude double 

4 Longitude double 

5 Height float 

6 Timezone float 

7 Country varchar(3) 

8 Surface varchar(25) 

9 Topography varchar(25) 

10 Climate varchar(3) 

 

Table 5. Example entry of the location table. 

ID Name  Latitude  Longitude  Height  Timezone  Country Surface Topography Climate 

ASP  Alice 
Springs  

−23.798 133.888 547 9.5 AU grass Flat, rural BWh 

 

2.6.2.2 Entities 

All measured entities, i.e. the meteorological measurands like the global horizontal irradiance or the 
ambient temperature, are stored in the entities table. Its structure is displayed in Table 6 and an example in 
Table 7. 

Table 6. Structure of the entities table with field names and data types. 

# Field name (key) Data type 

1 ID varchar(4) 

2 Name varchar(100) 

3 Unit varchar(12) 

4 Min double 

5 Max double 
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Table 7. Example entry of the entities table. 

ID  Name  Unit  Min  Max 

DIR  Direct radiation  W/m²  0 2000 

 

2.6.2.3 Devices 

Each device that was used for the measurement of an entity is stored in the devices table. The ID is the 
primary key and corresponds to the WRMC identifier assigned to every sensor [63]. 

Table 8. Structure of the devices table with field names and data types. 

# Field name (key) Data type 

1 ID varchar(4) 

2 Name varchar(50) 

3 Model varchar(20) 

4 Manufacturer varchar(50) 

5 Serial varchar(20) 

 

Table 9. Example entry of the devices table. 

ID  Name  Model  Manufacturer  Serial 

1003 Pyrheliometer  CH1  Kipp & Zonen  940042 

 

2.6.2.4 The mapper 

The mapper table is where all other tables are connected. For each unique measurement, one entry is listed 
in the table, defined by the location, the measured entity, the measurement device, the time resolution and 
the sensor height. The last two fields contain the names of the tables where the respective measurement 
values and the list of timestamps of the missing measurements can be found. Table 10 shows the structure 
of that table, while Table 11 gives an example that follows the examples of the other tables above. 

Table 10. Structure of the mapper table that serves as a link between all other tables. The primary key is a combination of the first 
five fields. 

# Field name (key) Data type 

1 Location varchar(4) 

2 Entity varchar(12) 

3 Device mediumint(9) 

4 Resolution mediumint(9) 

5 Sensorheight smallint(6) 

6 Series varchar(42) 

7 Missing varchar(42) 

 

Table 11. Example entry of the mapper table. Each entry of this table represents one unique data series. 

location  entity  device  resolution  sensorheight  series  missing 

ASP  DIR  1003 60 2 ASP_DIR_1003_2_60_Se  ASP_DIR_1003_2_60_Mi 
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2.6.2.5 The series tables 

Finally, the series tables are where the actual measurement time series are stored. The primary key is set on 
the timestamp, which is expressed as a UNIX timestamp in UTC, without daylight saving time shifting. For 
each entry in the mapper table there is one series table with the name denoted in the ‘series’ field of the 
mapper table. 

Table 12. Structure of the series tables. 

# Field name (key) Data type 

1 Timestamp int(11) 

2 Value float 

 

Table 13. Excerpt of the series table ' ASP_DIR_1003_2_60_Se' 

timestamp  value 

946681200 1027 

946681260 1028 

946681320 1029 

946681380 1029 

946681440 1030 

946681500 1032 

… … 

 

2.6.2.6 Overview over the relation of the database 

Figure 11 gives an overview of the relation of the database that was generated out of the BSRN dataset. The 
first five fields of the mapper correspond to dedicated data tables that hold the meta information, but are 
not part of the actual measurement values. The measurement values are stored in dedicated tables 
containing nothing but the data series in question, indexed over the timestamp, which provides huge 
advantages in searches and data access speed. 

 

Figure 11. Overview over the relation of the database with example entries. 

timestamp value

946681200 1027

946681260 1028

946681320 1029

946681380 1029

946681440 1030

946681500 1032

location entity device resolution sensorheight series missing

ASP DIR 1003 60 2 ASP_DIR_1003_2_60

_Se 

ASP_DIR_1003_2_60

_Mi

ID Name Model Manufacturer Serial

1003 Pyrheliometer CH1 Kipp & Zonen 940042

ID Name Unit Min Max

DIR Direct 

radiation 

W/m² 0 2000

ID Name Latitude Longitude Height Timezone Country Surface Topography

ASP Alice 

Springs 

-23.798 133.888 547 9.5 AU grass Flat, rural

ASP_DIR_1003_2_60_Se 

0_entities

0_devices

0_locations

0_mapper
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2.6.3 Queries 

In order to illustrate the interaction with the database this section provides some examples of how the data 
can be accessed depending on the use case. Since the database was set up with MySQL, the query language 
is SQL.  

With the knowledge of the database structure detailed above it is possible to query every thinkable subset 
of the BSRN data without having to read through the station lists or the meta information in the file headers. 

Example 1 

Task “Select all stations that lie between 500 and 700 meters of altitude” 

SQL SELECT * FROM `0_locations` WHERE Height > 500 AND Height < 700 

Query time 1 ms 

Result 
ID  Name Latitude Longitude Height 

Time 
zone 

Country Surface Topography Climate 

ASP  Alice Springs  −23.798 133.888 547 9,5 AU grass flat, rural BWh 

FPE  Fort Peck  48.3167 −105.1 634 −7 US grass flat, rural BSk 

REG  Regina  50.205 −104.713 578 −6 CA cultivated flat, rural Dfb 

SOV  Solar Village  24.91 46.41 650 3 SA desert, sand flat, rural BWh 
 

 

Example 2 

Task “Show all used pyrheliometers from Kipp & Zonen” 

SQL SELECT * FROM ̀ 0_devices` WHERE Name = 'Pyrheliometer' AND Manufacturer 

= 'Kipp & Zonen' 

Query time 5 ms 

Result ID  Name  Model  Manufacturer  Serial 

1003 Pyrheliometer  CH1  Kipp & Zonen  940042 

1007 Pyrheliometer  CH1  Kipp & Zonen  940059 

1010 Pyrheliometer  CHP 1  Kipp & Zonen  100372 

53003 Pyrheliometer  CH1  Kipp & Zonen  20283 

50006 Pyrheliometer  CH1  Kipp & Zonen  970135 

50002 Pyrheliometer  CH1  Kipp & Zonen  950079 

10010 Pyrheliometer  CH1  Kipp & Zonen  20189 

10016 Pyrheliometer  CH1  Kipp & Zonen  970163 

10018 Pyrheliometer  CH1  Kipp & Zonen  20282 

10022 Pyrheliometer  CH1  Kipp & Zonen  10257 

39016 Pyrheliometer  CH1  Kipp & Zonen  960132 

… … … … … 
 

 

Example 3 

Task “Show all measured time series of direct radiation from locations between 500 and 700 meters 
of altitude that were measured with pyrheliometers from Kipp & Zonen” 
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SQL SELECT a.`series`    FROM `0_mapper` a  

 JOIN `0_locations` b ON a.`location` = b.`ID`  

 JOIN `0_devices`   c ON a.`device`   = c.`ID`  

 JOIN `0_entities`  d ON a.`entity`   = d.`ID`  

 

WHERE  ( b.`height` < 700 AND b.`height` > 500)  

 AND ( c.`Name` = 'Pyrheliometer' AND c.`Manufacturer` = 'Kipp 

& Zonen' )  

 AND ( d.`Name` = 'Direct Radiation' )  

 AND a.`resolution` > 0 

Query time 11 ms 

Result series  

asp_dir_1003_2_60_se 

asp_dir_1007_2_60_se 

asp_dir_1010_2_60_se 

reg_dir_5003_2_60_se 

reg_dir_5004_2_60_se 
 

 

Example 4 

Task “Show all measurement values from the first result table of example 3 between 2002-07-01 and 
2002-08-01” 

SQL SELECT * FROM `asp_dir_1003_2_60_se`  

WHERE timestamp >= 1025481600 AND timestamp <= 1028160000  

ORDER BY timestamp ASC 

Query time 1 ms 

Result Timestamp value 

1025481600 800 

1025481660 800 

1025481720 807 

1025481780 813 

1025481840 816 

1025481900 818 

1025481960 820 

1025482020 822 

… … 
 

 

Note: It is possible to express the table name in example 4 with a slight modification of the SQL in example 
3, so that the query would be comparable to “Show all measurement values between 2002-07-01 and 2002-08-

01 from the first direct irradiance data series measured by a Kipp & Zonen pyrheliometer, where the location lies 

between 500 and 700 m.” In order to achieve that, the table name in example 4 would be replaced by the SQL 
code of example 3, with adding a ‘LIMIT 1’ to the query. 

2.6.4 Advantages of the database design 

Nearly unlimited amounts of data series can be processed with this approach, which is only really limited 
by the available disc space. While this also holds true for any other database structure, databases that follow 
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a conventional table structure with a column for each sensor and a row for each timestamp suffer from 
significant performance issues during the insertion of new entries or the retrieval of a subset of the data.    

In the approach presented above, the structure of the database follows the logic structure of the BSRN data, 
which makes it easily understandable and accessible. Arbitrary subsets of the whole dataset are selectable 
without the loss of performance. The indexing of the timestamp fields also makes it possible to search for 
any given point in time or time range very rapidly. 

Another advantage that is mostly important for the performance of the data processing is that the 
measurement values are stored in a predefined data type. The database knows that a measurement value is 
of a floating point number, which means that no parsing (converting text to a number the computer can 
calculate with) is needed like it would when using text files. 

Additionally, the database can be connected to any known programming language like C# or PHP, or 
computing environment like Matlab or IDL. 

The design of a database should always fit the most frequent queries that are to be expected from the 
intended use case. In irradiance modelling and validation, one of the most common scenarios is to get 
continuous time series of the global horizontal irradiance from a specific location in a given range of time.  

So as an example the query would be to get all measurement values of the global horizontal irradiance 
measured in Lindenberg, Germany, between 1995 and 2007. Since this covers a large time span, multiple 
pyranometers were used during that time. In total the result comprises 6.3 million data points, while it takes 
only 2.8 seconds to fetch them on an ordinary laptop. Figure 12 illustrates the result of the data query. 

 

Figure 12. Measurements of global horizontal irradiance in one-minute resolution, from 1995 to 2007, from Lindenberg, Germany. 
The dataset comprises five series, since five different pyranometers were used. The data retrieval takes under 3 seconds on an 
ordinary computer. 

With this database concept it is easily possible to process a high amount of measurement data for the use of 
model validation or the creation of new algorithms.
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3 Peer-reviewed publications and their context 

3.1 Synthesis of one-minute time series from one-hour data 

With the development of PV technology and the increase of its market share over the past decades, the 
requirements for the quality of the energy yield simulations increased. In the beginning, yield estimations 
and irradiance models were based on meteorological input data with time steps of a day or even a month 
[64], [65], [66], [67]. First approaches followed that enabled researchers and modelers to synthesize time 
series with a time resolution of a day from monthly averages [68]. 

Then daily values were more widely available, and with the ever increasing quality requirements and 
scientific progress, models emerged to synthesize time series of one-hour resolution [69], [70], [71], [72]. 
Nowadays, hourly data is widely available thanks to a higher number of meteorological stations and 
satellite-derived measurement data that cover the whole surface of the Earth. High quality measurement 
data of higher time resolution is still scarce and thus the community faces the need to synthesize time series 
with one-minute resolution from hourly data. The most common commercial data provider tool in Europe, 
Meteonorm, featured two algorithms to synthesize one-minute values: Aguiar [70] and Skartveit [72], both 
of which have not been developed for the synthesis of one-minute data in the first place.  

In the presented paper, these approaches were analyzed and found to be of insufficient quality for PV 
simulations. A new approach was developed that is based on one-minute measurement data from BSRN 
and uses precompiled transition probability matrices and Markov chains. 

The approach produces time series of global irradiance of one minute resolution with substantially more 
natural features compared to the two existing models. The validation shows that the frequency distributions 
of the global irradiance, the irradiance gradients and the clear-sky index of the new algorithm are 
significantly closer to their natural ideals than the ones produced by the other algorithms. The root mean 
squared error (RMSE) of the global irradiance distribution is reduced by 61%, the RMSE of the irradiance 
gradients by 52% and the RMSE of the clear-sky index by 71%. 

As of June 2017 the newly developed model is also part of Meteonorm. 

Since it is a complex and time consuming task to implement the algorithm, it is publicly available for 
researchers on http://www.pvmodelling.org.
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High resolution global irradiance time series are needed for accurate simulations of photovoltaic (PV) systems, since the typical
volatile PV power output induced by fast irradiance changes cannot be simulated properly with commonly available hourly averages
of global irradiance. We present a two-step algorithm that is capable of synthesizing one-minute global irradiance time series
based on hourly averaged datasets. The algorithm is initialized by deriving characteristic transition probability matrices (TPM) for
different weather conditions (cloudless, broken clouds and overcast) from a large number of high resolution measurements. Once
initialized, the algorithm is location-independent and capable of synthesizing one-minute values based on hourly averaged global
irradiance of any desired location. The one-minute time series are derived by discrete-time Markov chains based on a TPM that
matches the weather condition of the input dataset. One-minute time series generated with the presented algorithm are compared
with measured high resolution data and show a better agreement compared to two existing synthesizing algorithms in terms of
temporal variability and characteristic frequency distributions of global irradiance and clearness index values. A comparison based
on measurements performed in Lindenberg, Germany, and Carpentras, France, shows a reduction of the frequency distribution
root mean square errors of more than 60% compared to the two existing synthesizing algorithms.

1. Introduction

The efficiency of PV modules depends mainly on the irra-
diance, amongst other secondary effects such as module
temperature [1, 2]. The nonlinear dependency of the module
efficiency on the irradiance and the influence of temperature
on the module efficiency require simulations with a high
temporal resolution.

For the understanding of the dynamic interaction of
PV generator, storage systems, loads, and grids on a world-
wide scale, one-minute data series of high quality in terms
of realistic variability and frequency distributions are a key
factor. Simulating those systems with hourly averaged values
neglects significant behavior patterns like short time power
enhancements [3].

To illustrate the importance of one-minute data for the
simulation of PV systems, a 1 kWp PV example system with

PV generator, DC/AC inverter, and grid is analyzed at the
location of HTWBerlin, Germany. DC/AC inverters are used
in grid-connected PV systems as power processing interface
between the PV power source (DC) and the electric grid
(AC). The output power is very sensitive to the temporal
variability of the solar radiation which is highest during
broken clouds.

In some important markets (e.g., Germany), PV systems
can be affected by grid connection restrictions that define the
maximum AC power output of the inverter as a percentage
of the installed PV power on the DC side, where the usual
limit is around 70% [4]. In Figure 1 the power output of the
PV example system is shown in a one-minute temporal reso-
lution (grey) and in an hourly averaged temporal resolution
(blue) for a daywith broken clouds. An energy yield loss of 7%
is calculated when the 70% restriction is applied to the hourly
averaged power output. When applying the restriction to the
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Figure 1: Power output of a 1 kWp PV system at HTW Berlin,
Germany, on April 01, 2012, measured one-minute values (grey) and
hourly averaged values (blue). The yield losses due to maximum
power clipping (output power is cut above 700W) are calculated.

one-minute power output values, an energy yield loss of 10%
is calculated.

Following Vanicek et al. in his contribution on the energy
yield losses as a function of inverter dimensioning [3],
we analyzed the dependency of energy yield losses due to
maximum power clipping for PV inverters. Figure 2 shows
that these losses are dependent on the inverter sizing factor
as well and increase significantly when using one-minute
instead of hourly averaged time series. In sum, energy losses
due to inverter undersizing and maximum power clipping
add up to a constant value within the inverter dimensioning
range until the reciprocal of the power clipping value is
reached (143%). This threshold marks the optimum inverter
sizing factor for PV inverters with maximum power clipping,
since losses will not decrease when using a larger inverter.
With hourly averaged values (grey), the total energy loss is
at 1.3% while the more precise simulation with one-minute
values (blue) returns a total energy loss of 3.9%. These
examples indicate that the use of hourly averaged irradiance
datasets can result in falsified yield predictions.

While there exist several commercial providers and free
sources of meteorological data in a resolution of one hour
(e.g., Meteotest, SolarGIS, and TMY), covering nearly the
whole earth, the availability of measured irradiance data with
a resolution of less than an hour is very limited. This limited
availability leads to the necessity to synthesize one-minute
time series from hourly averaged data.

Several algorithms were developed in the past in order
to synthesize one-minute global irradiance datasets with
realistic variability and frequency distributions from hourly
averaged datasets. The supposedly most established algo-
rithms were developed by Aguiar and Collares-Pereira [5, 6],
Skartveit and Olseth [7], and Glasbey [8]. Like many similar
algorithms, the aim of those approaches is the reproduction
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Figure 2: Yearly energy yield losses of a 1 kWp PV system at HTW
Berlin, Germany, for various inverter sizing factors (the relation
between installed PV power on the DC side and nominal AC
inverter output) and a maximum power clipping value of 70%
(output power is cut at 70% of the installed DC power). Using
hourly averaged values for the simulation of PV systems leads to a
significant underestimation of the yearly yield losses. With hourly
averaged values (grey), the total energy loss is at 1.3% while the
more precise simulation with one-minute values (blue) returns a
total energy loss of 3.9%. In addition, this figure illustrates that
the optimal inverter sizing factor (here, 143%) for systems with
maximum power clipping is the reciprocal of the clipping value
(70%).

of the characteristic frequency distributions of the solar
irradiance or the clearness index 𝑘

𝑡
, which is a measure for

atmospheric transmission.
The contribution of Aguiar and Collares-Pereira was

originally designed for the generation of hourly averaged
time series with daily averages as input. It is based on
the modeling of probability densities as Gaussian functions
that depend on the clearness index 𝑘

𝑡
. Skartveit and Olseth

focused on the modeling of frequency distributions of global
and direct irradiance, depending on intrahour and interhour
irradiance variability, while using first-order autocorrelation
for the generation of the actual time series. Glasbey proposed
nonlinear autoregressive time series generation with joint
marginal distributions as multivariate Gaussian mixtures.
The estimation of probability density distributions of the
irradiance has recently been investigated by Voskrebenzev et
al. [9].

Other important contributions to this topic were pro-
vided by Assunção et al. [10] with investigations on the
dependency of 𝑘

𝑡
from the air mass and by Tovar et al. [11]

with the analysis of the relation of hourly averaged [clearness
indices] to one-minute clearness indices.

However, current algorithms only insufficiently with-
stand the validation against measurement values, since they
underestimate irradiance enhancements caused by broken
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clouds, overestimate mid irradiance values, and provide one-
minute time series with a variability that is too high.

Therefore, we developed an improved algorithm capable
of synthesizing one-minute global irradiance time series
based on hourly averaged global irradiance. The algorithm
takes three different weather conditions (cloudless, broken
clouds and overcast) into consideration. We show that the
improved algorithm exceeds the performance of the Aguiar
and the Skartveit algorithm in terms of temporal variability
and characteristic frequency distributions for the calculation
of short-term global irradiance at two exemplary PV installa-
tion locations.

2. Measurement Data and Methodology

The new algorithm consists of two parts. The first part
comprises a data preparation process that categorizes the
input dataset and produces transition probability matrices
(TPM) for three weather conditions: cloudless, broken clouds
and overcast.The preparation process has to be executed only
once.

The input dataset used for the initialization consists of
global irradiance measurements conducted by the Baseline
Surface Radiation Network (BSRN), featuring more than
50 locations all over the world with up to 20 years of
measurements. The BSRN database is updated continuously
with newmeasurement data; in this study we used a snapshot
of May 2013. A subset of these data, one-minute global irra-
diance measurements performed in Lindenberg, Germany
(2005), and Carpentras, France (2001), is used for the model
validation.

The second part is the synthesis process for one-minute
time series from hourly averaged time series. The required
input of this process only consists of the prepared set of
TPM and the hourly averaged time series of global irradiance
that is to be disaggregated. The core of the process is based
on Markov chains [12, 13], utilized in a similar way by
McCracken [14].

The central idea in both parts of the new algorithm is the
classification of weather situations by the temporal feature of
the clearness index. In the first part, the preparation process,
the BSRN dataset is split into three individual datasets
corresponding to three weather conditions: cloudless, broken
clouds and overcast. Each subset is then processed separately
and transformed into a transition probability matrix. In
the second part, the synthesis process, each daily dataset
of the hourly averaged input values is categorized as well
and processed according to their weather category. As a
consequence, themain process steps of the new algorithm are
only depending on those weather categories, in disregard of
specific location information.

This leads to the advantage that the algorithm can be
applied to hourly averaged datasets of arbitrary locations.
Furthermore, the only required input is the hourly averaged
datasets, once the TPMare created.Hence, the new algorithm
combines aspects of existing work on this subject with a
universally applicablemethod for the synthesis of one-minute
time series from hourly averaged values.

2.1. Classification ofWeather Condition by the Clearness Index.
The determination of predominant weather conditions is
needed in both steps of the presented algorithm.The weather
conditions are determined by the calculation of the clearness
index 𝑘

𝑡
. The clearness index is defined as the ratio of

measured global irradiance 𝐸measured at Earth’s surface and
the irradiance calculated for cloudless conditions at the
particular measuring site, denoted by clear sky irradiance
𝐸clear:

𝑘
𝑡
=
𝐸measured
𝐸clear
. (1)

The calculation of the clear sky irradiance has a significant
influence on the 𝑘

𝑡
index. Amodification of Bourges’ calcula-

tion [15] is used in this work, since it provided the best results
for all analyzed locations:

𝐸clear = 0.78𝐸extsin (𝛾𝑆)
1.15

, (2)

where 𝛾
𝑆
is the elevation of the sun and 𝐸ext is the extraterres-

trial irradiance. The extraterrestrial irradiance 𝐸ext was cal-
culated using Maxwell’s approach [16], whereas the elevation
of the sun 𝛾

𝑆
was modelled by the algorithm of Reda and

Andreas [17] from NREL.
The predominant weather condition on a particular day

results in a characteristic temporal pattern of 𝑘
𝑡
that can be

used to categorize the day into one of the three classes. The
detection algorithm of the weather condition is based on
the daily average of hourly averaged 𝑘

𝑡
values 𝑘

𝑡,day and the
variability during a day 𝑘̃

𝑡,day:

𝑘
𝑡,day =
1

𝑛

24

∑

𝑖=1

𝑘
𝑡,𝑖
, 𝑘̃

𝑡,day =
1

𝑛

24

∑

𝑖=2

󵄨󵄨󵄨󵄨𝑘𝑡,𝑖 − 𝑘𝑡,𝑖−1
󵄨󵄨󵄨󵄨 , (3)

where 𝑛 is the number of hours where global and clear sky
irradiance is above 0W/m2.

Table 1 gives an overview about the three weather classes
and their detection conditions. An example for the classifi-
cation is shown in Figure 3 for some days in August 2005 in
Lindenberg, Germany. For a better visualization we fall back
on one-minute values here, whereas it is to be noted that the
detection is based on hourly averaged values of the clearness
index 𝑘

𝑡
, because these values form the input of the synthesis

algorithm.The classification conditions are visualized as well
in Figure 4 for an example dataset of Lindenberg, Germany.

2.2. Transition ProbabilityMatrices. For each class that repre-
sents a specific weather situation, matrices of transition prob-
abilities (TPM) are created. The TPM contain information
on how probable the switch is from one specific 𝑘

𝑡
at time 𝑖

to another value at the time 𝑖 + 1. To create those matrices,
diurnal courses of measured one-minute values of equal
weather class, independent of their location, are analyzed and
converted into a common matrix. The frequency of every
possible transition in the measured data is registered and
afterwards normalized to obtain the transition probabilities.
Therefore, a TPM contains all probabilities of the change of
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Table 1: Overview of the three weather classes and their detection
conditions.

Weather class Condition
Overcast 0.6 − 𝑘

𝑡,day > 𝑘̃𝑡,day

Cloudless −0.72 + 0.8𝑘
𝑡,day ≥ 𝑘̃𝑡,day

Broken clouds Otherwise
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Figure 3: Example results of the weather category detection algo-
rithm based on 𝑘

𝑡
patterns for 6 subsequent days from 24.08.2005

to 30.08.2005 in Lindenberg. Clear sky irradiance (dotted grey) and
the clearness index (grey line on top) in comparison to themeasured
global irradiance (blue line, bottom). Visualization is donewith one-
minute values whereas the detection is based on hourly averaged
values.

a specific value of 𝑘
𝑡,𝑖
to 𝑘
𝑡,𝑖+1

from one minute to the next
under a specific weather condition. An example for a TPM of
broken clouds weather condition is given in Table 2. In this
case, the probability of 𝑘

𝑡
to change from 0.1 to 0.09 during

one minute is 17.6%, the probability to stay the same is 53.2%,
and the probability to change from 0.1 to 0.01 is 0%.

The excerpt of a TPM shown in Table 2 is an example
of how such transition probability matrices are structured.
The actual values of the TPM however are subject to the
underlying dataset that is used to create those matrices. In
this study we will use different subsets of the BSRN databases
for the creation process, depending on the dataset we use for
validation. The validation dataset is omitted from the dataset
for the TPM creation process to avoid self-reference. Hence,
the resulting values in the matrices may vary, whereas the
presented method to create the matrices is universal. For this
reasonwe refrain from listing all 200× 200 TPM in this study.

Since the TPM are created using real weather data in
one-minute resolution, each measured irradiance within a
given time interval leaves a fingerprint in a TPM. Hence, the
spatial and temporal validity of the algorithm is increasing
with the number of input datasets. As of May 2013, the BSRN
comprises more than 6900 irradiance measurement months
distributed globally, which is equal to more than 200 000
measurement days in one-minute resolution that leave their
fingerprint in the TPM.The influence of the number of input
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Figure 4: Visualization of the classification of weather conditions by
𝑘
𝑡
patterns using measurement values from Lindenberg, Germany.

Cloudless days feature high daily means 𝑘
𝑡,day with only little daily

variability 𝑘̃
𝑡,day. Days with overcast sky can be characterized by low

daily means and low to mid variability. Days with broken clouds
feature a high daily variability and mid to high daily means. The
black points refer to the example days of Figure 3.

data on the synthesis quality is referred to in Results section
as well.

2.3. Generation of 𝑘
𝑡
Sequences with Markov Chains. To

generate one-minute values from hourly averaged sequences
of the global irradiance, the weather condition of the day
in question is detected at first. Depending on the weather
condition the correspondent 𝑘

𝑡
-TPM is chosen.

The actual generation of the one-minute values is con-
ducted with the help of the so-called discrete-time Markov
chains (DTMC). DTMC is a state-based process for the
modelling of real-world events. In the first order, the process
is memory-less, so that the next state only depends on the
current state [12, 13].

To determine the successor 𝑘
𝑡,𝑖+1

of a specific 𝑘
𝑡
value

𝑘
𝑡,𝑖

at a given point in time 𝑖, the probabilities belonging
to 𝑘
𝑡,𝑖

are cumulated. Then, a Markov number between 0
and 1 is generated and inserted as a threshold value into
the cumulated probability function. The point at which the
probability function is bigger than the Markov number for
the first time is defined as 𝑘

𝑡,𝑖+1
. The process continues in

the same manner and generates a chain of 60 𝑘
𝑡
values per

hour. From these 𝑘
𝑡
sequences, the global irradiance for every

point in time can be calculated with the help of the clear sky
irradiance:

𝐸generated,𝑖 = 𝑘t,𝑖 ⋅ 𝐸clear sky,𝑖. (4)

This process is repeated until the mean value of the generated
one-minute values equals the hourly averaged input value
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Table 2: Excerpt of an example TPM for broken clouds weather condition. For each 𝑘
𝑡
value at time i (rows), the probability of a switch to

another 𝑘
𝑡
at time 𝑖 + 1 (columns) is given. The 𝑘

𝑡
values range from 0 to 2.

𝑘
𝑡,𝑖

𝑘
𝑡,𝑖+1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 ⋅ ⋅ ⋅

0 0 0 0 0 0 0 0 0 0 0 0
0.01 0 0.82927 0.17073 0 0 0 0 0 0 0 0
0.02 0 0.10345 0.72414 0.17241 0 0 0 0 0 0 0
0.03 0 0 0.06897 0.76724 0.15517 0 0.00862 0 0 0 0
0.04 0 0 0.00709 0.12057 0.70922 0.14894 0.01418 0 0 0 0
0.05 0 0 0 0 0.07004 0.75875 0.15564 0.01167 0.00389 0 0
0.06 0 0 0 0 0.01136 0.14773 0.64394 0.14773 0.03788 0.00758 0.00379
0.07 0 0 0 0 0 0.0084 0.19328 0.53361 0.2395 0.02521 0
0.08 0 0 0 0 0.0059 0 0.0236 0.17109 0.57817 0.17404 0.03245
0.09 0 0 0 0 0 0 0 0.03378 0.19932 0.46959 0.21284
0.1 0 0 0 0 0 0 0 0 0.02067 0.17571 0.5323
⋅ ⋅ ⋅

𝐸hour with desired accuracy 𝛿. If necessary, the values are
scaled as well:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸hour

∑
60

𝑖=1
𝐸generated,𝑖

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝛿,

𝐸gen., scaled,𝑖 =
𝐸hour

∑
60

𝑚=1
𝐸generated,𝑚

𝐸generated,𝑖.

(5)

3. Results

In the following section the new algorithm is validated with
measurement data and compared to the algorithms byAguiar
and Skartveit. The result comparison is conducted for two
exemplary datasets of one year at two different locations:
Lindenberg, Germany, 2005, and Carpentras, France, 2001.
Both datasets are taken from the BSRN database. To avoid
self-reference in the presented results, the creation process
of the TPM excludes all measurement data of the respective
location.

First, the results are presented on the basis of diurnal
courses to assess the temporal variability, afterwards in the
form of frequency distributions. In addition we provide a
table with comparative uncertainties.

When assessing the temporal variability of synthetized
one-minute values, the results for days with broken clouds
and overcast skies are more important, since the simulation
of sunny days is not difficult. In Figure 5 themeasured course
of the global irradiance (black (a)) is displayed in comparison
to the temporal course of the values generated with the new
algorithm (blue (b)) and the algorithms by Aguiar (c) and
Skartveit (d) for an overcast day.

Although the exact occurrence of irradiance peaks in
the modelled time series may differ from the measured time
series, the variability of the values modelled with the new
algorithm agrees with measured values to a very high degree.
The mean variability of irradiance changes from one minute
to the next is 7.0W/m2 for measured time series, whereas it
is 8.2W/m2 for the data modelled with the new algorithm

in the example dataset of Figure 5. With 𝑛 being the number
of minutes of a day (1440), the mean variability of the global
irradiance is calculated as follows:

𝐸var =
1

𝑛

𝑛

∑

𝑖=2

󵄨󵄨󵄨󵄨𝐸𝑖 − 𝐸𝑖−1
󵄨󵄨󵄨󵄨 . (6)

The methods of Aguiar and Skartveit lead to higher mean
variability values of 13.1W/m2 and 16.6W/m2, respectively.
Scientists of the Sandia National Laboratories as well refrain
from using these algorithms for this reason:

Without an adequate method to account for auto-
correlations (of relatively high order) in the one-
minute time series of clearness index, simulations
using these distribution forms would likely prove
too variable, as we found for simulations using
Glasbey’s model, and as we suspect would have
resulted using the model of Skartveit and Olseth
[18].

A more complete picture of the variability of solar
irradiance can be obtained by analyzing the frequency of its
gradients over a whole year. The gradients, in this case the
absolute difference of the irradiance values of one minute
to the next for the measured data and model data, are
calculated and transferred into frequency plots. Figure 6
shows the frequency of irradiance gradients for Lindenberg,
2005, whereas the data for Carpentras, 2001, is displayed in
Figure 7.

In both cases, the frequency distribution of the datamod-
elled by the algorithms of Aguiar and Skartveit, respectively,
shows significant overestimations for the gradient range from
10 to 100W/m2, while the new algorithm is able to produce
irradiance values that feature a similar frequency distribution
in this range. For gradients of less than 10W/m2 the data
modelled by all algorithms show similar deviations from the
measured data. For gradients of more than 100W/m2, the
new algorithm and the approach of Skartveit display similar
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Figure 5: Lindenberg, May 14, 2005.The temporal course of the measured global irradiance (a) on a day that was rated as a day with overcast
sky is compared to values generated by the new algorithm (b), the algorithm by Aguiar (c), and the algorithm by Skartveit (d). The mean
variability, that is, the mean irradiance change from one minute to the next, of the measured irradiance of 7.0W/m2 shows good congruence
with the new algorithm (8.2W/m2), while the usage of the algorithms by Aguiar and Skartveit leads to higher variability values of 13.1W/m2
and 16.6W/m2.

quality, whereas the algorithm of Aguiar shows significant
underestimations for both locations.

For the transfer into deviation indicators, the deviations
of the modelled data from the measured ones for each
irradiance value are squared, weighed by its frequency, and
summed up. The frequency weight 𝑓

𝑖
is added in order to

obtain information about the energetic relevance of each
irradiance gradient. For the calculation of root mean square
errors, these sums are then divided by the number of gradient
steps and the square root is applied. Table 3 shows the results
for all three analyzed models. In accordance with the visual
impression of the frequency plots in Figures 6 and 7, the
RMSE values for the new model presented in this study are
significantly smaller than the RMSE values of the other two
models by Aguiar and Skartveit:

RMSE = √ 1
𝑛

𝑛

∑

𝑖=1

(𝑓
𝑖
(𝑥Model,𝑖 − 𝑥Measurement,𝑖))

2

. (7)

Since the frequency distributions of the global irradiance and
the 𝑘
𝑡
values are more reliable indicators for the applicability

to simulations of photovoltaic systems, they are displayed

Table 3: Rootmean square errors (RMSE) of the frequency distribu-
tions of irradiance gradients of modelled data versus measurement
in W/m2. The new model is able to produce significantly smaller
values of RMSE than the models of Aguiar and Skartveit for both
locations, Lindenberg, 2005, and Carpentras, 2001.

Model Lindenberg Carpentras
Aguiar 8131 8541
Skartveit 4758 5112
New 2787 3218

in Figures 8, 9, 10, and 11. Measured values (black) are
compared to values calculated by the conventional algorithms
by Aguiar and Skartveit (grey dotted and solid), as well as
to the new algorithm presented in this study (blue). Each
of these distributions is calculated from values of one whole
year.

For the generation of those figures, measured one-minute
values were averaged to hourly means, which were then
fractionized again using the new improved algorithm as
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Figure 6: Frequency of gradients of the global irradiance in
Lindenberg, Germany (2005). The model quality in lower gradient
ranges of up to 10W/m2 is similar in all models. In the range of 10 to
100W/m2, significant deviations can be detected for the models of
Aguiar and Skartveit (grey), whereas the new method (blue) shows
good congruence. For gradient values of more than 100W/m2,
the model of Aguiar underestimates the frequency significantly,
while the new method and the method of Skartveit feature similar
frequency values compared to the measurement data (black).

well as the approaches of Aguiar and Skartveit. The figures
show how often a specific irradiance value occurs in a year.
The maximum at high irradiance values represents clear sky
situations, while the second maximum at lower values is
evoked by skies covered by clouds. Hence, the maximum at
high irradiance values is considerably more pronounced at
sunnier locations than at locationswith very variable weather.

It can be seen that the new algorithm is reproducing the
frequency distributions of the global irradiance much better
than the conventional approaches. Mid irradiance values are
not overestimated, and a good modelling quality is present at
high irradiance values. However, very high irradiances above
1100W/m2 are slightly overestimated.

If those frequency distributions are looked at in the
form of the clearness index 𝑘

𝑡
, the problems of the existing

algorithms become equally apparent (see Figures 10 and 11).
With the improved algorithm the 𝑘

𝑡
distributions can be

reproduced verywell, and the typical bimodal character of the
distribution is modelled very precisely for cloudy locations
(Lindenberg) as well as for sunnier locations (Carpentras)
with a pronounced clear sky peak of a 𝑘

𝑡
value near 1. The

practical relevance of these effects was demonstrated with
the help of the introductory example of the maximum power
clipping at 70%.

These visual impressions give an indication, but an
analysis of the uncertainty can be used for quantitative
assessment. Table 4 lists root mean square errors (RMSE)
for all distribution diagrams shown in Figures 8–11. For
each irradiance or clearness index class 𝑖 the modelled
distributions are compared to the measured data, and the
deviations are squared and summed up for the whole range
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Figure 7: Frequency of gradients of the global irradiance in
Carpentras, France (2001). As in Figure 6, the differences of the
models for gradient values of less than 10W/m2 are comparable.
In the range of 10 to 100W/m2, the new model (blue) shows a
better congruence with the measured data (black) than the models
of Aguiar and Skartveit (grey), while only the model of Aguiar
fails to produce good congruence for gradient values of more than
100W/m2.

Table 4: Root mean square error (RMSE) values comparing the
frequency distributions of the existing and the new algorithms with
measured data. Smaller values of RMSE denote better congruence
of the frequency distributions of modelled one-minute values with
measured values.

Model RMSE of irradiance in % RMSE of 𝑘
𝑡
in counts

Lindenberg Carpentras Lindenberg Carpentras
Aguiar 0.530 0.549 596 801
Skartveit 0.684 0.575 862 962
New 0.210 0.237 207 248

and then divided by the number of classes 𝑛. The square root
of this value gives the RMSE listed:

RMSE = √ 1
𝑛

𝑛

∑

𝑖=1

(𝑥Model,𝑖 − 𝑥Measurement,𝑖)
2

. (8)

The RMSE of both the irradiance and the clearness index
distributions can be considerably decreased with the new
algorithm compared to the conventional ones. In the case of
Carpentras both distribution RMSE can be reduced between
24 % and 35 %, in case of Lindenberg between 31 % and 43 %.

To analyze the influence of the amount of input data
for the TPM on the synthesis quality of the algorithm, the
creation process of the TPM is varied as follows.

First, the algorithm is processed three times with its orig-
inal setup, which includes all TPM except the ones from the
respective location, to estimate the influence of the random
Markov number generator on the RMSE range. Second, only
TPM of the respective location are used. In a third iteration,
the onlymeasurement values included in the creation process
are taken from BSRN stations that are located in the same
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Figure 8: Frequency distributions ofmeasured global irradiance for
Lindenberg (Germany, 2005) against values generated by different
algorithms. Mid values are slightly overestimated, and high values
are underestimated by the existing models (grey dotted), resulting
in RMSE of 0.530% for Aguiar and 0.684% for Skartveit. The
modelling quality of the new method (blue) does not overestimate
mid irradiance values and shows only little underestimation of high
irradiance values. The new RMSE can be reduced to 0.210%.

0
1
2
3
4
5
6
7
8
9

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

Global irradiance (W/m2)

Fr
ac

tio
n 

of
 y

ea
rly

 en
er

gy
 (%

)

Measured
Generated

Aguiar
Skartveit

Figure 9: Frequency distributions of measured global irradiance
for Carpentras (France, 2001) against values generated by different
algorithms. For locations with higher yearly global irradiation, the
high irradiance peak grows. Mid values are slightly overestimated,
and high values are underestimated by the existing models (grey
dotted), resulting in RMSE of 0.549% for Aguiar and 0.575%
for Skartveit. The modelling quality of the new method (blue)
does not overestimate mid irradiance values and shows only little
underestimation of high irradiance values. The new RMSE can be
reduced to 0.237%.

climate zone as per the definition of Köppen [19]. Current
data published by Rubel and Kottek [20] is taken to assign
the locations to climate zones. Lindenberg is located in the
climate zone Cfb, which mainly comprises Western Europe.
In the BSRN dataset there are another seven locations in this
climate zone: Cabauw (the Netherlands), Camborne and Ler-
wick (Great Britain), Cener (Spain), Lauder (New Zealand),

0

1000

2000

3000

4000

5000

6000

7000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Fr
eq

ue
nc

y

Measured
Generated

Aguiar
Skartveit

kt

Figure 10: Frequency distributions of the clearness index 𝑘
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Lindenberg (Germany, 2005). With the new method, the RMSE
between measurement and synthesis can be reduced significantly
(RMSE = 596 and 862 counts for Aguiar and Skartveit and RMSE
= 207 counts for new method).
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Figure 11: Frequency distributions of the clearness index 𝑘
𝑡
for

Carpentras (France, 2001). For locations with higher yearly global
irradiation, the second peak (clear sky) of the distribution grows.
With the new method, the RMSE between measurement and
synthesis can be reduced significantly (RMSE = 801 and 962 counts
for Aguiar and Skartveit and RMSE = 248 counts for new method).

Palaiseau (France), and Payerne (Switzerland). According to
Rubel and Kottek, Carpentras lies in climate zone Csa, but
unfortunately there is no other location of this climate zone
in the BSRN dataset. So this third iteration is conducted for
Lindenberg only. The fourth iteration comprises the usage of
all available TPM, this time including the TPMof Lindenberg
and Carpentras.

The synthesis of one-minute irradiance values is now
repeated with all varied TPM. The RMSE values are deter-
mined according to the previous chapter. Table 5 compares
the error values of the variations with the original version of
the process.
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Table 5: Comparison of synthesis quality of the new algorithm as
a function of input data for the locations of Lindenberg, Germany,
2005, and Carpentras, France, 2001.

Variation RMSE of irradiance in % RMSE of 𝑘
𝑡
in counts

Lindenberg Carpentras Lindenberg Carpentras
All except
own (1) 0.210 0.237 207 248

All except
own (2) 0.244 0.174 210 273

All except
own (3) 0.235 0.217 204 239

Own TPM
only 0.232 0.199 202 279

Cfb only 0.193 — 315 —
All TPM 0.253 0.186 204 254

The repetition of the synthesis process with the original
setup (all TPM except own 1–3) demonstrates the RMSE
range that can be expected due to the random nature of
the Markov number generator. The interesting aspect of the
various TPM modifications (own TPM only, Cfb TPM only,
and all TPM) is that the resulting RMSE mostly lie well
within the natural RMSE range of the original algorithm. In
other words, the synthesis quality remains approximately the
same, whether the algorithm uses only data of the respective
location or all globally available data except those from
the respective location. By classifying the weather situation
on a daily level, the influence of location specific weather
phenomena is reduced at the best. This implies that the
presented algorithm is location-independent and can be
applied to every location worldwide.

4. Conclusions

An improved method for synthesizing one-minute time
series of global irradiance has been presented that was
developed on the basis of a large worldwide measurement
dataset. It combines the advantages of conventional algo-
rithms and adds new elements like the differentiation of
weather conditions. It could be demonstrated that with the
new approach it is possible to synthesize one-minute values of
high statistical quality and realistic temporal variability. The
independence on the location has been shown for selected
cases. Such an independence would allow synthesizing one-
minute time series for any location.
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3.2 Diffuse decomposition models 

The aim of diffuse composition models is to calculate the fraction of the diffuse irradiance, when only the 
global horizontal irradiance was measured. The diffuse fraction is important to know for two reasons: As 
input for transposition models that calculate the global irradiance on tilted surfaces. And for PV systems 
that are only capable of converting the direct fraction of the incident solar irradiance, like for concentrating 
PV systems. 

The topic is on the list of meteorologists and scientists for more than 50 years now, starting with the 
remarkable work of Liu and Jordan in 1960 [53]. 

In the publication presented here a selection of diffuse fraction models is included in a worldwide validation 
against measured one-minute time series. The main part of the publication covers the description of a new 
model for the calculation of the diffuse fraction that is also based on high quality measurement data from 
BSRN and incorporates three sub-algorithms, two of which rely on precompiled probability matrices and 
Markov chains. 

Compared to existing models, the new approach realizes a reduction by 50% of the deviations of the 
modelled from measured diffuse irradiation per year, the root mean squared deviation is reduced by 18%. 
In contrast to existing models, the annual deviation of the diffuse irradiation is smaller than 20% in all cases, 
while it is smaller than 10% in 80% of the analyzed test cases. 

Since it is a complex and time consuming task to implement the algorithm, it is publicly available for 
researchers on http://www.pvmodelling.org.
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Abstract: We present a new model for the calculation of the diffuse fraction of the global solar
irradiance for solar system simulations. The importance of an accurate estimation of the horizontal
diffuse irradiance is highlighted by findings that an inaccurately calculated diffuse irradiance can
lead to significant over- or underestimations in the annual energy yield of a photovoltaic (PV) system
by as much as 8%. Our model utilizes a time series of global irradiance in one-minute resolution and
geographical information as input. The model is validated by measurement data of 28 geographically
and climatologically diverse locations worldwide with one year of one-minute data each, taken
from the Baseline Surface Radiation Network (BSRN). We show that on average the mean absolute
deviation of the modelled and the measured diffuse irradiance is reduced from about 12% to about
6% compared to three reference models. The maximum deviation is less than 20%. In more than 80%
of the test cases, the deviation is smaller 10%. The root mean squared error (RMSE) of the calculated
diffuse fractions is reduced by about 18%.

Keywords: diffuse; diffuse fraction; irradiance; model; photovoltaic (PV); simulation; irradiation;
Baseline Surface Radiation Network (BSRN)

1. Introduction

Adapting the common terminology in energy meteorology to differentiate between the power
and energy of the solar radiation, the word ‘irradiance’ is used in this work to denote the instantaneous
solar power per square meter in W/m2, whereas the word ‘irradiation’ refers to the integral of the
irradiance over time, thus denoting the energy of the solar radiation in Ws/m2 or kWh/m2 [1].

In photovoltaic (PV) system simulations, the global horizontal irradiance and the ambient
temperature are the two most important inputs in order to determine the PV system’s energy output.
The global horizontal irradiance is split up in its direct and diffuse components. These components are
then separately translated to a tilted plane if the PV system in question has a module orientation that
differs from the horizontal plane. In simple terms the global irradiance incident on a tilted module is
then calculated as the sum of the direct and the diffuse irradiance on the tilted plane.

The model for estimating the diffuse fraction of the global horizontal irradiance is hence the
first element in a chain of models that is necessary to simulate the electrical output of a PV system.
As such, it has strong influence on the final output of the simulation, which is demonstrated by the
following comparative simulations for two locations: Lindenberg, Germany and Gobabeb, Namibia.
The analysed PV system is a standard 8 kWp (kilo Watt peak) grid connected system, the simulation
is conducted in one-minute resolution with measurement data from the Baseline Surface Radiation
Network (BSRN) [2].

Energies 2017, 10, 248; doi:10.3390/en10020248 www.mdpi.com/journal/energies
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During the four exemplary days in June in Lindenberg, Germany, chosen for Figure 1, the model
used for this comparison (reduced version of Reindl et al. [3]) underestimates the diffuse irradiance by
18%. In the next step of the simulation, the global irradiance on the tilted plane is calculated. In this
case the modules are facing south and are elevated by 30◦ from the horizontal. The model applied
for this step is from Hay and Davies [4]. When using the modelled horizontal diffuse irradiance,
the resulting global irradiance on the modules is still 9% lower than using the measured horizontal
diffuse irradiance.
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horizontal diffuse irradiance values. With the diffuse irradiance modelled by Reindl et al. [3], the 
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conducted for the whole year 2003 in Lindenberg, where the annual deviation of the modelled 
diffuse irradiance is −7.2%, leading to a deviation of the annual PV energy output of −2.7%. 

The second half of Table 1 lists the results of the same comparison that was conducted for the 
location of Gobabeb in Namibia, for the year 2014. Here, the deviation of the annual diffuse 
irradiation is as high as 42% which leads to an overestimation of the global irradiation of the module 
surface of 8.3% and to an overestimation of the annual PV energy yield of 7.6%. 
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irradiance. An inaccurately calculated diffuse irradiance can lead to significant over- or 
underestimations in the annual energy yield of a PV system. This is especially relevant in the price 

Figure 1. Top: Measured (grey) and modelled (green) time series of diffuse irradiance on a horizontal
surface for four days in Lindenberg, Germany. Global irradiance (blue) for reference. The calculation of
diffuse irradiance in this example was done with the reduced model of Reindl et al. [3]. The model
underestimates the four-day sum of the diffuse irradiation by 18%.
Middle: The global irradiance on a tilted photovoltaic (PV) module (facing south, tilted by 30◦) for the
same four days. The model used for calculating the irradiance on a tilted surface is from Hay and
Davies [4]. Due to the underestimation of the diffuse irradiance (see top), the four-day sum of the
global irradiation on the PV module based on modelled values falls below the global irradiation based
on measured values by −9%.
Bottom: The resulting cumulated deviation of the modelled global irradiation on the tilted plane from
the measured. The plot shows that one of the main sources of deviation is the modelling of highly
variable irradiance situations, as observed e.g., on 10 June, between 08:00 and 12:00.

The rest of the PV system model chain is then simulated with the help of the simulation core of PV
software provider Valentin Software (Berlin, Germany) [5]. Table 1 lists the results of the comparison.

During these four days, the total PV energy yield would be 65.6 kWh when using the measured
horizontal diffuse irradiance values. With the diffuse irradiance modelled by Reindl et al. [3], the total
PV energy yield is only 60.2 kWh—an underestimation of 8.3%. The comparison was also conducted
for the whole year 2003 in Lindenberg, where the annual deviation of the modelled diffuse irradiance
is −7.2%, leading to a deviation of the annual PV energy output of −2.7%.

The second half of Table 1 lists the results of the same comparison that was conducted for the
location of Gobabeb in Namibia, for the year 2014. Here, the deviation of the annual diffuse irradiation
is as high as 42% which leads to an overestimation of the global irradiation of the module surface
of 8.3% and to an overestimation of the annual PV energy yield of 7.6%.

These examples highlight the importance of a more accurate estimation of the horizontal
diffuse irradiance. An inaccurately calculated diffuse irradiance can lead to significant over- or
underestimations in the annual energy yield of a PV system. This is especially relevant in the price
sensitive market of PVs, where only few percent more or less of PV energy output can render a project
possible or uneconomical [6].
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Table 1. Measured and modelled diffuse irradiation for Lindenberg, Germany (LIN), and Gobabeb,
Namibia (GOB). The top section refers to the figures above, time ranges from 10–13 May 2003.
The modelled underestimation of the diffuse irradiation by −17.9% leads to an underestimation
of the global irradiation on the tilted PV module by −9.3%, hence leading to an underestimation of
the simulated PV energy yield by 8.3%. When considering the whole year (2nd section), the modelled
diffuse irradiation differs from the measured value by −7.2%, leading to an underestimation of the
irradiation on module surface by −3.1%. The difference in the annual PV energy yield is −2.7%. In the
3rd and 4th section, the results of the same analysis are presented for Gobabeb, Namibia. Here, the
PV module faces North and is tilted at 23◦. The modelled sum of diffuse irradiation for selected days
(23–26 July 2014) is 20.4% higher than the measured sum, leading to a deviation in the PV energy
of 4.4%. Over the whole year of 2014, the deviation of the diffuse irradiation is even 42%, which causes
a difference in the annual PV yield of 7.6%.

LIN, 10–13 May 2003 Unit with Measured Data Modelled Deviation

Global horizontal irradiation kWh/m2 19.7 - -
Diffuse irradiation kWh/m2 12.0 9.9 –17.9%

Global irradiation on tilted surface kWh/m2 22.6 20.5 –9.3%
PV energy yield kWh 65.6 60.2 –8.3%

LIN, whole year 2003 Unit with Measured Data Modelled Deviation

Global horizontal irradiation kWh/m2 1185.1 - -
Diffuse irradiation kWh/m2 555.9 515.7 –7.2%

Global irradiation on tilted surface kWh/m2 1467.0 1422.0 –3.1%
PV energy yield kWh 4339.2 4221.4 –2.7%

GOB, 23–26 July 2014 Unit with Measured Data Modelled Deviation

Global horizontal irradiation kWh/m2 18.2 - -
Diffuse irradiation kWh/m2 4.6 5.5 20.4%

Global irradiation on tilted surface kWh/m2 22.5 23.7 5.0%
PV energy yield kWh 66.2 69.1 4.4%

GOB, whole year 2014 Unit with Measured Data Modelled Deviation

Global horizontal irradiation kWh/m2 2433.1 - -
Diffuse irradiation kWh/m2 454.9 645.8 42.0%

Global irradiation on tilted surface kWh/m2 2401.9 2600.8 8.3%
PV energy yield kWh 6808.7 7325.4 7.6%

2. Measurement Data and Methodology

In the following section the measurement data and the methodology used in this contribution
are presented.

2.1. Data basis (Baseline Surface Radiation Network)

As a source of high quality measurement data the data base of the BSRN is used [2]. The BSRN
comprises 59 stations worldwide, 44 of which provide one-minute measurements of global horizontal
and diffuse horizontal irradiance. The time range of the measurements starts in 1992 for the first
stations and is still running until now. For this study the following criteria were applied for selecting
the datasets:

• High annual completeness of one-minute measurements of global and diffuse irradiance;
• Between 60◦ North and −60◦ South;
• No leap years.

Table 2 gives an overview of the locations and years that were used for validation. In total,
28 locations with one year of measurement each were selected. The datasets feature a high geographic
and climatological diversity. The last column of the table lists the annual completeness of the
measurements (ACM) in %. The validation datasets comprise more than seven million data points
(nights omitted) on which the following analysis is based.
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Table 2. Overview over the 28 datasets that were used in this work. The locations are spread over the globe between −45◦ South and 52◦ North. Height above sea
level, surface, topography and climate zones (according to Köppen [7]) show a high level of variation. The years of measurement were chosen to provide a high
annual completeness of measurement (ACM), i.e., as few missing data points as possible. The total resulting amount of data points that is used in the following
analysis exceeds 14.7 million (or approximately 7 million when omitting night time).

ID Name Country Latitude in ◦ Longitude in ◦ Height
in m

Time
Zone Surface Topography Climate

Zone ACM in %

ASP 2005 Alice Springs Australia –23.798 133.888 547 9.5 grass flat, rural BWh 99.4
BIL 2003 Billings USA 36.605 –97.516 317 –6 grass flat, rural Cfa 99.6

BOU 2009 Boulder USA 40.05 –105.007 1577 –7 grass flat, rural BSk 99.0
BRB 2010 Brasilia Brasil –15.601 –47.713 1023 –3 concrete flat, rural Aw 96.6
CAB 2009 Cabauw Netherlands 51.971 4.927 0 1 grass flat, rural Cfb 99.1
CAM 2003 Camborne UK 50.217 –5.317 88 0 grass flat, rural Cfb 90.4
CLH 2013 Chesapeake Light USA 36.905 –75.713 37 –5 water, ocean flat, rural Cfa 99.8
CNR 2011 Cener Spain 42.816 –1.601 471 1 asphalt mountain valley, urban Cfb 99.8
COC 2011 Cocos Islands Cocos Islands –12.193 96.835 –1 6.5 n.a. n.a. Af 95.6
DAA 2003 De Aar South Africa –30.667 23.993 1287 2 sand flat, rural BSk 88.1
DAR 2011 Darwin Australia –12.425 130.891 30 9.5 grass flat, rural Aw 100
FUA 2011 Fukuoka Japan 33.582 130.375 3 9 asphalt flat, urban Cfa 99.9
GOB 2014 Gobabeb Namibia –23.561 15.042 407 1 n.a. flat rural BWh 100
IZA 2011 Izaña Spain 28.309 –16.499 2372.9 0 rock mountain top Csb 96.1
LAU 2005 Lauder New Zealand –45.045 169.689 350 12 grass flat, rural Cfb 98.1
LER 2003 Lerwick UK 60.133 –1.183 84 0 grass hilly, rural Cfb 100
LIN 2003 Lindenberg Germany 52.21 14.122 125 1 cultivated hilly, rural Cfb 100
PAL 2011 Palaiseau France 48.713 2.208 156 1 concrete flat, urban Cfb 99.7
PAY 2009 Payerne Switzerland 46.815 6.944 491 1 cultivated hilly, rural Cfb 99.9
REG 2009 Regina Canada 50.205 –104.713 578 –6 cultivated flat, rural BSk 100
SAP 2011 Sapporo Japan 43.06 141.328 17.2 9 asphalt flat, urban Dfb 99.9
SBO 2009 Sede Boqer Israel 30.905 34.782 500 2 desert rock hilly, rural Cwb 98.2
SMS 2007 São Martinho da Serra Brasil –29.443 –53.823 489 –3 concrete flat, rural Cfa 91.5
SOV 2001 Solar Village Saudi Arabia 24.91 46.41 650 3 desert, sand flat, rural BWh 100
TAM 2006 Tamanrasset Algeria 22.78 5.51 1385 1 desert, rock flat, rural BWh 99.9
TAT 2006 Tateno Japan 36.05 140.133 25 9 grass flat, urban Cfa 99.9
TOR 2010 Toravere Estonia 58.254 26.462 70 2 grass flat, rural Dfb 100
XIA 2009 Xianghe China 39.754 116.962 32 8 desert, rock flat, rural Dwa 100
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2.2. Description of Quantities and Models

For the calculation of the position of the sun, the solar position algorithm provided by the National
Renewable Energy Laboratory (NREL; Golden, CO, USA) is used [8]. The clear sky irradiance Eclear is
calculated on the basis of an adaption of the approach of Bourges [9]:

Eclear = 0.78Eext sin(γS)
1.15 (1)

where γS is the elevation of the Sun and Eext is the extra-terrestrial irradiance. The extra-terrestrial
irradiance was calculated using Maxwell’s approach [10]. In 2014 this formula was identified as the
most accurate for another subset of BSRN data by Hofmann et al. [11]. The clearness index kt is the
fraction of the measured global irradiance to the clear sky irradiance:

kt =
Eglobal, measured

Eclear
(2)

In the models for calculating the diffuse fraction of the global irradiance that are presented in
Section 2.3 a simpler approach of calculating the clear sky index is used:

Eclear = Eext sin(γS) (3)

This causes the kt value at clear sky to be around 0.8 instead of 1 in the existing models. For the
comparison of the results in Section 4, the calculation of the clearness index occurs according to the
respective model description.

All PV system simulations are conducted using the simulation core of PV*SOL, a commercial PV
system planning and simulation software by Valentin Software. More information about the models
that are relied on in the simulation core can be found at PV*SOL [5].

2.3. Presentation of Existing Models

For the estimation of the diffuse fraction of the global horizontal irradiance, several algorithms
were developed in the past. Most of them can be categorized as models with one or two parameters
as input. The one-parameter models feature a simple dependency of the diffuse fraction (d f ) on the
clearness index (kt), cf. Figure 2.
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Figure 2. Measured diffuse fraction over clearness index kt for one year of measurement (grey points,
extract of 2003) in Lindenberg, Germany. Line plots: Schematic overview of existing one-parameter
models. Typically the models define three sections with varying d f = f (kt) functions.
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These models typically define three functions for different ranges of kt. These kt ranges can be
more or less referred to as different cloud situations. A kt value of less than 0.4 means only 40% of the
possible global irradiance is measured, which is a good indicator for overcast skies. The maximum
kt value that is detected at clear sky conditions is around 0.78–0.8. In between those areas, i.e., for
kt values between 0.4 and 0.78, broken cloud situations are most likely [1,12]. Values of kt > 1 are
possible due to broken cloud enhancement, firstly stated for the ultraviolet by Nack and Green [13]
and later confirmed by Seckmeyer et al. [14]. Values of kt > 1 are possible at all wavelengths of the
solar spectrum.

The first model, a one-parameter approach, was presented by Liu and Jordan in 1960 [15], but
it soon became apparent that it was not able to produce good results in other locations than it was
designed for (Blue Hill, MA, USA) [16,17].

In consequence, other models were developed that can also be categorized as one-parameter
models: Orgill and Hollands [18], Erbs, Klein and Duffie [19], Reindl, Beckman and Duffie [3] and
Boland and Ridley [20]. A schematic overview of those models is provided in Figure 2, along
with sample measurement data of Lindenberg, Germany, 2003, for reference. Other one-parameter
approaches include the model by Oliveira et al. [21] that provides varying clearness index polynomials
for three periods per year (December–January, April–August and September–March).

Another category of algorithms is formed by the two-parameter models that—in addition to the
clearness index kt—also make use of the sun height, γS. Two-parameter models include the approaches
by Reindl, Beckman and Duffie [3], Skartveit and Olseth [12] and Maxwell [10]. The reduced version
of the two-parameter model of Reindl, Beckman and Duffie [3] is presented in Figure 3.
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Figure 3. Measured diffuse fraction over clearness index kt for one year of measurement (grey points,
extract of 2003) in Lindenberg, Germany. Line plots: The model by Reindl, Beckman and Duffie [3]
(reduced version), using two parameters (kt and sun height) as input.

Not classifiable as one- or two-parameter model is the noteworthy approach by Furlan et al. [22]
who developed a multi-parameter regression model for data from Sao Paolo, Brazil. Another important
contribution was achieved by the model by Perez and Ineichen [23], which features a dynamic
time-series approach to model the direct normal from the global irradiance based on the DISC model
by Maxwell [10].

A good overview and an approach of global validation of the above mentioned models for
calculating the diffuse fraction, also using BSRN data, is given by Zernikau [17]. In this thesis it was
also shown that all analysed one- and two-parameter models showed relative mean absolute errors
(rMAE) of (10.4 ± 0.4)% for the 24 BSRN locations that were included in the study. The author also
analysed the minimal rMAE that can be achieved with a one- or two-parameter model by generating
global medians of measurements of the diffuse fraction and the clearness index. According to this
study, the minimal globally achievable rMAE for any two-parameter model is 8.9%.
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Another one-location comparison of the models was conducted for Athens, Greece, by
Kambezidis [24]. Similarly, a study comparing ten models was presented by Jacovides et al.
for validation data of Athalassa, Cyprus [25]. A model-to-model comparison for Hong Kong without
validation on measurement data is provided by Wong [26]. A comparison of eight models for the
location of Vienna, Austria, was conducted by Dervishi [27], resulting in findings that are in general
agreement to the above mentioned studies.

3. Presentation of a New Model for the Diffuse Fraction of Solar Irradiance

In order to reduce the uncertainty of PV system simulations, a new model for calculating the
diffuse fraction of global horizontal irradiance is presented in this section. The model consists of three
parts that are calculated independently and then combined depending on statistic features of the
clearness index. Each part is presented and afterwards the combination of the three parts into a single
resulting diffuse fraction d f is explained.

3.1. Part One. Diffuse Fraction as Function of Clearness Index

Like existing models with one parameter, this part of the new model makes use of the relation
between the clearness index kt and the diffuse fraction. Instead of parameterized functions, a matrix
of probabilities is utilized. For the generation of the matrix, the one-minute time series of global and
diffuse horizontal irradiance are converted into value pairs of the clearness index kt and the diffuse
fraction d f , following the equations in Section 2.2. Each value pair is then stored into a matrix with
kt ranging from 0 to 1.5 and d f ranging from 0 to 1, both with a step size of 0.01. The frequency
of occurrence of a specific d f value for a given kt value is then converted into a probability value,
so that for every value of kt a function of cumulated probabilities can be calculated. Figure 4 shows
an example of such a probability matrix. In the matrix shown here, measurement values from Alice
Springs, Australia (2009), Billings, USA (2005), Boulder, USA (2010), Brasilia, Brazil (2011), Cabauw,
The Netherlands (2011), Cener, Spain (2010), De Aar, South Africa (2003), Fukuoka, Japan (2013),
Gobabeb, Namibia (2013), Lauder, New Zealand (2007), Lerwick, UK (2002), Lindenberg, Germany
(2002), Payerne, Switzerland (2010), Regina, Canada (2011), Tateno, Japan (2003) and Xianghe, China
(2006) were incorporated.
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Figure 4. A probability matrix of the diffuse fraction as a function of the clearness index kt. For each
value of kt, this matrix describes the probability with which a certain value of diffuse fraction will
occur. The matrix correlates with the existing simple one-parameter models mentioned in Section 2.3,
but it is based on measurements. Therefore the natural variability is better described by the model
especially for high values of kt (kt > 1.1, irradiance enhancement due to reflections by broken clouds)
while preserving the strong relation at low levels of kt (kt < 0.4, overcast sky).
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In order to determine a value for d f for a given kt, the procedure is as follows. Since this is the
first part of the new model, the diffuse fraction of this part is referred to as d f1:

(1) Select column of probability matrix that corresponds to the kt value;
(2) Generate a Markov number rM (randomized number between 0 and 1) [28];
(3) Select the row where rM is smaller than the cumulated probabilities for the first time;
(4) The selected row corresponds to d f1 value.

The usage of real measurement values, incorporated into a matrix of probabilities, holds the
advantage of preserving the natural relationship of the diffuse fraction and the clearness index and
additionally resulting in a more realistic variability of the modelled d f value series.

3.2. Part Two. Change of df as Function of Change of kt

By analyzing the extensive BSRN measurement database, a strong correlation has been found
between the relative changes of the clearness index (from one minute to the next) to changes of the
diffuse fraction. In Figure 5 this correlation is shown for Lindenberg, Germany, for the year 2003.
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Figure 5. Scatter plot of the relative changes of the diffuse fraction over the relative changes of the
clearness index for Lindenberg, Germany, 2003. This strong relation is very valuable for modelling a
realistic behaviour of the diffuse fraction over the day, since it depends highly on the behaviour of kt.
The area where the change of df is 0 while kt shows relatives changes between −0.5 and 0.5, i.e., d f is
changing while kt is not, indicates days with movement of broken clouds, the reflection on which
couses the measured global irradiance to change rapidly without changing its diffuse fraction.

It was observed that for positive relative changes of kt (when the current kt is higher than the kt
one minute before), the diffuse fraction will most likely show a negative relative change. If the relative
change of kt is negative, the change of the diffuse fraction will be positive.

There are situations, however, where kt is changing from one minute to the next without an
observable change of d f (compare the horizontal value accumulation at dd f = 0). These situations are
typical for days with rapid irradiance enhancements due to moving broken clouds.

In correspondence to part 1, the relationship between the relative change of d f and the relative
change of kt (dkt) is also expressed in a matrix of probabilities, displayed in Figure 6. This matrix is
only used in the dkt range of −0.5 to 1, since the amount of measurement values outside of this range
is too small, which results in unwanted noise. The procedure to retrieve a value for the diffuse fraction
in this part, d f2, is as follows:

(1) Calculate the relative change of kt as:

dkt = ktnow / ktbefore − 1 (4)
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(2) For dkt greater than −0.5 and smaller than 1

a. Select the column of the probability matrix that corresponds to dkt;
b. Generate a Markov number rM (randomized number between 0 and 1) [28];
c. Select the row where rM is smaller than the cumulated probabilities for the first time;
d. The selected row corresponds to change of d f , that is:

dd f = d fnow / d fbefore − 1 (5)

(3) For dkt smaller than −0.5, dd f is not taken from the matrix, but extrapolated as:

dd f = 0.5dkt
4 − 1.23dkt

3 + 1.1dkt
2 − 0.87dkt (6)

(4) For dkt greater than 1, dd f is extrapolated as:

dd f = −0.35 − 0.15dkt (7)

(5) The diffuse fraction for part 2, d f2, can now be calculated as:

d f2 = dd f d fbefore (8)
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Figure 6. The same relation between changes of d f and changes of kt as in Figure 5, here as the
probability matrix that is used in the model, corresponding to Figure 4. In the model, only relative
kt changes of −0.5 to 1 are computed with this matrix. In the matrix shown here, measurement values
from the same locations and years as in Figure 4 were incorporated.

3.3. Part Three. Geometric Calculation for Days with Clear Sky

3.3.1. Calculation of the Daily Course of d f

In the case of clear sky, d f is mainly dependent on the air mass relative to its daily minimum.
For that reason, in this part of the model a geometric approach has been chosen capable of reproducing
the characteristic daily course of the diffuse fraction for clear sky days. The diffuse fraction of this part
is calculated as:
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d f3 =
AM

AMmin
d fmin (9)

The air mass can be modelled as a function of the elevation of the sun. The minimal air mass
AMmin is calculated for each day by using the maximum elevation angle γS, max:

AM(min) =
1

sin
(
γS,(max)

)1.15 (10)

Figure 7 displays the measured (blue) and modelled (green dashed) course of the diffuse fraction
over an exemplary day in Tateno, Japan (13 February 2006). While the clearness index kt (black) is
relatively stable around 1, the diffuse fraction is around 0.5 shortly after sunrise and before sunset and
is falling down to a minimal diffuse fraction d fmin at noon, to 0.136 in this example.
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Figure 7. Example for the geometric approach used to model clear sky diffuse fraction. The data shown
is from Tateno, Japan, for 13 February 2006. While kt (top plot, black) remains relatively constant,
the measured diffuse fraction (blue) follows a typical scheme, starting with high d f values in the
morning, falling to a minimum at noon and rising again in the evening. This behaviour shows a strong
correlation with the change of the air mass during the day (bottom plot, black). The clear sky diffuse
fraction (green) is modelled as presented in Equation (9). The most important factor in this part of the
model is the smallest value of d f during the day, d fmin. Modelling d fmin correctly is crucial for good
algorithm results.

However, the main challenge in modelling the diffuse fraction over the course of a clear sky day
is to find a good approximation for the minimal diffuse fraction of the day, since this factor is subject to
strong variations in every possible respect: from location to location, from season to season and even
from day to day.

3.3.2. Daily Variation of d fmin

In order to illustrate the daily variation of d fmin, seven consecutive days in Tamanrasset, Algeria,
are shown in Figure 8. Even for this non-cloudy site d fmin may vary significantly from day to day:
The minimal value of the diffuse fraction (grey, bottom plot) of each day is varying between 0.328 on
the first day (21 March 2006) and 0.062 on the third day (23 March 2006).
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Figure 8. Measurement values for global irradiance (blue, top), kt (black, center) and d f (grey, bottom)
for Tamanrasset, Algeria, from 21 to 26 March 2006. This plot illustrates the variation of the minimum
daily d f value (d fmin) for consecutive clear sky days. d fmin values for March 21 to 26 are: 0.328, 0.101,
0.062, 0.123, 0.139 and 0.105. One factor of influence seems to be the averaged maximum value of
kt around noon. Another indicator is the shape of the kt curve during day: A slow rise of kt in the
morning and slow fall in the evening indicate a high d fmin like on 21 March, whereas steep ramps in
the morning and evening with flat trends during the day indicate low d fmin value (e.g., 26 March).

3.3.3. Seasonal Variation of d fmin

In addition to daily variations, d fmin also shows seasonal variation on some locations. Figure 9
displays the minimal diffuse fractions of all clear days in Tamanrasset, Algeria, in 2006 (black plus
symbols) over the course of a year. While in wintertime d fmin ranges mostly between 0.05 and 0.15,
it almost never falls below 0.1 in summertime and features values between 0.15 and 0.5. When looking
at the daily mean kt values (grey crosses), no significant correlation can be observed which implies
that other factors must have influence on the minimal daily diffuse fraction. The monthly means of
aerosol optical depth (red) and the water vapor (blue dashed) taken from the NASA Terra/MODIS
satellite [29,30] however feature a seasonal behavior similar to d fmin.
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Figure 9. Variation of d fmin (black) of days with clear skies over a year in Tamanrasset, 2006. While
d fmin is mostly close to 0.1 in wintertime, it varies strongly from spring to autumn, with no clear
relation to the mean clearness index of the corresponding day (grey). It was found that changing levels
of aerosols (red) and water vapour (dotted blue) may cause this effect.
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3.3.4. Summary of Factors Influencing d fmin

This leads to the conclusion that d fmin is dependent on a series of factors. A list of factors that
proved influential on d fmin is given below:

(1) The clearness index kt. The values of kt are averaged in a range of 120 min around noon:

kt =
1

trange
∑tnoon+

trange
2

i=tnoon−
trange

2

kti (11)

(2) The variability of the clearness index, ktVar. For the same period of time, the changes of kt
are registered:

ktVar = ∑tnoon+
trange

2

i=tnoon−
trange

2

∣∣∣∣ kti
kti−1

− 1
∣∣∣∣ (12)

(3) The maximum elevation of the sun during the day, γS,max and the minimum air mass during the
day, AMmin, compare to top of this section.

(4) The aerosol optical depth (AOD) and the water vapour (wv) of the respective month. These
values are taken from the NASA Terra/MODIS satellite [29,30] and averaged on a month per
month basis between 2001 and 2015. Figure 10 gives an impression of the worldwide seasonal
characteristics of AOD and wv.

(5) The up and down time of kt in the morning and in the evening. As a measure of the steepness of
the kt curve, the time span is determined between sunrise and when kt first reaches the threshold
of 1 in the morning. A second time span between the moment when kt is at last above 1 in the
evening and sunset is measured as well. The two values are averaged and are a good indicator for
d fmin in places with high day-to-day variation of d fmin: The longer the up/down time, the higher
d fmin will be.
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3.3.5. Resulting Equations for d fmin

The factors that influence d fmin mentioned in the above section are combined in a series of
posynomials, depending on the location and availability of data. The coefficients and exponents
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of the following posynomials were fitted with the help of the Levenberg-Marquardt algorithm
implementation of the software gnuplot 5.0 [31].

The datasets used for the posynomial fits are taken from the same locations as in Table 2, but
for different years of measurement: asp 2009, bil 2005, bou 2010, brb 2011, cab 2011, cam 2002, clh 2014,
cnr 2010, coc 2007, daa 2003, dar 2010, fua 2013, gob 2013, iza 2010, lau 2007, ler 2002, lin 2002, pal 2010,
pay 2010, reg 2011, sap 2013, sbo 2011, sms 2006, sov 2002, tam 2003, tat 2003, tor 2005, xia 2006. For Case
1 only the subset bou 2010, iza 2010, sbo 2011, sov 2002, tam 2003 and xia 2006 was used.

Case 1: AOD and water vapor data available, location features strong seasonal changes of AOD
(indicator for seasonal aerosol concentrations e.g., due to sandstorms in desert regions, see Table 3 the
values for factors a, b and c).

d fmin = a0ktb0 + a1ktvar
b1 + a2 AMb2 + a3 AODb4 + a4wvb4 + a5tup/down

b5 + c (13)

Table 3. Values for a, b and c factors of the d fmin fit, used to model d fmin for given kt, ktvar, AM, AOD,
water vapour and up/down time. The RMS of residuals is 0.0528.

Factors 0 1 2 3 4 5

a −4.29127 0.09656 −1.26822 0.05940 −0.30991 0.00043
b 0.19589 0.93797 0.03795 1.48181 0.08588 0.79801
c 6.01645 - - - - -

Case 2: AOD and water vapor data available, no strong seasonal changes of AOD (see Table 4 the
values for factors a, b and c).

d fmin = a0ktb0 + a1ktvar
b1 + a2 AMb2 + a3 AODb4 + a4wvb4 + a5tup/down

b5 + c (14)

Table 4. Values for a, b and c factors of the d fmin fit, used to model d fmin for given kt, ktvar, AM, AOD,
water vapour and up/down time. The RMS of residuals is 0.0427.

Factors 0 1 2 3 4 5

a −2.49013 0.08345 0.00673 0.14107 −0.05853 0.00158
b 0.15065 0.72204 2.25298 0.75615 0.37413 0.67690
c 2.58895 - - - - -

Case 3: AOD and water vapor data are not available (see Table 5 the values for factors a, b and c):

d fmin = a0ktb0 + a1ktvar
b1 + a2 AMb2 + a5tup/down

b5 + c (15)

Table 5. Values for a, b and c factors of the d fmin fit, used to model d fmin for given kt, ktvar, AM and
up/down time. The RMS of residuals is 0.0480.

Factors 0 1 2 3 4 5

a −0.75568 0.10744 0.02533 - - 0.01203
b 0.16313 0.58318 1.26937 - - 0.45174
c 0.71854 - - - - -

Case 4: AOD, water vapor and up/down time data are not available (see Table 6 the values for
factors a, b and c).

d fmin = a0ktb0 + a1ktvar
b1 + a2 AMb2 + c (16)
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Table 6. Values for a, b and c factors of the d fmin fit, used to model d fmin for given kt, ktvar, AM and
up/down time. The RMS of residuals is 0.0542.

Factors 0 1 2 3 4 5

a −2.28942 0.23589 0.02445 - - -
b 0.27308 0.19371 1.26262 - - -
c 2.23274 - - - - -

3.4. Combination of the Three Parts

The three parts of the algorithm generate the values d f1, d f2 and d f3. Depending on the current
weather situation, expressed by characteristics and statistical features of kt, they are combined to one
single, resulting d f :

d f = w1d f1 + w2d f2 + w3d f3 (17)

The mean absolute deviation of kt at a given time of day tx that is used as condition above is
calculated as follows:

madkt =
1

trange
∑tx

i=tx−trange

∣∣∣∣ kti
kti−1

− 1
∣∣∣∣ (18)

with trange = 30 min. For illustration of the weighing conditions mentioned in Table 7, Figure 11
displays all-sky camera images from the Institute of Meteorology and Climatology of the Leibniz
University Hannover [32,33]. Picture A shows a moment where no clouds are visible. It is classified
as “Clear Sky” since kt = 1.03 and madkt = 0.0025. Picture B shows a moment where kt = 0.147 and
madkt = 0.107, hence being classified as “Standard”. In picture C some light clouds are visible around
the sun. This moment is classified as “Transition” as kt = 1.01 and madkt = 0.028. The “Transition”
condition can be interpreted as clear sky with only few light clouds.

The generated matrices and other model data can be obtained from the authors upon request.

Table 7. Weighing factors for the combination of d f1, d f2 and d f3 to one single d f , depending on
kt characteristics.

Name Condition w1 w2 w3

Clear Sky
madkt < madkt, lower

ktclear, lower < kt < ktclear, upper
0 0.2 0.8

Transition
madkt, lower < madkt < madkt, upper

ktclear, lower < kt < ktclear, upper
0.2 0.2 0.6

Standard Else 0.2 0.8 0

With ktclear, lower = 0.95, ktclear, upper = 1.2, madkt, lower = 0.005 and madkt, upper = 0.05.
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Figure 11. Three pictures made by an Hemispherical Sky Imager in Hannover (at the Institute for
Meteorology and Climatology of the Leibniz University Hannover) in order to illustrate the three
different weighing conditions presented in Table 7. Time in UTC. (A) 02 May 2016 12:00–Clear Sky:
kt = 1.03, madkt = 0.0025; (B) 03 May 2016 12:00–Standard: kt = 0.147, madkt = 0.107; (C) 06 May 2016
09:40–Transition: kt = 1.01, madkt = 0.028.
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4. Results

In this section, the results of the validation of the new algorithm are presented. As mentioned
in Section 2.1, the validation is conducted for 28 locations with one year of one-minute values each,
basing the validation on more than seven million data points worldwide.

The overall results are then compared to the results of three existing models for the diffuse
fraction: the model of Orgill and Hollands [18] (OH), a one-parameter model, the reduced version
of the two-parameter model of Reindl et al. [3] (RR), and the model by Perez and Ineichen [23] (PZ),
all introduced in Section 2.3. The first two models were also identified as two of the three best
performing models among the eight investigated approaches by Dervishi [27]. The model by Perez and
Ineichen [23] is still popular in the community and widely made use of. The model by Skartveit [12]
was not used for the model comparison since no indications were found that show a significant
advantage of this model over Orgill and Hollands [18], Reindl et al. [3] or Perez and Ineichen [23].

Figure 12 displays two weeks in Alice Springs, Australia, 2005. The measured global horizontal
irradiance is plotted on top (green); the resulting clearness index kt is plotted for reference underneath
(black). In the three following plots, the measured diffuse fraction (black) is displayed, together with
the diffuse fraction that was modelled with the new approach (blue), with the model from Orgill
and Hollands [18] (grey) , the model from Reindl et al. [3] (orange) and the model from Perez and
Ineichen [23].

While the new model is able to reproduce the diffuse fraction in good accordance to the
measurement values most of time, the inherent problem of models with static one- or two-parameter
relationships between the clearness index and the diffuse fraction becomes apparent. Especially on
clear sky days the existing models fail to reproduce the characteristic behavior of the diffuse fraction.

In order to evaluate the performance of the new model in statistical terms, the root mean squared
errors (RMSEs) are calculated for the new model as well as for the three reference models. Figure 13
shows the RMSE for the four models over all test data sets. The RMSE produced by the new model is
smaller than those produced by the models of Orgill and Hollands [18], Reindl et al. [3] and Perez and
Ineichen [23], in parts significantly, except for one case in Izaña, Spain, 2011 (iza 2011). The overall
RMSE, averaged over all test data sets, can be reduced from 0.138 (OH), 0.134 (RR) and 0.139 (PZ) to
0.116 for the new model, which equals an amelioration of 16%–20%.

A further validation is conducted by comparing the annual diffuse irradiation values that are
estimated by the models with the measured value. Figure 14 lists the relative deviations of the modelled
from the measured annual diffuse irradiation. In most of the cases, the deviation resulting from the
new model is significantly smaller than the deviation resulting from the models of OH, RR or PZ. There
are few cases where the model leads to higher deviations than the existing ones, e.g., for Billings, USA
(bil 2003), Solar Village, Saudi Arabia (sov 2001) or Tamanrasset, Algeria (tam 2006). Extreme deviations
of more than 20%, however, as apparent in some of the test cases for the two existing models, do not
occur when using the new model. The average of the absolute (i.e. unsigned) relative deviations for all
test cases can be reduced by nearly 50% from 11.9% for OH, 12.7% for RR and 10.9% for PZ to only
6.4% for the new model.

The histogram of the mean absolute deviations of the annual diffuse irradiation displayed in
Figure 15 illustrates the frequency of the deviations each model produces. While the model of
Reindl et al. [3] (RR) has its peak in the class of 0 to 5%, it still has several outliers of 35%–55%.
The model of Orgill and Hollands [18] (OH) features only one extreme outlier at 35%–40%, but has
most of its results lying in the class of 10 to 15%. The model by Perez and Ineichen [23] shows
no outliers of more than 25% but has its results evenly distributed between 0 and 15%. The new
model does not produce any outliers and has its peak in the class of 0%–5%, covering 50% of the test
cases alone.
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Figure 12. Plot of measured and modelled irradiance values for 14 consecutive days in Alice Springs,
Australia, 2005, as an example. The total amount of analysed data sets comprises one year in minutes
for each of the 28 test cases (refer to Section 2.1), equaling to seven million datapoints. Values at night
are omitted in this plot. The measured global irradiance (green) is shown on top, the resulting clearness
index kt (black) for reference in the middle. The bottom part of the diagram displays measured (black)
and modelled diffuse fractions (blue for the new model, grey for Orgill and Hollands [18], orange for
Reindl et al. [3], yellow for Perez and Ineichen [23]). Most of the time, the output of the new model leads
to good conformity for clear sky days as well as for days with broken clouds. The inherent problem
of static one- or two-parameter models becomes apparent when comparing the measurement values
to the output of the models by Orgill and Hollands [18], Reindl et al. [3] and Perez and Ineichen [23],
especially for clear sky days.
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(PZ, yellow), except for the location of Izaña, Spain (iza 2011), where the OH model produces a slightly
smaller RMSE. The mean RMSE over all test cases is at 0.116 for the new model, 0.138 for OH, 0.134 for
RR and 0.139 for PZ, which implies an amelioration of the RMSE of 16%–20%.
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the modelled irradiation will be smaller than 5% in more than 40% of the cases, and smaller than 10%
in over 80% of the cases. When using the model of Orgill and Hollands [18] (OH), these confidence
probabilities reduce to 25% and 36%, while using the model of Reindl et al. [3] (RR) reduces the
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improvement, where the probability of producing less than 5% deviation is only 25% (OH), 36% (RR)
and 25% (PZ) and the probability of producing less than 10% deviation is 36% (OH), 54% (RR) and
50% (PZ).

5. Conclusions

The newly developed model for the diffuse fraction of solar irradiance on PV systems provides
significantly better agreement with measurements than the other models published so far. This is
achieved by the following features: the first part utilizes the dependency of the diffuse fraction d f on
the clearness index kt, in analogy to existing one-parameter models. In the new model, the correlation
is expressed as probability matrices rather than single functions, leading to realistic, more natural
diffuse fraction characteristics. Also taking advantage of probability matrices, the second part uses
the relation of the relative changes of d f over the relative changes of kt. The third part takes into
account the diffuse fraction characteristics of days with clear sky only using a geometrical approach.
The crucial factor for the third part is the minimum daily diffuse fraction for which a posynomial
model has been introduced.

The presented new model was analyzed and compared to two other models for 28 locations
worldwide with one year of one-minute measurement data each. It was shown that the new model
has a high quality of modeling the diffuse irradiance. The mean RMSE over all test cases was reduced
by 16%–20%, whereas the mean absolute deviation of the annual diffuse irradiation was found to be
nearly 50% smaller compared to the reference models. In more than 80% of the test cases, the deviation
of the annual diffuse irradiation is smaller than 10%, with an overall maximum deviation of 20%.

With the new model, the diffuse irradiance can be calculated with much lower uncertainty, hence
significantly reducing the uncertainty of PV energy yield simulations. Possible future work for the
improvement of the model will include further investigations on the minimal daily diffuse fraction that
has a very decisive influence on the model quality for clear sky days. Such days may be identified by
cloud cameras that will allow for a much better estimation of the cloud fraction compared to satellite
images [33].
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3.3 Influence of meteorological models on PV system simulations 

The model chain used for PV system simulations is outlined in 2.1. For each model block presented there 
exists a number of approaches that vary highly in their quality and how intensely they were validated over 
time. All of these models influence the output of the PV system simulation directly, but so far it was unclear 
how deviations of a single model propagate through the model chain and how the interplay and various 
combinations of models interfere with each other.  

In general, the influence of the selection of irradiance models on the simulated electrical output of a PV 
system is not very well analyzed and documented. The importance of high resolution irradiance data input 
was highlighted already in the first publication of this thesis and before that by [51] and [52]. Balafas [73] 
presented a study on the diffuse irradiance on the inverter output of a PV system. Some studies have been 
published that analyze the effect of various combinations of decomposition and transposition models on 
the irradiance on the tilted plane, e.g. for Aldergrove (Northern Ireland) [74], Corsica (France) [75] or 
Valladolid (Spain) [76], but they rely on measurement data with one-hour resolution and for one location 
only. 

In order to cope with this situation and shed some light on the matter, the third publication of this thesis 
presents a matrix simulation approach, where eight selected diffuse fraction models, along with measured 
diffuse irradiance values, 5 transposition models, two sun position models and three types of time resolution 
(measured one-minute values, hourly averages and synthesized one-minute values) were cross combined to 
build 270 different model chains for 30 different locations from the BSRN dataset. The PV simulations were 
furthermore repeated for three different module tilt or tracking modes, totaling in 24300 simulations. 

To further analyze the importance of high resolution data, a study of inverter clipping losses and their 
dependence on the simulation time step is included. 

It is shown that the quality for both decomposition and transposition models varies strongly from location 
to location. The modelled PV energy output varies between −5% and +8% for PV systems with a fixed 
module inclination and between −26% and +14% for modules with two-axis tracking. It is demonstrated 
that the usage of the new diffuse model leads to the smallest variability in the results. The necessity to use 
one-minute time series for PV simulations is highly indicated by the results, especially with regard to the 
inverter clipping losses.
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Abstract: We analyze the output of various state-of-the-art irradiance models for photovoltaic systems.
The models include two sun position algorithms, three types of input data time series, nine diffuse
fraction models and five transposition models (for tilted surfaces), resulting in 270 different model
chains for the photovoltaic (PV) system simulation. These model chains are applied to 30 locations
worldwide and three different module tracking types, totaling in 24,300 simulations. We show
that the simulated PV yearly energy output varies between −5% and +8% for fixed mounted PV
modules and between −26% and +14% for modules with two-axis tracking. Model quality varies
strongly between locations; sun position algorithms have negligible influence on the simulation
results; diffuse fraction models add a lot of variability; and transposition models feature the strongest
influence on the simulation results. To highlight the importance of irradiance with high temporal
resolution, we present an analysis of the influence of input temporal resolution and simulation
models on the inverter clipping losses at varying PV system sizing factors for Lindenberg, Germany.
Irradiance in one-minute resolution is essential for accurately calculating inverter clipping losses.

Keywords: photovoltaics; simulation; irradiation; BSRN; diffuse; diffuse fraction; irradiance; model;
transposition; high resolution; tilted; inclined

1. Introduction

Irradiance models are among the most important elements of the complex model chain for
simulations of photovoltaic systems. In an ideal case, the irradiance incident on the module plane is
measured beforehand in-situ in high resolution, so that this time series can directly be used as an input
for the electrical PV simulation. In standard use cases however, only the time series of the global
horizontal irradiance in one-hour resolution at the nearest location and the location coordinates are
available as input for time-step simulations. The models have to deliver estimates for the sun position,
for the diffuse fraction of the horizontal irradiance and, most importantly, for the global irradiance on
the plane of the module.

The output of the irradiance processor model chain, the global irradiance on the tilted plane
of the PV module, is the most important input parameter for the subsequent model chain that is
responsible for the electrical simulation of the modules, as the output current of any PV cell has
an approximately linear dependency from the incident irradiance, while the output voltage shows
a dependency that resembles logarithmic functions. Hence, the output power of PV modules is
almost linearly dependent on the irradiance at moderate to high values, which implies a nearly linear
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dependency of the yearly PV energy yield on the irradiation—as the integral of the irradiance over
time—on the module surface.

In this study, we want to focus on the irradiance model chain as a whole and systematically
analyze the interplay of the different models and their influence on the global tilted irradiance (GTI)
and the PV energy as the outputs of the model chain. We use high quality global horizontal irradiance
(GHI) measurement data from the Baseline Surface Radiation Network (BSRN) [1] of 30 locations
worldwide to estimate the model quality under various conditions. By altering the model chain,
we combine all selected models of one category with the all models of the other categories, which leads
to a considerable amount of simulations. With this analysis, we are able to answer questions about
the importance of choosing the right sun position algorithm, the required temporal resolution or
the best model for the diffuse fraction. Additionally, we can make statements about the variability of
the simulation results under given conditions.

2. Methodology

2.1. Input Data

To base the analysis on a broad and stable data basis, 30 locations were selected from the Baseline
Surface Radiation Network (BSRN) [1], as listed in Table 1. Selection criteria were the availability
of one-minute measurement data of global and diffuse horizontal irradiance with a high annual
completeness and a latitude between −60◦ and 60◦.

Table 1. Overview of the selected measurement datasets. It comprises 30 locations of the Baseline
Surface Radiation Network (BSRN) [1], spread over the whole globe between 60◦ North and South.
Height above sea level, surface, topography and climate zones (according to Köppen [2]) show a high
level of variation. The optimal tilt angle for each location is determined according to Section 2.3.

ID
(Location
and Year)

City, Country Latitude
in ◦ N

Longitude
in ◦ E

Height
in m

Time
Zone Surface Climate

Yearly
Clearness
Index KT

Yearly
Diffuse

Fraction DF

Optimal Tilt
Angle in ◦

ber 2006 Bermuda 32.267 −64.667 8 −4 water,
ocean Cfa 0.53 0.44 25

bou 2009 Boulder, US 40.05 105.007 1577 −7 grass BSk 0.578 0.367 36

brb 2010 Brasilia, BR −15.601 −47.713 1023 −3 concrete Aw 0.574 0.341 22

brb 2011 Brasilia, BR −15.601 −47.713 1023 −3 concrete Aw 0.548 0.345 23

cab 2009 Cabauw, NL 51.971 4.927 0 1 grass Cfb 0.462 0.542 35

car 2014 Carpentras, FR 44.083 5.059 100 1 cultivated Csa 0.565 0.336 36

clh 2013 Chesapeake Light, US 36.905 −75.713 37 −5 water,
ocean Cfa 0.551 0.383 31

cnr 2011 Cener, ES 42.816 −1.601 471 1 asphalt Cfb 0.542 0.381 34

daa 2002 De Aar, ZA −30.667 23.993 1287 2 sand BSk 0.671 0.195 29

fua 2011 Fukuoka, JP 33.582 130.375 3 9 asphalt Cfa 0.428 0.532 27

gob 2014 Gobabeb, NA −23.561 15.042 407 1 n.a. BWh 0.721 0.188 23

ilo 1997 Ilorin, NG 8.533 4.567 350 1 shrub Aw 0.498 0.557 9

ish 2011 Ishigakijima, JP 24.337 124.163 5.7 9 asphalt Cfa 0.439 0.531 12

iza 2011 Izaña, ES 28.309 −16.499 2372.9 0 rock Csb 0.753 0.201 26

kwa 1999 Kwajalein, MH 8.72 167.731 10 12 water,
ocean Af 0.548 0.387 7

kwa 2005 Kwajalein, MH 8.72 167.731 10 12 water,
ocean Af 0.573 0.399 9

lin 2003 Lindenberg, DE 52.21 14.122 125 1 cultivated Cfb 0.495 0.471 39

man 2009 Momote, PG −2.058 147.425 6 10 grass Af 0.461 0.502 2

mnm 2011 Minamitorishima, JP 24.288 153.983 7.1 9 water,
ocean Af 0.569 0.369 19

nau 2007 Nauru Island, NR −0.521 166.917 7 12 rock Af 0.579 0.377 3

nau 2010 Nauru Island, NR −0.521 166.917 7 12 rock Af 0.589 0.369 3

pal 2011 Palaiseau, FR 48.713 2.208 156 1 concrete Cfb 0.481 0.486 35

pay 2009 Payerne, CH 46.815 6.944 491 1 cultivated Cfb 0.501 0.473 32
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Table 1. Cont.

ID
(Location
and Year)

City, Country Latitude
in ◦ N

Longitude
in ◦ E

Height
in m

Time
Zone Surface Climate

Yearly
Clearness
Index KT

Yearly
Diffuse

Fraction DF

Optimal Tilt
Angle in ◦

reg 2011 Regina, CA 50.205 −104.713 578 −6 cultivated BSk 0.593 0.401 41

sap 2011 Sapporo, JP 43.06 141.328 17.2 9 asphalt Dfb 0.442 0.549 35

sbo 2009 Sede Boqer, IL 30.905 34.782 500 2 desert
rock Cwb 0.665 0.261 27

sov 2001 Solar Village, SA 24.91 46.41 650 3 desert,
sand BWh 0.705 0.278 23

tat 2006 Tateno, JP 36.05 140.133 25 9 grass Cfa 0.413 0.558 35

tor 2006 (*) Toravere, EE 58.254 26.462 70 2 grass Dfb 0.481 0.446 41

xia 2006 (*) Xianghe, CN 39.754 116.962 32 8 desert,
rock Dwa 0.468 0.576 34

For all locations except the last two (marked with (*)), there are also measured time series of
the ambient temperature with a resolution of one, five, ten or sixty minutes, that are used afterwards
for the models that calculate the temperature of the PV modules. Some locations (Brasilia, Brazil;
Kwajalein, Marshall Islands; and Nauru Island) are taken twice with different years in order to assess
the inter-annual stability of the results for exemplary locations.

The yearly clearness index KT and the yearly diffuse fraction are determined by

KT =
GHIyear

Gclear−sky, year
and DF =

DHIyear

GHIyear
(1)

where the clear-sky irradiance Gclear−sky is calculated from the extraterrestrial irradiance Gext and
the elevation of the sun γs with a modification of the approach by Bourges [3]

Gclear−sky = 0.78 Gext sin(γS)
1.15 (2)

2.2. Data Preparations

Before conducting the simulations, the following data preparations are made. One-hour averages
are generated from the one-minute values of the global and diffuse horizontal irradiance (GHI and
DHI) and the ambient temperature. From the one-hour averages of the global horizontal irradiance,
one-minute values are synthesized using a recently developed and published algorithm [4] that
has been independently evaluated by Remund this year [5] and attested to be the best-performing
algorithm for synthesizing one-minute time series from one-hour averages of GHI.

For the synthesized one-minute values of GHI, a virtual diffuse horizontal irradiance is generated
using the measured diffuse fraction:

DHIsyn, i = GHIsyn, i ∗ d fmeasured = GHIsyn, i ∗
DHImeasured, i

GHImeasured, i
(3)

The calculation of the optimal tilt angle for all locations was conducted using the one-minute
measurement values of the global and diffuse irradiance and the transposition model of Hay and
Davies [6].

2.3. Matrix Simulations

For each of the 30 locations, a complete time-step simulation of one year is conducted using
the PV*SOL simulation core [7]. For each location, all elements of each matrix dimensions (models
and modes) are combined with all others to form 810 unique model chains per location. In total,
24,300 time-step simulations with a resolution of one-hour or one-minute are executed. Figure 1 gives
a schematic overview over the various dimensions of the matrix simulations. The global horizontal
irradiance (GHI), the diffuse horizontal irradiance (DHI) and the ambient temperature (Tamb) are
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measurement values form the BSRN database and come in one-minute resolution. These input values
are then processed by diffuse fraction models that also need the output from solar position algorithms
as input. The output of the diffuse fraction models, the diffuse and direct horizontal irradiance,
is then used as input for the transposition models. Their output, the global and diffuse irradiance on
the tilted plane, GTI and DTI, is then used as input for the subsequent model chain for the simulation
of the PV module.

The mainly electrical PV module and inverter model chain that is connected to the irradiance
model chain is simplified in this overview with the grey block on the right. Table 2 lists all the models
and modes in detail. The selection was made by concentrating on the most commonly used models by
the energy meteorology community.

Regarding the sun position algorithms, the selection aimed to include the fastest, i.e., computationally
most light-weight, algorithm taken from the German Standard Din5034-2 [8], and the most accurate
known candidate, the Solar Position Algorithm from NREL [9].

The amount of models to calculate the diffuse fraction of the global irradiance renders it more
difficult to make a representative selection. In a recent evaluation study, Gueymard and Ruiz-Arias [10]
presented a classification and validation of 140 separation models against measurement data with
one-minute resolution of 54 locations worldwide, using BSRN and NREL databases. Unfortunately,
our newly developed model [11] could not be integrated due to the publishing date. The validation
was conducted with the help of numerous statistical indicators and climate groups and showed
heterogeneous results. The mean average deviation of the best models lies within 10% and 20% when
omitting high albedo locations.

Another approach of a worldwide validation was conducted by Zernikau [12], who chose
24 locations from the BSRN database and validated eight diffuse fraction models against their data.
The average MAD per model over all locations was also found to lie around 10%. One-location
validation studies include the work by Kambezidis [13], Wong [14] and Dervishi [15], who validated
various models for the locations of Athens, Greece; Hong Kong; and Vienna, Austria, respectively.
In our selection we wanted to include established algorithms like, amongst others, Reindl [16], Erbs,
Klein and Duffie [17] or Orgill and Hollands [18], as well as more recently developed models like
Boland, Ridley and Laurent [19,20] and our new algorithm [11].
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Figure 1. Schematic overview over the matrix simulations. The model chain for the electrical simulation
of the PV system is simplified with the grey block on the right. The combination of all models and
inputs leads to a total of 24,300 simulations.
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Table 2. Overview over the dimensions of the matrix simulation.

Dimension Models/Modes Amount

Locations See Table 1 30

Input data/time resolution
• 1-min measurement values
• 1-min synthesized values [4]
• 1-h averaged values

3

Sun position • Din5034-2 [8]
• NREL SPA [9]

2

Tracking mode

• Fixed tilt at 40◦, facing south on northern hemisphere,
north on southern hemisphere

• Optimal tilt angle for each location, see Table 1
• Two-axis tracking with 180◦ East-West rotation limit

3

Diffuse fraction

• Measurement values
• Models

# Reindl reduced [16]
# Boland, Ridley and Laurent (BRL) [19]
# Boland, Ridley and Laurent 2010 (BRL 2010) [20]
# Erbs, Klein and Duffie (EKD) [17]
# Orgill and Hollands (OH) [18]
# Skartveit [21]
# Perez and Ineichen (PI) [22]
# Hofmann [11]

9

Transposition models (irradiance
on module plane)

• Liu and Jordan [23]
• Hay and Davies [6]
• Klucher [24]
• Perez [25]
• Reindl [26]

5

Total 24,300

A multitude of transposition models to calculate the irradiance on tilted surfaces has been
developed in the past 60 years, and many validation studies have been presented. The first model
to name is the isotropic approach of Liu and Jordan [23], other well-known and widely used models
are Hay and Davies [6], Klucher [24], Perez [25] and Reindl [26]. These five models constitute our
choice for the matrix simulations. There exist a lot more transposition models, where the approaches
by Temps and Coulson [27], Muneer [28], Olmo [29], Gueymard [30] and Badescu [31] are probably
the most well-known and validated except the models listed above.

Notable recent validation studies include the work by Yang [32], who lists and compares 26 models
against one-minute measurement data from four locations with two to eight sensor orientations each,
see values in brackets: Eugene, OR, USA (3); Oldenburg, Germany (2); Singapore (8); and Golden,
CO, USA (5); the normalized MBD was found to lie between −11% and +12% for tilt angles up to 45◦

and between −45% and +20% for vertical surfaces. Another comprehensive contribution is made by
Ineichen [33], who validates eight models against one-minute and one-hour data of two locations and
the studies of Loutzenhiser [34], Gueymard [35], Demain [36] and Gulin [37], who compare seven to
14 models against the measurement data of one location. In these studies, measurement data were from
Geneva and Duebendorf, Switzerland; Denver and Golden, CO, USA; Uccle, Belgium; and Zagreb, HR.

Other parameters and models used in the simulation of the PV system are listed in Table 3.
These values and models represent the default setting in most simulation software like PV*SOL.
The albedo value of 0.2 represents a ground reflectance of, e.g., sand, grass or asphalt. The reflection
model and the Incidence Angle Modifier (IAM) define how much irradiance is reflected on the glass
surface of the PV module. The spectral losses consider the fact that the spectral distribution of
the irradiance might not be equal to the AM1.5 solar spectrum on which the PV modules are tested.



Energies 2017, 10, 1495 6 of 24

Table 3. Other parameters and models used in the model chain for the PV system simulations.

Parameter/Model Value

Albedo 0.2

Reflection model ASHRAE [38,39]

Incidence Angle Modifier (IAM) 0.95

Spectral losses 0.01

PV modules 8 kWp nominal power, 40 × 200 Wp polycrystalline standard module,
modeled with the two-diodes model

Inverter 7 kVA standard inverter, max. efficiency 94.6% at 50% load

Sizing factor 114%

Electrical modeling Based on IV characteristics superposition, PV-MPPT-Inverter feedback loop

Grid voltage 230 V

Cable resistance 0 Ω

The electrical modeling of the PV modules and the DC/AC inverter with maximum power point
tracking (MPPT) is based on detailed superposed IV characteristics and real MPP tracking behavior
with feedback loop to the PV generator. This means that like in real PV plants, the PV generator
provides a full IV characteristic to the MPP tracker in each time step. The tracker then selects the MPP
voltage and current, and converts them to AC energy at grid voltage. The selected MPP current is fed
back to the PV generator and the energetic losses caused thereby are calculated. The ohmic resistance
of the DC and AC cabling is set to 0.

To give an idea of how these matrix simulations look and how the results of one model chain
differs from the other, an example of a very small matrix simulation is given in Figure 2. Here, only
one day is simulated instead of a whole year, and only for the location of Lindenberg, Germany.
The rows represent the three types of input data (one-minute measured, one-minute synthesized
and one-hour averages). The first column shows the pure input data as a function of local time.
In the second column, the output of the diffuse models is plotted in yellow to red color. Already
here, significant differences can be observed between the different models. On the third column,
the simulated PV energy for the exemplary 8 kWp plant is displayed for three different combinations
of diffuse fraction and transposition model.

2.4. Clipping Losses Analysis

In addition to the matrix simulations, the inverter clipping losses are analyzed with a further set
of simulations. In a previous publication [4] we already examined the clipping losses for Lindenberg,
Germany, for an exemplary simulation setup. In this contribution we want to analyze the influence of
the models and input data types on the clipping losses more in detail.

Out of the matrix subset listed in Table 2, only the model chains of the location of Lindenberg,
Germany, are selected. As additional dimension, the sizing factor, i.e., the ratio of installed PV power
on the DC side and AC inverter rating, is increased from 100% to 200%. To achieve this, the AC inverter
rating is reduced from 8 kVA to 4 kVA in 0.5 kVA steps. This leads to a total of 2970 simulations.
These are conducted twice: First with a realistic inverter efficiency curve with a maximum efficiency of
94.6%, and second with an ideal efficiency curve of 100% over the whole inverter range.
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Figure 2. Simplified example of the matrix simulations for one day (5 June 2003) and one location 
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different input types are plotted: measurement one-minute values on the top, synthesized one-minute 
values in the middle and averaged one-hour values below. The second column displays the diffuse 
irradiance modeled by three different diffuse fraction models (OH, Orgill and Hollands [18]; PI, Perez 
and Ineichen [22]; and Hofmann [11]). The column on the right shows the resulting PV power (DC) 
for three different combinations of diffuse fraction and transposition models: PI with Perez [25], OH 
with Liu and Jordan [23] and Hofmann with Hay and Davies [6]. Sun position algorithm is Din5034-
2 [8], tracking mode is fixed tilt at 40°. 

Figure 2. Simplified example of the matrix simulations for one day (5 June 2003) and one location
(Lindenberg, Germany). Selected diffuse and transposition models only. In the left column, the three
different input types are plotted: measurement one-minute values on the top, synthesized one-minute
values in the middle and averaged one-hour values below. The second column displays the diffuse
irradiance modeled by three different diffuse fraction models (OH, Orgill and Hollands [18]; PI, Perez
and Ineichen [22]; and Hofmann [11]). The column on the right shows the resulting PV power (DC) for
three different combinations of diffuse fraction and transposition models: PI with Perez [25], OH with
Liu and Jordan [23] and Hofmann with Hay and Davies [6]. Sun position algorithm is Din5034-2 [8],
tracking mode is fixed tilt at 40◦.

3. Results

In this section, the results of the matrix simulations and the clipping losses analysis are presented.
The amount of simulation runs requires a compact and grouped presentation of the results in
subsections. In most cases, the simulation results are displayed in forms of boxes and whiskers
that contain various results from different model chain combinations.

3.1. Influence of Sun Position Models

The difference of irradiance and PV energy output over all simulations varies between −0.1%
and 0% for one-hour values, while it can be found to be within −0.07% to −0.01% for measured and
synthesized one-minute values. Due to this negligible spread in the results, the impact of sun position
models is negligible. All following results are based on the Din5034-2 algorithm [8].

3.2. Influence of Input Data

To assess the influence of the input data, the synthesized one-minute values and the averaged
one-hour values are compared against the measured one-minute values. For each model chain
combination, the resulting GTI and AC PV energy output of the synthesized one-minute values and
the one-hour averages are compared to the results when using measured one-minute values as input.

Figure 3 shows the deviations for each location concentrated in boxes and whiskers on the left.
On the right, the average over all absolute (unsigned) deviations is shown. In this plot, only results of
simulations with optimal module tilt are displayed.
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Figure 3. Influence of input data on the global horizontal irradiance (GTI, top) and the AC PV
energy output (PCAC, bottom). The results of all model chains with one-minute measurement data
are compared to one-minute synthesized data (blue) and one-hour averaged data (red). The boxes
and whiskers contain 45 results each (nine diffuse fraction models by five transposition models).
On the right, the absolute value of all single deviations is calculated and averaged over all locations.

The first important fact to notice is the strong difference of the results between locations.
This underlines the findings of precedent studies that models have to be developed and validated for
as many locations as possible to adequately assess their quality and applicability for various locations.

Secondly, for GTI the results are significantly closer to the results of measured one-minute values
with synthesized one-minute values than with averaged one-hour values. The mean absolute deviation
for GTI is significantly smaller when using synthesized one-minute values compared to one-hour
averages. These differences can be explained by the highly volatile nature of the solar irradiance that is
not sufficiently modeled with one-hour averages, as diffuse fraction, transposition effects and the sun
position are subject to substantial changes during one-minute time frames.

These differences decrease when looking at the AC output of the PV system (bottom plots),
since the PV energy on the DC side at the inverter input is lower when using one-hour
averages. However, the spread and the accuracy of synthesized one-minute data clearly outperform
the one-hour averages.

3.3. Diffuse Irradiance

In this section, the eight diffuse fraction models are compared against the measured one-minute
values for all locations. For each location, the relative deviations of the diffuse irradiation values
modeled by the eight models from the measured annual diffuse irradiation is calculated. Figure 4
displays the deviations at the bottom, each box and whisker contains the results from 30 locations.
For the top plot, the absolute value of the relative deviations is taken and averaged per model.
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30 simulations at different locations. The top plot displays the average over all absolute (unsigned)
deviations in the boxes and whiskers at the bottom.

As recently shown in the presentation of our new diffuse fraction model [11], our approach
(Hofmann) is capable of producing mean absolute deviations (MAD) of around 6% for one-minute
values (grey). The other models produce MAD of 10% to 16%, which also corresponds to the findings
in previous analyses. For synthesized one-minute values the results are similar, the Hofmann model
produced the smallest deviation slightly elevated MAD. For one-hour averages, the Hofmann model
still produces the smallest MAD, but other models are also featuring MAD of less than 10%.

The bottom part of the plot reveals deeper insight in the quality of the diffuse fraction models and
the spread of their results. While, e.g., the “Reindl red.” and the “BRL” model lead to similar MAD in
the top plot, the boxes and whiskers in the bottom plot show significant differences. The spread is
higher for the “Reindl red.” model, from −12% to +50% but the box remains between −9% and +8%
with the median at 0%, i.e., 50% of all simulation results lead to deviations of less than ±10%. The “BRL”
model however has its median at −13% with the box only covering the range from −16% to −6%
which reveals a systematic underestimation of the diffuse fraction by this model.

The distribution of the results of the “Hofmann” model confirms the superiority of the MAD
analysis: The median values lie close to 0%, the boxes do not exceed a range of 12% and the whiskers
remain relative short in comparison to the other models.

3.4. Transposition Models

In this section, we want to present the main conclusions that can be extracted from a wide range
of simulation results for modeling the PV energy for tilted surfaces. First, it is important to notice
that, in this case, we do not have a “truth” to compare against as we have for the diffuse irradiance.
In the validation data set, there is no measured irradiance for the tilted plane which is why we are
unable to validate the performance of the models in this study as we did for the horizontal plane.
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However, other studies have analyzed and validated a subset of these transposition models in the past,
most notably by Yang [32] and Gueymard [35], for selected locations and tilt angles.

In the absence of validation data, we focus on the analysis of the qualitative differences of
the five transposition models and give an idea on their influence on PV system simulations.

In Figure 5, the annual irradiation gains for the tilted modules are plotted over the tilt angle
of the module for the five analyzed transposition models. The irradiation gains were calculated
with one-hour data of Berlin, Germany, from Meteonorm [40]. Significant differences in the model
output can be observed throughout the tilt angle range. While the Klucher model [24] even produces
irradiation gains of >0% for horizontal modules due to a term on the diffuse irradiation that is not fully
dependent on the tilt angle, the isotropic model by Liu and Jordan [23] calculates the lowest irradiation
gains over the whole tilt angle range. For tilt angles for over 28◦, the model by Perez [25] produces
the highest gains.Energies 2017, 10, 1495  10 of 23 
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Figure 5. Annual tilt irradiation gains for various transposition models, calculated for Berlin, Germany,
with one-hour climate data from Meteonorm [40]. The optimum tilt angles calculated by the models
lie in the range from 31◦ to 38◦. The Liu and Jordan model [23] produces the lowest irradiance gains
while the model by Perez [25] produces the highest gains for tilt angles higher than 28◦. Remarkably,
the Klucher models [24] produces an irradiation gain of >0% for horizontal modules. It also produces
highest gains for tilt angles up to 28◦.

The calculated optimum tilt angle ranges between 31◦ for the Liu and Jordan model [23]
(maximum tilt gain of 10%) and 38◦ for the Perez model [25] (maximum tilt gain of 18%).
These significant differences can be observed in similar intensity over the whole tilt angle range:
The irradiation loss for vertical modules (90◦) ranges from −14% for the Perez model [25] to −23% for
the Liu and Jordan model [23].

These results are in good agreement with the results of the reviews by Yadav [41] and Hafez [42]
that also find the optimal tilt angle to vary significantly depending on the method used for determining
it. The differences in energy gains presented in [41] between optimal yearly, seasonal and monthly tilt
angles are found to be in the same range that is perceivable in Figures 5 and 6.
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3.5. Variance of Calculated PV Energy 
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Figure 6. Annual irradiation gains and losses for the analyzed locations and three different module
tilt modes: Fixed tilt at 40◦, optimum fixed tilt (refer to Table 1 for location tilt angles) and two-axis
tracking. A significant spread of the irradiation gains can be observed in all cases. The spread grows
with increasing distance from the equator. For two-axis tracking systems, the spread is generally very
high and reaches maximum differences between the lowest and highest modeled value per location of
around 20% in Toravere, Estonia.

The study of Beringer [43] also compares measurements of tilt angle energy gains with modeled
values for Hannover, Germany, and presents variations of the energy gain over the tilt angles that
are comparable to the results presented here. The conclusion drawn in that study is fundamentally
different, however, as it considers a difference of the annual PV energy yield of up to 6% as negligible.

Figure 6 displays the irradiation gains for all 30 locations over the latitude for three module
mounting modes: With a fixed tilt of 40◦, with a location-dependent optimum tilt (see Table 1) and
with two-axis tracking. Each data point is calculated as the average of all model chains containing
the respective transposition model. As expected, a clear dependency of the irradiation gains from
the latitude is apparent for all three tracking modes. The longer the distance to the equator, the higher
the irradiation gains will be. The small offsets to 0 for locations near the equator (man 2009 and nau
2007/2010) can be explained by reflection losses.
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In general, a wide spread between calculated irradiation gains can be observed. The model by
Liu and Jordan [23] leads to the lowest gains whereas the models by Klucher [24] and Perez [25] lead to
the highest gains depending on the location and tilt mode. The maximum spread between the models
is about 20% for two-axis tracking systems in Toravere, Estonia. For two-axis tracking systems in
general, a spread of 10% to 15% can be observed.

3.5. Variance of Calculated PV Energy

For systems with a fixed tilt at 40◦ and optimum tilt the simulated PV energy varies
between −5% and +8% (grey boxes and whiskers on the left and middle). For two-axis tracking
systems, the results lie between −11% and +12% (left grey box and whisker). For synthesized
one-minute values as input (blue), the distribution is of the same quality but shows slightly higher
values. One-hour averages as input data lead to a narrower distribution of the values for fixed tilt
at 40◦ and optimum tilt, but also to a significantly wider distribution for two-axis tracking systems.

The median for all simulations is close to 0. In the case of the two-axis tracking systems, the box
of the synthesized one-minute values has a tendency to positive deviations, whereas the results tend
to be distributed more on the negative side for one-hour values.

These results have to be interpreted in context of the inter-annual variability and the economic
impact of energetic losses or gains on the internal rate of return (IRR). The inter-annual variability of
the results for the exemplary locations (Brasilia, Brazil; Kwajalein, Marshall Islands; and Nauru Island)
lies between −2.6% and +2.0% with median values of −2.2% to 1.8%, which is comparable to the results
presented in Figure 7. Detailed data of the inter-annual deviation is listed in Table 4.
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Figure 7. The annual deviation of the modeled PV energy from the reference model chain, grouped
by tilt mode and input data type. The reference is calculated from the output of the model chains
that contain one-minute measurement data for both global and diffuse irradiation. Each box and
whisker contains results from all model chains that can be assigned to the corresponding tilt mode
and input data type, i.e., 1200 results per box and whisker (30 locations, eight diffuse fraction models,
and five transposition models).
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Table 4. Inter-annual variability of the results for fixed-tilt systems for the locations of Brasilia, Brazil
(BRB), Kwajalein (KWA) and Nauru Island (NAU).

Location Deviation Min Q2 Median Q3 Max

BRB (2010 and 2011)
devGTI −0.0109 −0.0070 −0.0062 −0.0055 −0.0042
devPV −0.0081 −0.0055 −0.0047 −0.0041 −0.0020

KWA (1999 and 2005)
devGTI −0.0260 −0.0235 −0.0222 −0.0207 −0.0162
devPV −0.0189 −0.0164 −0.0157 −0.0148 −0.0103

NAU (2007 and 2010)
devGTI 0.0150 0.0166 0.0172 0.0176 0.0189
devPV 0.0153 0.0169 0.0175 0.0184 0.0199

For PV system simulations, three main statements can be extracted from these results:

1. Positive: For most of the combinations of models for different locations, the simulated PV energy
differs only by a few percent from the reference.

2. Negative: For some combinations, however, the deviation can be as high as −5% to 8% for fixed
tilt systems and up to ±12% for two-axis tracking systems.

3. Negative: There is a very high uncertainty of the model quality when using one-hour averages
on two-axis tracking systems.

The effect of energy losses on the IRR of a solar power investment is influenced by numerous
variables and has to be analyzed on a case-by-case basis. For a simple grid feed-in PV system in Berlin,
Germany, for example, with a feed-in tariff according to the EEG 2017 [44], no loan financing and
without the consideration of taxes, the IRR decreases by 2.5% for every energy loss of 1%. That means
that an energy loss of 8%, which is within the scope of the variability, can lead to a reduction of the IRR
of 20% and can render a PV project uneconomical.

In order to analyze the influence of the model combinations in more in detail, the annual deviations
from the reference are displayed in Figure 8. Only the results from systems with optimum tilt are used,
grouped by diffuse fraction model, transposition model and input data type. Each box and whisker
contains results from 30 locations.

In analogy to Figure 8, the results for systems with a fixed tilt angle of 40◦, for systems with
the optimum tilt angle for the respective location (same data as in Figure 8), two-axis tracking systems
and the overall results for all three tracking types are shown in the Appendix A, Figures A1–A4.
The general character of the results is the same for all tracking types, with some extreme outliers for
the Perez and Ineichen transposition model for two-axis tracking system, which is why the analysis is
based only on the optimal tilt systems and the other results are shown in the Appendix A for reference.

When comparing the first group per row with the rest, it becomes apparent that diffuse models in
general add a lot of spread to the results. While the results vary clearly and systematically as a function
of the transposition model (comparing box and whiskers within a group), the influence of the diffuse
fraction models on the distribution of the annual deviations is less prominent.

We would like to emphasize here that the deviation shown in Figures 7 and 8 is calculated
against a reference that consists of simulated data only. The reference is the average of all simulation
results in the black frame in Figure 8, i.e., with one-minute measurement values of global and diffuse
horizontal irradiance. This is not to be understood as validation of transposition models against
measurement values.

Nevertheless, we conclude that the transposition model by Liu and Jordan [23] leads to
the smallest variation, but also to the lowest results, as seen above. The models by Hay and Davies [6]
and Reindl [26] produce results that lie close around the reference in most of the cases. The models
by Perez [25] and Klucher [24] produce the results with the highest deviation from the reference.
Simulations using the model by Klucher [24] also feature a high variation of the results.



Energies 2017, 10, 1495 14 of 24

Energies 2017, 10, 1495  13 of 23 

 

The effect of energy losses on the IRR of a solar power investment is influenced by numerous 
variables and has to be analyzed on a case-by-case basis. For a simple grid feed-in PV system in Berlin, 
Germany, for example, with a feed-in tariff according to the EEG 2017 [44], no loan financing and 
without the consideration of taxes, the IRR decreases by 2.5% for every energy loss of 1%. That means 
that an energy loss of 8%, which is within the scope of the variability, can lead to a reduction of the 
IRR of 20% and can render a PV project uneconomical. 

In order to analyze the influence of the model combinations in more in detail, the annual 
deviations from the reference are displayed in Figure 8. Only the results from systems with optimum 
tilt are used, grouped by diffuse fraction model, transposition model and input data type. Each box 
and whisker contains results from 30 locations. 

 

Figure 8. The annual deviation of the modeled PV energy from the reference model chain, grouped 
by diffuse fraction model, transposition model and input data type. The reference is calculated from 
the output of the model chains that contain one-minute measurement data for both global and diffuse 
irradiation (black frame). Each box and whisker contains results from 30 locations. Here, only the 
results of the optimal tilt mode are displayed. See Appendix A Figures A1–A4 for other tilt modes 
and overall results. 

In analogy to Figure 8, the results for systems with a fixed tilt angle of 40°, for systems with the 
optimum tilt angle for the respective location (same data as in Figure 8), two-axis tracking systems 

Figure 8. The annual deviation of the modeled PV energy from the reference model chain, grouped
by diffuse fraction model, transposition model and input data type. The reference is calculated from
the output of the model chains that contain one-minute measurement data for both global and diffuse
irradiation (black frame). Each box and whisker contains results from 30 locations. Here, only the results
of the optimal tilt mode are displayed. See Appendix A Figures A1–A4 for other tilt modes and
overall results.

3.6. Inverter Clipping Losses

In this section, we present the results of the analysis of the inverter clipping losses for the location
of Lindenberg, Germany, 2003. As described in Section 2.4, the inverter AC rating is decreased
from 8 kVA to 4 kVA in steps of 0.5 kVA, which leads to sizing factors that increase from 100% to 200%.
The PV plant is simulated with every combination of diffuse fraction and transposition models, and for
all three types of input data: one-minute measurement, one-minute synthesized and one-hour averages.

The entirety of the results is displayed in the Appendix A, in Figure A5, for DC/AC inverters
with realistic efficiency characteristics at the lower end, with a maximum efficiency of 95% at 50% load.
In Figure 9, three selected model combinations illustrate the main aspects of the analysis.
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In all of the analyzed cases, the clipping losses are significantly higher when using one-minute 
data compared to one-hour averages. When using one-hour averages as input data, the simulated 
clipping losses remain at 0% up until sizing factors of 120%, where one-minute data already show 
significant losses of 1% and more. The underestimation of the inverter clipping losses continues to 

Figure 9. Inverter clipping losses as a function of the sizing factor of the PV plant, for one-minute
measurement and synthesized data and one-hour averages. Three different combinations of diffuse
fraction and transposition models as example. The clipping losses at 150% sizing factor for all model
combinations are displayed in Figure 10.
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Figure 10. All inverter clipping losses simulated with s sizing factor of 150%. Selected data points
(devA, devB and devC) can be compared to Figure 9. The main bars in full color represent the absolute
clipping loss as a result of the simulation with the respective choice of models and input data type.
The side bars in light color represent the deviation from the reference. The reference is calculated as
the average of the model chains using one-minute data for global and diffuse irradiance.
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For comparison, the results of simulations with ideal inverters are displayed in the Appendix A,
Figure A6.

In all of the analyzed cases, the clipping losses are significantly higher when using one-minute
data compared to one-hour averages. When using one-hour averages as input data, the simulated
clipping losses remain at 0% up until sizing factors of 120%, where one-minute data already show
significant losses of 1% and more. The underestimation of the inverter clipping losses continues to
rise until around 160% sizing factor, where the simulated losses using one-minute data lie around 8%,
with losses using one-hour averages at around 5%, an underestimation of over 60%.

The absolute value of the clipping loss also depends on the selected models for the diffuse fraction
and transposition. Figure 10 displays the clipping losses for all model combination and input data
types for a sizing factor of 150%. There is no significant difference in clipping losses when using
synthesized one-minute data instead of measured (compare top plot against middle plot). When using
one-hour averages, the clipping losses lie between 2% and 4%, while the reference calculated from
one-minute data of global and diffuse irradiance lies at 5.9%.

The influence of the models for the diffuse fraction cannot be clearly answered again,
as the main drivers for simulation differences remain the transposition models. Again, the model
by Liu and Jordan [23] leads to underestimated clipping losses, while the model by Klucher [24] leads
to the highest values in most of the cases.

To simulate PV plants with sizing factors of more than 110%, one-minute values are needed.
This corresponds to the findings by Burger and Rüther [45] and Ransome [46]. If measured values are
not available, the use of synthetic values is highly recommended.

4. Conclusions

From the above analyses and results, the following main conclusions can be extracted. Based on our
results, we derived recommendations for models used in PV system simulations to put the conclusions
in a practical context for PV system modeling and compiled them in Table 5.

Table 5. Main results of this study and their consequences on PV modeling.

No. Result Recommendation for PV System Modeling

1. Results of PV system simulations vary strongly from
one location to another.

No model should be validated using only
one location. Results from models developed for
a specific location should be used with great care only

2.
The simulated PV energy varies between −5% and +8%
from the reference for fixed tilt (40◦ or optimum) and
between −10% and +15% for two-axis tracking systems.

Diffuse fraction and transposition models have to be
carefully selected and should be improved.

Further validation for transposition models to the full
extent is urgently needed.

3. The sun position algorithm is of minor importance Usage of faster DIN5034-2 algorithm over NREL Spa
is reasonable.

4. Synthesized one-minute values lead to results of
comparable quality as measured values.

Either measured or synthesized one-minute values
should be used for PV system simulations.

One-hour averages are only utilizable for PV systems
with sizing factors of less than 110%.

5. The superior performance of the previously presented
diffuse fraction model could be confirmed in this study.

The Hofmann diffuse fraction model may be used as
a state-of-the-art model.

6.
Diffuse models lead to wider spread of
simulation results.

Where available, diffuse irradiance measurement
should be used. Influence of diffuse fraction models
is highly location-dependent.

Further analysis of the performance of the diffuse
fraction models as function of climatic parameters
is required.

7. Transposition models have a high impact on
simulation results.

Further validation studies for different locations and
tilt angles are required.
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It should be emphasized that the present study does not reveal the impact of spectral effects,
which become more important for tilted surfaces. In addition, we investigate the effect on yearly
sums only. Even if this is presently the most relevant feature for PV systems, effects on the diurnal
variation will be become more important for the use of renewable energies in the future in the absence
of large and cheap energy storage systems. One aspect that deserves more attention than was possible
in the scope of this paper is the dependency of the performance of diffuse models on the climatic
conditions at a location. This study also highlights the importance to intensify the effort to validate
transposition models in order to minimize the uncertainties of PV system simulations. In the absence
of globally available high-resolution measurement data of the irradiance on tilted planes, however,
this task incorporates a complexity that is not to be underestimated. Future work must include
thorough meta-study analyses on the topic, data collection of high quality measurement setups and
intense validation.
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3.4 Transposition models for the solar irradiance on tilted surfaces 

Transposition models are used in the irradiance model chain to calculate the irradiance incident on a tilted 
surface. The direct fraction of the global irradiance can be transferred to the tilted plane with simple 
geometrical calculations. The diffuse fraction however is distributed anisotropically over the sky dome. To 
obtain the diffuse fraction of the global irradiance that reaches the inclined surface, i.e. the PV modules, 
estimations of this hemispherical distribution are needed. There are a number of approaches that aim to 
model the distribution of the diffuse irradiance with varying complexity. 

The approach of Liu and Jordan [53] dates back to 1960 and assumes a simple isotropic distribution of the 
diffuse irradiance over the sky dome. Klucher [77] found the model of Liu and Jordan to be only of satisfying 
accuracy for overcast skies and added zones of horizontal and circumsolar brightening. A similar approach 
was presented by Hay and Davies [78], but without horizontal brightening. Instead, they introduced the 
anisotropy index as the relation of the beam irradiance to the extraterrestrial irradiance that was used to 
modify the amount of the circumsolar diffuse irradiance. Reindl et al. [79] presented a model that can be 
understood as an extension of the model by Hay and Davies with horizontal brightening. A more 
sophisticated model that was based on a multitude of measurements was presented by Perez [57]. It features 
empirical modelling of the clearness index and circumsolar and horizontal brightening coefficients that are 
stored in look-up tables and used depending on the sky cloudiness. The list of published transposition 
models up to date is extensive and continues to grow. Among the notable contributions are the models by 
Gueymard [80], Muneer [81], [82], Skartveit and Olseth [83].  

Over time a lot of evaluation studies were published to estimate the model performance for varying 
locations and time resolutions. Recent studies try to take into account a wide variety of locations and PV 
module orientations as well as input data with a resolution of one minute. The most extensive study by Yang 
[84] included measurements of four locations in the USA, Singapore and Germany and validated 26 
transposition models. Gueymard [85] validated 10 transposition models against measurement data for 
various PV module orientations for the location of Golden, Colorado, USA. Other notable evaluation 
studies include the work from Loutzenhiser [86], Kambezidis [87] and Notton [75]. 

In most of the mentioned evaluation studies however, the amount of available PV module orientations is 
limited. Also, the measurement data used for the validation is rarely resolved in intervals of one minute and 
does not cover a time range of more than a year. The influence of differing spectral and cosine responses 
and temperature behavior between horizontally installed pyranometers and the PV module surface is 
another aspect that was found to be not yet answered sufficiently. 

In the study that forms the fourth part of the thesis, a total of 14 orientations of PV modules at the location 
of Hannover, Germany, was analyzed, seven facing south with elevation angles between 10° and 70°, six 
vertically mounted PV modules facing south, south-east, east, north, west and south-west as well as one 
horizontally installed module. The location of Golden, Colorado, USA is included in the analysis with five 
more orientations and both pyranometer and silicon-based sensors. The time range of the measurements 
comprises three years for Hannover and 22 months for Golden, with a resolution of one minute. Against 
this comprehensive dataset the models of Liu and Jordan, Klucher, Hay and Davies and Perez are validated. 

It is found that the models of Hay and Davies and Perez produce the best overall results if horizontal 
pyranometer data and a constant albedo of 0.2 is applied. For the sunny location of Golden the model by 
Perez produces the best results with measured albedo values. Anisotropic models tend to overestimate the 
irradiance on tilted surfaces while the isotropic models underestimates it in most cases. In general, the 
model quality is directly dependent on the elevation angle of the analyzed PV module. The systematic 
uncertainties introduced by using horizontal pyranometer measurements to model the irradiance incident 
on PV modules has – depending on the model – little to no effect on the model output. The relative mean 
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absolute deviation (rMAD) between model and measurement lies between 5 and 9% for south facing PV 
modules inclined by 40° in Hannover Germany and between 4 and 6% in Golden, Colorado, USA. For 
vertically installed PV modules facing south the rMAD ranges from 4 to 11% in Hannover and from 6 to 9% 
in Golden. Vertical PV modules facing north show the largest rMAD of between 6 and 21% in Hannover 
and between 14 and 29% in Golden. 
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Abstract: This work assesses the performance of five transposition models that estimate the global
and diffuse solar irradiance on tilted planes based on the global horizontal irradiance. The modelled
tilted irradiance values are compared to measured one-minute values from pyranometers and silicon
sensors tilted at different angles at Hannover (Germany) and NREL (Golden, CO, USA). It can
be recognized that the deviations of the model of Liu and Jordan, Klucher and Perez from the
measurements increases as the tilt angle increases and as the sensors are oriented away from the
south direction, where they receive lower direct radiation than south-oriented surfaces. Accordingly,
the vertical E, W and N planes show the highest deviation. Best results are found by the models from
Hay and Davies and Reindl, when horizontal pyranometer measurements and a constant albedo
value of 0.2 are used. The relative root mean squared difference (rRMSD) of the anisotropic models
does not exceed 11% for south orientation and low inclination angles (β = 10–60◦), but reaches
up to 28.9% at vertical planes. For sunny locations such as Golden, the Perez model provides
the best estimates of global tilted irradiance for south-facing surfaces. The relative mean absolute
difference (rMAD) of the Perez model at NREL ranges from 4.2% for 40◦ tilt to 8.7% for 90◦ tilt
angle, when horizontal pyranometer measurements and a measured albedo value are used; the use
of measured albedo values instead of a constant value of 0.2 leads to a reduction of the deviation to
3.9% and 6.0%, respectively. The use of higher albedo values leads to a significant increase of rMAD.
We also investigated the uncertainty resulting from using horizontal pyranometer measurements,
in combination with constant albedo values, to estimate the incident irradiance on tilted photovoltaic
(PV) modules. We found that these uncertainties are small or negligible.

Keywords: incident solar radiation; transposition models; isotropic models; anisotropic models;
tilted surface

1. Introduction

To estimate the expected energy output of a PV system, yield estimation models are used which
need specific input parameters such as global solar irradiance. Since small uncertainties in the model
parameters can lead to large deviations from the expected returns on investment, uncertainties resulting
from model input should be reduced as much as possible.

Estimating solar irradiation incident on tilted surfaces of various orientations is essential to
estimate the electric power generated by PV, to design solar energy systems and to evaluate their
long-term average performance [1]. However, the available measurement data are suboptimal, since
global horizontal or diffuse horizontal irradiance measurements provided by pyranometers are often
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the only available measurements at most locations. Even if tilted measurements are performed,
the tilt angle chosen for the measurement is not necessarily the optimal tilt angle for the location.
Consequently, the tilted solar irradiance must be determined by converting the solar irradiance on
a horizontal surface to that incident on the tilted surface of interest [2].

Transposition models based on global and diffuse horizontal irradiance have been widely used in
the solar energy industry to estimate the solar irradiance incident on tilted PV panels. The transposition
models parametrize the irradiance on a tilted plane to three components: direct, diffuse and ground
reflected radiation. The direct radiation can be computed by the geometrical relationship between
the horizontal and tilted surfaces. The ground reflected radiation can be estimated with the aid of
an isotropic model by using simple algorithms. The assumption of isotropy may be justified for
estimating the influence of the albedo but is problematic for the diffuse component. This is due to the
complexity of the angular dependence of the diffuse component, which depends on many factors such
as solar zenith angle and clouds [3]. The continuing evolution and diversity of transposition models
illustrates the complexity of the task.

Early models converted the horizontal diffuse radiation to the tilted plane by assuming that
the total sky diffuse radiation is distributed isotropically over the sky dome [4–6]. However,
this assumption is too simple and is inconsistent with reality. Newer transposition models treat the
diffuse component as anisotropically distributed. Several anisotropic models only consider an isotropic
background and an additional circumsolar region; others also take the horizon-brightening into account.
However, this assumption is only valid in the absence of clouds as in overcast situations the horizon
tends to be darker than the zenith [7].

Many authors have studied the accuracy of transposition models by comparing the modelled
irradiance with measured values in different climate conditions. Kambezidis et al. [8] used twelve
sky diffuse models to calculate the global irradiance on a south-facing surface tilted at 50◦ in Athens,
Greece. Furthermore, four albedo models were used to assess the albedo of the measurement location.
The performance of models was evaluated against hourly measurements of global solar irradiance.
The transposition models proposed by Gueymard [9], Hay [10], Reindl [11], and Skartveit and
Olseth [12] were found to have the best overall performances, in conjunction with either one of
three albedo sub-models.

Notton et al. [13] evaluated the performance of 15 transposition models against measured hourly
data for two tilted surface angles (45◦ and 60◦) in Ajaccio, France. Among the tested models, the Perez
model shows the best accuracy. The authors chose a constant value of 0.2 for the albedo as the most
commonly used value in the literature for visible radiation. Gueymard et al. [14] have shown that
the deviation between measured and modelled irradiance depends on the uncertainty of the global
horizontal irradiance, ground albedo and other factors. Gueymard [15] compared ten transposition
models that were appraised against one-minute global irradiance measured on fixed-tilt, south-facing
planes (40◦ and 90◦) and a two-axis tracker at NREL’s Solar Radiation Research Lab. in Golden
(CO, USA). They found that the Gueymard and Perez models provide the best estimates of global
irradiance incident on tilted surfaces for sunny sites only when optimal input data (measured direct,
diffuse and albedo) are used. When only global irradiance is known, the accuracy of the predicted tilted
irradiance degrades significantly. Yang [16] compared the performance of 26 transposition models
using 18 case studies from four sites in the USA, Germany and Singapore. Various error metrics, linear
ranking, and hypothesis testing were employed to quantify the model performance. Results of the
pairwise Diebold-Mariano tests concluded that no single model was universally optimal. However,
he found that according to the linear ranking results on rRMSE the top four families of models are
Perez, Muneer, Hay, and Gueymard.

Furthermore, there are several studies that have concentrated on the solar radiation on vertical
surfaces for building application. Li et al. [17], Cucomo et al. [18], and Chirarattananon et al. [19]
evaluated various models to estimate the global solar radiation on vertical surfaces. These studies have
indicated that the Perez model delivers better predictions for all orientations. Loutzenhiser et al. [20]
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assessed seven radiation models on inclined surfaces that were implemented in building energy
simulation codes. Among the models tested in this study are the models of Hay [10] and Perez [21].
These studies revealed that even in the same region, the uncertainties of the solar radiation model were
found to vary according to the direction and slope of the surface. Many other studies [22–26] have
been conducted in the last two decades to evaluate transposition models and the results show that the
performance of models varies, depending on the quality of the input data, the surface orientation and
the measurement location.

However, no significant research has been found on how the model sensitivity is affected by using
horizontal pyranometer irradiance to estimate the irradiance incident on tilted PV modules, which have
different spectral and angular responses, and non-negligible temperature responses. There are also
little published research about the systematic error that can be introduced.

In this study, five irradiance transposition models [4,10,11,21,27] are used to calculate the
irradiance received on tilted surfaces with various tilt elevation and azimuth angles. We examined
model performance for seven south-facing PV surfaces tilted at 10◦ intervals from 10◦ to 70◦, six vertical
tilted surfaces facing north, east, southeast, south, southwest, and west and a horizontally oriented
surface. The models were chosen because they are widely used and their required input data are
readily available. The validation is conducted with measurement data derived from tilted irradiance
sensors, located at two different locations to derive results that hold a more general significance and
are more spatially applicable. Furthermore, we investigate the uncertainties caused by the use of
horizontal pyranometer measurements to compute the irradiance absorbed by the tilted PV array and
the uncertainty from the use of constant albedo value in the calculations.

2. Instruments and Methods

The input data used in this study are one-minute irradiance data measured in two independent locations.

2.1. IMUK Measurements

Various irradiance measurements were performed for three years (January 2014–December 2016)
on the roof of the Institute for Meteorology and Climatology (IMUK) of the Leibniz Universität
Hannover (Hannover, Germany; 52.23◦ N, 09.42◦ E and 50 m above sea level).

The following irradiance measurements were conducted:

1. Global Horizontal Irradiance (GHI) from January 2014 to December 2016, measured by a CMP11
pyranometer (Kipp & Zonen, Delft, The Netherlands),

2. Diffuse Horizontal Irradiance (DHI) from January 2014 to December 2016, measured by a CMP11
pyranometer with a shadow ball (Figure 1a),

3. Global Tilted Irradiance (GTI) measured at a 40◦ inclined plane facing south by a CM11
pyranometer from January to December 2016,

4. Global Tilted Irradiances from January 2014 to December 2016 measured by at various orientations
by 14 crystalline silicon PV device with individual temperature sensors (Mencke & Tegtmeyer
GmbH, Hameln, Germany). Seven of those silicon sensors (SiS) were facing south, tilted at 0◦,
10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, six sensors were tilted vertically facing N, S, E, W, SE and SW and
a single sensor was oriented horizontally (Figure 1b).

All sensors are cleaned regularly to prevent the accumulation of dirt and dust. The silicon
sensors have been calibrated by the manufacturer in November 2013. In addition, all SiS’s at IMUK are
compared after one year of measurements by placing them side by side horizontally. These comparisons
were performed under different weather conditions and have showed an agreement within ±3%.
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Figure 1. (a) Pyranometers and other instruments available and operational at Institute for Meteorology
and Climatology (IMUK); (b) Set of solar sensors based on silicon detectors mounted in several different
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2.2. NREL Measurements

The NREL irradiance measurements were acquired at NREL’s Solar Radiation Research Laboratory
in Golden, CO, USA (latitude 39.74◦ N, longitude 105.18◦ W, elevation 1829 m). This NREL site is
located on a mesa that overlooks the western side of the urban agglomeration of Denver. The data
have been obtained from SRRL’s download tool, http://www.nrel.gov/midc/srrl_bms for the period
from March 2015 to December 2016. The NREL data includes the following values:

1 Global Horizontal Irradiance (GHI) measured by a CMP11 pyranometer,
2 Diffuse Horizontal Irradiance (DHI), measured by a CMP11 pyranometer,
3 Global Tilted Irradiance (GTI) measured at a 40◦ inclined plane facing south by a CMP11 pyranometer,
4 Global Tilted Irradiances measured by a silicon pyranometer LI-200 (LI-COR Inc., Lincoln, NE,

USA), facing S, tilted at 40◦ and vertically tilted sensors facing N, S, E and W,
5 Albedo measurements, measured by two silicon pyranometers LI-200.

2.3. Preprocessing and Quality Control

The following quality control procedure was applied to the IMUK data: Using Equation (1) we
corrected the irradiance measured with the SiS’s at IMUK based on their temperature coefficient to
take in account the drop of sensor signal due to temperature and to correct the testing conditions:

I = Usen × 1000/Ucal/(1 + α× (T − 25 ◦C)), (1)

where I is the corrected solar irradiance, Usen is the signal in (mV), Ucal is the calibrated value in
mV/(1000 W/m2), T is the sensor temperature, and α represents the temperature coefficient.

In addition to the temperature correction, the cosine error of the silicon sensors is determined and
the optical reflectance losses were corrected by using the model of Martin and Ruiz [28]. Only GHI
and DHI values recorded at solar zenith angles (SZA) less 85◦ were used. All GHI and DHI values less
than 0 W/m2 were removed from the analysis, since these values were likely erroneous measurements.
Furthermore, any DHI measurement that exceeded the concurrent GHI measurement was set equal to
the GHI measurement because it is not physically possible for DHI to exceed GHI [29]. NREL radiation
values have been processed with the SERI-QC quality control software developed by NREL. SERI
QC assesses the quality of solar radiation data by comparing measured values with expected values.
This procedure is based on the relationship between global and direct solar radiation [30].

http://www.nrel.gov/midc/srrl_bms


Energies 2017, 10, 1688 5 of 18

2.4. Transposition Models

The global tilted irradiance IT is estimated by the sum of the beam tilted It,b, sky diffuse tilted It,d,
and ground-reflected Ig irradiances:

IT = It,b + It,d + Ig (2)

Five models are selected in this study to estimate the global and diffuse solar irradiance on
tilted planes based on the global and diffuse horizontal irradiance. The models are from Liu and
Jordan, Klucher, Hay and Davies, Reindl and Perez. Those models have been selected since they are
widely used, the necessary input data are available at the examined measurement site, and because
they present the three most common model types: isotropic, anisotropic with two components and
anisotropic with three components. A brief description of the selected models is given below.

2.4.1. Liu and Jordan Model

The Liu and Jordan model [4] is a simple model that assumes all diffuse sky radiation is uniform
over the sky dome and that reflection on the ground is diffuse. For surfaces tilted by an angle β from
the horizontal plane, total solar irradiance can be written as:

IT = Ih,bRb + Ih,d(
1 + cos β

2
) + Ihρ(

1− cos β

2
) (3)

where IT is the tilted irradiance, Ih,b the beam irradiance on a horizontal surface, Rb the ratio of beam
radiation on the tilted surface to that on a horizontal, Ih,d the diffuse horizontal irradiance, β the tilt
angle, Ih the global horizontal irradiance, and ρ the ground reflectance.

2.4.2. Klucher Model

Klucher found that Liu and Jordan’s isotropic model gave good results only for overcast skies.
However, it underestimates the irradiance under clear and partly overcast conditions, when there
is increased intensity near the horizon and in the circumsolar region of the sky [27]. He developed
therefore an anisotropic model by modifying the isotropic model, to take into account the horizontal
and circumsolar brightening:

IT = Ih,bRb + Ih,d(
1 + cos β

2
) [1 + F sin3(

β

2
)]× [1 + F cos2 θ sin3 θz] + Ihρ(

1− cos β

2
) (4)

F = 1− (
Ih,d

Ih
)

2
(5)

F is the Klucher modulating factor. Under overcast skies, F becomes zero and the model reduces
to the Liu & Jordan model.

2.4.3. Hay and Davies Model

The Hay and Davies diffuse model divides the sky diffuse irradiance into isotropic and circumsolar
components only [31]. The horizon brightening was not taken into account:

IT = (Ih,b + Ih,d A)Rb + Ih,d(1− A)(
1 + cos β

2
) + Ihρ(

1− cos β

2
) (6)

A =
Ibn
Ion

(7)

A represents the transmittance of beam irradiance through the atmosphere, where Ibn is the
direct-normal solar irradiance and Ion the direct extraterrestrial normal irradiance.
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2.4.4. Reindl Model

The Reindl sky diffuse irradiance model represents three components of diffuse irradiance,
including isotropic background, circumsolar brightening, and horizon brightening [11]:

IT = (Ih,b + Ih,d A)Rb + Ih,d(1− A)(
1 + cos β

2
)× [1 +

√
Ih,b

Ih
sin3(

β

2
)] + Ihρ(

1− cos β

2
) (8)

A is the transmittance of beam radiation through the atmosphere defined in Equation (6).

2.4.5. Perez Model

Perez model represents a more detailed analysis of the sky diffuse radiation. The model, like
the Klucher and the Reindl models, devided the diffuseirradiance into three components of isotropic
background, circumsolar brightening and horizon brightening [21]:

IT = Ih,bRb + Ih,d[(1− F1)(
1 + cos β

2
) + F1

a
b
+ F2 sin β] + Ihρ(

1− cos β

2
) (9)

where, F1 and F2 are circumsolar and horizon brightness coefficients, respectively; a and b are solid
angles corresponding to the circumsolar part as seen from the inclined plane. The terms a and b are
computed as:

a = max(0, cos θ) (10)

b = max(cos 85◦, cos θz) (11)

F1 and F2 in Equation (9) are functions of clearness ε, zenith angle θz and brightness ∆.
These factors are defined as:

ε =

Ih,d+Ibn
Ih,d

+ 5.535× 10−6 θz
3

1 + 5.535× 10−6 θz
3 (12)

∆ = m
Ih,d

Ion
(13)

The coefficients F1 and F2 are then computed as:

F1 = max[0, ( f11 + f12∆ +
πθz

180
f13)] (14)

F2 = f21 + f22∆ +
πθz

180
f23 (15)

The coefficients f11, f12, f13, f21, f22 and f23 were derived based on a statistical analysis of
experimental data for different locations (Table 1).

Table 1. Perez model coefficients for various values of clearness ε.

ε f11 f12 f13 f21 f22 f23

[1, 1.065] −0.008 0.588 −0.062 −0.06 0.072 −0.022
[1.065, 1.23] 0.13 0.683 −0.151 −0.019 0.066 −0.029
[1.23, 1.5] 0.33 0.487 −0.221 0.055 −0.064 −0.026
[1.5, 1.95] 0.568 0.187 −0.295 0.109 −0.152 −0.014
[1.95, 2.8] 0.873 −0.392 −0.362 0.226 −0.462 0.001
[2.8, 4.5] 1.132 −1.237 −0.412 0.288 −0.823 0.056
[4.5, 6.2] 1.06 −1.6 −0.359 0.264 −1.127 0.131
[6.2, ∞] 0.678 −0.327 −0.25 0.156 −1.377 0.251

The ability of models to estimate the solar irradiance incident on tilted surfaces is analyzed by
means of the relative Root Mean Square Difference (rRMSD), relative Mean Absolute Difference (rMAD)
and relative Mean Bias Difference (rMBD). These parameters are calculated using Equations (16)–(21):
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RMSD =

√
∑ (Mi− Ci)2

n
(16)

rRMSD =
RMSD

¯̄M
100% (17)

MAD =
∑|(Mi− Ci)|

n
(18)

rMAD =
MBD

¯̄M
100% (19)

MBD =
∑ (Mi− Ci)

n
(20)

rMBD =
MBD

¯̄M
100% (21)

where Mi is the measured irradiance on an inclined plane and Ci the calculated model value.

3. Results and Discussion

3.1. Measurement Validation

The two most devices used by the PV industry for measuring the solar irradiance are thermopile
pyranometers and small solar cells (silicon sensors). Of the latter, only crystalline silicon (cSi) sensors
provide the required stability [32].

Thermopile pyranometers are devices that consist of junctions of dissimilar metals in contact with
a black surface that absorbs solar radiation (the “hot” junction) and a separate surface that does not
absorb solar radiation (the “cold” junction). Pyranometers have an uniform spectral response from
about 280 to about 2800 nm. They are widely used for meteorological measurements and nearly all
existing irradiation databases are validated using these measurements [32].

Unlike pyranometers, silicon sensors convert incident irradiance to electrons through the
photovoltaic effect. The silicon sensors are spectrally selective in the range of about 350 to about
1100 nm (Figure 2). The shorter wavelength is determined by the transmission of the front glass and
encapsulant, whereas the longer wavelength is determined by the material’s band gap [33]. Table 2
provides a comparison of basic specifications between the sensors used in this study.

Table 2. Comparison of the specifications of the sensors used.

Specifications Pyranometer
CMP11

Silicon
Sensor SiS

Silicon Sensor
Li-200

Spectral sensitivity range (nm) 285–2800 350–1100 350–1100
Response time (s) 5 <0.001 <0.001

Offset (W/m2) 2 0 0
Temperature dependence (−10–40 ◦C) (%) <1 0.2 ±0.15

Uncertainty (W/m2) <5 ± 5 <5
Non-linearity (100 to 1000 W/m2) (%) <0.5 ±0.5 <1.0

Due to the different spectral response the highest absolute difference between the signal measured
by a silicon sensor and a thermopile pyranometer is at clear sky conditions with a low diffuse to direct
ratio [34]. Silicon sensors are fundamentally photovoltaic devices, and as such, standard American
Society for Testing and Materials (ASTM) test procedures are applied to calibrate them by using a solar
simulator [35].

The difference in cosine error is considered as the second important factor that sets apart the
two devices. Silicon sensors have in general a higher cosine error than thermopile pyranometers [36]
and therefore underestimate radiance incident from steep angles.
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The difference between the sensors (see Table 2) affects the measured irradiance, as shown in
Figure 3. The sensitivity of silicon sensors shows an increase during summer months, when SZAs are
low compared to the winter months. The ratio of measured irradiance between the pyranometers and
silicon the sensors is higher in winter. The right plots of Figure 3 show the ratios of daily horizontal
irradiance measured by both sensors. The annual pyranometer irradiance at both sites is higher than
the irradiance derived by the silicon sensors. At NREL, the pyranometer irradiance is higher in winter
months, while irradiance measured by the Li-200 sensor is higher in summer. However, the behavior of
silicon sensors against pyranometer measurements in both locations is the same, the relative sensitivity
of the silicon sensors increases during the summer months.
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at NREL. The irradiance measured by silicon sensors shows an increase during the summer months.



Energies 2017, 10, 1688 9 of 18

In the following we investigate the uncertainties associated with the use of different irradiance
sensors and assumption of albedo values as the major contributors to the uncertainty.

3.1.1. Uncertainty Resulting from Using Different Sensors

Low uncertainty of the measurements is a key factor for the quality of the data. For many
applications, including predictions for a return of investment, it is important to know the uncertainties
resulting from using sensors of various types to measure horizontal and tilted irradiance.

In this regard, it makes sense to use the statistical indices to compare the horizontal measurements
from different technologies of solar sensors. Figure 4 shows the monthly and the annual rRMSD,
rMBD and rMAD between the horizontal irradiances measured by the pyranometer and the silicon
sensors at both sites in 2016. The annual rRMSD and the rMBD values at IMUK are 5.2% and 3.5%
respectively. The differences are largest in the winter months, as the measured signal is low and are
slightly lower with increasing irradiance in the summer months. The differences between the NREL’s
sensors are smaller, where the annual rRMSD is 3.6% and the rMBD is 1.1%. The monthly average in
the left plot shows the same behavior at NREL with negative rMBD values during the summer months
(June–September). This agrees with Figure 3, where irradiance measured by the Li-200 sensor is higher
in summer than the pyranometer values.
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Figure 4. Monthly and annual average of the statistical indices relative Root Mean Square Difference
(rRMSD), relative Mean Absolute Difference (rMBD) and relative Mean Bias Difference (rMAD) between
pyranometer and silicon sensor measurements at IMUK (a) and at NREL (b). The statistical indices
show clear differences in the magnitude and show a seasonal dependence.

Based on these results, it is important to investigate how the differences in the horizontal
measurements of different sensors affect the calculated tilted irradiance.

For this purpose, horizontal pyranometer measurements from 2016 were used to calculate the
tilted irradiance at 40◦ S. The results were compared with tilted irradiance measured by: (1) tilted
thermopile pyranometer and (2) tilted silicon sensor (SIS) at 40◦ S. The rMAD resulting from the
comparison with SIS values ranges from 5.1 (Reindl) to 8.4% (Liu and Jordan). The comparison
with Pyranometer values leads to slightly lower differences of 5.1% and 6.5%, respectively (Figure 5).
The Liu and Jordan model and the Perez model are affected more when using different instruments
whereas the model of Hay and Davies and Reindl were almost unaffected. These values are for 40◦ S
tilt, the other orientations could not be tested, because there is only one tilted pyranometer (40◦ S)
at IMUK.

Thus, it can be concluded, that a systematic error is introduced when using horizontal
pyranometer measurements to compute the irradiance absorbed by tilted PV modules, which have
different spectral, angular, and temperature responses. Depending on the used model, this error has
only a small or even no influence on the calculated irradiance on a tilted PV surface.
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Figure 5. Dependence of the rMAD on the used sensor for the five transposition models.
The performance of models is better if the model input data (GHI) and validation data (GTI) are
measured by sensors of the same type.

3.1.2. Albedo and Seasonal Effects

The accuracy of ground reflection calculations depends strongly on the knowledge of albedo
values used in the models; the dependence becomes stronger as the tilt angle increases [15]. Only in
rare cases ground is albedo is known accurately; in most cases a constant value for albedo is used by
the model.

It is useful to evaluate the uncertainty that results from using a spectrally constant albedo for
calculating the tilted irradiance. For this purpose, measured albedo values and different constant
values (0.2, 0.4, 0.6 and 0.9) are used to calculate the tilted irradiance on 40◦ and 90◦ tilt based on NREL
data. The rMAD is used to evaluate the prediction of the models for each albedo value (Figure 6).
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The tilted irradiance has been calculated based on NREL data for 40◦ S tilt, using different constant
albedo values (0.2, 0.4, 0.6 and 0.9) and measured values at NREL. The models show lower deviations
to the measurement if measured albedo values are used.

Figure 6 shows that the models are more accurate if measured albedo values are used. The rMAD
increase as the albedo value increases. The use of constant albedo value of 0.2 (the most used value
for models) leads to an increase of the rMAD of between 0.2% (Perez) and 0.8% (Liu and Jordan).
The Figure 6 also shows that the Liu and Jordan model is less dependent on the albedo. This may be
explained by the assumption of isotropic distribution of diffuse irradiance in this model.

The same calculations were done for 90◦ S tilt (Figure 7). It is easy to recognize that the influence
of albedo on the calculated tilt irradiance is much larger. The use of a constant value of 0.2 instead
of a measured value increases the rMAD by about 2.5% (Perez model) and 3.8% (Liu and Jordan).
The rMAD increases also with increasing albedo values.
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3.2. Model Validation

In order to evaluate the model performance and to consider the influence of some input parameters
on the results, we use measured horizontal irradiances (global and diffuse) to calculate the tilted
irradiance at different orientations and tilt angles. The calculated values are compared with one-minute
values from irradiance sensors facing the same orientation and tilt angles. The global and diffuse
horizontal input values are measured at both sites by thermopile pyranometers. Furthermore, tilted
pyranometers are used to measure the tilted global irradiance at 40◦. Tilted irradiance at IMUK has
been measured by silicon sensors (SiS) at 14 different orientations and tilt angles. At NREL, the tilted
irradiance at 40◦ and at different vertical planes (E, W, S, N) were measured by another silicon device
(Li-200). The measurements and the corresponding instruments are shown in details in Table 3.

Table 3. Components and data used for comparisons between measurements and models.

Measurements Model

Parameter Description Measuring
Sensor Parameter Description Inputs Measuring

Sensor

GTI south
facing (IMUK)

Tilt: 10◦, 20◦, 30◦,
40◦, 50◦, 60◦, 70◦ SiS GTI south

facing

Tilt: 10◦, 20◦,
30◦, 40◦, 50◦,

60◦, 70◦

GHI
DHI

Albedo

CMP11
CMP11

Const. 0.2

GTI Vertical (IMUK) E, S, W, N, SE, SW SiS GTI Vertical E, S, W, N, SE, SW
GHI
DHI

Albedo

CMP11
CMP11

Const. 0.2

GTI south
facing (IMUK) Tilt: 40◦ CMP11 GTI south

facing Tilt: 40◦
GHI
DHI

Albedo

CMP11
CMP11

Const. 0.2

GTI south
facing (NREL) Tilt: 40◦ Li-200 GTI south

facing Tilt: 40◦
GHI
DHI

Albedo

CMP11
CMP11
Li-200

GTI Vertical (NREL) E, S, W, N Li-200 GTI Vertical E, S, W, N
GHI
DHI

Albedo

CMP11
CMP11
Li-200

GTI south
facing (NREL) Tilt: 40◦ CMP11 GTI south

facing Tilt: 40◦
GHI
DHI

Albedo

CMP11
CMP11
Li-200

GTI south
facing (NREL) Tilt: 40◦ Li-200 GTI south

facing Tilt: 40◦
GHI
DHI

Albedo

CMP11
CMP11
Li-200

GTI Vertical (NREL) S Li-200 GTI Vertical S
GHI
DHI

Albedo

CMP11
CMP11
Li-200

The results of the five models are shown in Table 4, for all available orientations and tilt angles of
IMUK. It can be recognized that the deviations of the model of Liu and Jordan, Klucher and Perez from
the measurements increases as the tilt angle increases and as the sensors are oriented away from the
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south direction, where they receive much less direct radiation than south-facing surfaces. Accordingly,
the vertical E, W and N planes show the highest deviation. In general, the best results in terms of
rRMSD and rMAD are obtained with the Hay and Davies and Reindl models, while the isotropic
model of Liu & Jordan provide the worst agreement for south facing planes (Figure 8).

For the vertical tilt planes, the Hay and Davies model obtains the lowest RMSD. The Klucher
transposition model is most affected by errors when facing away from the south direction. The high
deviation of the vertical sensors can be related to the significant change in the ratio Id/Ih for the vertical
tilt and also to the incorrect modelling of ground reflection.

It has also been observed that the anisotropic models overestimate the south-tilted irradiances
(MBD ranging from −0.52 to −3.63%) and most of the vertical irradiances (MBD ranging from 3.47 to
−20.1%). In contrast, the Liu and Jordan model underestimates the tilted irradiance in most directions,
but not at very low tilt or on vertical surfaces away from the south quadrant.
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The difference increases, as the tilt angle increase.

According to the data from NREL (Table 5), the Perez model provides the best results for S and N
directions, while the models of Reindl and Hay and Davies provide the lowest rRMSD for E and W
orientations, which agrees with the IMUK results. The rMBD of rNREL values show that the models
of Klucher and Perez overestimate the calculated irradiance (MBD ranging from −0.45 to −16.7%),
while the rMBDs of the other models range between positive and negative, depending on the azimuth
angle (Figure 9).
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The difference in model performance between IMUK and NREL can be explained by two factors.
First, by the different climates of the sites; the sky at IMUK is mostly cloudy, while NREL is a sunny
site; Second, the quality of model input data; the GHI and DHI were measured by different sensors
and measured albedo values are used for modelling the NREL data, which influences the calculated
vertical irradiance significantly.
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The accuracy of the modelled global tilted irradiance depends basically on two things:
the availability of measured irradiance, which is a requirement for any model [14] and the accuracy
of the model itself, in other words, the ability of the model to simulate the irradiance distribution
in the atmosphere. It is therefore important to evaluate the uncertainty resulting from the input
data of the model before evaluating the performance of the models. The measured horizontal
irradiance components (global, diffuse, direct) constitute the most important input data to compute
the tilted irradiance. Modelling of tilted irradiance would be ideal if measurements for all irradiance
components, including ground reflectance, were available. This would avoid uncertainties that result
from estimation of one component from the other two. The modelling of tilted irradiance would be
less ideal but still useful if two of them are available.

All presented models use the same method for calculating beam and ground reflected irradiance
on a tilted surface; the differences lie only in the calculation of the diffuse radiation. The statistical
analysis showed that the Reindl and Hay and Davies models produce the best agreement with the
measured tilted data in Hannover. The results of both models are very similar, even although they
differ in their modeling approach for the diffuse sky radiation. This may be because both models use
the same anisotropic index to weight the circumsolar and isotropic components. Moreover, the horizon
brightening component has a limited effect under cloudy conditions; it is most profound in clear
skies [37].
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Table 4. Performance of all five transposition models, compared to IMUK measurements.

IMUK Liu & Jordan Klucher Hay & Davies Reindl Perez

Azimuth/Tilt rMBD rMAD rRMSD rMBD rMAD rRMSD rMBD rMAD rRMSD rMBD rMAD rRMSD rMBD rMAD rRMSD

ss10 −1.24 4.32 5.62 −3.56 4.06 4.98 −2.56 3.67 4.44 −2.57 3.67 4.44 −3.02 3.94 5.01
ss20 0.90 5.61 8.01 −1.95 4.08 5.30 −1.38 3.51 4.38 −1.45 3.51 4.36 −2.21 4.19 5.90
ss30 0.78 6.55 9.33 −2.51 4.95 6.39 −2.18 3.75 4.62 −2.41 3.77 4.61 −2.91 5.08 7.28
ss40 3.03 8.71 13.49 −0.76 6.54 8.54 −0.52 5.11 07.12 −1.02 5.04 06.91 −1.31 6.40 09.62
ss50 3.25 9.11 14.29 −0.92 6.20 08.83 −0.68 5.06 07.02 −1.58 5.01 06.74 −1.41 6.88 10.24
ss60 3.08 9.37 14.76 −1.44 6.46 09.13 −1.11 5.04 06.91 −2.52 5.15 06.70 −1.68 7.41 10.97
ss70 2.57 10.96 15.03 −2.14 6.47 09.58 −1.61 5.05 06.86 −3.63 5.16 06.95 −1.93 8.05 11.63
ss90 0.76 08.04 15.89 −4.41 08.04 11.74 −3.22 04.14 05.60 −6.57 6.70 09.27 −2.75 10.25 14.48
se90 0.32 08.56 14.06 −5.26 08.42 13.20 −2.99 04.00 05.64 −6.55 06.65 09.38 −2.02 10.73 14.85
sw90 0.50 08.70 14.36 −5.12 08.43 13.05 −2.98 03.96 05.55 −6.51 06.60 09.26 −1.54 10.43 14.47
ee90 −1.37 10.29 16.02 −8.14 12.66 18.63 −1.38 05.21 07.20 −6.07 07.69 10.92 1.57 11.36 15.46

ww90 −1.09 10.46 16.10 −7.86 12.50 18.09 −1.43 05.13 07.02 −6.01 07.67 10.80 1.98 11.27 15.24
nn90 −10.20 10.48 17.00 −20.13 20.28 28.94 −0.17 06.81 08.67 −8.34 08.97 12.08 3.47 14.45 17.81
pyr40 4.66 6.64 8.69 0.74 5.03 6.74 1.45 5.68 7.59 1 5.49 7.37 0.23 5.08 6.66

Table 5. Performance of all five transposition models, based on NREL data base.

NREL Liu & Jordan Klucher Hay & Davies Reindl Perez

Azimuth/Tilt rMBD rMAD rRMSD rMBD rMAD rRMSD rMBD rMAD rRMSD rMBD rMAD rRMSD rMBD rMAD rRMSD

S 40 2.89 5.47 7.85 −0.45 3.95 6.08 0.08 4.0 6.26 −0.36 3.94 6.18 −0.96 3.98 6.0
S 90 2.40 8.81 11.76 −3.06 8.11 11.46 1.09 7.82 10.63 −2.41 7.72 10.68 −1.13 5.99 8.72
E 90 5.48 13.87 20.5 −1.75 13.1 18.64 4.70 11.18 15.50 0.91 10.5 14.8 −6.88 17.07 24.02
W 90 2.28 13.58 18.8 −6.1 13.25 18.2 3.50 13.49 17.3 −1.02 13.05 17.1 −11.78 17.75 25.15
N 90 −4.60 18.3 24.10 −16.7 21.00 29.05 12.33 28.20 33.78 3.47 25.85 31.8 −2.65 14.31 18.89
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As expected, the isotropic Liu and Jordan model underestimates the tilted diffuse irradiance
(positive MBD) for the south-facing planes, while it shows relatively good agreement with the
measurement for the other orientations, when the irradiance is low. In contrast, the anisotropic
models overestimate the irradiance at IMUK, with the three-component anisotropic models tending to
overestimate the diffuse irradiance more than the two-component models.

The assumed distributions for diffuse sky irradiance and the nature of the anisotropic factors are
what characterizes each of the anisotropic models used in this study. For the models of Klucher and
Perez, it is possible that the climate at IMUK has some characteristics that require adjustment of the
coefficients used in both model.

It can be concluded that the accurate calculation of the tilted diffuse solar irradiance is what
distinguishes models form each other. Moreover, the basic criterion for selecting the most suitable
model for simulating the electrical output of a PV module is its ability to simulate the diffuse radiation
of the sky under all weather conditions. This can be understood if we consider that an inaccurately
calculated diffuse irradiance can lead to significant over- or underestimations in the annual energy
yield of a photovoltaic (PV) system by as much as 8% [38] even for horizontal orientations of the
PV system.

4. Conclusions

Using one-minute measured GHI and DHI data, modeling was performed to calculate the tilted
irradiance for different orientations and tilt angles in Hannover (Germany) and at NREL (Golden, CO,
USA). The following conclusions can be drawn from this study:

- Best results are provided by the models from Hay and Davies and Reindl, when horizontal
pyranometer measurements and a constant albedo value of 0.2 are used. This agreement of the
two may relate to the anisotropic index used by both models to weight the circumsolar and
isotropic components.

- The anisotropic models overestimate the south tilted irradiance and most of vertical tilted
irradiance. In contrast, the isotropic model underestimates the tilted irradiance in most directions.

- For the NREL location, when measured albedo is used, the Perez model provides the best
estimates of global tilted irradiance.

- The deviations of the anisotropic models from the measurements increase with increasing
deviation from the south direction. In this case, the ratio of direct to diffuse radiation decreases
and the uncertainty in modelling the diffuse irradiance becomes dominant.

- An uncertainty is introduced when using horizontal pyranometer measurements to estimate the
irradiance absorbed by tilted PV modules. Depending on the used model, this uncertainty has
only a small or even no effect on the calculated irradiance.

- The influence of albedo value on the calculated tilted irradiance increases as the tilt angle
increases. The use of a constant albedo value of 0.2, which is widely accepted and used in most
applications, leads to an increase in the rMAD that ranges between 0.2% and 0.8% at 40◦ tilt and
reaches up to 3.8% at 90◦ tilt angle. If there are surfaces with higher reflectance in the vicinity of
the PV system, rMAD is significantly higher.

- The models of Hay and Davies and Reindl is recommended to estimate the tilted irradiance for
south-facing modules in regions with mainly cloudy conditions and when albedo measurements
are not available. The Hay and Davies model would also be useful for vertical surfaces
(e.g., facades and glazing) whereas the Perez model is recommended for sunny sites and when
albedo measurements are available.

The spectral distribution of sky radiance is affected by clouds and aerosols. This has a significant
influence on the performance of silicon sensors, where the spectral response of silicon sensors is
wavelength-dependent. Therefore, additional spectral measurements are needed to understand the
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behavior of silicon sensors in the different weather conditions. Therefore, advances in the modelling of
PV yields require more knowledge about spectral radiance, which is known to be anisotropic.
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Nomenclature

∆ sky’s brightness, as in Perez model
ρ ground albedo
β tilt angle (rad)
θ incidence angle (rad)
θz solar zenith angle (rad)
ε sky’s clearness, as in Perez model [21]
a, b sky geometry parameters, as in Perez model
A transmittance of beam irradiance through atmosphere, as in Hay & Davies model
c-Si crystalline silicon
F Klucher’s modulating factor
F1, F2 degree of circumsolar and horizon anisotropy, in the simplified Perez model
f11, f12, f13, f21, f22, f23 Perez model coefficients for irradiance
Ibn direct-normal solar irradiance (DNI) (W/m2)
Ih,b beam horizontal irradiance (BHI) (W/m2)
Ih global horizontal irradiance (GHI) (W/m2)
Ih,d diffuse horizontal irradiance (DHI) (W/m2)
It,b beam tilted irradiance (BTI) (W/m2)
It,d diffuse tilted irradiance (DTI) (W/m2)
Ig ground-reflected irradiance (W/m2)
Ion direct extraterrestrial normal irradiance (W/m2)
IT global tilted irradiance (GTI) (W/m2)
MAD mean absolute difference
MBD mean bias difference
PV photovoltaic
α temperature coefficient
Rb factor that accounts for direction of beam radiation,
RMSD root mean square difference
SiS silicon sensor
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4 Outlook 

The presented work in the field of irradiance modelling includes two new models for the irradiance 
processing in PV system simulations, a thorough analysis of the influence of the irradiance model chain on 
the output of PV simulations and a detailed validation study of models for the calculation of the irradiance 
on tilted planes. While the author hopes that this work will be a valuable contribution for the PV 
community, there are a few details in the algorithms where the author still sees room for improvement. 

With regard to the first model, the synthesis of one-minute time series of the global irradiance, the following 
possible further improvements come to mind. Dawn and dusk situations might need a separate modelling 
approach as the global irradiance follows a very specific pattern during sunrise and sunset that is not 
representable by transition probability matrices (TPM) in a satisfying manner. Also, the transitions from 
one synthesized hour to the next might profit from a bit more algorithmic finesse. It would be interesting 
to investigate the effect of an increase of weather detection classes used to categorize the input data. Another 
interesting possible improvement would be to base both the TPM and the algorithm itself on the ESRA [88] 
or Rest2 [89] clear-sky model that were found to be the most accurate in recent studies [90], [91], [92], [93]. 
Finally, it can be assumed that a more careful modelling of irradiance enhancement effects and integration 
of recent research results would be another promising point of improvement [19], [94], [95]. 

Improvements of diffuse fraction model would include a more profound analysis and modelling of the 
minimal diffuse fraction that is reached during clear-sky days. In the version of the algorithm presented 
here the determination of the minimal diffuse fraction already forms a major part of the algorithm. In the 
author’s opinion there is still the possibility for improvement, and a realization of this improvement would 
without doubt increase the model quality a lot. Similar to the proposed improvements of the synthesis 
algorithm, it might ameliorate the diffuse fraction model as well if more weather detection classes and a 
state-of-the-art clear-sky model were incorporated. 

Apart from the two new algorithms presented here, the author sees an utmost importance to analyze more 
in detail and improve the transposition models that calculate the irradiance on the titled plane. The 
publications presented here showed that there are still considerable uncertainties and are in good 
agreement with similar studies [84], while the investigations on the effects of transposition models on the 
simulation output also indicated a strong influence. A possible approach would be to use methods to derive 
the spectral sky radiance from all-sky camera images [96], [97] or from measurements performed by the 
newly developed multidirectional spectroradiometer [98], deduce the distribution of the diffuse irradiance 
over the sky dome and correlate these distributions with statistical meteorological features in order to 
extrapolate them to other locations. 

The ground reflected irradiance would be another interesting field to investigate, especially with new bi-
facial PV modules coming into the market. 
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