

Konzept und Analyse von Codephasenvariationen für Multi-GNSS-Signale

- Frontiers of geodetic science 2019 -Session 4: Ingenieurgeodäsie und GNSS

Y. Breva, J. Kröger, T. Kersten, S. Schön

- Neben Phasenzentrumskorrekturen (PCC), existieren auch Codephasenzentrumskorrekturen (CPC) $CPC = -CCO \cdot \vec{e} + CCV + r$
- Antennenabhängige Verzögerungen des Codes, die mit Azimut und Elevation variieren
- Korrekturen können mehrere Dezimeter erreichen
- Verfahren der PCC Schätzung lässt sich auf CPC Schätzung adaptieren
- Zurzeit nicht bereitgestellt vom IGS (.atx)
- Phase-Code Linearkombinationen, Zeitübertragung,...

• Antennenprüfling auf Roboter

Datenerhebung

ife

- Referenzantenne auf nahegelegenen Pfeiler
- Jede Antenne ist verbunden mit
 - Jeweils einem JAVAD Delta Empfänger
 - Externes Frequenznormal (Stanford Rubidium FS725)
- 1 Hz Multi-GNSS Multi-Frequenz Messungen
- Messkonfiguration erlaubt
- \rightarrow Short-baseline Common-clock Setup

 $dSD(t_i) = \Delta CPC_{robo}(t_i, t_{i+1}) + \epsilon_{robo}$

ILeibnizI2UniversitätI04Hannover

Breva et al. | Frontiers of geodetic science | 19. September 2019

6

Leibniz Universität Hannover

Z	wischen	-1 m	und +1,5m	
• \	/ergleich	aller	möglichen	Pa

• CPC für ublox Patchantenne

Signal	RMS [cm]			Mittelwert [cm]		
	Min	Max	Ø	Min	Max	Ø
GC1C	5 <i>,</i> 9	11,3	8,6	-5,3	7,5	1,0
EC1X	10,6	38,5	20,5	-31,6	18,8	3,5

Vergleich aller möglichen Pattern
Kombinationen

Antenne	Signal	RMS [cm]		n]
		Min	Max	Ø
I FIAR25 R3 I FIT	GC1C	3,2	13,4	7,6
S/N: 8630013	EC1X	5,7	20,1	13,7
	GC5X	7,8	25,9	16,1
DOY: 56,57,59,60	EC5X	3,8	8,1	6,6
NOV703GG R2 NONE	GC1C	2,8	6,1	4,2
S/N: 12420040	EC1X	4,9	18,1	10,5
	GC5X	5,9	11,1	9,3
DUY: 49,51,52	EC5X	4,7	8,4	6,5

- Short-baseline Common-clock Setup
- 10. Juli 2019 12. Juli 2019 (DOY161-163)
- Codephasenmessungen (GC1C,EC1X)
- Validierung
 - Einfachdifferenzen (SD)
 - Single Point Positioning (SPP)

ife Einfluss CPC im Koordinatenraum

- Berechnen einer SPP Lösung für die ublox Patchantenne
 - Input: Nur CPC (Simulation)
 - 3° cutoff Winkel, cos(z) Gewichtung
- Einfluss des Patterns auf Positionebene
 - ± 1 m
 - Starke Korrelation zwischen Up und Uhrfehler
 - Einfluss auf East am geringsten

• Matrix *M* um *CPC_{Grid}* auf NEU für jede Epoche abzubilden

 $DX(t) = (A^T P A)^{-1} A^T P \cdot M \cdot CPC_{Grid}$

 Matrix DX(t) gibt den prozentualen Einfluss jedes CPC der Epoche t auf die geschätzten Koordinaten an

• Matrix *M* um *CPC_{Grid}* auf NEU für jede Epoche abzubilden

 $DX(t) = (A^T P A)^{-1} A^T P \cdot M \cdot CPC_{Grid}$

 Matrix DX(t) gibt den prozentualen Einfluss jedes CPC der Epoche t auf die geschätzten Koordinaten an

Leibniz

Universität

Hannover

-5 -10 -15 0 10 20 30 40 50 60 70 80 90 Elevation [deg]

¹L. Wanninger et. al. (2017), Group delay variations of GPS transmitting and receiving antennas, Journal of Geodesy, Sept. 2017, Vol. 91, pp 1099-1116

 Geschätztes IfE NOAZI CPC der Leica AR25.R3 vom DOY56,57 und 60 (blau)

- NOAZI CPC aus ¹ (grau, gelb)
 - Relatives CPC aus Netzwerk geschätzt
 - Unterschied Δh erkennbar

$$CPC_{CCO} = (CPC - \Delta h \cdot \sin(El)) - \Delta h$$

Ähnlicher Verlauf erkennbar

ife) Vergleich TU Dresden

- Wiederholbarkeiten ØRMS der CPC
 - Zwischen 4 16 cm
 - GC1C besser GC5X
 - EC5X besser EC1X
- CPC zeigen langperiodische Trends in Positions- und Beobachtungsraum von ± 1 m
- Geschätztes CPC repräsentiert den Verlauf der nicht korrigierten SD gut
- Es gibt Regionen der Antenne die größeren Einfluss auf die geschätzte Position haben als andere Regionen

- Breva, Y., Kröger, J. Kersten, T. and Schön, S. (2019). Estimation and validation of receiver antenna codephase variations for multi GNSS signals. In 7th International Colloquium on Scientific and Fundamental Aspects of GNSS, 4.-6.09.2019, Zurich, Switzerland.
- Breva, Y., Kröger, J. Kersten, T. and Schön, S. (2019). Validation of phase center corrections for new GNSS signals obtained with absolute antenna calibration in the field. In EGU General Assembly 2019, 7.-12.04 2019, Vienna, Austria.
- Kersten, T. (2014). Bestimmung von Codephasen-Variationen bei GNSS-Empfangsantennen und deren Einfluss auf die Positionierung, Navigation und Zeitübertragung. PhD thesis, Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 315.
- Kersten, T., Kröger, J., Breva, Y. and Schön, S. (2019). Deficiencies of Phase Centre Models: Assessing the impact on geodetic parameters. In EGU General Assembly 2019, 7.-12.04 2019, Vienna, Austria.
- Kersten, T. and Schön, S. (2010). Towards Modelling Phase Center Variations of Multi-Frequency and Multi-GNSS. In 5th ESA Navitech 2010, Noordwijk, The Netherlands.
- Kersten, T. and Schön, S. (2013). Impact of Group Delay Variations on Wide- and Narrowlane Linear Combinations. In IAG Symposia 2013.
- Kröger, J., Breva, Y. Kersten, T. and Schön, S. (2019). Phase Center Corrections for new GNSS-Signals. In EGU General Assembly 2019, 7.-12.04 2019, Vienna, Austria.
- Menge, F. (2003). Zur Kalibrierung der Phasenzentrumsvariationen von GPS Antennen für die hochpräzise Positionsbestimmung. PhD thesis, Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 247.
- Schön, S. and Kersten, T. (2014). Comparing antenna phase center corrections: Challenges, concepts and perspectives. In IGS Analysis Workshop, 23.-27.06 2014, Pasadena, California.
- Wanninger, L., Sumaya, H. and Beer, S. (2017), Group delay variations of GPS transmitting and receiving antennas, In Journal of Geodesy, September 2017, Vol. 91, pp 1099-1116