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Kurzzusammenfassung 

Der Spinell ZnFe2O4 (ZFO) ist ein eisenbasierter Halbleiter, der in Hinblick auf 

die Anwendung als Photoanodenmaterial für die photoelektrochemische 

Wasserspaltung in Tandemzellen intensiv untersucht wird. Die für die 

photoelektrochemische Wasseroxidation an ZFO-Photoanoden berichteten 

Wirkungsgrade liegen derzeit jedoch etwa eine Größenordnung unter dem 

theoretisch erreichbaren Maximalwert. Darüber hinaus zeigen die veröffentlichten 

Wirkungsgrade eine große Streuung zwischen den auf verschiedenen Wegen 

hergestellten ZFO-Photoanoden sowie eine schlechte Reproduzierbarkeit der 

Messergebnisse. Kürzlich wurde berichtet, dass die Kationenverteilung, also die 

Anordnung der Fe3+- und Zn2+-Kationen innerhalb des Sauerstoffgitters, die 

photoelektrochemische Aktivität des Halbleiters beeinflusst. Der Einfluss der 

Kationenverteilung auf andere physikalisch-chemische Eigenschaften, die in 

direktem Zusammenhang mit der photoelektrochemischen Aktivität stehen, wird 

bisher jedoch kaum verstanden. Der zur Charakterisierung der Kationenverteilung 

verwendete Parameter ist der Inversionsgrad 0 ≤ x ≤ 1, der gemäß der 

Strukturformel T[Zn1-xFex]O[ZnxFe2-x]O4 die Verteilung der Kationen auf die 

Tetraederlücken T und die Oktaederlücken O des kubisch-flächenzentrierten 

Sauerstoffgitters kennzeichnet.  

Im Rahmen dieser Arbeit wurden hochreine ZFO-Proben mit 

Inversionsgraden zwischen x ≈ 0,07 und x ≈ 0,20 synthetisiert. Die Proben zeigten 

innerhalb der experimentellen Bestimmungsgrenzen gleiche Teilchengrößen, 

Kristallitgrößen und Kristallinität, wie durch XRD-Messungen in Kombination mit 

einer Rietveld-Verfeinerung, Mössbauer-Spektroskopie, Raman-Spektroskopie, 

Rasterelektronenmikroskopie und Elementanalyse bestätigt wurde. Sauerstoff-

fehlstellen wurden nicht festgestellt. Somit unterscheiden sich die verschiedenen 

ZFO-Proben ausschließlich im Inversionsgrad als einzige unabhängige Variable. Die 

Lichtabsorption, der Ladungsträgertransport und die elektronischen Eigenschaften 

wurden mittels UV-Vis-NIR-Reflektionsmessungen, Impedanzspektroskopie sowie 
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zeitgemittelter und transienter Photolumineszenzspektroskopie untersucht. Um die 

photoelektrochemische Aktivität der ZFO-Proben mit unterschiedlichen 

Inversionsgraden zu vergleichen, wurde die Effizienz der Methanoloxidation unter 

Bestrahlung mit simuliertem Sonnenlicht bestimmt. 

Es wurde gefunden, dass die Kationenverteilung die Bandlückenenergie des 

Materials nicht beeinflusst, jedoch einen großen Einfluss auf den 

Ladungsträgertransport und die elektronischen Eigenschaften des ZFO hat. Die 

photoelektrochemische Aktivität nahm mit zunehmendem Inversionsgrad zu. Dieser 

Einfluss wurde hauptsächlich auf den verbesserten Ladungstransport in Proben mit 

höherem Inversionsgrad zurückgeführt. Außerdem wurde festgestellt, dass 

Änderungen der Übergangswahrscheinlichkeit der lichtinduzierten elektronischen 

Übergänge von ZFO, die mit dem Erhöhen des Inversionsgrades einhergehen, in 

geringerem Maße zusätzlich zur beobachteten Steigerung der photoelektro-

chemischen Aktivität beitragen. 

Diese Arbeit liefert einen grundlegenden Einblick in den Einfluss des 

Inversionsgrades auf die photoelektrochemische Aktivität von ZFO. Darüber hinaus 

tragen die hier präsentierten Ergebnisse zum Verständnis einiger Faktoren bei, die 

den Wirkungsgrad von ZFO-Photoanoden herabsetzen. 

Schlagworte: Spinell ZnFe2O4, Inversionsgrad, Kationenverteilung, 

Photoelektrochemie, Photoanode. 
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Abstract 

Spinel ZnFe2O4 (ZFO) is a widely studied iron-based semiconductor for 

application as photoanode material in photoelectrochemical water splitting tandem 

cells. However, the current benchmark efficiency reported for photoelectro-

chemical water oxidation at ZFO photoanodes is approximately one order of 

magnitude smaller than the predicted theoretical maximum. In addition, a large 

dispersion between the efficiencies reported for ZFO photoanodes prepared by 

different synthetic approaches, as well as poor reproducibility, become obvious 

from published data. It has been recently reported that the cation distribution, i.e., 

the ordering of the Fe3+ and Zn2+ cations within the oxygen lattice, has an impact on 

the photoelectrochemical activity of the semiconductor. However, the impact of the 

cation distribution on physicochemical properties directly related to the 

photoelectrochemical activity was poorly understood. The parameter employed to 

characterize the cation distribution is the degree of inversion, x, defined as 

T[Zn1-xFex]O[ZnxFe2-x]O4, with 0 ≤ x ≤ 1 (the superscripts T and O denote tetrahedral 

and octahedral sites, respectively). 

In this work, highly pure ZFO samples exhibiting degrees of inversion ranging 

from x ≈ 0.07 to x ≈ 0.20 were synthesized. The samples exhibited, within the limit 

of the experimental determination, equal particle size, crystallite size, and 

crystallinity, as was confirmed by XRD plus Rietveld refinement, Mössbauer 

spectroscopy, Raman spectroscopy, scanning electron microscopy, and elemental 

analysis. Oxygen vacancies were not detected. Therefore, the degree of inversion is 

assumed to be the only independent variable between the different samples. The 

light absorption, charge carrier transport, and electronic properties were 

investigated by UV-Vis-NIR reflectivity, impedance spectroscopy, and time-averaged 

as well as transient photoluminescence spectroscopy, respectively. The 

photoelectrochemical efficiency for the methanol oxidation reaction under 

simulated solar irradiation was determined in order to compare the activity of the 

ZFO samples having different degrees of inversion. 
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It was found that the cation distribution does not affect the band gap energy 

of ZFO but has a large impact on the charge carrier transport and the electronic 

properties. An increase in the photoelectrochemical activity was observed by 

increasing the degree of inversion. This impact was mainly ascribed to the enhanced 

charge carrier transport properties of the samples having higher degrees of 

inversion. In addition, changes in the probability of the photoinduced electronic 

transitions of ZFO produced by increasing the degree of inversion were found to 

additionally contribute, to a lesser extent, to the observed enhancement in the 

photoelectrochemical activity. 

This thesis provides a fundamental insight concerning the impact of the 

degree of inversion on the photoelectrochemical activity of ZFO. Furthermore, the 

results presented herein contribute to the understanding of some factors limiting 

the efficiency of ZFO photoanodes. 

Keywords: Spinel ZnFe2O4, degree of inversion, cation distribution, photo-

electrochemistry, photoanode. 
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Chapter 1 

Introduction 

The depletion of fossil fuels and the increasing global warming are pushing 

mankind to exploit available sources of clean energy.1 Therefore, emerging 

technologies taking advantage of renewable energy sources are gradually replacing 

technologies which use non-renewable resources.2 One of the most important and 

abundant renewable energy reservoirs is the sun. Solar energy might be converted 

into thermal, electrical, or chemical energy via solar heating,3 photovoltaic,3 or 

photoelectrochemical4,5 devices, respectively. A promising approach to convert 

solar energy into chemical energy is the photoelectrochemical water splitting 

tandem cell.5 In a photoelectrochemical water splitting tandem cell (Fig. 1.1A), both, 

molecular hydrogen and molecular oxygen are produced by water reduction and 

oxidation, respectively. The energy necessary to drive this uphill reaction in which 

the free energy increases by 237 kJ mol-1 is provided by the solar irradiation.6 In 

addition, light harvesting materials are required to achieve the solar-to-chemical 

energy conversion. The light harvesting material is usually a semiconductor capable 

of absorbing photons and generating excited states (Fig. 1.1B).7 Photophysical and 

photochemical processes are initiated as the material returns to its original ground 

state. Several steps are involved in these processes.8 First, during excitation with 

photons of energy larger than the band gap energy, electrons are transferred to the 

conduction band of the material creating vacancies (holes) in the valence band. The 

photogenerated charge carriers can undergo direct recombination, migrate to the 

surface, or become trapped at deep or superficial defect states. Deeply trapped 

species can recombine with trapped or free charge carriers. On the surface of a 

photoelectrode made of a semiconductor material, free or trapped electrons can 

initiate reduction while holes can initiate oxidation reactions of species being 

present in the surrounding electrolyte. Whether the electrons or the holes migrate 

to the surface depends on the band bending of the material, which can be 

controlled by the doping level of the semiconductor (Fig. 1.1B). When the 
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semiconductor contains mostly free electrons (n-type conductivity), the band 

bending favors the migration of the holes towards the surface of the material. 

However, when free holes are the majority charge carriers (p-type conductivity), the 

migration of electrons towards the surface of the material is promoted.9 Thus, n-

type semiconductors are used to prepare photoanodes to drive the water oxidation 

reaction (2H2O → O2 + 4H+ + 4e-, E° = +1.23 V vs. RHE) while p-type semiconductors 

are used to prepared photocathodes to drive the water reduction reaction (4H2O + 

4e- → 2H2 + 4OH-, E° = 0 V vs. RHE). 

 

Fig. 1.1. (A) Scheme of a photoelectrochemical water splitting tandem cell. The solar light is 

transferred towards the anodic chamber. (B) Working principle of the photoelectrochemical 

water splitting tandem cell. After light excitation with energy larger than the band gap energy, 

electron-hole pairs are generated in both, the photoanode and the photocathode. Favored by 

the band bending, the photogenerated holes in the photoanode migrate towards the surface 

and oxidize water at a water oxidation catalyst (WOC). Likewise, the photogenerated electrons 

in the photocathode migrate towards the surface and reduce water at a water reduction 

catalyst (WRC). The electronic circuit is closed when the photogenerated electrons in the 

photoanode migrate through the external wire to recombine with the photogenerated holes in 

the photocathode. Reproduced with permission from Ref. 10.10 

The first report of the electrochemical photolysis of water at a 

semiconductor electrode was published by Fujishima, Honda, and Kikuchi in 

1969.11–13 The authors constructed a photoelectrochemical cell in which a titanium 

dioxide (TiO2) electrode was connected with a platinum black counter electrode. By 

(A) (B) 
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irradiating with light having wavelengths shorter than 415 nm, molecular oxygen 

evolution was observed from the surface of TiO2 and molecular hydrogen was 

evolved from the platinum counter electrode at a much lower bias voltage as 

compared to normal electrolysis. This pioneering research was the starting point for 

a rapid development of the fields of semiconductor photocatalysis and 

photoelectrochemistry. During the following decades, TiO2 was the most widely 

studied semiconductor for solar energy conversion applications due to its high 

efficiency, high chemical stability, relatively low cost, abundance, and low toxicity.8,9 

However, as a consequence of its large band gap (≈ 3.2 eV for the anatase 

polymorph), UVA irradiation, which accounts for less than 4 % of the total solar 

irradiation on the sea level, is required for the excitation.14,15 Although several 

strategies such as non-metal doping, metal deposition, dye sensitization, or defect 

induction were developed in order to enhance the visible light efficiency of TiO2,16,17 

other materials became more attractive for application-oriented research. 

Highly efficient photoelectrochemical water splitting tandem cells have to be 

developed with semiconductors having the same advantages of TiO2 (high 

efficiency, high chemical stability, relatively low cost, abundance, and low toxicity) 

but without the limitation of the low visible light activity. Although the ideal 

material meeting all these requirements has not been hitherto synthesized, several 

metal oxide semiconductors other than TiO2 are potential candidates for solar 

assisted water oxidation or reduction.18 Hematite (α-Fe2O3), the most 

thermodynamically stable form of iron oxide under ambient conditions, has been 

widely investigated as an n-type semiconductor for photoelectrochemical water 

oxidation.19 The first report on an α-Fe2O3 photoanode was made by Hardee and 

Bard in 1976.20 The authors reported the photoelectrochemical oxidation of water 

under visible light irradiation and showed that approximately 20 % of the total 

photocurrent is obtained at irradiation wavelengths ranging from 400 to 550 nm. α-

Fe2O3 is prepared from abundant materials (iron is the fourth most common 

element in the earth’s crust), it has a high stability, is relatively inexpensive, and 
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non-toxic.21 In addition, a band gap value of ≈ 2.2 eV allows α-Fe2O3 to harvest 

visible light photons of wavelengths shorter than 550 nm. For α-Fe2O3 photoanodes, 

the maximum theoretical photocurrent for the photoelectrochemical water 

oxidation reaction under simulated solar irradiation (1000 W m-2, AM1.5G filter) is 

approximately 12.6 mA cm-2.21 However, the current photocurrent benchmark 

reported for the water oxidation with an α-Fe2O3 photoanode is approximately 4.32 

mA cm-2, i.e., 34 % of the maximum theoretical value.22 More than 40 years after 

the findings of Hardee and Bard, the extensive research carried out by the 

photoelectrochemical scientific community provided an insight into the reasons 

limiting the activity of α-Fe2O3.21 Thus, it is currently well-known that the large 

difference between the benchmark and the maximum theoretical photocurrent is 

mainly due to two intrinsic aspects of α-Fe2O3. One is the low electrical conductivity, 

which has been considered as a bottleneck in improving the efficiency of the 

photoelectrochemical water oxidation reaction.23 Due to the low electrical 

conductivity, majority charge carriers are not efficiently transported to the 

electrode surface and, thus, high conversion efficiencies are not attained. The 

second drawback of α-Fe2O3 is the short charge carriers lifetime.21 It is well-known 

that the charge carriers lifetime of α-Fe2O3 is limited by the extremely efficient 

nonradiative relaxation processes attributed to the high density of trap states.24 It 

was reported for α-Fe2O3 thin films that photogenerated electrons recombine with 

holes or are trapped approximately 3 ps after their formation.25 Although several 

strategies like morphology control, nanostructuring, and doping are known to 

partially overcome these limitations,21,24 the ultrafast relaxation of the 

photogenerated electrons suggest that photocurrents close to the theoretical 

maximum will be difficult, if not impossible, to achieve.21,24 Therefore, the research 

focus has been shifted to mixed iron oxides with the aim to develop new 

photoelectrochemically active semiconductors having the advantageous features of 

α-Fe2O3 but without its main limitations.26 In this regard, ferrites have captured the 

attention of the scientific community due to promising results in the field of 

photoelectrochemistry.27,28 
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Ferrites with the empirical formula MFe2O4 (where M is a bivalent metal ion) 

normally crystallize in the spinel structure.29 The spinel structure consists of O2- 

anions arranged in a face-centered cubic structure. In the so-called normal spinel 

structure, the M2+ cations occupy tetrahedral sites and the Fe3+ cations occupy 

octahedral sites within the oxygen lattice (T[M]O[Fe2]O4, where the superscripts T 

and O denote the tetrahedral and octahedral sites, respectively). When all the M2+ 

cations in the normal structure are interchanged by Fe3+ cations, the ferrite adopts 

the so-called inverse spinel structure (T[Fe]O[MFe]O4). Structural configurations in 

between normal and inverse are also possible and the degree of inversion, x, is the 

parameter employed to characterize them according to T[M1-xFex]O[MxFe2-x]O4, with 

0 ≤ x ≤ 1. Thus, values of x = 0 and x = 1 describe the normal and inverse spinel 

structure, respectively. As well as most of the metal oxide semiconductors, spinel 

ferrites normally exhibit an n-type conductivity attributed to oxygen vacancies 

induced during the synthesis of the materials.30,31 However, the synthesis of 

CoFe2O4, NiFe2O4, and CuFe2O4 exhibiting a p-type conductivity has been reported.28 

Therefore, spinel ferrites are used for both, photoelectrochemical water oxidation 

and water reduction.27 

Spinel ferrites are synthesized by cost-effective techniques from earth-

abundant materials and have a high chemical stability under water oxidation 

conditions.28 Furthermore, it is well-known that the degree of inversion of spinel 

ferrites closely depends on the synthetic conditions.32 Within spinel ferrites, 

ZnFe2O4 (ZFO) has been extensively studied for application in photoelectrochemical 

processes.33 ZFO has many of the advantageous characteristics of α-Fe2O3 such as a 

relatively narrow band gap (1.9 – 2.3 eV) and an exceptional photostability in basic 

media.33 At standard conditions (273.15 K and 100 kPa), the normal spinel structure 

(T[Zn]O[Fe2]O4) is the thermodynamically most stable configuration for bulk ZFO (Fig. 

1.2A).34 However, the preparation of bulk ZFO samples with cation distributions 

(Fig. 1.2B) ranging from x ≈ 0.02 to x ≈ 0.20 has been described in the literature.34 

Higher degrees of inversion up to x = 0.94 have been reported for nanoparticulate 
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ZFO.35 Therefore, ZFO nanoparticles having different cation distributions are 

prepared by different synthetic routes. Akhtar et al.36 reported that ZFO 

nanoparticles with a degree of inversion x = 0.25 or x = 0.50 are obtained by a sol-

gel technique using citric acid or urea, respectively, as the complexing agent. ZFO 

thin films with a degree of inversion x = 0.6 were prepared by Nakashima et al.37 via 

a radio-frequency sputtering method. Furthermore, Kamiyama et al.38 showed that 

the cation distribution of ZFO normally increases as the particle size decreases. 

 

Fig. 1.2. (A) Crystallographic 3D structure of ZFO with a normal spinel arrangement (x = 0). All 

the Zn2+ cations (grey spheres) are placed in tetrahedral sites while all the Fe3+ cations (brown 

spheres) are located in octahedral sites within the O2- (red spheres) lattice. (B) Crystallographic 

3D structure of ZFO having a degree of inversion of x = 0.125. One Fe3+ cation is located in a 

tetrahedral site due to the inversion with a Zn2+ cation now located in an octahedral site. These 

two cations are indicated with a yellow arrow. The 3D structures were created with VESTA 3 

visualization system.39 

Results of several scientific investigations of ZFO photoanodes for the water 

oxidation reaction have been reported during the last four years.33 Fig. 1.3 shows 

some of the most relevant results presented during this period of time. The current 

densities for the photoelectrochemical water oxidation reaction with an applied 

external bias of 1.23 V vs. RHE under simulated solar irradiation are inferior to those 

(A) (B) 
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of α-Fe2O3 and one order of magnitude smaller than the predicted maximum 

theoretical value (11 mA cm-2). Furthermore, a large dispersion between the current 

densities reported for ZFO samples prepared by different techniques is observed 

from Fig. 1.3. Kim et al.40 (spot (a) in Fig. 1.3) reported a current density of 0.24 mA 

cm-2 for a photoanode consisting of ZFO nanorods loaded with a cobalt phosphate 

(Co-Pi) water oxidation catalyst. A microwave annealing process was applied to the 

sample in order to improve both the crystallinity and the surface quality. In a later 

report, Kim et al.41 (spot (b) in Fig. 1.3) showed that the photocurrent of a ZFO 

nanorod photoanode increases up to 0.32 mA cm-2 as oxygen vacancies are induced 

by heat treatment in an H2 atmosphere. A current density of 0.35 mA cm-2 was 

reported by Hufnagel et al.42 (spot (c) in Fig. 1.3) for a ZFO photoanode prepared by 

atomic layer deposition on an inverse opal structured substrate. Peeters et al.43 

(spot (d) in Fig. 1.3) reported a low current density of approximately 0.05 mA cm-2 

for a dense ZFO photoanode prepared via a conventional chemical vapor deposition 

approach. A current density of 0.20 mA cm-2 was reported by Guijarro et al.44 (spot 

(e) in Fig. 1.3) for a ZFO photoanode prepared following a procedure similar to that 

reported by Kim et al. The current density of the ZFO nanorod photoanode 

prepared by Kim et al. was further improved up to 0.92 mA cm-2 (spot (f) in Fig. 1.3) 

by the same research group using a NiFeOx water oxidation catalyst and 

incorporating a TiO2 underlayer to block the electron back injection and to provide 

Ti4+ for doping of the ZFO.45 Finally, Zhu et al.46 (upper spot (g) in Fig. 1.3) recently 

established the benchmark photocurrent of 1.0 mA cm-2 using a nanorod-array ZFO 

photoanode annealed in an H2 atmosphere and loaded with a NiFeOx water 

oxidation catalyst. The authors controlled the crystallinity and the degree of 

inversion of the samples by performing the synthesis at temperatures ranging from 

773 to 1073 K. Interestingly, they reported that ZFO samples with a poor 

crystallinity and a high degree of inversion (x ≈ 0.19, upper spot (g) in Fig. 1.3) 

exhibit a higher efficiency for the photoelectrochemical water oxidation than 

samples with higher crystallinity and lower degree of inversion (x ≈ 0.13, lower spot 

(g) in Fig. 1.3). An exception to this behavior was reported for the sample with the 



Chapter 1: Introduction  

8 
 

lowest crystallinity and the highest degree of inversion (x ≈ 0.30, middle spot (g) in 

Fig. 1.3), which was prepared at the lowest temperature (773 K). The authors 

ascribed the observed results to a high concentration of surface defects in this 

sample, which mask the effect of the degree of inversion. It was suggested that the 

surface defects were repaired for the samples calcined at higher temperatures (883 

to 1073 K). 

 

Fig. 1.3. Current densities reported in the literature during the past four years for the water 

oxidation reaction on ZFO photoanodes. The current densities were measured with an applied 

external bias of 1.23 V vs. RHE under simulated solar irradiation (1000 W m-2). The red dashed 

line indicates the maximum theoretical photocurrent of about 11 mA cm-2 predicted for ZFO. 

The spots (a) to (g) correspond to Ref. 40 to 46, respectively. The different spots in (g) 

correspond to current densities for ZFO photoanodes with different degree of inversion. 

 As well as for α-Fe2O3, morphology control, nanostructuring, and doping are 

helpful approaches to enhance the photoelectrochemical activity of ZFO. By 

applying these strategies, the current densities of pristine ZFO are increased by a 

factor of ≈ 37.45 However, as was shown by Zhu et al.46, the degree of inversion has 

also a large impact on the photoelectrochemical activity of ZFO.  As was mentioned 

above, the cation distribution of nanoparticulate ZFO closely depends on the 

synthetic conditions and values ranging from x ≈ 0 to x ≈ 1 are feasible. 
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Nevertheless, the degree of inversion is generally not reported in the papers 

analyzing the photoelectrochemical properties of ZFO. In fact, within the literature 

overview shown in Fig. 1.3, only Zhu et al.46 have analyzed the cation distribution of 

their ZFO samples. Therefore, the large dispersion between the current densities 

reported for ZFO prepared by different techniques might be ascribed to the 

certainly different degrees of inversion of the samples. In order to understand why 

the degree of inversion affects the photoelectrochemical activity of ZFO, the 

correlation between the cation distribution and the physicochemical properties 

must be assessed. 

The impact of the degree of inversion on the magnetism of ZFO is well-

known47,48 because the material is widely used in the electronics industry and, 

therefore, its magnetic properties play a fundamental role.49 However, the 

magnetic properties do not significantly affect the photoelectrochemical activity of 

semiconductors.24 A photoelectrochemical process depends on the synergetic 

interaction of six major processes, i.e., the photon absorption, the exciton 

separation, the charge carrier diffusion, the charge carrier transport, the catalytic 

efficiency, and the mass transfer of reactants and products.7 Scientific reports 

concerning the effect of the cation distribution of ZFO on these processes are scarce 

or non-existent. 

The aim of this thesis was the study of the impact of the degree of inversion 

on the photon absorption, the exciton separation, and the charge carrier transport 

of ZFO. The final objective was to elucidate the reasons explaining the reported 

large impact of the cation distribution on the photoelectrochemical activity of ZFO. 

For this purpose, ZFO photoanodes having different cation distributions were 

prepared. The samples were extensively characterized by means of XRD plus 

Rietveld refinement, Mössbauer spectroscopy, Raman spectroscopy, scanning 

electron microscopy, and elemental analysis. A systematic study of the effect of the 

degree of inversion on the optical, dielectric, and electronic properties of ZFO, as 
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well as their correlation to the photoelectrochemical activity, is presented in this 

work. 

The topics of this thesis are discussed in detail in four additional chapters 

comprising three peer-reviewed published articles. Chapter 2 includes the article 

entitled Effect of the Degree of Inversion on Optical Properties of Spinel ZnFe2O4,50 in 

which the effects of the cation distribution on the Raman scattering and the UV-Vis-

NIR reflectivity of ZFO are analyzed. Chapter 3 comprises the manuscript entitled 

Effect of the Degree of Inversion on the Electrical Conductivity of Spinel ZnFe2O4.51 In 

this manuscript, the impact of the cation distribution on the charge carrier 

transport properties of ZFO are investigated. Chapter 4 includes the article entitled 

Effect of the Degree of Inversion on the Photoelectrochemical Activity of Spinel 

ZnFe2O4,52 in which both, the electronic properties and the photoelectrochemical 

activity of ZFO are analyzed as a function of the cation distribution. Finally, Chapter 

5 comprises a concluding discussion where the results presented in the previous 

chapters are summarized and correlated. 
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Chapter 2 

Effect of the Degree of Inversion on Optical Properties of Spinel 

ZnFe2O4 

2.1 Foreword 

This chapter comprises the article Effect of the Degree of Inversion on 

Optical Properties of Spinel ZnFe2O4 by Luis I. Granone, Anna C. Ulpe, Lars Robben, 

Stephen Klimke, Moritz Jahns, Franz Renz, Thorsten M. Gesing, Thomas Bredow, 

Ralf Dillert, and Detlef W. Bahnemann, published in Physical Chemistry Chemical 

Physics, 2018, 20, 28267-28278. In this article, the synthesis and characterization of 

ZFO samples with degree of inversion increasing from x ≈ 0.07 to x ≈ 0.20 are 

presented. An experimental and theoretical analysis concerning the effect of the 

cation distribution on the Raman scattering and on the UV-Vis-NIR reflectivity of 

ZFO is reported. Prof. Dr. Thomas Bredow and Anna C. Ulpe (Mulliken Center for 

Theoretical Chemistry, University of Bonn) contributed to this article by performing 

the ab initio calculations. Prof. Dr. Thorsten M. Gesing and Dr. Lars Robben 

(Institute of Inorganic Chemistry and Crystallography and MAPEX Center for 

Materials and Processes, University of Bremen) contributed by performing the XRD 

measurements and providing support for the Rietveld refinements. Finally, Prof. Dr. 

Franz Renz, Stephen Klimke, and Moritz Jahns (Institute for Inorganic Chemistry, 

Gottfried Wilhelm Leibniz University Hannover) contributed by performing the 

Mössbauer measurements. The figures and tables identified through this chapter 

with the letter “A” are reproduced in Appendix A. 

 

2.2 Abstract 

Spinel ferrites (T[M1-xFex]O[MxFe2-x]O4 with 0 ≤ x ≤ 1, where M is a bivalent 

metal ion and the superscripts denote tetrahedral and octahedral sites) are 

materials commonly used in electronics due to their outstanding magnetic 
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properties. Thus, the effect of the degree of inversion, x, on these properties is well 

known. However, its effect on other properties of these materials has rarely been 

investigated in detail. Since ferrites gained much attention during the last decade as 

visible light active photocatalysts and photoelectrocatalysts, understanding the 

effect of the degree of inversion on the optical properties became necessary. 

Among photocatalytically and photoelectrocatalytically active spinel ferrites, zinc 

ferrite (ZnFe2O4, ZFO) is one of the most widely studied materials. In this work, five 

ZFO samples with degrees of inversion varying from 0.07 to 0.20 were prepared by 

a solid-state reaction employing different annealing temperatures and subsequent 

quenching. Raman and UV-Vis-NIR spectra were measured and analyzed together 

with theoretical results obtained from ab initio calculations. Changes in the UV-Vis-

NIR spectra associated with electronic transitions of tetrahedrally and octahedrally 

coordinated Fe3+ ions are distinguished. However, the optical band gap of the 

material remains unchanged as the degree of inversion varies. Based on the 

experimental and theoretical results, a new assignment for the Raman active 

internal modes and the electronic transitions of ZFO is proposed. 

 

 

2.3 Introduction 

Spinel ferrites are versatile materials with several applications in the fields of 

information storage,1 magnetic fluids,2 microwave devices,3 and catalysis.4 
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Undoubtedly, their outstanding magnetic properties make spinel ferrites such 

interesting materials for these purposes.5 However, other properties, such as 

semiconductivity, are nowadays scientifically explored. Recently, semiconducting 

spinel ferrites (MFe2O4, M = metal ion) have attracted the attention in the fields of 

photocatalysis and photoelectrocatalysis.6,7 Applications of spinel ferrites in these 

research areas include artificial photosynthesis,7 carbon dioxide conversion,8 

hydrogen and oxygen generation via water splitting,9–11 and water treatment.12 

Properties such as narrow band gaps (≈ 2 eV), high chemical stability, abundance, 

and low cost make spinel ferrites promising materials for the applications 

mentioned above.6,7  

MFe2O4 crystallizes in a face-centered cubic structure like the mineral spinel 

(MgAl2O4), after which this class of materials is named. In the so-called normal 

structure, M2+ and Fe3+ ions occupy 1/8 of the tetrahedral sites and 1/2 of the 

octahedral sites available in the O2- lattice, respectively. However, when all the M2+ 

ions at the tetrahedral sites are exchanged by Fe3+ ions from the octahedral sites, 

the material adopts a so-called inverse structure. The parameter commonly 

employed to characterize the cation disorder is the degree of inversion, x, defined 

as the fraction of M2+ ions occupying octahedral sites, according to 

T[M1-xFex]O[MxFe2-x]O4. 

Among photocatalytically and photoelectrocatalytically active spinel ferrites, 

zinc ferrite (ZnFe2O4, ZFO) is one of the most widely studied materials.13,14 At 

standard conditions (273.15 K and 100 kPa), the normal structure is the 

thermodynamically most stable configuration for bulk ZFO.15 Nevertheless, it is 

known that ZFO does not usually exhibit a normal structure and the degree of 

inversion closely depends on the synthetic conditions.15–20 This effect is especially 

pronounced when nanoparticulate ZFO samples are synthesized. Akhtar et al.18 

reported the sol-gel synthesis of ZFO nanoparticles having degrees of inversion of 

0.5 or 0.25 when urea or citric acid, respectively, are used as precursors. Kamiyama 

et al.19 reported the co-precipitation synthesis of ZFO nanoparticles with a degree 



Chapter 2: Effect of the Degree of Inversion on 
Optical Properties of Spinel ZnFe2O4  

 

20 
 

of inversion of 0.142 and Nakashima et al.20 prepared nanoparticulate ZFO with a 

degree of inversion of 0.6 by radio-frequency sputtering. ZFO nanoparticles having a 

high degree of inversion have been prepared by Kurian and Mathew21 using a 

solvothermal technique. They reported a degree of inversion of 0.54.21 Šepelák et 

al.22 investigated the effect of high-energy ball-milling in the cation distribution of 

nanoscaled ZFO. The authors showed an increase in the degree of inversion from 0 

to 0.94, i.e., from normal spinel to almost completely inversed spinel by increasing 

the milling time. 

Mozaffari et al.23 and Yuan et al.24 reported that the magnetization of ZFO 

increases as the degree of inversion becomes larger. Harris et al.25 reviewed the 

effect of the degree of inversion of mechanochemically processed ZFO 

nanoparticles not only on the magnetization but also on the Néel temperature and 

the nuclear magnetic properties, including hyperfine field distributions, isomer 

shifts, and quadrupole interactions. ZFO samples prepared by mechanochemical 

methods show degrees of inversion close to 2/3.25 As a consequence, a 

ferrimagnetic behavior is observed at room temperature for the highly disordered 

ZFO samples. Conversely, an antiferromagnetic behavior with a Néel temperature of 

10.5 K is observed for normal ZFO.25 

Although the effect of the degree of inversion on the magnetic properties is 

well known, some other physicochemical properties have not been until now 

investigated in detail. Among these, the optical properties are of utmost importance 

for the characterization of a material with applications in optoelectronics, 

photocatalysis, and photoelectrocatalysis. On the one hand, the UV and visible light 

absorptivity of a material is directly related with the maximum photonic efficiency 

that can be expected under defined experimental conditions. On the other hand, 

Raman spectroscopy is a commonly employed technique for the characterization of 

ZFO. Wang et al.26 reported a first order Raman spectrum of a ZFO sample having a 

degree of inversion of 0.10. The authors correlated the observed signals with the 

five Raman active internal modes predicted by the factor group analysis.26 The 
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experimental data presented in the current study demonstrate that some of the 

signals detected by Wang et al. are originated due to a symmetry perturbation 

because of the cation disordering and, thus, are not active internal modes. 

Regarding the absorptivity of ZFO, Pailhé et al.27 reported a diffuse reflectance Vis-

NIR spectrum of a sample with a degree of inversion of 0.140. For the interpretation 

of some of the electronic transitions, the authors considered the splitting of the 

Fe(3d) orbitals on the basis of the Russell-Saunders coupling.27 However, they also 

assigned some transitions on the basis of a simple splitting of the Fe(3d) orbitals 

(into t2g and eg orbitals), thus presenting ambiguous results.  

To the best of our knowledge, the effect of the degree of inversion on the 

Raman scattering and UV-Vis-NIR absorptivity of ZFO has not been studied in detail 

before. For the first time, Raman spectra of normal and inverted ZFO were 

calculated, obtaining an excellent agreement with the experimental results. The 

combination of ab initio calculations and experimental data allowed to describe 

how the optical properties of ZFO evolve as the degree of inversion increases from 

x ≈ 0.07 to x ≈ 0.20. Furthermore, fundamental properties such as the assignment of 

the Raman active internal modes and the electronic transitions were analyzed. The 

experimental and theoretical evidence presented in this work supports a new 

interpretation for both, the Raman active internal modes and the electronic 

transitions of spinel ZFO. 

 

2.4 Materials and Methods 

Polycrystalline ZFO samples were synthesized by means of a solid-state 

reaction. Stoichiometric amounts of ZnO (Sigma Aldrich, ≥ 99.0%) and Fe2O3 (Sigma 

Aldrich, ≥ 99.0%) powders were mixed together using an agate mortar. The mixture 

was calcined in air at 1073 K with a heating rate of 350 K h-1. After 12 hours, the 

sample was cooled to room temperature and grinded again in an agate mortar. 

Aliquots of 0.500 g were pressed into 13 mm diameter pellets applying a pressure of 
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55 MPa. The pellets were calcined at 1273 K with a heating rate of 150 K h-1. After 2 

hours at this temperature, the samples were cooled to 1073 K with a cooling rate of 

100 K h-1, then kept at 1073 K for 12 hours, cooled to 773 K at a rate of 100 K h-1, 

kept at 773 K for 50 hours, and finally quenched in cold water. Some of the pellets 

(referred from now as ZFO_773) were retained for further characterization. The rest 

were divided into four sets of samples. The samples were heated up with a rate of 

300 K h-1 and calcined at 873, 973, 1073, and 1173 K for 25, 20, 12, and 10 hours, 

respectively. After this period of time, the calcined pellets were immediately 

quenched in cold water. These samples will be referred as ZFO_873, ZFO_973, 

ZFO_1073, and ZFO_1173. 

Powder X-Ray diffraction data were collected with an StadiMP 

diffractometer (Stoe & Cie., Darmstadt, Germany) using monochromatized MoKα1 

radiation (λ = 70.9300 pm) and a Mythen2 1K detector (Dectris, Baden-Daettwil, 

Switzerland). Flat samples for transmission measurements were prepared by placing 

the sample between two thin mylar foils and fixing these with a metal ring providing 

a 3 mm hole. The diffraction pattern were recorded in transmission geometry in the 

2θ range from 2° to 92°, collecting 5977 data points with a step width of 0.015° 2θ 

and 270 s measurement time per step. Rietveld refinements were carried out using 

the Bruker DIFFRACplus TOPAS V4.2 software (Bruker AXS Inc., Madison, Wisconsin, 

USA). The space group 𝐹𝑑3̅𝑚, with the zinc and iron ions placed in tetrahedral and 

octahedral sites, respectively, was assumed as starting point for the refinement. 

The scale factors, lattice parameters, oxygen positional parameters, inversion 

parameters, the three isotropic displacement parameters, and the zero point were 

optimized during the refinements. The standard instrumental parameters were 

determined with a LaB6 standard (SRM 660c, NIST). 

Mössbauer measurements were performed in transmission mode using a 

Miniaturized Mössbauer Spectrometer MIMOS II with the sample perpendicular to 

the 57Co/Rh source. The samples were placed into a spherical sample holder and the 

cap was subsequently rotated to align the crystals in the xy-plane. All isomer shifts 
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are given relative to α-Fe at room temperature. The data were fitted by least-

squares method using Lorentzian line shapes with the Recoil 1.05 Mössbauer 

Analysis software.28 

Raman measurements were made employing a confocal Bruker Senterra 

micro-Raman spectrometer. Depolarized spectra were collected at ambient 

conditions in backscattering geometry using an Olympus BX 51 microscope that 

allows the incident 785 nm, 633 nm, or 532 nm laser beam to be focused on the 

sample as a spot of about 2 µm in diameter. An integration time of 5 s, 20 co-

additions, and a power of 50 mW, 2 mW, and 2 mW for the 785 nm, 633 nm, and 

532 nm lasers, respectively, were used. The instrumental precision was within ± 3 

cm-1. 

Raman spectra were calculated using the CRYSTAL14 program package,29 

employing triple-ζ basis sets. The frequencies were calculated using the range 

separated functional HSE06,30 while the intensities were calculated with B3LYP.31 A 

well-converged Monkhorst-Pack grid of 8x8x8 was sufficient. The atomic positions 

of normal and inverse ZFO were optimized using an experimental lattice parameter 

of a = 844.32 pm.32 

UV-Vis-NIR spectroscopy was carried out with an Agilent Carry 5000 device 

equipped with an external DRA-2500 Diffuse Reflectance Accessory. The spectra 

were collected in the range of 200 nm to 2000 nm with a data acquisition interval of 

1 nm, an averaging time of 0.1 s, a scan rate of 600 nm min-1, and a spectral 

bandwidth of 2 nm. The instrumental precision was within ± 0.5 nm. The optical 

band gaps were determined by the derivation of absorption spectrum fitting 

method (DASF).33 

Optical spectra of normal and inverse ZFO were calculated using the Vienna 

ab initio Simulation Package (VASP)34 version 5.4.4. A carefully converged quasi-

particle GW035 algorithm was employed and to gain insight about the optical 

properties, the Bethe-Salpeter-Equations (BSE)36 were solved afterwards. For 
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normal ZFO, an experimental structure32 was used, while for inverse ZFO, an 

optimization of atomic positions was performed. 

The composition of the samples was determined analytically by means of 

inductively coupled plasma optical emission spectrometry (ICP-OES) using a 

Spectroflame and Spectro Arcos from Spectro Analytical Instruments. Fe and Zn 

were quantified by measuring the optical emission at 259.941 nm and 213.856 nm, 

respectively, and comparing with the calibration curve prepared using the 

respective ICP standards (Carl Roth). Prior to the analysis, the samples were 

dissolved in freshly distilled 16% HCl (Carl Roth) at 473 K using an ultraWAVE 

microwave digestion system from MLS GmbH. 

The structural and morphological properties of the samples were analyzed 

using a JEOL JSM-6700F scanning electron microscope provided with a lower 

secondary electron image detector. An acceleration voltage of 2.0 kV and a 25000 

times magnification were employed. 

 

2.5 Results and Discussions 

ZFO samples with degree of inversion of approximately 0.07, 0.10, 0.13, 

0.16, and 0.20 were synthesized by means of a solid-state reaction. An initial 

calcination at 1273 K was carried out for all the samples in order to ensure the 

homogeneity of the crystallinity and the crystallite size between them. The degree 

of inversion was modified by further calcination steps at temperatures ranging from 

773 K to 1173 K and subsequent quenching of the samples in cold water. The 

samples were characterized employing XRD and Rietveld refinement (Fig. A1), 

Mössbauer spectroscopy (Table A1 and Fig. A2), Raman spectroscopy (Fig. 2.2 and 

Fig. A5), and elemental analysis. The elemental analysis revealed a Fe to Zn ratio 

close, within the experimental error, to 2:1 as expected for ZFO. This ratio will also 

hold in the case that a mixture of equal amounts of Fe2O3 and ZnO is present. 
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However, XDR (Fig. A1) and Raman (Fig. 2.2) data give no indication of the presence 

of ZnO or hematite (α-Fe2O3). Maghemite (γ-Fe2O3), having a spinel structure, might 

not be distinguished from ZFO in an XRD diffractogram. However, the presence of 

γ-Fe2O3 is excluded based on the Raman (Fig. A6) and Mössbauer data (Fig. A3). The 

strongest Raman scattering signal of γ-Fe2O3, located at 670 cm-1, might not be 

differentiated from the broad ZFO band at ca. 647 cm-1.37 However, the next 

strongest and characteristic band of γ-Fe2O3, located at 718 cm-1,37 is not observed 

in the Raman spectra of ZFO (Fig. A6). A more conclusive evidence of the absence of 

γ-Fe2O3 comes from the Mössbauer data. A sextet is observed in the Mössbauer 

spectrum of γ-Fe2O3 (Fig. A3) due to its room temperature ferrimagnetism.37 

However, only two duplets (due to the Fe3+ cations present in tetrahedral and 

octahedral sites) are observed in the Mössbauer spectra of the ZFO samples (Fig. 

A2). This is because of the room temperature paramagnetism of the ZFO samples. 

Therefore, the presence of γ-Fe2O3 as secondary phase in the ZFO samples is 

excluded. 

The values deduced from Rietveld refinement and Mössbauer spectroscopy 

together with the structural parameters and the iron to zinc molar ratios obtained 

from the elemental analysis of the different quenched ZFO samples are given in 

Table 2.1. Neither secondary phases nor impurities could be detected from the XRD 

patterns. Furthermore, none of the samples showed Mössbauer signals attributable 

to Fe2+. Hence, the absence of Fe2+ and, therefore, of oxygen vacancies has been 

confirmed by Mössbauer spectroscopy. 

As becomes obvious from Fig. 2.1A, the degree of inversion increases 

linearly with the calcination temperature from 0.074 ± 0.011 at 773 K to 0.203 ± 

0.017 at 1173 K. A similar behavior was reported by O’Neill15 using powder XRD 

structure refinements, and by Pavese et al.16 from in situ high-temperature neutron 

powder diffraction data evaluation (Fig. 2.1B). The results from O’Neill show a 

monotonic increase in the degree of inversion from 0.019 at 773 K to 0.149 at 1073 
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K, and then a plateau. The author suggested that this plateau results from the re-

ordering kinetics at temperatures higher than 1173 K being too fast to allow a 

quenching of the sample.16 This effect was not observed by Pavese et al. because 

their measurements were done in situ.16 

Table 2.1. Refined structural parameters, degree of inversion deduced from Mössbauer 

spectroscopy, and Fe to Zn molar ratios of the different temperature annealed ZFO samples. 

nFe/nZn is the Fe to Zn molar ratio, x is the degree of inversion, a is the lattice parameter, x(O) is 

the oxygen positional parameter on 32e: x,x,x in 𝐹𝑑3̅𝑚, LVol(IB) is the average crystallite size, 

and BZn, BFe, and Bo are the isotropic displacement parameters concerning the Zn2+, Fe3+, and O2- 

ions, respectively. 

Calcination 

temperature 

/ K 

nFe/nZn 

Degree of inversion x 

a / pm x(O) 
LVol(IB)/ 

nm 

BZn / 

Å2 

BFe / 

Å2 

Bo / 

Å2 

Rietveld 

Refinement 

(RR) 

Mössbauer 

Spectroscopy 

(MS) 

(
𝒙𝑹𝑹+𝒙𝑴𝑺

𝟐
) 

773 
1.98 ± 

0.04 
0.073(7) 

0.074 ± 

0.015 

0.074 ± 

0.011 
844.285(5) 0.26025(13) 306(6) 0.38(1) 0.37(1) 0.39(3) 

873 
1.98 ± 

0.05 
0.106(6) 

0.102 ± 

0.020 

0.104 ± 

0.013 
844.433(5) 0.26001(11) 293(5) 0.48(1) 0.37(1) 0.50(2) 

973 
1.97 ± 

0.04 
0.131(6) 

0.136 ± 

0.010 

0.134 ± 

0.008 
844.374(5) 0.26001(11) 302(5) 0.53(1) 0.52(1) 0.56(2) 

1073 
1.98 

±0.03 
0.161(7) 

0.156 ± 

0.012 

0.159 ± 

0.010 
844.432(5) 0.25996(12) 327(6) 0.50(1) 0.53(1) 0.53(2) 

1173 
1.98 

±0.07 
0.196(7) 

0.210 ± 

0.028 

0.203 ± 

0.017 
844.427(5) 0.25954(13) 283(6) 0.34(1) 0.36(1) 0.41(3) 

A comprehensible work regarding the thermodynamics of the cation 

disorder and the dependence of the degree of inversion with the temperature have 

been done by Callen et al.,38 Navrotsky and Kleppa,39 O’Neill and Navrotsky,40,41 and 

O’Neill.15 The cation distribution in ZFO can be treated as a dynamic equilibrium 

according to the following interchange reaction between ions being present in 

tetrahedral (subscript “T”) and octahedral sites (subscript “O”): 

TZn + OFe        OZn + TFe 
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Fig. 2.1. (A) Degree of inversion, x, versus the annealing temperature. (B) Comparison of the 

present result with values obtained by O’Neill15 and Pavese et al.16 

A summary reviewing the thermodynamic analysis of the temperature effect 

on the degree of inversion is presented in the supporting information (Fig. A4). 

The Raman spectra of the different ZFO samples are shown in Fig. 2.2. In 

agreement with the XRD data, no signals attributed to impurities or secondary 

phases are identified. The ZFO sample with the lowest degree of inversion 

(ZFO_773, x = 0.074 ± 0.011) shows five bands at 176.5 ± 3 cm-1, 251 ± 3 cm-1 

(weak), 352 ± 3 cm-1, 447 ± 3 cm-1, and 647 ± 3 cm-1 and one minor signal at 155 ± 3 

cm-1. The sharp signal at 352 ± 3 cm-1 exhibits a broad shoulder at smaller 

wavenumbers while the band at 447 ± 3 cm-1 presents a broad shoulder at higher 

wavenumbers. The broad signal at 647 ± 3 cm-1 can be deconvoluted into two 

Gaussian-shape signals at ca. 644 cm-1 and 675 cm-1 (Fig. A7). Comparing with the 

(A) 

(B) 
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Raman spectra measured with 532 nm and 633 nm laser excitations (Fig. A5), the 

relative intensities of the bands change markedly. Interestingly, a signal not present 

in the spectra obtained with 785 nm laser excitation is observed at 573.5 ± 3 cm-1 

for the samples having a low degree of inversion. This signal decreases rapidly as 

the degree of inversion of the samples increases. A group-theoretical analysis of the 

vibrational spectrum for the spinel structure made by White and DeAngelis42 

predicted five Raman active internal modes: A1g, Eg, and three T2g.42 Because normal 

and inverse spinel crystallize in the same space group, no change is expected in the 

number of active internal Raman modes. Nevertheless, when the degree of 

inversion is neither 0 nor 1 (0 < x < 1), the symmetry is perturbed and the number of 

normal modes increases.43 The five predicted Raman active internal modes for the 

normal structure can be attributed to the signals at 176.5 ± 3 cm-1, 352 ± 3 cm-1, 447 

± 3 cm-1, 573.5 ± 3 cm-1, and 647 ± 3 cm-1. The weak band at 251 ± 3 cm-1, and the 

shoulders and broadening observed for most of the signals are direct consequences 

of the non-zero degree of inversion, as will be discussed below. Even the sample 

with a degree of inversion close to 0 (ZFO_773, x = 0.074 ± 0.011) shows all the 

mentioned deviations. 

Distinctive changes can be observed in the Raman scattering as the degree 

of inversion of the ZFO samples increases. Fig. 2.3 shows the magnification of four 

different regions of the Raman spectra presented above. The first interval, from 

141.5 cm-1 to 202 cm-1 (Fig. 2.3A), exhibits pronounced changes. As the degree of 

inversion increases, a band almost imperceptible for x = 0.074 ± 0.011 becomes 

higher in intensity at 156 ± 3 cm-1 and the sharp signal observed at 176.5 ± 3 cm-1 

decreases in intensity. Interestingly, this decrease is accompanied by a growth of a 

shoulder at higher wavenumbers, resulting in a broad band from 168 cm-1 to 198 

cm-1. Supposing that the Raman mode at 176.5 ± 3 cm-1 is due to vibrations of the 

AO4 tetrahedral groups, the broadening of this band can be explained by the 

exchange of Zn atoms by lighter Fe atoms, resulting in a shift in the vibration 

frequency to higher wavenumbers. 
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Fig. 2.2. Normalized Raman spectra of the ZFO samples with increasing degree of inversion  

(― ZFO_773, x = 0.074 ± 0.011; ― ZFO_873, x = 0.104 ± 0.013; ― ZFO_973, x = 0.134 ± 0.008; 

― ZFO_1073, x = 0.159 ± 0.010; ― ZFO_1173, x = 0.203 ± 0.017) obtained using a 785 nm laser 

as the excitation source. 

In the region from 215 cm-1 to 415 cm-1 (Fig. 2.3B), an increase in the 

intensity of the weak signal at 251 ± 3 cm-1 and a broadening of the main band at 

352 ± 3 cm-1 with a small shift of the maximum to smaller wavenumbers are 

observed as the degree of inversion of the samples increases. The broadening is due 

to the growth of the shoulder situated at 315 ± 3 cm-1. This shoulder exhibits a weak 

intensity for the sample with x = 0.074 ± 0.011. Supposing that the signals in this 

spectral region are predominantly ruled by the vibration of the AO6 octahedral 

groups, the growth of this shoulder at lower wavenumbers is in concordance with 

the exchange of Fe atoms by heavier Zn atoms. Regarding the behavior of the weak 

signal at 251 ± 3 cm-1, it can be assumed that it arises due to the perturbation in the 

symmetry produced by the cation disordering. Hence, this signal is not one of the 

five predicted Raman active internal modes for the normal structure. 

Prominent changes in the Raman spectra are noticed in the interval from 

415 cm-1 to 570 cm-1 (Fig. 2.3C). As the degree of inversion increases, the shoulder 

of the band observed at 447 ± 3 cm-1 for the sample with x = 0.074 ± 0.011 grows 
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markedly. This finally results in a broad band from 415 cm-1 to 560 cm-1 with a 

maximum at 460 ± 3 cm-1 for the sample with x = 0.203 ± 0.017. Supposing that the 

signal at 447 ± 3 cm-1 arises from the vibrations of the AO4 tetrahedral groups, the 

increase in the intensity of the shoulder at higher wavenumbers is again a direct 

consequence of the exchange of Zn atoms by lighter Fe atoms. As was mentioned 

above, the Raman active internal mode at 573.5 ± 3 cm-1 is not intense enough to 

be detected using a 785 nm excitation source. Despite this signal is observed in the 

spectra obtained using 532 nm and 633 nm laser excitations, the intensity decreases 

rapidly as the degree of inversion increases (Fig. A5). This suggests that the 

vibration of Zn atoms in the tetrahedral sites is also related to this Raman band. 

Because the signal decreases in intensity with the increasing degree of inversion, 

the weak band becomes rapidly imperceptible. 

A particular change is observed in the region between 575 cm-1 and 730 cm-1 

(Fig. 2.3D). As the degree of inversion increases from 0.074 ± 0.011 to 0.203 ± 

0.017, the intensity of the broad band at 647 ± 3 cm-1 grows markedly. The increase 

in the relative intensity of this band in comparison to the main signal at 352 ± 3 cm-1 

can clearly be seen in Fig. 2.2. In the Raman spectra measured with 532 nm and 633 

nm laser excitations, the band at 647 ± 3 cm-1 becomes the main signal for the 

samples having higher degrees of inversion (Fig. A5). This increase in intensity is 

accompanied by a shift of the position of the maximum from 647 ± 3 cm-1 to 642 ± 3 

cm-1.  

It should be noticed that the ratio between two Raman scattering signals 

seems to depend on the degree of inversion. The intensity ratio between the 

Raman shifts at 352 and 647 cm-1 vs. the degree of inversion was fitted with an 

exponential decay function. The obtained results are shown in the supporting 

information (Fig. A8). 
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Fig. 2.3. Raman spectra (785 nm excitation source) from (A) 141.5 cm-1 to 202 cm-1, (B) 215 cm-1 

to 415 cm-1, (C) 415 cm-1 to 570 cm-1, and (D) 575 cm-1 to 730 cm-1 of the ZFO samples with 

increasing degree of inversion (― ZFO_773, x = 0.074 ± 0.011; ― ZFO_873, x = 0.104 ± 0.013;  

― ZFO_973, x = 0.134 ± 0.008; ― ZFO_1073, x = 0.159 ± 0.010; ― ZFO_1173, x = 0.203 ± 0.017). 

Fig. 2.4A shows the calculated Raman spectra of normal and inverse ZFO. 

The position and relative intensity of the calculated frequencies for a degree of 

inversion of x = 0 show a reasonably good agreement with the experimental result 

obtained for x ≈ 0.073. It is worth mentioning that the FWHM of the Raman signals 

cannot be calculated (therefore, an arbitrary value of 8 cm-1 was used to plot the 

results) and that vibrational wavenumbers from DFT calculations are typically larger 

than the observed experimentally. 44 This is not only due to the harmonic 

approximation but also to the finite basis sets.44 Furthermore, the computation of 

vibrational wavenumbers was shown to be dependent on the method.44,45 Howard 

et al. considered vibrational wavenumbers within 20 cm-1 of the reference values as 

accurate. Thus, the calculated spectrum for x = 0, with deviations of 15.5 to 48 cm-1 

(A) (B) 

(C) (D) 
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(5.7 to 8.8%, respectively) from the experimental data obtained for a ZFO sample 

with x ≈ 0.073, is reasonably good. Scaling factors are often applied to improve the 

agreement between the calculated and experimental results.44 Using scaling factors 

would also align the calculated spectrum presented in Fig. 2.4B with the 

experimental spectrum obtained for ZFO with x ≈ 0.073. However, this is not 

scientifically reasonable since the degree of inversion of the calculated ZFO (x = 0) 

and the synthesized ZFO (x ≈ 0.073) are not equal. Since the maximal inversion 

achieved experimentally is x = 0.203 ± 0.017, the calculated spectrum with an 

inversion of x = 1 cannot be compared directly. Nevertheless, the trends observed 

experimentally upon increasing disorder may be related to the theoretical spectra. 

     

Fig. 2.4. (A) Calculated Raman spectra of ZFO with x = 0 and x = 1. (B) Comparison between the 

calculated Raman spectrum of ZFO with x = 0 and the experimental Raman spectrum of ZFO 

with x = 0.074 ± 0.011. 

In the region from 150 cm-1 to 250 cm-1 it can be seen a prominent signal 

shift to higher wavenumbers with increasing intensity as the inversion increases. In 

agreement with the experimental result, the Raman signal observed in this region 

for x = 0 is shifted to higher wavenumbers in the calculated spectrum for x = 1. 

Vibrational analysis confirms the assumption that this signal arises from wagging of 

the tetrahedral ion, explaining the shift to higher wavenumbers when Zn atoms are 

replaced by the lighter Fe atoms. 

(A) (B) 
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The Raman signal located at 375 cm-1 for the normal ZFO shifts to 325 cm-1 

and exhibits a shoulder at 310 cm-1. This trend is once more in very good agreement 

with the experimental results. Vibrations of both, the octahedrally and tetrahedrally 

coordinated ions contribute to this signal. 

The double peak obtained at 464 cm-1 and 472 cm-1 for x = 0 shifts to slightly 

smaller wavenumbers (459 cm-1 and 462 cm-1) under inversion and increases in 

intensity, being the most pronounced signal for x = 1. Although the vibrational 

analysis mainly ascribes these signals to the wagging of the tetrahedrally 

coordinated ions, as was supposed above, this behavior is not completely in line 

with the experimental results shown in Fig. 2.3C. 

The calculated spectrum for x = 0 shows a small signal at 600 cm-1, which 

splits into three signals at 541 cm-1, 563 cm-1, and 586 cm-1 for x = 1. This effect 

cannot be observed in the experimental spectrum obtained with 785 nm laser 

excitation since those signals vanish between the rather broad bands located at 

higher and lower wavenumbers. Nevertheless, the spectra measured with 532 nm 

and 633 nm laser excitations (Fig. A5) show a weak signal at 573 ± 3 cm-1, 

comparable with the calculated signal at 600 cm-1, for the sample with x = 0.074 ± 

0.011. The intensity of this signal decreases as the degree of inversion increases. 

This decrease might be attributed to the split of this signal into three bands at lower 

wavenumbers, which contribute to the broadness of the band observed between 

415 cm-1 and 560 cm-1. 

The calculated signal at 695 cm-1 undergoes a slight shift to 699 cm-1 upon 

inversion, accompanied by a decreased intensity, which is contradictory to the 

experimental results (see Fig. 2.3D). This signal can mainly be ascribed to a 

symmetrical stretching of the ZnO4-tetrahedra in the normal ZFO, and FeO4-

tetrahedra in the inverse ZFO. 

As becomes clear from the above discussion, the degree of inversion has a 

great effect on the Raman scattering properties of ZFO. It is not surprising to find 
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spectra in the literature showing different signal positions as well as diverse 

assignments.26,46 Furthermore, most authors presume a normal structure for the 

ZFO samples, thus not determining the degree of inversion. This assumption is not 

necessarily correct as the ordering of the sample can be easily modified by the 

temperature of preparation. Moreover, there are reports showing low-temperature 

synthesized ZFO nanoparticles with high degrees of inversion.18–20 Wang et al.26 

presented a Raman spectrum of ZFO with x = 0.10 together with an assignment of 

the bands. The signals at 221 cm-1, 246 cm-1, 355 cm-1, 451 cm-1, and 647 cm-1 were 

identified as the five Raman active internal modes predicted by the group-

theoretical analysis, having F2g, Eg, F2g, F2g, and A1g symmetry, respectively. The 

authors attributed the signals above 600 cm-1 to the motion of oxygen in the 

tetrahedral AO4 groups. The low-frequency modes were attributed to vibrations in 

the octahedral BO6 sites. The distinctive signals at 355 cm-1, 451 cm-1, and 647 cm-1 

agree with the results presented in this work but a discrepancy is found with the 

vibrations at 221 cm-1 and 246 cm-1. As was mentioned above, the weak band at 251 

± 3 cm-1 arises from the disorder of the sample and is not one of the Raman active 

internal modes for the normal structure predicted by the group-theoretical analysis. 

The signal at 221 cm-1 was not observed in the present work neither for the 785 nm 

nor for the 532 nm and 633 nm laser excitations (Fig. A5). A signal at 176.5 cm-1 

appears in the result presented by Wang et al. but the resolution in this region, 

close to the acquisition limit of the spectrum, is poor. Finally, the internal mode 

reported in the present work at 573.5 ± 3 cm-1 is not observed by Wang et al. 

because this signal becomes very weak while using a 785 nm laser excitation. The 

assignment of the Raman active internal modes proposed in this work and the 

assignment made by Wang et al. are presented in Table 2.2. 

The UV-Vis-NIR diffuse reflectance spectra of the different ZFO samples are 

shown in Fig. 2.5. Three predominant absorption bands are observed in the regions 

from 220 nm to 670 nm, 670 nm to 950 nm, and 950 nm to 1600 nm. The bands 

around 795 nm (ca. 1.56 eV) and 1200 nm (ca. 1.03 eV) present typical Gaussian 



Chapter 2: Effect of the Degree of Inversion on 
Optical Properties of Spinel ZnFe2O4  

35 
 

shapes, whereas the band with a maximum around 425 nm saturates the detector 

and then decreases in intensity from ca. 400 nm. The former band exhibits masked 

signals around 451 nm, 532 nm, and 614 nm. The determination and origin of these 

signals will be discussed below. Less reflectivity, namely more absorption, in the 

region between 500 nm and 700 nm is observed as the degree of inversion of the 

sample increases. This explains the darkening of the samples as x changes from 

0.074 ± 0.011 to 0.203 ± 0.017 (Fig. A9). The reflectivity of NIR radiation between 

1400 nm and 2000 nm also decreases as the degree of inversion increases. 

Table 2.2. Assignment of the Raman active internal modes for normal ZFO proposed in the 

present work together with the assignment made by Wang et al.26 

Raman active 

internal mode 

Frequency / cm-1 

This work 
Wang et al. 

Theoretical Experimental 

F2g 191 176.5 ± 3 221 

Eg 375 352 ± 3 246 

F2g 464/472 447 ± 3 355 

F2g 600 573 ± 3 451 

A1g 695 647 ± 3 647 

Three types of electronic transitions are found in Fe3+ rich oxides: ligand field 

transitions, transitions due to ligand-to-metal charge-transfer, and transitions 

resulting from simultaneous excitation of magnetically-coupled Fe3+ neighboring 

cations.47 The latter transitions are expected to be negligible for ZFO since there are 

no face-sharing FeO6 structures. The ligand field transitions for a Fe3+ ion occupying 

an octahedral site are due to the excitation of electrons from t2g into eg orbitals. 

These orbitals are formed by the splitting of the 3d orbitals due to the electrical 

field of the surrounding O2- anions. Furthermore, both the t2g and eg orbitals are 
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also split because of the exchange energy (Russell-Saunders coupling) and the 

resulting energetic states can be found in the respective Tanabe-Sugano diagram 

(Fig. A10). According to this diagram, a high spin Fe3+ ion exhibits a 6A1g ground state 

and the first three possible electronic transition are: 6A1g(G) → 4T1g(G) [(tα
2g)3(eα

g)2 

→ (tα
2g)3(eα

g)1(tβ
2g)1], 6A1g(G) → 4T2g(G) [(tα

2g)3(eα
g)2 → (tα

2g)3(eα
g)1(tβ

2g)1], and 6A1g(G) 

→ 4A1g(G) [(tα
2g)3(eα

g)2 → (tα
2g)2(tβ

2g)1(eα
g)2]. Although all the transitions from the 

ground 6A1g state are spin and parity-forbidden, they become allowed due to the 

magnetic coupling of electronic spins of neighboring Fe3+ cations.48–50 

 

Fig. 2.5. UV-Vis-NIR diffuse reflectance spectra of the ZFO samples with increasing degree of 

inversion (― ZFO_773, x = 0.074 ± 0.011; ― ZFO_873, x = 0.104 ± 0.013; ― ZFO_973, x = 0.134 ± 

0.008; ― ZFO_1073, x = 0.159 ± 0.010; ― ZFO_1173, x = 0.203 ± 0.017). 

On the basis of the Tanabe-Sugano diagram, an assignment of the 

experimentally observed UV-Vis-NIR bands was done (Table 2.3). The signals at 

1200 nm and 795 nm can be assigned to the 6A1g → 4T1g(G) and 6A1g → 4T2g(G) 

transitions, respectively. This corresponds with a value of ca. 14164 cm-1 (1.76 eV) 

for the energy of the octahedral crystal field, and ca. 624 cm-1 for the Racah 

parameter (Fig. A10). Additionally, the energy for the 6A1g → 4A1g(G) and 6A1g → 

4T2g(D) transitions is estimated to be ca. 20248 cm-1 (494 nm, 2.51 eV) and 22300 

cm-1 (448 nm, 2.76 eV), respectively. The latter value is in good agreement with the 
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signal at 451 nm masked within the broad band from 220 to 670 nm. Transitions 

from non-bonding molecular orbitals localized on the oxygen atoms to the 

antibonding t2g Fe(3d) orbitals are reported in the literature for a vast variety of 

iron-based oxides.47,51 Because this electronic excitation is responsible for the 

optical band gap of the semiconducting ZFO, the derivation absorption spectrum 

fitting method (DASF)33 was applied to get more insight into the energy and the 

nature of the transition. Because the measured diffuse reflectance spectra do not 

correlate directly to the absorption spectra, the Kubelka-Munk radiative transfer 

model45 was first applied to determine the absorption coefficient. Rietveld 

refinement (Table 2.1) and SEM pictures (Fig. A11) reveal that the particles have 

similar size and shape. Thus, it was assumed that the different ZFO samples have 

the same scattering properties. The full mathematical deduction of the DASF model 

for diffuse reflectance data is presented in the supporting information. As can be 

seen from Fig. 2.6, three clear bands are observed at 2.02 eV (614 nm), 2.33 eV (532 

nm), and 2.75 eV (451 nm), and a weak signal is observed at 2.58 eV (481 nm). The 

bands at 2.58 eV and 2.75 eV can be assigned to the 6A1g → 4A1g(G) and 6A1g → 

4T2g(D) transitions, respectively (Fig. A10). Consequently, the signal observed at 2.02 

eV can be attributed to the O2- + Fe3+ → O- + Fe2+ transition. Moreover, the DASF 

analysis shows that this is an allowed and indirect transition (Fig. A12). Finally, the 

band at 2.33 eV can be attributed to a direct O2- + Fe3+ → O- + Fe2+ transition. Table 

2.3 lists the proposed assignment for the experimentally observed electronic 

transitions of ZFO. 

Surprisingly, all the bands can be assigned considering only electronic 

transitions in the octahedrally coordinated Fe3+ ions. Similar results are known for 

other iron-based oxides having Fe3+ in both tetrahedral and octahedral positions.47 

Pailhé et al.27 also assigned the UV-Vis-NIR absorption bands of a ZFO sample with x 

= 0.140 to transitions involving Fe3+ in octahedral sites. Nevertheless, despite the 

authors deduced some of the transitions considering the orbital splitting due to the 

Russell-Saunders coupling, they mixed two different models by assigning transitions 
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on the basis of a simple splitting of the Fe(3d) orbitals (into t2g and eg orbitals) as 

well. 

Table 2.3. Assignment of the experimentally observed electronic transitions of ZFO according to 

the ligand field theory considering Russell-Saunders coupling. 

Wavelength / 

nm 
Transition 

1200 6A1g → 4T1g(G) 

795 6A1g → 4T2g(G) 

614 
O2- + Fe3+ → O- + 

Fe2+ (indirect) 

532 
O2- + Fe3+ → O- + 

Fe2+ (direct) 

481 6A1g → 4A1g(G) 

451 6A1g → 4T2g(D) 

 

Fig. 2.6. Derivation of Absorption Spectrum Fitting (DASF) method calculated from 670 nm to 

400 nm for the ZFO samples with increasing degree of inversion (― ZFO_773, x = 0.074 ± 0.011; 

― ZFO_873, x = 0.104 ± 0.013; ― ZFO_973, x = 0.134 ± 0.008; ― ZFO_1073, x = 0.159 ± 0.010; 

― ZFO_1173, x = 0.203 ± 0.017). 
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By comparing the spectra for the ZFO samples with different degrees of 

inversion, the presence of transitions involving tetrahedrally coordinated Fe3+ ions 

can be analyzed. The UV-Vis-NIR spectra from 0.90 to 6.0 eV and the deconvolution 

of the three distinctive reflection bands employing Gaussian shaped curves are 

shown in Fig. 2.7. As the degree of inversion of the samples increases, the 

percentage of reflection at ca. 1.5 eV becomes higher (absorption decreases), and a 

broadening is observed for the band at ca. 1.0 eV (absorption increases). The 

amount of Fe3+ ions in octahedrally coordinated sites has a considerable effect on 

the signal around 1.5 eV. As this value decreases, the absorption in this region 

becomes smaller. This effect is consistent with the assignment of this band to a 

transition involving Fe3+ ions in octahedral sites. On the other hand, an increasing 

amount of Fe3+ ions in tetrahedrally coordinated sites generates a higher absorption 

in the region around 1.0 eV. This signal cannot be attributed solely to transitions 

involving Fe3+ ions in tetrahedral sites because the intensity is already very high for 

the sample containing only 3.8 % (x = 0.074 ± 0.011) of tetrahedrally coordinated 

Fe3+ ions and does not grow proportionally as the degree of inversion increases. 

Nevertheless, considering that the transitions originating from tetrahedrally 

coordinated Fe3+ ions might not be significantly different in energy than those 

arising from the octahedrally coordinated,51 an overlapping of both types of 

transitions can be expected at around 1.0 eV. Therefore, the broadening of the 

band in the NIR region close to 1.0 eV can be explained by the contribution of the 

ligand field transitions due to Fe3+ ions occupying tetrahedral sites. 

The imaginary part of the dielectric function, ε2, which is directly related to 

the probability of photon absorption52, was calculated in dependency on the 

excitation energy for ZFO with a degree of inversion of x = 0 and x = 1. The resulting 

spectra are given in Fig. 2.8. 
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Fig. 2.7. (A) UV-VIS-NIR diffuse reflectance spectra from 0.9 to 6.0 eV of the ZFO samples with 

increasing degree of inversion. (B) Deconvolution of the UV-VIS-NIR diffuse reflectance spectra 

employing Gaussian-shaped curves. The full line, dash line, and pointed line corresponds to the 

reflection bands at 1.03 eV, 1.56 eV, and 3.00 eV, respectively. ― ZFO_773, x = 0.074 ± 0.011;  

― ZFO_873, x = 0.104 ± 0.013; ― ZFO_973, x = 0.134 ± 0.008; ― ZFO_1073, x = 0.159 ± 0.010; 

― ZFO_1173, x = 0.203 ± 0.017. 

Since the used theoretical approach is no multideterminantal ansatz, intra-

atomic transitions cannot be described. The onset of the spectrum for the normal 

and the inverse ZFO is located at 2.3 and 2.1 eV, respectively. The position of the  

O2- + Fe3+ → O- + Fe2+ transition is in excellent agreement with the experimental 

result. Furthermore, both experiment and theory state that there is no difference in 

the band gap energy for different degrees of inversion. The theoretical spectrum in 

Fig. 2.8 shows that, upon inversion, the intensity of the band gap excitation 

decreases dramatically. A similar effect can be seen in Fig. 2.6 for the signal 

(A) 

(B) 
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attributed to the direct band gap transition. As the degree of inversion increases, 

the area of the signal, and thus the absorption coefficient, decreases.  

 

Fig. 2.8. Calculated imaginary part of the dielectric function ε2 for optical spectrum of ZFO for 

ZFO with x = 0 and x = 1. 

 

2.6. Conclusions 

The effect of the degree of inversion on the Raman scattering and the UV-VIS-NIR 

reflectivity of spinel ZFO is elucidated. Based on the strong evidence collected, a 

new assignment for both, the Raman active internal modes and the electronic 

transitions is proposed for normal ZFO. As the degree of inversion increases, a 

larger contribution from the ligand field transitions of the tetrahedrally coordinated 

Fe3+ ions into the visible light absorptivity of the material is observed, producing a 

characteristic darkening of the sample. Conversely, no effect is observed on the 

energies of the transitions due to ligand-to-metal charge-transfer between O2- and 

Fe3+ ions. Thereby, the band gap energy, with values of 2.02 eV and 2.33 eV for the 

indirect and direct transition, respectively, is found to be independent of the degree 

of inversion. 
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Chapter 3 

Effect of the Degree of Inversion on the Electrical Conductivity of 

Spinel ZnFe2O4 

3.1 Foreword 

This chapter comprises the manuscript Effect of the Degree of Inversion on the 

Electrical Conductivity of Spinel ZnFe2O4 by Luis I. Granone, Ralf Dillert, Paul Heitjans, 

and Detlef W. Bahnemann, published in ChemistrySelect, 2019, 4, 1232-1239. After 

the effect of the degree of inversion on the photon absorption properties of ZFO were 

presented in the previous section, another physicochemical property directly related 

to the photoelectrochemical activity of the material is analyzed in this manuscript. 

Herein, the charge carrier transport properties of the samples synthesized by the 

method described in the previous chapter are studied as a function of the degree of 

inversion. Prof. Dr. Paul Heitjans (Institute of Physical Chemistry and 

Electrochemistry, Gottfried Wilhelm Leibniz University Hannover) contributed to this 

manuscript by providing support for the impedance spectroscopy measurements. 

The figures and tables identified through this chapter with the letter “B” are 

reproduced in Appendix B. 

 

3.2 Abstract 

 Spinel ferrites (MFe2O4, where M is a metal ion) in general, and zinc ferrite 

(ZnFe2O4, ZFO) in particular, have recently received considerable attention due to 

promising results in the field of photocatalysis and, especially, 

photoelectrochemistry. ZFO exhibits a variable crystal structure in which the 

distribution of the cations between octahedral and tetrahedral sites in the cubic 

close-packed oxygen lattice, i.e., the degree of inversion, is known to depend closely 

on the synthetic conditions. Although the effect on the magnetic and optical 

properties is well known, fundamental research is still missing to fully understand the 
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impact of the cation distribution on the photoelectrochemical activity. In this context, 

an utmost important physicochemical property is the electrical conductivity. In this 

work, the dielectric properties of ZFO samples with degrees of inversion ranging from 

0.07 to 0.20 were investigated. The conductivity of the ZFO samples was found to 

increase as the degree of inversion increases. At an onset value of the degree of 

inversion between 0.13 and 0.16, the bulk conductivity increases by two orders of 

magnitude. This increase is a direct evidence of the high impact of the cation 

arrangement in the crystal lattice on the electronic properties of ZFO. 

 

 

3.3 Introduction 

 Spinel ferrites (MFe2O4, M = metal ion) have proven to be versatile materials 

due to their magnetic,1,2 optical,3 catalytic,4,5 photocatalytic,6 and 

photoelectrochemical6,7 properties. Along with these properties, a remarkable 

flexibility concerning the arrangement of the cations in the crystal structure has also 

been reported.8 Normal spinel ferrites (T[M]O[Fe2]O4) crystallize in a face-centered 

cubic oxygen structure with M2+ cations occupying tetrahedral (T) sites and Fe3+ 

cations occupying octahedral (O) sites.9 In a spinel unit cell, 7/8 of the tetrahedral 

and 1/2 of the octahedral sites remain unoccupied. When all the M2+ cations are 

exchanged by Fe3+ cations, the ferrite adopts the so-called inverse structure 
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(T[Fe]O[MFe]O4) with M2+ cations occupying octahedral sites and Fe3+ cations 

occupying both octahedral and tetrahedral sites in a 1:1 ratio.10,11 Other 

configurations between normal and inverse are commonly observed and the degree 

of inversion, x, is the parameter employed to describe them according to T[M1-

xFex]O[MxFe2-x]O4, where 0 ≤ x ≤ 1. Among spinel ferrites, zinc ferrite (ZnFe2O4, ZFO) is 

widely studied due to its promising application in photoelectrochemistry as a 

photoanode material for solar-light-driven water oxidation.12-16 The 

thermodynamically most stable configuration of ZFO at 273.15 K and 100 kPa is the 

normal spinel structure (x = 0).17 However, several authors have shown that the 

degree of inversion strongly depends on the synthetic conditions.17-23 Therefore, the 

study of the effect of the degree of inversion on physicochemical properties, such as 

the conductivity, is of utmost importance. The conductivity of a photocatalyst 

influences the charge carrier mobility and, thus, the charge separation and 

efficiency.6,7 Zhu et al. have recently reported that ZFO samples with poor crystallinity 

and a high degree of inversion exhibit a higher efficiency for the 

photoelectrochemical water oxidation than samples with higher crystallinity and low 

degree of inversion.16 Other authors have investigated the influence of the grain size 

and the synthetic conditions on the electrical properties of ZFO.24–26 Ponpandian and 

Narayanasamy reported a decrease in the conductivity by the reduction of the grain 

size of nanocrystalline ZFO samples prepared by mechanical milling and heat 

treatment.26 In disagreement with the results of Ponpandian and Narayanasamy, 

Shanmugavani et al. reported an increase in the conductivity with a reduction of grain 

size of nanocrystalline ZFO prepared by the combustion method.24 Singh et al. studied 

the effect of intermediate annealing on the dielectric properties of ZFO samples 

synthesized by a nitrate route with a constant crystallite size of approximately 40 nm. 

The authors reported a decrease in the conductivity of the material annealed at 

higher temperatures.25 Although it is reported that the degree of inversion generally 

increases as the grain size decreases,20-22 it is also well known that particles with 

similar grain size can also exhibit different degrees of inversion. Therefore, the degree 

of inversion cannot be directly correlated to the grain size. Consequently, no 
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conclusions regarding the degree of inversion can be drawn by considering only the 

grain size. 

To the best of our knowledge, a study of the effect of the degree of inversion on the 

dielectric properties of ZFO without the interference of other parameters such as the 

crystallite size, crystallinity, or oxygen vacancies content, was missing. In the present 

work, a systematic analysis of the effect of the degree of inversion on the dielectric 

properties of ZFO is presented. The crystallinity and crystallite size of the samples, 

synthesized with differing x, were in the same order of magnitude. Thus, the degree 

of inversion was found to be the only independent variable between the different 

ZFO samples. 

 

3.4 Results and Discussions 

Zinc ferrite (ZFO) pellets with varying degree of inversion were prepared by 

controlling the annealing temperature of the samples during post-synthetic heat 

treatment.23 It is well known for bulk ZFO that the cation relocation is a temperature-

dependent reversible process.17–19 Hence, increasing degrees of inversion were 

obtained for the ZFO samples by calcination at temperatures ranging from 773 to 

1173 K and subsequent quenching in cold water.23 By two independent methods, i.e., 

XRD measurements in combination with Rietveld refinement and Mössbauer 

spectroscopy, degrees of inversion of 0.074, 0.104, 0.134, 0.159, and 0.203 were 

determined for samples calcined at 773 K, 873 K, 973 K, 1073 K, and 1173 K, 

respectively. Due to the initial high-temperature calcination steps at 1073 and 1273 

K, the crystallinity, crystallite size, and particle size of the different samples were in 

the same order of magnitude (Table 3.1). The absence of impurities or secondary 

phases, especially ZnO and γ-Fe2O3, was confirmed by XRD (Fig. B1 in the Supporting 

Information), Raman spectroscopy, and Mössbauer spectroscopy (Fig. B2). The 

Mössbauer spectra showed only doublets as expected for ZFO, thus confirming the 

absence of Fe2+ and, consequently, of oxygen vacancies for all the samples. 
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Furthermore, the elemental analysis revealed a Fe to Zn molar ratio close to 2:1 as 

expected for ZFO.23 The values of the Fe to Zn molar ratio, the degree of inversion, 

the average crystallite size, and the average particle size determined for the ZFO 

samples calcined at different temperatures are summarized in Table 3.1. 

Table 3.1. Calcination temperature, Fe to Zn molar ratio (nFe/nZn), degree of inversion x, average 

crystallite size (dCrystallite), and average crystallite size (dParticle) of the ZFO samples annealed at 

different temperatures. The data have been taken from Ref. 23. 

Sample 

Calcination 

temperature / 

K 

nFe / 

nZn 
Degree of inversion x[a] 

dCrystallite/ 

nm 

dParticle/ 

nm 

ZFO_773 773 
1.98 ± 

0.04 
0.074 ± 0.011 306(6) 

301 ± 

55 

ZFO_873 873 
1.98 ± 

0.05 
0.104 ± 0.013 293(5) 

300 ± 

45 

ZFO_973 973 
1.97 ± 

0.04 
0.134 ± 0.008 302(5) 

308 ± 

28 

ZFO_1073 1073 
1.98 

±0.03 
0.159 ± 0.010 327(6) 

299 ± 

35 

ZFO_1173 1173 
1.98 

±0.07 
0.203 ± 0.017 283(6) 

310 ± 

22 

[a] Averaged values obtained by Rietveld refinement and Mössbauer spectroscopy. 

In order to access information regarding the effect of the degree of inversion 

on the dielectric properties of the material, impedance spectroscopy was performed. 

The impedance spectra of polycrystalline samples are normally modeled using 

equivalent circuits to extract valuable information such as the bulk conductivity or 

the relative permittivity.27-29 Thus, a suitable correlation between the physical 

processes occurring due to the charge transfer through the sample and the elements 

of the proposed equivalent circuit is fundamental.30 Table B1 gives an overview of the 

equivalent circuits used to model impedance spectra of spinel ferrites. Mandal et al. 

have used a simple equivalent circuit consisting of a resistor and a capacitor 

connected in parallel to fit the impedance spectra of polycrystalline ZnFe2O4 and 
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Zn0.5Ni0.5Fe2O4 samples. The authors related the resistive and capacitive elements to 

the charge transfer and accumulation, respectively, at the grain boundaries of the 

materials. The dominating role of the grain boundaries was attributed to the 

nanometric grain size of the samples.31 Other authors have used equivalent circuits 

consisting of a series connection of two R‖C elements to model the charge transfer 

and accumulation at both, the grain and the grain boundaries of ferrite 

materials.26,32-35 As the complexity of the impedance spectra increases, additional 

elements are normally included in the equivalent circuit to model the measured data. 

Mekap et al. and Syue et al. have used an equivalent circuit consisting of three R‖C 

elements connected in series to model the impedance spectra of ZnFe2O4 and 

MnxZn1-xFe2O4 samples. Two of these R‖C elements were assigned to the charge 

transfer and accumulation processes at the grain and the grain boundaries while the 

third R‖C element was used to model the charge transfer and accumulation at the 

ferrite-electrode interface.36,37 When the time constants of the R‖C elements forming 

a series array differ by orders of magnitude, consecutive semicircles are observed in 

a plot of the negative of the imaginary part of the complex impedance vs. the real 

part (Nyquist plot).30 However, when the capacitance and the resistance of these 

elements are approximately in the same order of magnitude, a distorted semicircle is 

typically observed in a Nyquist plot. Several authors have reported similar equivalent 

circuits like the ones mentioned above in which some or all of the capacitors have 

been replaced by constant phase elements (CPEs) in order to properly model 

distorted semicircles (cf. equivalent circuits IV – VI in Table B1).38-41 CPEs are widely 

used to describe the frequency dependence of a non-ideal capacitive behavior in an 

impedance spectrum.42-44 However, the use of a CPE remains controversial45-47 

because this element usually does not provide information regarding the physical 

properties of the system. 

In this work, pellets made of ZFO samples having different degrees of 

inversion were attached in a sandwich configuration between two gold-plated 

electrodes using graphite conductive adhesive. Impedance measurements were 
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performed in a N2 atmosphere varying the temperature from 298 K to 448 K in steps 

of 25 K. The Nyquist plots obtained from the impedance measurements of the 

samples consisted of distorted semicircles with flattened shapes (Fig. 3.1 and Fig. B7-

B11 in the Supporting Information). In order to find a suitable model to fit the 

obtained results, two boundary conditions were imposed. The first condition was that 

the proposed equivalent circuit should model the impedance spectra of all the 

samples, independently of their degree of inversion and the temperature of the 

samples applied during the impedance measurements. This condition is based on the 

assumption that the mechanisms of the charge transfer processes occurring in the 

different ZFO samples are not significantly affected by the cation distribution of the 

samples and the temperature employed during the measurement. The second 

constraint was to include no CPE in the proposed equivalent circuit. As was 

mentioned above, the physical significance of a CPE is still a matter of debate and, 

therefore, information concerning the charge transfer and accumulation processes 

occurring in the materials may not be accurately derived from equivalent circuits 

containing a CPE. Only three of the equivalent circuits given in Table B1 meet this 

condition. The fitting of a ZFO Nyquist plot by using these three equivalent circuits is 

shown in the Supporting Information (Fig. B3–B5). As becomes obvious from these 

graphs, the values calculated for series circuits with up to three R‖C elements do not 

fit the determined values. The quality of the fits improves as the number of R‖C 

elements in the series circuit increases. However, even the circuit used by Mekap et 

al. and Syue et al. consisting of three R‖C elements connected in series36,37 does not 

provide an appropriate fit of the impedance spectra of the ZFO samples (Fig. B5). The 

experimental data were found to be fitted with sufficient accuracy by employing an 

equivalent circuit having a series connection of at least four R‖C elements (Fig. 3.1). 

Fig. 3.2 shows a schematic image of a ZFO electrode used for the measurements 

together with an illustration of the equivalent circuit applied for the fitting of the 

impedance spectra. 
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Fig. 3.1. Experimental (black points) and calculated (red dashed line) complex impedance data 

obtained at (A-B) 323 K and (C-D) 423 K for the ZFO samples with degree of inversion x ≈ 0.07, 

0.10, 0.13, 0.16, and 0.20. The complex impedance data were simulated with the equivalent 

circuit shown in Fig. 3.2 employing the EIS Spectrum Analyser software.48 

 

Fig. 3.2. Schematic image of a ZFO pellet attached with a graphite conductive adhesive in a 

sandwich configuration between two gold-plated electrodes. An equivalent circuit considering 

the charge transfer and accumulation at the electrode-sample interface, the bulk, and the grain 

boundaries of the polycrystalline material is schematized as well. 
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However, the obtained results lack physical meaning as far as the electrical 

double layer and the charge transfer of the grain, grain boundaries, and electrode-

sample interface are unequivocally correlated to capacitive and resistive elements, 

respectively. It is well known that capacitance associated with the electron transport 

inside the grains of the material has a lower value than the capacitances associated 

with transport processes occurring at the grain boundaries and pores.49 Typical values 

of the bulk capacitance (Cg) and the grain boundary capacitance are reported to be 

in the order of 10-12 F and 10-11−10-8 F, respectively.49 For the surface layer 

capacitance and the sample-electrode interface capacitance, larger values up to 10-5 

F are reported.49 In this study, capacitance values ranging from 10-9 F to 10-12 F are 

calculated for the ZFO samples (Tables B2–B6 in the Supporting Information). With 

the criterion that the lowest capacitance corresponds to the bulk capacitance,49-52 Cg 

is immediately correlated to one of the capacitive elements of the equivalent circuit. 

After the capacitance value is known, the bulk resistance Rg is deduced. The same 

method was applied to determine the bulk properties of the ZFO samples at different 

temperatures. Fig. 3.1(A-D) shows the complex impedance data measured at 323 K 

and 423 K for the ZFO samples with x ranging from 0.07 to 0.20. The results obtained 

by fitting the experimental data of all ZFO samples measured from 298 K to 448 K at 

temperature intervals of 25 K using the described equivalent circuit are presented in 

the Supporting Information (Fig. B7–B11 and Tables B2–B6). The equivalent circuit 

shown in Fig. 3.2 considers the charge transfer and accumulation at the electrode-

sample interface (R1‖C1), the bulk (R2‖C2), and the grain boundaries (R4‖C4) of the 

polycrystalline material. The nature of R3‖C3, which exhibits resistivity and capacitive 

values similar to those of the bulk resistance and capacitance (Tables B2–B6), is 

unclear. However, the occurrence of this R‖C element might be assumed to be due 

to two different reasons. One is the bulk inhomogeneity of the samples due to 

roughness or porosity, which are normally responsible for the flattened-shape of 

semicircles observed in Nyquist plots.42 The second reason is related to the degree of 

inversion of the ZFO samples. It is well-known that the conduction mechanism in ZFO 

is the electron hopping between Fe3+ cations.53 This mechanism might be affected if 
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the Fe3+ cations are placed either in tetrahedral or in octahedral sites. Thus, the 

degree of inversion introduces a structural anisotropy that is properly modeled by 

the R3‖C3 element. It is important to stress that, independently of the nature of R3‖C3, 

the bulk capacitance and resistance assigned using the criteria mentioned above 

(R2‖C2) can be used to extract information concerning the bulk conductivity of the 

material. Furthermore, due to the similarity between the resistivity and capacitive 

values of the R2‖C2 and R3‖C3 elements, no significant changes in the interpretation 

of the results are observed by correlating either R2‖C2 or R3‖C3 to the bulk electrical 

properties (Fig. B12 in the Supporting Information). 

Relevant information like the bulk conductivity, the activation energy for 

conduction, or the relative permittivity are derived from Rg, as was reported by 

Lanfredi and Rodrigues.30 Shortly, the bulk electrical conductivity σB is calculated as: 

  σB = l/(RgA)      (3.1) 

where l and A are the thickness and the area of the sample, respectively. 

Considering that the conductivity is thermally activated and follows an Arrhenius-

type law, the activation energy EA is deduced from the slope of a plot of ln(σBT) vs. 

1/T. 

  σBT = σ0 exp[–EA/(kT)]     (3.2) 

  ln(σBT) = ln σ0 – EA/(kT)    (3.3) 

where σ0 (unit different from that of σB), k, and T are the pre-exponential 

factor, the Boltzmann’s constant, and the temperature, respectively. The relative 

permittivity εB of the material is determined as: 

  εB = CBl/(ε0A)      (3.4) 

where ε0 is the vacuum permittivity and CB is the bulk capacitance. 

The Rg values obtained from the fitting of the complex impedance data were 

used to calculate the bulk electrical conductivity of the different ZFO samples 
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according to Eq. 3.1. Table 3.2 and Fig. 3.3A show the results obtained for σB at 298 

K for the ZFO samples with different degree of inversion. As the degree of inversion 

increases from 0.074 to 0.134, an increase of the conductivity is observed. However, 

σB remains in the order of the 10-9−10-8 S cm-1. Unexpectedly, there is an abrupt 

increase of two orders of magnitude when the degree of inversion increases from 

0.134 to 0.159. The range of conductivity values obtained (10-9−10-5 S cm-1) is in good 

agreement with the values presented by Shanmugavani et al. for nanocrystalline ZFO 

prepared by the combustion method. The authors reported an increase in the 

conductivity with a reduction of the grain size.24 It might thus be expected that the 

decrease in the grain size reported by Shanmugavani et al.24 is accompanied by an 

increase in the degree of inversion. Nevertheless, the opposite result was presented 

by Ponpandian and Narayanasamy. These authors reported a decrease in the 

conductivity with a reduction of grain size of nanocrystalline ZFO samples prepared 

by mechanical milling and heat treatment.26 It is well know that the degree of 

inversion increases and the grain size decreases with increasing milling time.54,55 

However, the crystallinity of the sample decreases as well. The ZFO samples with 

smallest grain sizes (7 and 13 nm) prepared by Ponpandian and Narayanasamy exhibit 

not only a very poor crystallinity but also the presence of oxygen vacancies created 

during the synthetic process.26 Thus, the degree of inversion of these samples cannot 

be predicted. The conductivity is affected not only by the particle size or the degree 

of inversion but also by the oxygen vacancies content and crystallinity of the 

samples.56 In a publication discussing the effect of the synthetic conditions on the 

dielectric properties of ZFO, Singh et al. reported an increase in the electrical 

resistivity (decrease in the conductivity) of approximately 1.4 orders of magnitude as 

the calcination temperature of a sample with constant crystallite size of 40 nm 

increases from 1073 K to 1273 K.25 This result seems to contradict the results reported 

in the present work. However, it should be considered that Singh et al. synthesized 

the ZFO nanocrystals by a nitrate route.25 Therefore, a high degree of inversion of at 

least 0.35 is expected for the samples annealed at low temperatures.53,57 The 

thermodynamically predicted degree of inversion for ZFO at 573, 773, 1073, and 1273 
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K is approximately 0.04, 0.12, 0.16, and 0.22, respectively.17,18 However, only when 

the temperature of calcination increases to values higher than 773 K, the cation 

diffusion becomes rapid enough17 to significantly change the degree of inversion. 

Thus, the degree of inversion of the samples calcined at low temperature is kinetically 

controlled and its value is, consequently, larger as predicted by the thermodynamic 

equilibrium.17 As the annealing temperature increases, the cation distribution 

process becomes thermodynamically controlled and the degree of inversion 

decreases toward the equilibrium value. Thus, it is expected that the sample 

annealed at 573 K exhibits the highest degree of inversion and, as the temperature 

increases, the degree of inversion as well as the conductivity of the samples 

decreases. In a recent publication, Zhu et al. reported conductivities of 89.1 ∙ 10-6 S 

cm-1 and 12.4 ∙ 10-6 S cm-1 for ZFO nanorods with degrees of inversion of 0.30 and 

0.13, respectively.16 This result is in good agreement with the conductivities 

measured here for the ZFO samples with a degree of inversion exceeding 0.13. 

Table 3.2. Bulk electrical conductivity (𝜎𝐵), relative permittivity (𝜀𝐵), and activation energy 

obtained at 298 K for the ZFO samples with increasing degree of inversion. 

Sample 
Degree of 

inversion x 

Bulk conductivity 

𝝈𝑩 at 298 K / S cm-1 

Relative 

permittivity 𝜺𝑩 

Activation 

energy EA / eV 

ZFO_773 0.074 ± 0.011 (9.28±0.31) ∙ 10-9 4.6 ± 0.2 0.47 ± 0.01 

ZFO_873 0.104 ± 0.013 (2.64±0.07) ∙ 10-8 4.3 ± 0.1 0.49 ± 0.01 

ZFO_973 0.134 ± 0.008 (9.88±0.29) ∙ 10-8 3.9 ± 0.1 0.46 ± 0.02 

ZFO_1073 0.159 ± 0.010 (1.75±0.02) ∙ 10-5 3.1 ± 0.1 0.20 ± 0.03 

ZFO_1173 0.203 ± 0.017 (1.82±0.02) ∙ 10-5 3.1 ± 0.1 0.24 ± 0.01 

Fig. 3.3B shows the AC conductivity of the ZFO samples at 298 K with 

increasing degree of inversion as a function of the frequency. The conductance 

spectra show a frequency-independent behavior at low frequencies. This region 

corresponds to the bulk conductivity and the extrapolation of the spectra to the limit 

of zero frequency gives the DC conductivity of the samples. In the high-frequency 

regime, the conductivity shows a logarithmic increase. This is due to the well-known 

increment in the electronic exchange of the electron hopping process occurring at 
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high frequencies.24 Fig. 3.3C shows plots of ln(σBT) as a function of 103/T. Considering 

a thermally activated conductivity that follows the Arrhenius law (Eq. 3.3), the 

activation energy is obtained from the slope of the plot presented in Fig. 3.3B. 

 

 

Fig. 3.3. (A) Bulk electrical conductivity (𝜎𝐵) obtained at 298 K for the ZFO samples as a function 

of the degree of inversion. (B) Module of the AC conductivity measured at 25 °C for the ZFO 

samples with increasing degree of inversion (grey arrow). (C) Plot of ln 𝜎𝐵 . 𝑇 as a function of 

103 𝑇⁄  (Arrhenius plot, Eq. 3.3) for the ZFO samples with increasing degree of inversion (grey 

arrow). • ZFO_773, x = 0.074 ± 0.011; • ZFO_873, x = 0.104 ± 0.013; • ZFO_973, x = 0.134 ± 0.008; 

• ZFO_1073, x = 0.159 ± 0.010; • ZFO_1173, x = 0.203 ± 0.017) 

As can be seen from Table 3.3, the activation energy decreases to 

approximately a half of the initial value as the degree of inversion increases from 

0.134 to 0.159. Activation energies around 0.45 eV are characteristic of the electron 

hopping process in Fe3+ cations at octahedral sites.26 Conduction due to oxygen 

vacancies has an activation energy of approximately 0.93 eV26 and such a change in 

the slope of the Arrhenius plot is not observed even in the high temperature regime. 

This is in agreement with the Mössbauer results that confirmed the absence of Fe2+ 
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and, hence, of oxygen vacancies for all the ZFO samples.23 The reduction in the 

activation energy suggests that the electron hopping becomes favored as the fraction 

of Fe3+ cations in tetrahedral sites increases. Table 3.3 shows the activation energies 

obtained for the ZFO samples with degree of inversion 0.134 and 0.203 together with 

values extracted from the literature for a distorted normal (CdFe2O4) and two 

distorted inverse (MgFe2O4 and NiFe2O4) spinel ferrites. 

Table 3.3. Activation energies of ZnFe2O4 samples with x ≈ 0.07 to 0.13 and x ≈ 0.16 to 0.20 

obtained in the present work together with activation energies of CdFe2O4, MgFe2O4, and NiFe2O4 

extracted from the literature. 

Compound Structure Activation energy / eV Reference 

ZnFe2O4 
Distorted normal (x ≈ 0.074 - 

0.134) 
0.46 – 0.49 This work 

ZnFe2O4 
Distorted normal (x ≈ 0.159 - 

0.203) 
0.20 - 0.24 This work 

CdFe2O4 Distorted normal[a]  0.46[b] 58 

MgFe2O4 Distorted inverse[a] 0.19 - 0.23[b] 59,60 

NiFe2O4 Distorted inverse[a] 0.17 – 0.20[b] 61,62 

[a] According to Chaumont et al.63, bulk CdFe2O4, MgFe2O4, and NiFe2O4 present degrees of 

inversion of around 0.12, 0.92, and 0.94, respectively. [b] These activation energies were 

determined with the Arrhenius equation σB = σ0 exp[–EA/(kT)] instead of the modified Arrhenius 

equation (Eq. 3.2). However, the difference between both approaches is small. 

As can be seen from Table 3.3, the activation energy of ZFO with x = 0.134 is 

similar to that of CdFe2O4. It is well known that CdFe2O4 has a distorted normal spinel 

structure with x ≈ 0.1263 and shows a conduction mechanism ruled by the electron 

hopping in Fe3+ cations placed mainly in octahedral sites.64 As the distortion of the 

ZFO structure increases, i.e., more Fe3+ cations are shifted from octahedral to 

tetrahedral sites, the activation energy decreases to values similar to that of spinel 

ferrites having a distorted inverse structure. The ZFO sample with x = 0.203 exhibits 

an activation energy similar to that of MgFe2O4 and NiFe2O4.59-62 Therefore, in 

samples with a degree of inversion higher or equal than 0.159, the electron hopping 

mechanism becomes remarkably favored by the Fe3+ cations placed in tetrahedral 
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sites. This is in agreement with the first-principles calculations reported by Sun et al.65 

The authors showed an insulator behavior for ZFO with a normal (x = 0) structure. 

Nevertheless, the calculations for ZFO structures with x = 0.25, x = 0.50, and x = 1 

demonstrated that the density of states near the Fermi energy increases as the 

degree of inversion increases.65 This change in the electronic structure might result 

in a higher conductivity. Another phenomenon affecting the dielectric properties is 

the superexchange interaction between Fe3+ cations present in O2--sharing 

octahedral and tetrahedral sites.65,66 There are no Fe3+ cations located at tetrahedral 

sites in the normal ZFO structure. However, as the degree of inversion increases, Zn2+ 

in the tetrahedral positions are exchanged by Fe3+ cations (Fig. 3.4) thus enabling 

superexchange interactions. It is deduced from the results presented in Table 3.2, 

that a minimum degree of inversion between 0.13 and 0.16 is necessary for the 

superexchange interactions to have a considerable impact on the conductivity of ZFO. 

 

Fig. 3.4. Crystallographic 3D structure of ZFO with a degree of inversion of x = 0.125. The Fe3+ 

cation pointed with a yellow arrow is located in a tetrahedral site due to the inversion with a Zn2+ 

cation now located in an octahedral site (green arrow). This partial inversion enables the 

superexchange interaction between O2--sharing Fe3+ cations located in octahedral and 

tetrahedral sites. The 3D structure was created with VESTA 3 visualization system.67 



Chapter 3: Effect of the Degree of Inversion on 
the Electrical Conductivity of Spinel ZnFe2O4 

62 
 

The photoelectrochemical water oxidation efficiency of a material depends 

on the synergetic interaction between six major processes: the photon absorption, 

exciton separation, carrier diffusion, carrier transport, catalytic efficiency, and mass 

transfer of reactants and products.68 The electrical conductivity has a large impact on 

two of these processes, i.e., the carrier diffusion and carrier transport.68,69 The reason 

is that the mobility of the charge carriers from the bulk of the material to the surface 

directly depends on the conductivity.68 Therefore, an improvement on the carrier 

diffusion and the carrier transport processes and, thus, on the photoelectrochemical 

efficiency, are expected as the conductivity of the material increases.16,69 Since small 

changes in the degree of inversion of ZFO lead to large changes in the conductivity, 

the cationic disorder has a major impact on its photoelectrochemical water oxidation 

efficiency.16 Hence, the degree of inversion must be taken into consideration when 

the photoelectrochemical activity of ZFO is investigated. 

 

3.5 Conclusions 

 A remarkable effect of the cation distribution within the oxygen lattice of 

spinel zinc ferrite on the electrical conductivity was clearly evidenced by the 

systematic analysis of samples having degrees of inversion increasing from 0.074 to 

0.203. Other factors, such as oxygen vacancies and crystallite size, which are known 

to affect the electrical conductivity of ZFO, were excluded as the cause of the 

measured effect. Unexpectedly, the activation energy for the electrical conductivity 

was found to decrease from 0.46 to 0.20 eV when the degree of inversion exhibits a 

value between 0.13 and 0.16. As a consequence, the bulk conductivity increases by 

two orders of magnitude from 9.88 ∙ 10-8 S cm-1 to 1.75 ∙ 10-5 S cm-1. Due to the partial 

inversion, the ratio of Fe3+ cations located in tetrahedral sites increases and the 

interaction between O2--sharing Fe3+ cations located in octahedral and tetrahedral 

sites becomes more pronounced. The electron hopping mechanism might be 

promoted by this interaction resulting in the observed increase in the conductivity. 
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From the obtained results, it becomes evident that the conductivity of ZFO is largely 

degree-of-inversion-dependent. Thus, the degree of inversion of a spinel ferrite 

should always be determined in order to achieve a significant characterization of the 

material. The presented results are a step forward to understand the implication of 

the degree of inversion in the physicochemical properties of ZFO.  
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Chapter 4 

Effect of the Degree of Inversion on the Photoelectrochemical Activity 

of Spinel ZnFe2O4 

4.1 Foreword 

This chapter comprises the manuscript Effect of the Degree of Inversion on the 

Photoelectrochemical Activity of Spinel ZnFe2O4 by Luis I. Granone, Konstantin Nikitin, 

Alexei Emeline, Ralf Dillert, and Detlef W. Bahnemann, published in Catalysts, 2019, 

9, 434. In this chapter, the effect of the cation distribution on the electronic 

properties, as well as the photoelectrochemical activity of ZFO is studied. In the 

previous section, the large impact observed on the charge carrier transport 

properties as the degree of inversion increases was assumed to directly affect the 

photoelectrochemical activity of ZFO. In this chapter these assumptions are 

confirmed by measuring the photoelectrochemical activity of the ZFO samples having 

different cation distributions. Furthermore, the electronic properties of the different 

samples are investigated. Prof. Dr. Alexei Emeline and Konstantin Nikitin (Laboratory 

“Photoactive Nanocomposite Materials”, Saint-Petersburg State University) 

contributed to this manuscript by performing the Kelvin Probe measurements. 

 

4.2 Abstract 

Physicochemical properties of spinel ZnFe2O4 (ZFO) are known to be strongly 

affected by the distribution of the cations within the oxygen lattice. In this work, the 

correlation between the degree of inversion, the electronic transitions, the work 

function, and the photoelectrochemical activity of ZFO was investigated. By room-

temperature photoluminescence measurements, three electronic transitions at 

approximately 625, 547, and 464 nm (1.98, 2.27, and 2.67 eV, respectively) were 

observed for the samples with different cation distributions. The transitions at 625 

and 547 nm were assigned to near-band-edge electron-hole recombination 
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processes involving O2- 2p and Fe3+ 3d levels. The transition at 464 nm, which has a 

longer lifetime, was assigned to the relaxation of the excited states produced after 

electron excitations from O2- 2p to Zn2+ 4s levels. Thus, under illumination with 

wavelengths shorter than 464 nm, electron-hole pairs are produced in ZFO by two 

apparently independent mechanisms. Furthermore, the charge carriers generated by 

the O2− 2p to Zn2+ 4s electronic transition at 464 nm were found to have a higher 

incident photon-to-current efficiency than the ones generated by the O2− 2p to Fe3+ 

3d electronic transition. As the degree of inversion of ZFO increases, the probability 

of a transition involving the Zn2+ 4s levels increases and the probability of a transition 

involving the Fe3+ 3d levels decreases. This effect contributes to the increase in the 

photoelectrochemical efficiency observed for the ZFO photoanodes having a larger 

cation distribution. 

 

 

4.3 Introduction 

 During the last few years, there has been increasing interest in the study of 

spinel ZnFe2O4 (ZFO) as a photoanode material for photoelectrochemical water 

oxidation.1-3 As new scientific investigations in this field are reported, differences 

concerning the photoelectrochemical activity of ZFO photoanodes prepared by 

different routes have become evident.4-11 It is well known that ZFO exhibits a variable 

structure where the distribution of Zn2+ and Fe3+ cations between octahedral and 
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tetrahedral sites within the crystal lattice depends on the synthetic conditions.12-18 

Therefore, the reason behind the broad variety of results found in the scientific 

literature for ZFO photoanodes might be related to the cation distribution. The 

parameter used to quantify the cation distribution is the degree of inversion, x, which 

is defined as T[Zn1−xFex]O[ZnxFe2−x]O4 with 0≤ x ≤1 (where the superscripts T and O 

denote the tetrahedral and octahedral sites, respectively). When x = 0 and x = 1, ZFO 

adopts the so-called normal (T[Zn]O[Fe2]O4) and inverse (T[Fe]O[ZnFe]O4) structure, 

respectively. The degree of inversion of bulk ZFO can be controlled by the calcination 

of the samples at temperatures higher than 737 K and subsequent quenching.12–15 

Thus, bulk ZFO samples with x ranging from approximately 0.02 to 0.20 can be 

prepared. Pavese et al.13 reported degrees of inversion up to x ≈ 0.34 at 1600 K for 

bulk ZFO by in situ high-temperature neutron powder diffraction measurements. 

Nevertheless, as shown by O’Neill,12 degrees of inversion higher than x ≈ 0.20 cannot 

be experimentally accessed for bulk ZFO samples prepared by means of a solid-state 

reaction and subsequent quenching. Calcination temperatures higher than 1200 K 

are required to increase the degree of inversion above this upper limit and, under 

these conditions, the rate of re-ordering is too fast to quench the sample. For 

nanoparticulate ZFO, higher degrees of inversion are likely to be obtained,16–18 and 

the synthesis of ZFO nanoparticles having an almost completely inverted structure (x 

= 0.94) has been reported.19 

In a recent publication, Zhu et al.8 reported that the cation distribution in 

partially reduced ZFO anodes affected the performance of light-induced water 

oxidation. The authors showed that partially reduced ZFO had a relatively poor 

crystallinity, but a high degree of inversion exhibited superior photogenerated charge 

carrier transport when compared to ZFO with a high crystallinity but a low degree of 

inversion. The research of Zhu et al. pioneered the investigation of the effect of the 

cation distribution on the photoelectrochemical activity of ZFO. However, a study of 

the effect of the degree of inversion on the photoelectrochemical activity of pristine 
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ZFO samples exhibiting uniform particle size, crystallinity, and crystallite size is, to the 

best of our knowledge, missing. 

Recently, we reported the preparation of ZFO by a solid-state reaction and its 

further processing into pellets with varying degrees of inversion.14,20 The elemental 

analysis of the ZFO pellets revealed a Fe to Zn ratio of 2:1 within the limit of the 

experimental error, as expected for ZFO.14 The absence of non-reacted α-Fe2O3 and 

ZnO as well as the absence of secondary iron oxide phases, were confirmed by XRD 

and Raman spectroscopy.14 Mössbauer spectroscopy confirmed the absence of Fe2+ 

and, hence, of oxygen vacancies for all the ZFO pellets.14 The crystallite size values 

deduced from the Rietveld refinements and the particle size distribution obtained 

from the SEM confirmed that the pellets exhibited similar crystallite and particle sizes 

independently of the degree of inversion.14,20 Thus, the degree of inversion was found 

to be the only independent variable between the different ZFO pellets. These 

characteristics made it possible to investigate the impact of the degree of inversion 

on the photoelectrochemical activity of ZFO photoanodes unaffected by other 

variable parameters such as impurities, the number of oxygen vacancies, the particle 

size, the crystallite size, and the crystallinity. 

In the present work, the photoelectrochemical activity of photoanodes made 

of pristine ZFO with degrees of inversion increasing from x ≈ 0.07 to x ≈ 0.20 is 

reported. Furthermore, the effect of the cation distribution on electronic properties 

such as the Fermi level and the electronic structure was investigated for the first time. 

The electronic structure was studied by means of time-averaged and transient room-

temperature photoluminescence spectroscopy. It is well known that the 

photoluminescence spectrum of a material depends on its particle size, crystallinity, 

and the presence of point defects.21,22 Therefore, the crystallinity and crystallite size 

homogeneity of the synthesized ZFO pellets is of utmost importance in order to 

access meaningful information concerning the effect of the degree of inversion on 

the photoluminescence properties. The nature of the observed transitions as well as 

their lifetime and the impact of the degree of inversion are discussed. 
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4.4 Results 

ZFO pellets with degrees of inversion of x ≈ 0.07 (ZFO_773), x ≈ 0.10 

(ZFO_873), x ≈ 0.13 (ZFO_973), x ≈ 0.16 (ZFO_1073), and x ≈ 0.20 (ZFO_1173) were 

prepared by employing a spinel zinc ferrite synthesized by a solid-state reaction as 

reported previously.14 In order to access information concerning the porosity of the 

ZFO pellets, N2 and Ar physisorption isotherms were measured. Total pore volumes 

below 10 cm3 g−1 were obtained for all pellets. These values were at the lower limit 

of quantification, suggesting that the samples did not exhibit a considerable porosity. 

This is an expected result for dense pellets pressed at high pressure. Other 

consequences of the low porosity were small BET surface areas below 10 m2 g−1. The 

pellets exhibited values ranging from 3.0 to 9.9 m2 g−1 with an average of 5.3 m2 g−1 

and no systematic trend concerning the degree of inversion. Thus, independent of 

the degree of inversion, negligible total pore volumes and sizes were obtained for the 

different ZFO pellets. The photoelectrochemical activity of the photoanodes was 

evaluated by measuring the photocurrent for the methanol oxidation reaction. Fig. 

4.1A shows the current density – voltage (j-V) curves measured under chopped solar 

simulated light for the ZFO photoanodes with increasing degrees of inversion. The 

light was turned on and off at 20 s intervals. Onset photocurrents for the methanol 

oxidation were observed at an anodic bias potential of around +0.9 V vs. RHE. At a 

bias potential of +1.2 V vs. RHE, the dark currents were still negligible and the 

photocurrents were high enough to allow a direct comparison between the different 

photoanodes. Fig. 4.1B shows the chopped light chronoamperometry measured at 

an applied bias of +1.2 V vs. RHE. It was observed that the photocurrent for the 

methanol oxidation increased as the degree of inversion rose from x ≈ 0.07 to x ≈ 

0.20. The photoanodes with degrees of inversion of x ≈ 0.07, x ≈ 0.10, and x ≈ 0.13 

showed current densities below 0.05 µA cm−2. There was a significant increase in the 

current density from 0.05 to 0.24 µA cm−2 as the degree of inversion increased from 

x ≈ 0.13 to x ≈ 0.16. The current density further increased up to 0.77 µA cm−2 as the 

degree of inversion increased from x ≈ 0.16 to x ≈ 0.20. 
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Fig. 4.1. (A) Current density − voltage curves for the photoanodes made from ZFO pellets with 

different degrees of inversion. The measurements were performed in a 50% v/v methanol 

aqueous solution containing 0.1 mol L−1 KNO3 under chopped solar simulator irradiation (intensity 

output of 680 W m−2). The light was turned on and off at 20 second intervals. (B) Chopped light 

chronoamperometry for the ZFO photoanodes measured with an externally applied bias of +1.2 

V vs. RHE. x = 0.074 (ZFO_773); x = 0.104 (ZFO_873); x = 0.134 (ZFO_973); x = 0.159 (ZFO_1073); 

and x = 0.203 (ZFO_1173). 

Fig. 4.2 shows the result of an incident photon-to-current efficiency (IPCE) 

measurement performed with the ZFO photoanode with a degree of inversion of x ≈ 

0.20 (ZFO_1173). This photoanode showed the highest photocurrent density for the 

methanol oxidation (0.77 μA cm−2, Fig. 4.1B). Considering the optical properties of 

the ZFO_1173 pellet reported previously,14 the absorbed photon-to-current 

efficiency (APCE) was calculated. It can be observed from Fig. 4.2 that the APCE and, 

therefore, the ratio between the number of photogenerated holes reacting with 

methanol and the number of absorbed photons increased as the wavelength of the 

incident light became shorter. Thus, the photoanode converts the incident light into 

an electrical current more efficiently as the energy of the photons emitted by the 

excitation source increases. 

(A) (B) 
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Fig. 4.2. IPCE and APCE of the ZFO photoanode with x ≈ 0.20 measured under an externally applied 

bias of +1.2 V vs. RHE in a 50% v/v methanol aqueous solution containing 0.1 mol L−1 KNO3. A 

monochromator was used for fine-tuning the wavelengths of the analyzing light to a final 

resolution of 1 nm. 

Fig. 4.3 shows the work function measured by the Kelvin probe technique for 

the ZFO pellet samples with different degrees of inversion. It was observed that the 

work function exhibited values ranging from 5.28 to 5.47 eV. Considering the 

experimental uncertainty (± 0.13 eV), no significant changes in the Fermi level were 

observed as the degree of inversion of the ZFO pellets increased. 

Time-averaged room-temperature photoluminescence measurements were 

carried out to investigate the effect of the degree of inversion on the electronic 

structure of ZFO. It becomes obvious from Fig. 4.4 that all pellets exhibited three 

emission signals at approximately 464, 547, and 625 nm. The relative fluorescence 

quantum yield of the photoluminescence was determined by using quinine 

hemisulfate as a standard. Fluorescence quantum yields of 0.05% for the ZFO pellets 

with degrees of inversion of x ≈ 0.07, x ≈ 0.10, and x ≈ 0.13, 0.04% for the pellet with 

x ≈ 0.15, and 0.03% for the pellets with x ≈ 0.20 were obtained. 
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Fig. 4.3. Work function of the ZFO pellet samples with degrees of inversion ranging from x ≈ 0.07 

to x ≈ 0.20. The values were measured using a scanning Kelvin probe system. Before the 

measurement, the pellets were calcined at 673 K for 12 h to remove adsorbed water. 

 

 

Fig. 4.4. Time-averaged room-temperature photoluminescence of the ZFO pellets as a function 

of the degree of inversion. An excitation wavelength of 355 nm with an emission slit width of 10 

nm was used for the measurement. 
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Fig. 4.5. (A) Transient room-temperature photoluminescence spectra of the ZFO pellets as a 

function of the degree of inversion. The third harmonic (355 nm) of a Brilliant Nd:YAG laser with 

a pulse duration of 6 ns was used as the excitation source. The spectra were measured 28 ns after 

the excitation. x = 0.074 (ZFO_773); x = 0.104 (ZFO_873); x = 0.134 (ZFO_973); x = 0.159 

(ZFO_1073); and x = 0.203 (ZFO_1173). (B) Transient room-temperature photoluminescence 

spectra of the ZFO pellet with x = 0.074 (ZFO_773) measured at different points in time after the 

355 nm laser excitation. 

Transient room-temperature photoluminescence measurements were 

conducted to study the lifetime of the electronic transitions. Fig. 4.5A shows the 

photoluminescence spectra of the ZFO pellets with different degrees of inversion 

measured at 28 ns after the 355 nm laser excitation. Since 10 nm steps were used to 

record the transient signals, the spectral resolution was lower in comparison to the 

time-averaged measurements. Thus, the emission observed at approximately 625 nm 

in the time-averaged photoluminescence measurements (Fig. 4.4) was not detected 

in the transient measurements. However, the emissions centered at 547 and 464 nm 

were clearly observed. The emission centered at 464 nm showed a higher intensity 

than the emission centered at 547 nm. Fig. 4.5B shows the room-temperature 

photoluminescence spectra of the ZFO pellet with a degree of inversion of x ≈ 0.07 

(ZFO_773) measured at different times after the laser excitation. The emission signal 

centered at 464 nm was weakly observed at 208 ns after the excitation, while the 

(A) (B) 
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emission signal centered at 547 nm was no longer observed at 148 ns after the 

excitation  

 

4.5 Discussion 

 A series of ZFO photoanodes with different cation distributions between the 

tetrahedral and octahedral sites of the oxygen lattice were investigated to study the 

impact of the degree of inversion on the photoelectrochemical activity of ZFO. Due 

to the high-temperature calcination steps carried out during the preparation of the 

samples, large crystallite sizes of approximately 300 nm were obtained.14 Large 

crystallite sizes imply large diffusion lengths for the photogenerated charge 

carriers.23,24 Consequently, the charge carrier recombination rate increases and the 

photoelectrochemical efficiency of the material decreases.25 Furthermore, low active 

surface areas are expected as the crystallite size increases.23,24 Therefore, the large 

crystallite size of the ZFO photoanodes were responsible for the low photocurrent 

values obtained for the photoelectrochemical methanol oxidation (Fig. 4.1). The large 

thickness of the films (approximately 750 μm) also had a negative impact on the 

photoelectrochemical activity for the same reasons above-mentioned. Higher 

photocurrent densities are reported in the literature for ZFO photoelectrodes.4,6,26,27 

In fact, the current benchmark in the performance of a partially reduced ZFO 

photoanode for solar water oxidation is 1.0 mA cm−2 at 1.23 V.8 However, the aim of 

this work was to understand the impact of the degree of inversion on both the 

electronic properties and the photoelectrochemical activity of ZFO. The large particle 

size and thickness of the prepared ZFO electrodes as well as the absence of oxygen 

vacancies were the main reasons behind the observed low photocurrents. These 

drawbacks cannot be avoided when the synthesis of pristine ZFO samples in which 

the degree of inversion is the only independent variable is intended. However, 

although the measured photocurrents were below 1.0 μA cm−2, an impact of the 

degree of inversion on the current density was clearly observed. It becomes obvious 
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from Fig. 4.1 that an increase of the cation distribution results in an increase in the 

photoelectrochemical activity of ZFO. The electrical conductivity of the pellets used 

in the present work was reported in a previous study.20 An increase in the 

conductivity from 9.28 × 10−9 to 1.82 × 10−5 S cm−1 was observed as the degree of 

inversion increased from x ≈ 0.07 to x ≈ 0.20.20 Interestingly, a significant increase of 

two orders of magnitude was observed in the conductivity by increasing the degree 

of inversion from x ≈ 0.13 to x ≈ 0.16. This increase in the conductivity agreed with 

the large increase in the photocurrent from 0.05 to 0.24 μA cm−2 that was observed 

for methanol oxidation as the degree of inversion increased from x ≈ 0.13 to x ≈ 0.16 

(Fig. 4.1B). It becomes evident from the preceding discussion that the increase in the 

electrical conductivity of the pellets with a higher degree of inversion is closely 

related to the improvement of the photoelectrochemical activity. However, the 

interrelation between the photoelectrochemical activity and the degree of inversion 

might also be related to other physicochemical properties of ZFO. Therefore, the 

impact of the cation distribution on the work function and the electronic transitions 

of ZFO was investigated. 

As mentioned in the previous section, no significant changes in the work 

function were observed as the degree of inversion of the ZFO pellets increased. In a 

semiconductor, the work function represents the minimum energy required to 

remove an electron from the Fermi level into the free space.28 The work function 

values obtained for the ZFO pellets corresponded, considering the IUPAC 

recommended value of −4.44 V for the absolute electrode potential of the hydrogen 

electrode,29 to Fermi levels around +0.94 V vs. SHE. Sun et al.5 reported work function 

values ranging from 5.46 to 5.55 eV (+1.02 and +1.11 V vs. SHE) for mesoporous ZFO 

nanoparticles obtained via an evaporation-induced self-assembly method and 

calcined at different temperatures. The results were in good agreement with the 

values obtained in the present work. The work function of a semiconductor strongly 

depends on its doping level.30 As well as for many n-type metal oxide 

semiconductors,31 the mechanism for n-type doping of ZFO is the formation of 
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oxygen vacancies,32 which results in the reduction of Fe3+ to Fe2+.33 As no Fe2+ was 

detected by Mössbauer spectroscopy for the ZFO pellets used in this work,14 a low 

donor density was expected. The high work function values obtained and the large 

anodic potential necessary for the methanol photoelectrochemical oxidation were 

the consequences of the low donor density. Furthermore, as similar work functions 

were observed for the different pellets, it was concluded that their donor densities 

were in the same order of magnitude and did not depend on the degree of inversion. 

For highly doped ZFO samples, work function values between 4.23 and 4.97 eV (−0.21 

and +0.53 V vs. SHE) have been reported in the literature.27,34–36 

The optical band gap and the nature of the optical transitions of the pellets 

used for the present work were determined by measuring the diffuse reflectance and 

applying the derivation of absorption spectrum fitting (DASF) method, as was shown 

in a previous report.14 Independent of the degree of inversion, the pellets exhibited 

an indirect band gap transition at approximately 614 nm (2.02 eV), and a direct band 

gap transition at approximately 532 nm (2.33 eV).14 These values were in good 

agreement with the 1.9 and 2.3 eV reported by Guijarro et al.27 for the indirect and 

direct band gap, respectively. From density functional theory calculations, Yao et al.37 

showed that the valence band of ZFO consisted of O2− 2s, Zn2+ 3d, Fe3+ 3d, and O2− 2p 

states. However, the valence band edge consisted of Fe3+ 3d and mainly O2− 2p 

states.37 The conduction band edge consisted of O2− 2p and mainly Fe3+ 3d states.37 

At higher energies, the contribution from the Zn2+ 4s states was observed in the 

density of states. Lv et al.38 claimed that the energy band structures of ZFO were 

defined by considering the O2− 2p levels as the valence band edge and the Fe3+ 3d 

levels as the conduction band edge. The emissions observed in Fig. 4.4 at 

approximately 547 and 625 nm were in reasonable agreement with the direct and 

indirect band gap transitions at 532 and 614 nm, respectively.14 Thus, these bands 

were ascribed to near-band-edge emissions due to the electron relaxation from Fe3+ 

3d levels located in the conduction band edge to O2− 2p levels in the valence band 

edge.39,40 The emission centered at 464 nm might be related to transitions involving 
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the Zn2+ cations.41,42 It is well known for Fe-doped ZnO that the near-band-edge 

emission of ZnO centered at approximately 379 nm becomes red-shifted as the 

amount of Fe increases.42,43 If the amount of Fe is high enough and spinel ZFO is 

formed as a secondary phase, a new emission centered at 464 nm is observed.42 

Therefore, the transition observed at approximately 464 nm could be ascribed to the 

electron relaxation from Zn2+ 4s levels within the conduction band to O2− 2p in the 

valence band edge. This assignment agrees with the density of states presented by 

Yao et al.37 Regardless of the nature of the electronic transitions, it is important to 

stress that the conduction band of ZFO does not exhibit a continuous density of 

empty electronic energetic states. Contradicting the semiconductor band theory,44 

the conduction band of photoexcited electrons were delocalized in confined densities 

of states involving either Fe3+ 3d levels or Zn2+ 4s levels. Whether the photoexcited 

electron is delocalized in Fe3+ 3d levels or Zn2+ 4s levels depends on the energy of the 

excitation source. A scheme of the electronic excitation mechanism of ZFO is shown 

in Fig. 4.6. 

 

Fig. 4.6. Scheme of the electronic transitions observed for ZFO when photons with wavelengths 

shorter than 464 nm (energy higher than 2.67 eV) are used for the excitation. 

The influence of the O2− 2p to Fe3+ 3d (indirect and direct) and the O2− 2p to 

Zn2+ 4s electronic transitions on the photoelectrochemical efficiency of ZFO was 

deduced from the APCE measurement. According to Fig. 4.2, when the ZFO 

photoanode is irradiated with light at wavelengths longer than 600 nm, the APCE is 
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approximately zero. Thus, the methanol oxidation efficiency of the charge carriers 

generated via the indirect O2− 2p to Fe3+ 3d transition (625 nm) is negligible. As also 

reported by Guijarro et al.,27 the indirect transition of ZFO does not effectively drive 

photoelectrochemical processes. The APCE increases as wavelengths ranging from 

475 to 600 nm are used for the excitation of the photoanode. Under these irradiation 

conditions, the direct O2− 2p to Fe3+ 3d transition occurs and the generated charge 

carriers can convert the incident light into an electrical current. Interestingly, a 

significant increase in the APCE values can be observed when the photoanode is 

irradiated with light at wavelengths shorter than 475 nm. This phenomenon could be 

attributed to two reasons. One is the increase in the absorptivity of the material as is 

observed from the diffuse reflectance measurements of the ZFO pellets reported 

elsewhere.14 The second reason is the contribution of the charge carriers generated 

by the electronic transition from O2− 2p to Zn2+ 4s levels (464 nm). The absorption 

coefficient of ZFO has approximately the same magnitude for wavelengths ranging 

from 400 to 500 nm.45,46 Hence, the significant increase in the APCE should be 

observed at wavelengths longer than 475 nm if the larger light absorption of the 

material is responsible for this effect. Therefore, the increase in the APCE values at 

wavelengths shorter than 475 nm must be mainly due to the contribution to the 

methanol photooxidation of the charge carriers generated via the O2− 2p to Zn2+ 4s 

electronic transition (464 nm). 

The data presented in Fig. 4.4 revealed that the degree of inversion affected 

the relative intensity of the room-temperature photoluminescence bands of ZFO. As 

the cation disorder increased, the intensity of the near-band-edge emission centered 

at 547 nm decreased, and the intensity of the emission centered at 464 nm increased. 

These emission bands were the result of electron-hole recombination processes and, 

thus, it is reasonable to assume that the observed increase or decrease in the 

emission intensity is due to an increase or decrease, respectively, in the number of 

generated electron-hole pairs. Therefore, as Zn2+ cations located in tetrahedral sites 

are interchanged by Fe3+ cations from octahedral sites, the probability of the 
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electronic transition at 464 nm (from O2− 2p to Zn2+ 4s levels) increases and the 

probability of the near-band-edge electronic transitions (from O2− 2p to Fe3+ 3d 

levels) decreases. From the time-averaged photoluminescence measurements, it was 

observed that the intensity of the emission centered at 547 nm was higher than that 

of the emission centered at 464 nm (Fig. 4.4). However, transient photoluminescence 

measurements showed a higher intensity for the emission centered at 464 nm (Fig. 

4.5A). This can be explained by a faster decay of the emission centered at 547 nm. In 

fact, the signal centered at 547 nm was no longer observed at 148 ns after the 

excitation while the signal centered at 464 nm (due to the relaxation of the O2− 2p to 

Zn2+ 4s electron excitation) was observed even 208 ns after the excitation (Fig. 4.5B). 

As discussed above, the electron-hole pairs generated by the electronic 

transitions observed at 547 and 464 nm are involved in the photoelectrochemical 

process occurring at the ZFO electrodes. It was shown that the transition centered at 

464 nm had a higher efficiency for photoelectrochemical methanol oxidation than 

the transition centered at 547 nm (Fig. 4.2). However, the valence band holes 

generated via both transitions had the same redox potential and, therefore, the same 

oxidizing activity. The higher efficiency of the transition centered at 464 nm was due 

to the longer lifetime of the generated charge carriers (Fig. 4.5B). As the degree of 

inversion of the ZFO pellets increased, both, the amount of O2− 2p to Zn2+ 4s 

electronic transitions and the photoelectrochemical activity increased. 

 

4.6 Materials and Methods 

Polycrystalline ZFO samples with degrees of inversion increasing from x ≈ 0.07 

to x ≈ 0.20 were synthesized by means of a solid-state reaction as reported 

previously.14 Briefly, stoichiometric amounts of ZnO (60 mmoles, Sigma Aldrich, 

Taufkirchen, Germany, ≥ 99.0%) and α-Fe2O3 (60 mmoles, Sigma Aldrich, Taufkirchen, 

Germany, ≥99.0%) powders were ground in an agate mortar. The mixture was 

calcined in air at 1073 K for 12 h, cooled down to room temperature, and ground 
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once again. Aliquots of 0.500 g were pressed into 13 mm diameter pellets applying a 

pressure of 55 MPa. The pellets were calcined at 1273 K for 2 h, cooled down to 1073 

K and kept at this temperature for 12 h, then cooled down to 773 K and kept at this 

temperature for 50 h, and finally quenched in cold water. Some of the pellets 

(referred as ZFO_773) were separated and the rest were divided into four sets of 

pellets. These pellets were heated up with a rate of 300 K h−1 and calcined at 873, 

973, 1073, and 1173 K for 25, 20, 12, and 10 h, respectively. As reported by O’Neill,12 

these calcination times were sufficiently long for the ZFO pellets to reach a steady-

state value of the degree of inversion. After this period of time, the calcined pellets 

were immediately quenched in cold water. These pellets are referred as ZFO_873, 

ZFO_973, ZFO_1073, and ZFO_1173. The ZFO pellets were sanded with Al2O3 

sandpaper (KK114F, grit size P320, VSM Abrasives, Hannover, Germany) to a final 

thickness of 0.75 mm ± 0.02 mm.  

Molecular nitrogen physisorption isotherms were measured at 77 K on a 

Quantachrome Autosorb-3MP instrument and argon physisorption isotherms were 

measured at 87 K on a Quantachrome Autosorb-1 instrument (3P Instruments GmbH 

& Co. KG, Odelzhausen, Germany). The pellets were outgassed in vacuum at 423 K 

for 24 h prior to the sorption measurements. Surface areas were estimated by 

applying the Brunauer–Emmett–Teller (BET) equation47 and the total pore volumes 

were estimated by the single-point method at p/p0 = 0.95.  

Electrochemical and photoelectrochemical measurements were performed 

by employing a ZENNIUM Electrochemical Workstation (Zahner Scientific 

Instruments, Kronach, Germany) equipped with a three-electrode electrochemical 

cell with a Pt counter electrode and an Ag/AgCl/NaCl (3 mol kg−1) reference electrode. 

ZFO working electrodes were prepared by attaching a copper wire with silver paint 

(Ferro GmbH, Frankfurt am Main, Germany) and conductive epoxy (Chemtronics, 

Kennesaw, GA, USA) to one face of the pellet sample. Photoelectrochemical 

measurements were performed in a 50% v/v methanol aqueous solution containing 

0.1 mol L−1 KNO3. A solar simulator (LOT-Quantum Design GmbH, Darmstadt, 
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Germany ) consisting of a 300 W xenon-arc lamp provided with an AM 1.5-global filter 

was used as the irradiation source. An intensity output of 680 W m−2 at the position 

of the working electrode was measured using a SpectraRad Xpress spectral irradiance 

meter (B&W Tek, Newark, DE, USA). For the IPCE measurements, a TLS03 tunable 

light source (Zahner Scientific Instruments, Kronach, Germany) consisting of an array 

of monochromatic LEDs with emission wavelengths ranging from 400 to 650 nm was 

used. A monochromator was employed for fine tuning the wavelengths to a final 

resolution of 1 nm. 

A scheme of the set-up used for the transient photoluminescence 

spectroscopy is shown in Fig. 4.7. The third harmonic (355 nm) of a Brilliant Nd:YAG 

laser (Quantel, Lannion, France) with a pulse duration of 6 ns was used as the 

excitation source. A laser intensity of 3.0 mJ per pulse was selected for the 

measurements. The intensity of the laser was measured using a Maestro laser power 

meter (Gentec-EO, Québec, Canada). The angle of the laser beam path was adjusted 

by rotating a Pellin-Broca prism beam steering module. The illumination area of the 

laser beam was approximately 0.5 cm2. The light emitted by the pellets after the laser 

excitation was collected by a Spectrosil lens and directed toward the monochromator 

by a folding mirror. The monochromator was connected with a PMT R928 

photomultiplier detector (Hamamatsu Photonics, Hamamatsu, Japan). To avoid the 

overloading of the photomultiplier, a 370 nm cut off filter was introduced in front of 

the monochromator entrance. For the transient photoluminescence measurements, 

a constant voltage of 700 V was applied to the photomultiplier. 
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Fig. 4.7. Scheme of the diffuse reflectance setup used for the transient photoluminescence 

measurements. The 355 nm laser excitation is shown in violet and the radiation emitted by the 

ZFO pellet is represented in yellow. 

Time-averaged photoluminescence measurements were performed in an F-

7100 fluorescence spectrophotometer (Hitachi, Tokyo, Japan). A wavelength of 355 

nm was selected as the excitation source and the photoluminescence spectra were 

measured from 440 to 650 nm with a 240 nm min−1 scan rate. Excitation and emission 

slit widths of 10 nm were used. The relative fluorescence quantum yield was 

determined by employing a reported standard method.48–50 Briefly, a 5 × 10−3 mol L−1 

solution of quinine hemisulfate monohydrate (C20H24N2O2⋅0.5H2SO4⋅H2O, Sigma 

Aldrich, Taufkirchen, Germany, ≥ 98.0%) in 1 N H2SO4, with an absolute quantum yield 

efficiency of 0.51 at 25 °C,48 was used to determine the relative photoluminescence 

quantum yield of the ZFO pellets. For the time-averaged and the transient 

photoluminescence measurements, suspensions of the ZFO pellets were prepared. 

ZFO pellets were ground in an agate mortar and dispersed in deionized water by a 

one-hour ultrasound treatment (340 W L−1). A concentration of 2.5 g L−1 was used for 

the measurements. 

Work function measurements were performed with a scanning Kelvin probe 

system SKP5050 (KP Technology, Wick, Scotland) versus a gold reference probe 

electrode (probe area of 2 mm2). The probe oscillation frequency was 74 Hz, and the 

backing potential was 7000 mV. Work function values were obtained by averaging 

1000 data points for two different sites of each pellet. Prior to the measurements, 
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the pellets were heated at 673 K for 12 h to remove adsorbed water. The cation 

diffusion process in ZFO is kinetically hindered at temperatures lower than 773 K.12 

Thus, the degree of inversion of the pellets did not change during the heat treatment. 

 

4.7 Conclusions 

 The effect of the degree of inversion on the photoelectrochemical activity of 

ZFO was investigated. As the cation distribution changed from x ≈ 0.07 to x ≈ 0.20, 

the photoelectrochemical activity of ZFO increased. In order to study the correlation 

between this phenomenon and the electronic properties of the material, the work 

function as well as the time-averaged and transient photoluminescence of the 

different ZFO samples were studied. No significant effect of the degree of inversion 

on the Fermi level was observed. Regarding the photoluminescence results, the 

characteristic near-band-edge emissions (547 and 625 nm for the direct and indirect 

transition, respectively) due to the electron-hole recombination involving Fe3+ 3d and 

O2− 2p levels were observed. Furthermore, an emission of energy higher than the 

band gap was also detected. This emission was assigned to the relaxation of the 

excited state produced after the electronic transition from O2− 2p to Zn2+ 4s levels 

(464 nm). Interestingly, the lifetime of the latter emission was observed to be longer 

than the lifetime of the near-band-edge emission. After excitation with photons with 

wavelengths shorter than 464 nm (blue and violet region of the visible light 

spectrum), electron-hole pairs were produced in ZFO by two apparently independent 

mechanisms (Fig. 4.6). One pathway was the excitation of electrons from O2− 2p levels 

at the valence band maximum to Fe3+ 3d levels at the conduction band minimum. The 

other was the excitation of electrons from O2− 2p levels at the valence band maximum 

to Zn2+ 4s levels located within the conduction band. The charge carriers generated 

by the latter mechanism showed a longer lifetime and, consequently, a higher 

efficiency for the photoelectrochemical methanol oxidation. As the degree of 
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inversion of ZFO increased, the transition involving the Zn2+ 4s levels was favored, 

thus contributing to the observed increase in the photoelectrochemical activity. 
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Chapter 5 

Summarizing Discussion and Conclusions 

This thesis aimed to understand how the degree of inversion impacts on the 

optical properties as well as on the charge carrier transport and the electronic 

properties of the spinel zinc ferrite (ZnFe2O4, ZFO). Fundamental research regarding 

these issues was scarce and, therefore, the impact of the cation distribution on the 

photoelectrochemical activity of ZFO was poorly understood. The only report 

concerning the effect of the degree of inversion on the photoelectrochemical 

activity of ZFO has recently been presented by Zhu et al.1 The authors showed that 

ZFO photoanodes with a relatively poor crystallinity but a higher degree of inversion 

exhibit a higher photoelectrochemical activity than samples with higher crystallinity 

and lower degree of inversion. This result was ascribed to the superior 

photogenerated charge separation efficiency and the improved majority charge 

carrier transport of the samples having a higher degree of inversion. However, 

properties such as the crystallinity or the concentration of surface defects were 

rather heterogeneous within the samples. In fact, the authors reported that the ZFO 

sample with the highest degree of inversion and the lowest crystallinity, which was 

prepared at a low temperature, did not show the highest photoelectrochemical 

activity as was expected. This result was attributed to a high concentration of 

surface defects acting as recombination centers. The authors suggested that the 

surface defects are repaired by the heat treatment and, therefore, were not present 

in the rest of the samples prepared at higher temperatures.  

In the scientific literature, a large dispersion exists between the 

photoelectrochemical efficiencies reported for ZFO samples prepared by different 

techniques (Fig. 5.1). Furthermore, the structural characterization of the reported 

ZFO photoanodes is usually insufficient because the cation distribution is not 

determined. Therefore, understanding the effect of the degree of inversion on the 

photoelectrochemical activity of ZFO was required to confirm whether the 
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dispersion in the reported data might be explained by considering differences in the 

cation distribution between the samples or not. In addition, the recently established 

benchmark for the water oxidation photocurrent under simulated solar irradiation 

using a ZFO photoanode has been reported to be one order of magnitude smaller 

than the predicted theoretical maximum value of about 11 mA cm-2.1 Thus, by 

studying the impact of the degree of inversion on the photoelectrochemical activity 

of ZFO, some mechanistic aspects explaining the reported low efficiencies have 

been elucidated herein. 

 

Fig. 5.1. Current densities reported in the literature during the past four years for the water 

oxidation reaction on ZFO photoanodes. The current densities were measured with an applied 

external bias of 1.23 V vs. RHE under simulated solar irradiation (1000 W m-2). The red dashed 

line indicates the maximum theoretical photocurrent of about 11 mA cm-2 predicted for ZFO. 

The spots (a) to (f) correspond to Ref. 2 to 7, respectively. The different spots in (g) correspond 

to current densities for ZFO photoanodes with different degree of inversion (Ref. 1). This figure 

is a reprint of Fig. 1.3 from page 8 in Chapter 1.1–7 

In order to reveal the intrinsic effect of the degree of inversion on the 

photoelectrochemical activity of ZFO, a systematic study of samples in which the 

cation distribution is the only variable was necessary. To carry out this investigation, 

pristine ZFO samples having different degrees of inversion ranging from x ≈ 0.07 to  
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x ≈ 0.20 were synthesized. The highly pure ZFO samples exhibited, within the limit 

of the experimental determination, equal particle size, crystallite size, and 

crystallinity, as was confirmed by XRD plus Rietveld refinement, Mössbauer 

spectroscopy, Raman spectroscopy, scanning electron microscopy, and elemental 

analysis. Furthermore, oxygen vacancies were not detected. Thus, the degree of 

inversion was identified to be the only independent variable between the different 

ZFO samples. This is an important issue because the particle and crystallite size, as 

well as the number of oxygen vacancies, are known to have considerable impact on 

the photoelectrochemical properties of iron-containing semiconductors.8,9 

Therefore, no contributions arising from differences in the particle or crystallite size 

or in the oxygen vacancies density that might overlay the intrinsic effect of the 

degree of inversion were expected. 

As was mentioned in Chapter 1 (cf. page 9), a photoelectrochemical process 

depends on the synergetic interaction between six major events, i.e., the photon 

absorption, the exciton separation, the charge carrier diffusion, the charge carrier 

transport, the catalytic efficiency, and the mass transfer of reactants and 

products.10 Due to the photon absorption, electrons are excited to the conduction 

band creating vacancies (holes) in the valence band of the semiconductor. The thus 

formed electron-hole pairs, also called excitons, are then separated and electrons 

and holes migrate independently from each other. Both, charge carrier diffusion 

and transport are responsible for the charge carrier transfer within the 

semiconductor. In a photoanode, electrons are transferred through the bulk of the 

material into the back electric contact and holes are transferred to the 

semiconductor-electrolyte interface. The electrical field produced by the bending of 

the conduction and valence bands is largely responsible for the separation and the 

migration of electrons and holes. Once at the interface, the holes can oxidize the 

species present in the surrounding electrolyte. The efficiency of the latter process 

depends on both, the probability of the surface charge transfer (catalytic efficiency) 

and the diffusion of the reactants and products (mass transfer). These steps are 
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shown in Fig. 5.2A for a schematic ZFO photoanode. As reported throughout the 

thesis, the degree of inversion was found to have a large effect on the photon 

absorption, the exciton separation, and the charge carrier transport properties of 

ZFO, consequently affecting its photoelectrochemical activity (Fig. 5.2B). 

 

Fig. 5.2. (A) Scheme of a ZFO photoanode showing the six major events involved in a 

photoelectrochemical process, i.e., photon absorption, exciton separation, charge carrier 

diffusion, charge carrier transport, catalytic efficiency, and mass transfer of reactants and 

products. The charge carrier diffusion and charge carrier transport processes commonly take 

place simultaneously.10 (B) Summary of the main effects of the degree of inversion on the 

physicochemical properties and photoelectrochemical (PEC) activity of ZFO observed in the 

present work. 

The effect of the degree of inversion on the photon absorption properties 

was studied by room-temperature time averaged UV-Vis-NIR diffuse reflectance and 

photoluminescence spectroscopy, as well as by transient photoluminescence 

spectroscopy. From the UV-Vis-NIR diffuse reflectance measurements, it was 

deduced that the band gap energies of ZFO are independent of the cation 

distribution. An indirect band gap transition at 614 nm (≈ 2.0 eV) as well as a direct 

band gap transition at 532 nm (≈ 2.3 eV) and a third transition at 450 mn (≈ 2.7 eV) 

were observed for all the samples. In addition, broad signals due to electronic ligand 

(A) (B) 
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field transitions originating from octahedrally coordinated Fe3+ cations were 

observed at 1200 and at 795 nm. According to the ligand field theory, additional d-d 

transitions for octahedrally coordinated Fe3+ cations were predicted at 494, 448, 

407, and 328 nm. These signals are not easily recognized in the UV-Vis-NIR diffuse 

reflectance measurements (Fig. 5.3) because they overlap with the band gap 

transitions previously mentioned. The degree of inversion was found to have an 

effect on the probability of the electronic ligand field transitions of the Fe3+ cations. 

As a consequence, a darkening of the ZFO samples due to a higher visible light 

absorptivity was observed as the degree of inversion was increased. It is important 

to stress that the increase in the visible light absorptivity is purely related to 

changes in the ligand field transitions and not to a band gap narrowing. From the 

room-temperature photoluminescence measurements, three emission signals at 

625 nm (≈ 2.0 eV), 547 nm (≈ 2.3 eV), and 464 nm (≈ 2.7 eV) were observed 

independently of the cation distribution of the ZFO samples. The energy of these 

emissions is in good agreement with the band gap transitions deduced by the UV-

Vis-NIR diffuse reflectance measurements. The existence of two different band gap 

transitions might be attributed to a discontinuity in the density of empty electronic 

energetic states forming the conduction band of ZFO. Thus, within the conduction 

band the photoexcited electrons might be delocalized in confined and independent 

states involving either Fe3+ 3d levels or Zn2+ 4s levels (Fig. 5.4). Therefore, the 

transitions observed at approximately 2.0, 2.3, and 2.7 eV are ascribed to indirect 

O2- 2p to Fe3+ 3d, direct O2- 2p to Fe3+ 3d, and O2- 2p to Zn2+ 4s electronic transitions, 

respectively. As the degree of inversion increases, the probability of the O2- 2p to 

Zn2+ 4s electronic transition increases and the probability of the O2- 2p to Fe3+ 3d 

transition decreases. Incident photon-to-current efficiency measurements revealed 

that the charge carriers generated via the O2- 2p to Zn2+ 4s transition are more 

efficient towards the methanol oxidation reaction than the ones generated via the 

O2- 2p to Fe3+ 3d transition. In other words, as the cation distribution increases, the 

light harvested by the material is utilized in a more efficient way to generate a 

photoelectrochemical oxidation reaction. It is important to stress that the valence 
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band holes generated via both, the O2- 2p to Zn2+ 4s and O2- 2p to Fe3+ 3d transitions 

have the same redox potential and, therefore, the same oxidizing activity. The 

higher efficiency of the O2- 2p to Zn2+ 4s transition is due to the longer lifetime 

observed by transient photoluminescence spectroscopy for the thus formed 

electron-hole pairs. A larger lifetime implicates a higher probability for the electron-

hole separation event to occur and, thus, a decrease in the electron-hole 

recombination rate, which results in a higher photoelectrochemical activity. The 

contributions from the d-d transitions and from the indirect O2- 2p to Fe3+ 3d band 

gap transitions to the incident photon-to-current efficiency were found to be 

negligible. Thus, the charge carriers generated via this processes do not participate 

in the photoelectrochemical process and, hence, do not contribute to the efficiency 

of the material. As obvious from the results shown in Fig. 5.3, the fate of a 

significant fraction of the absorbed photons is the generation of these futile (from a 

photoelectrochemical point of view) transitions. 

 

Fig. 5.3. UV-Vis-NIR diffuse reflectance spectra of the ZFO sample having a degree of inversion 

of x = 0.07. The red arrows at 1200, 795, 494, 448, 407, and 328 nm indicate the position of the 

ligand field transitions involving octahedrally coordinated Fe3+ cations. The blue arrows indicate 

the position of the band gap transitions. The transitions at 614, 532, and 464 nm correspond to 

the indirect O2- 2p to Fe3+ 3d, direct O2- 2p to Fe3+ 3d, and O2- 2p to Zn2+ 4s electronic transitions, 

respectively. Only the band gap transitions at 532 and 464 nm contribute to the 

photoelectrochemical activity of the material. Similar results concerning the transition 

wavelengths were observed for the samples having higher degrees of inversion. 
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Fig. 5.4. Scheme of the electronic transitions observed for ZFO when photons having 

wavelengths shorter than 464 nm (energy higher than 2.67 eV) are used for the excitation. 

Reprinted from Ref. 11.11 

The impact of the cation distribution on the exciton separation and the 

charge carrier transport properties were also investigated. The conductivity of ZFO 

was found to increase from ≈ 10-7 to 10-5 S cm-1 and the activation energy of the 

conduction process decreases from ≈ 0.45 to 0.20 eV by increasing the degree of 

inversion from 0.13 to 0.16. The charge carrier mobility and the conductivity are 

found to be directly proportional.12 Thus, an increase of two orders of magnitude in 

the conductivity results in an increase in the charge carrier mobility of the same 

magnitude. Furthermore, the charge carrier mobility depends exponentially on the 

activation energy of the conducting process.13 Therefore, a reduction of the 

activation energy by a factor of 2 generates an increase in the charge carrier 

mobility by a factor of e2 ≈ 7.4. It is well-known that as the charge carrier mobility of 

a semiconductor increases, the photogenerated charge separation is favored and 

the electron-hole recombination rates are reduced.14 Bohn et al.15 reported an 

increase in the photoelectrochemical water oxidation activity of α-Fe2O3 of three 

orders of magnitude as a result of an increase in the electrical conductivity from 

10-11 to 10-8 S cm-1 via Sn doping. Analogous results were reported for other doped 

semiconductors (Table 5.1). The large increase of two orders of magnitude 

observed as a consequence of a small change in the degree of inversion reveals the 

great impact of the cation distribution on the properties of the material. The fact 
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that the conductivity of ZFO is enhanced only by structural changes, such as an 

increase in the degree of inversion, without changing the elemental composition is 

an advantage in comparison to other semiconductors, which are usually doped with 

other elements to increase their conductivity. Although doping is a well-established 

technique, it is not straightforward to perform because detrimental rather than 

positive effects might be observed in the photoelectrochemical activity when the 

doping ratio is not optimal.16–18 A positive effect of doping, in addition to the 

increase in the conductivity, is that dopants might act as trapping centers for the 

charge carriers, thus reducing the recombination rates.18 However, doping can 

reduce the oxidation and reduction potentials of the charge carriers and the 

dopants might also act as recombination centers, thus increasing the recombination 

rates.19,20 

Table 5.1. Effect of elemental doping on the electrical conductivity (σ) and the photoelectro-

chemical (PEC) activity of some semiconductors commonly used as photoanode materials for 

photoelectrochemical water oxidation. 

Semiconductor Dopant σDoped / σPristine 
[PEC activity]Doped / 

[PEC activity]Pristine 

Reference 

α-Fe2O3 Sn 103 103 (1) 1515 

ZFO Ti 3.40 8.75 (1) 2121 

BiVO4 Mo 10 2 (2) 2222 

WO3 Al 1.4 1.3 (3) 2323 

(1) Photocurrent density at 1.23 V vs. RHE in 1 mol L–1 NaOH under simulated solar irradiation 

(AM1.5G filter, 1000 W m-2). (2) Photocurrent density at 1.23 V vs. RHE in 0.2 mol L–1 Na2SO4 and 

0.1 mol L–1 PO4
3– buffer solution (pH 6.6) under simulated solar irradiation (AM1.5G filter, 1000 

W m-2). (3) Photocurrent density at 1.2 vs. Ag/AgCl in 0.5 mol L–1 H2SO4 under Xe lamp irradiation 

(1000 W m-2, 400 nm cutoff filter). 

The degree of inversion clearly has a large impact on the photon absorption, 

the exciton separation, and the charge carriers transport properties of ZFO (Fig. 

5.2B). As a consequence, the cation distribution also affects the 

photoelectrochemical activity of the ZFO photoanodes. The current densities 
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obtained for the methanol oxidation reaction under simulated solar irradiation are 

presented in Fig. 5.5 as a function of the degree of inversion. The 

photoelectrochemical activity increases as the cation distribution increases. There is 

apparently an onset value for the degree of inversion between 0.13 and 0.16 after 

which the measured current densities increase at a significantly higher rate (black 

dashed line, Fig. 5.5). The conductivity of the samples was found to exhibit a similar 

behavior and, by increasing the degree of inversion from 0.13 to 0.16, an increase of 

two orders of magnitude was observed. Therefore, the enhanced 

photoelectrochemical activity of the samples having higher degrees of inversion can 

mainly be ascribed to their improved charge carrier transport properties. In 

addition, as previously mentioned, an increase in the cation distribution generates 

an increase in the probability of the more efficient O2- 2p to Zn2+ 4s band gap 

transition. However, the observed difference concerning the probability of the 

electronic transitions is not as significant as the differences in the conductivity. The 

relative photoluminescence quantum yield related to the O2- 2p to Zn2+ 4s transition 

only increases from 5.4·10-3 % to 6.4·10-3 % (≈ 20 % increase) as the degree of 

inversion increases from 0.07 to 0.20. Therefore, a contribution, but to a lesser 

extent, is expected from the increase in the probability of the O2- 2p to Zn2+ 4s band 

gap transition. 

It becomes evident from the experimental results presented in this thesis 

that the degree of inversion directly impacts the photoelectrochemical activity of 

ZFO. Additionally, it is well-known that the cation distribution of nanoparticulate 

ZFO samples could exhibit values ranging from x ≈ 0 (nearly normal structure) to  

x ≈ 1 (nearly inverse structure) depending on the synthetic conditions. Therefore, it 

is readily assumed that different degrees of inversion between the ZFO 

photoanodes reported in the literature (Fig. 5.1) might be the major reason 

explaining the large dispersion observed for their photoelectrochemical activities. 
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Fig. 5.5. Current densities obtained for the photoelectrochemical methanol oxidation reaction 

under simulated solar irradiation (black spots) and bulk electrical conductivity (red diamonds) of 

ZFO as a function of the degree of inversion. The grey dashed line indicates an onset value of 

the cation distribution between x ≈ 0.13 and x ≈ 0.16 after which the electrical conductivity and 

the photoelectrochemical activity of ZFO increase significantly.  

Furthermore, general conclusions regarding the poor photoelectrochemical 

performance of ZFO photoanodes arise from the results presented in the present 

work. Independent of the cation distribution, ligand field transitions contribute to 

the visible light absorptivity of ZFO (Fig. 5.3). The theoretical maximum efficiency of 

11 mA cm-2 for the water oxidation reaction on ZFO photoanodes is calculated 

assuming that photons with energy higher or equal than the direct band gap are 

completely absorbed by the material, and all the photogenerated holes participate 

in the interfacial charge transfer reaction. However, in practice, the fate of the 

absorbed photons is not only the generation of electron-hole pairs. Futile d-d 

electronic ligand field transitions originating from octahedrally and tetrahedrally 

coordinated Fe3+ cations are also generated. In fact, all of the well-known 

photoelectrochemically highly active semiconductors, such as TiO2,24 WO3,25 

BiVO4,26 or Cu2O,27 to mention only a few, have completely empty or fully occupied 

d levels in the outer electron shell. Therefore, these materials do not exhibit d-d 

ligand field transitions. The Fe3+ d-d transitions observed for ZFO are assumed to be 
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a major reason for the difference of one order of magnitude between the reported 

benchmark and the theoretical efficiency.  

The low relative quantum efficiencies (between 0.03 % and 0.05 %) obtained 

for the ZFO samples suggest that, as well as α-Fe2O3, charge carriers generated by 

the light excitation decay to the ground state by high efficient nonradiative 

processes.28 This might be attributed to a high density of trap states or a strong 

coupling between trap states.28 

Concerning the events involved in the photoelectrochemical activity of ZFO 

shown in Fig. 5.2A, the effect of the cation distribution on the catalytic efficiency for 

the water oxidation reaction and on the mass transfer of reactants and products is 

still unknown. Photoelectrochemical processes are heterogeneous catalytic 

reactions occurring at the semiconductor-electrolyte interface (Fig. 5.6A). 

Therefore, the photoelectrochemical activity depends on the ability of the surface 

atoms to interact with molecules or ions being present in the surrounding 

electrolyte via the formation or the breaking of specific chemical bonds.29 The 

dynamics of the charge carriers and the interfacial charge transfer processes 

depend on the surface properties as well.30–33 However, no reports concerning the 

effect of the degree of inversion on the surface chemistry of ZFO are found in the 

scientific literature. Thus, an impact of the surface chemistry on the 

photoelectrochemical activity of the ZFO samples having different cation 

distribution cannot be discarded. Certainly, this issue must be addressed in the 

future in order to access a complete insight concerning the effect of the degree of 

inversion on the physicochemical properties directly related to the 

photoelectrochemical activity of ZFO. 

Water oxidation catalysts (WOCs), specially nickel-iron oxides, have been 

reported to greatly improve the performance of ZFO photoanodes.1 Although the 

role of WOCs is not yet fully understood, it seems to depend on two major 

processes.14 The first one is the reduction of the electron-hole surface 
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recombination by preventing back-electron transfer or by chemically passivating 

surface traps. The second one is the reduction of the overpotential for the water 

oxidation reaction. Through these two processes, WOCs promotes the hole 

injection into the surrounding electrolyte and improve the catalytic water oxidation 

activity (Fig. 5.6B).7 The low photoelectrochemical efficiencies of ZFO observed here 

and reported in the literature suggest that the water oxidation reaction is poorly 

catalyzed by the ZFO surface.1–7 Therefore, WOCs have to be deposited on ZFO 

photoanodes in order to enhance their photoelectrochemical activities. 

 

Fig. 5.6. (A) Simplified scheme of the processes occurring at the electrolyte-ZFO interface during 

the photocatalytic water oxidation reaction. The efficiency of the process depends at least on 

two events. One is the probability of the surface charge transfer, i.e., the electron injection from 

adsorbed H2O or OH- species (catalytic efficiency) into the photogenerated holes in the valence 

band of ZFO. The second is the diffusion of the reactants (H2O) towards the ZFO surface and the 

diffusion of the products (O2 and H+) in the opposite direction (mass transfer). (B) The 

deposition of a water oxidation catalyst (WOC) on the surface of ZFO improves the 

photoelectrochemical efficiency by reducing both, the electron-hole surface recombination rate 

and the overpotential for the water oxidation reaction. 

During the last four years, ZFO was extensively investigated in order to 

develop photoanodes having the advantageous features of α-Fe2O3 but without its 

main limitations. However, the current benchmark efficiency of ZFO, reported for a 

nanorod array photoanode having a nickel-iron oxide overlayer,1 is four times lower 

than that of α-Fe2O3, which has been reported for a single-crystalline wormlike 

photoanode modified by platinum doping.34 The results presented in this work are a 

(A) (B) 
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step forward to understand some factors limiting the efficiency of ZFO photoanodes 

and to provide a fundamental insight regarding the effect of the degree of inversion 

on the physicochemical properties of ZFO which are directly related to its 

photoelectrochemical activity. Furthermore, this thesis leaves the message that a 

scientific report concerning the photoelectrochemical activity of a ZFO photoanode 

is meaningful only when the results are presented together with the respective 

degree of inversion of each sample. 
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Appendix 

Appendix A: Supporting information for Chapter 2: Effect of the Degree of 

Inversion on Optical Properties of Spinel ZnFe2O4 

 

Rietveld plots of zinc ferrite samples 

    
    

     

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A1. Rietveld plots of the ZFO samples after calcination at (A) 773 K, (B) 873 K, (C) 973 K, (D) 

1073 K, and (E) 1173 K. Monochromatized MoKα1 radiation was used for the measurement. (F) 

Magnification of the diffraction peak at 19.33° of the different ZFO samples: ― ZFO_773,  

x = 0.074 ± 0.011; ― ZFO_873, x = 0.104 ± 0.013; ― ZFO_973, x = 0.134 ± 0.008; ― ZFO_1073,  

x = 0.159 ± 0.010; ― ZFO_1173, x = 0.203 ± 0.017. The diffractograms were normalized to the 

main diffraction peak at 16.01°. An increase in the relative intensity is observed as the degree of 

inversion increases from 0.07 to 0.20.  
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Mössbauer spectra of zinc ferrite samples and γ-Fe2O3 

    

    

 

Fig. A2. Mössbauer spectra of the ZFO samples after calcination at (A) 773 K, (B) 873 K, (C) 973 

K, (D) 1073 K, and (E) 1173 K. The black line represents the cumulative peak fit consisting of the 

orange and red lines. 
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Fig. A3. (A) Mössbauer spectrum of a commercial γ-Fe2O3 sample (20-40 nm, io·li·tec). (B-C) 

Fitted Mössbauer spectrum and residual plot of ZFO_1073 obtained by considering (B) one and 

(C) two paramagnetic doublets. Similar results are observed for the rest of the ZFO samples. 
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Table A1. Mössbauer parameters of the ZFO samples with different calcination temperatures. 

δIS, ΔQ, FWHM are the isomer shift, quadrupole splitting, and full width at half maximum, 

respectively. 

Calcination 

temperature / K 
IS / mm∙s-1 Q /mm∙s-1 FWHM / mm∙s-1 Population / % 

773 
0.354 ± 0.001 0.344 ± 0.002 0.193 ± 0.001 96.3 ± 0.85 

0.353 ± 0.008 0.614 ± 0.023 0.103 ± 0.010 3.7 ± 0.74 

873 
0.352 ± 0.001 0.355 ± 0.003 0.190 ± 0.002 94.9 ± 1.2 

0.358 ± 0.009 0.634 ± 0.025 0.108 ± 0.019 5.1 ± 1.0 

973 
0.352 ± 0.001 0.369 ± 0.001 0.195 ± 0.001 93.2 ± 0.5 

0.349 ± 0.003 0.671 ± 0.008 0.116 ± 0.007 6.8 ± 0.5 

1073 
0.349 ± 0.002 0.387 ± 0.023 0.208 ± 0.006 92.2 ± 0.63 

0.352 ± 0.008 0.666 ± 0.071 0.133 ± 0.063 7.8 ± 0.58 

1173 
0.349 ± 0.002 0.395 ± 0.003 0.195 ± 0.003 89.5 ± 1.5 

0.343 ± 0.007 0.699 ± 0.014 0.129 ± 0.015 10.5 ± 1.4 

The Mössbauer measurements were fitted by using one and two 

paramagnetic doublets. A comparison of the two spectra showed that a single 

doublet leads to a bigger deviation between the observed signals and the 

Lorentzian fit (Fig. A3B and A3C). Similar signals were observed by H. Ehrhardt et 

al.1 and similar values for the isomer shift and the quadrupole splitting were 

obtained. The difference between the quadrupole splitting and the FWHM of the 

two doublets can be explained by the different lattice sites of the iron. It is well 

known that the quadrupole splitting of tetrahedral sites of non-magnetic spinel type 

oxides are larger compared to the octahedral sites.2,3 Furthermore, the tetrahedral 

sites show different bond length and a smaller distribution compared to the 

octahedral sites in the crystals which leads to smaller influence of surface defects 

and therefore smaller values for the FWHM which are still bigger than the natural 

line width. 
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Configurational entropy of zinc ferrite 

Considering that the change in the non-configurational entropy associated 

with the disordering process is negligible,4 the total entropy is defined by the 

configurational entropy (𝑆𝐶) alone.  

𝑆𝐶 = −𝑅 ∑ ∑ 𝑏𝑠𝑁𝑖
𝑠𝑙𝑛𝑁𝑖

𝑠

2

𝑖=1

2

𝑠=1

 (A.1) 

𝑆𝐶 =  −𝑅 [𝑥 ln 𝑥 + (1 − 𝑥) ln(1 − 𝑥) + (2 − 𝑥) ln (1 −
𝑥

2
) + 𝑥 ln

𝑥

2
] (A.2) 

where 𝑁𝑖
𝑠 is the fraction of species 𝑖 (𝑖 = 1 for Fe and 𝑖 = 2 for Zn) in site 𝑠 (𝑠 = 1 for 

tetrahedral sites and 𝑠 = 2 for octahedral sites), 𝑏𝑠 is the number of sites of type 𝑠 

per formula unit, and x is the degree of inversion. From a plot of 𝑆𝐶  vs. x (Fig. A4) it 

can be seen that Sc tends to 0 at x = 0, increases to a maximum at the random 

arrangement of x = 2/3, and then decreases towards 2𝑅 ln 2 for x = 1. The change in 

the Gibbs free energy for the disordering process, ∆𝐺𝐷
° , is defined as  

∆𝐺𝐷
° = ∆𝐻𝐷

° − 𝑇∆𝑆𝐶
°  (A.3) 

where ∆𝐻𝐷
°  and ∆𝑆𝐷

°  are the changes in enthalpy and entropy, respectively, 

associated with the cation distribution process, and 𝑇 is the temperature. Since 𝑆𝐶
°  = 

0 when x = 0, then: 

∆𝑆𝐶
° =  𝑆𝐶 =  −𝑅 [𝑥 ln 𝑥 + (1 − 𝑥) ln(1 − 𝑥) +  𝑥 ln

𝑥

2
+  (2 − 𝑥) ln (1 −

𝑥

2
)] (A.4) 

Considering that ∆𝐻𝐷
°  is 𝑇 and x independent, it is clear that at high temperatures 

the process becomes entropy dependent and the degree of inversion increases 

towards the maximum of 𝑥 = 2 3⁄ . O’Neill and Navrotsky5,6 showed, from lattice 

energy arguments, that ∆𝐻𝐷
°  depends linearly on x. Nevertheless, it also emerges 

from this more comprehensive model that the degree of inversion increases with 

higher calcination temperatures, as is observed from the experimental results. 
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Fig. A4. Plot of the configurational entropy, SC, of ZFO vs. the degree of inversion, x. Sc tends to 

0 at x = 0, increases to a maximum at the random arrangement of x = 2/3, and then decreases 

towards 2𝑅 ln 2 for x = 1. 

 

 

Raman spectra of zinc ferrite samples 

     

Fig. A5. Normalized Raman spectra of the ZFO samples with increasing degree of inversion  

(― ZFO_773, x = 0.074 ± 0.011; ― ZFO_873, x = 0.104 ± 0.013; ― ZFO_973, x = 0.134 ± 0.008;  

― ZFO_1073, x = 0.159 ± 0.010; ― ZFO_1173, x = 0.203 ± 0.017) obtained using (A) a 532 nm 

and (B) a 633 nm laser as the excitation source. 
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Comparison between the Raman spectra of zinc ferrite (x ≈ 0.073) and of γ-Fe2O3 

 

Fig. A6. Raman spectrum of a commercial γ-Fe2O3 sample (brown line) obtained using a 633 nm 

laser excitation. The Raman spectrum of ZFO_773 (black line) is included for comparison. 

Although most of the ZFO and γ-Fe2O3 Raman scattering signals are superimposed, the absence 

of a shoulder at ca. 718 cm-1 in the ZFO spectrum proves that γ-Fe2O3 is not present as an 

impurity phase. 

 

Deconvolution of the broad Raman signal at 647 ± 3 cm-1 

 

Fig. A7. Deconvolution of the broad Raman signal at 647 ± 3 cm-1 (785 nm laser excitation) using 

Gaussian-shape curves with maxima located at ca. 644 cm-1 and 675 cm-1. 
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Correlation between intensity of the Raman signals and the degree of inversion 

The intensity ratio between the Raman signals serves as a reference to 

estimate the degree of inversion of ZFO samples. Fig. A8 shows plots of the intensity 

ratio between the Raman shifts at 352 and 647 cm-1 (measured using a 785 nm, A, 

633 nm, B, and 532 nm, C, laser as the excitation sources) as a function of the 

degree of inversion. The experimental data were fitted using an exponential decay 

function. To ascertain the validity of this empirical equation, the intensity ratio 

between the shifts at 352 and 647 cm-1 of a Raman spectrum presented by Wang et 

al.7 was analyzed. For the ZFO sample with a reported degree of inversion of 0.10, a 

ratio of 3.02 was calculated. With this ratio and the equation given in Fig. A8, a 

degree of inversion of 0.12 ± 0.03 was calculated, thus being in reasonable 

agreement with the value give by Wang et al. 

 

     

Fig. A8. Intensity ratio between the Raman shifts at 352 and 647 cm-1 (measured using (A) a 785 

nm, (B) a 633 nm, and (C) a 532 nm laser as the excitation source) as a function of the degree of 

inversion. The insert shows the parameters of the exponential decay function used to fit the 

experimental data. 

(B) (C) 

(A) 



Appendix A 
Supporting Information for Chapter 2 

123 
 

Photograph of zinc ferrite samples 

 

Fig. A9. Photograph of the ZFO samples with different degrees of inversion (x = 0.074 ± 0.011, 

0.104 ± 0.013, 0.134 ± 0.008, 0.159 ± 0.010, and 0.203 ± 0.017 for ZFO_773, ZFO_873, ZFO_973, 

ZFO_1073, and ZFO_1173, respectively). As the degree of inversion increases, the brownish 

orange color of the samples becomes gradually darker. 

 

Identification and prediction of electronic transitions of zinc ferrite 

 

Fig. A10. Partial Tanabe-Sugano diagram for a high spin d5 ion with octahedral symmetry. Only 

the excited states with spin multiplicity 4 are shown. 

From an analysis based on the Tanabe-Sugano diagram for high spin d5 

octahedrally coordinated Fe3+ ions it is possible to obtain important parameters 

such as energy of the crystal field, Δ, for the FeO6 octahedra and the Racah 
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parameter. Moreover, predictions concerning the possible electronic transitions can 

be done. 

The bands observed experimentally at 1200 nm (8333.3 cm-1) and 795 nm 

(12578.6 cm-1) can be assigned to the 6A1g → 4T1g(G) (ν1) and 6A1g → 4T2g(G) (ν2) 

transitions, respectively. The ration between the energy of these transitions is: 

ν2

ν1
=  

12578.6 𝑐𝑚−1

8333.3 𝑐𝑚−1
≈ 1.5 (A.5) 

A theoretical ratio of 1.5 between the energy of transitions ν2 and ν1 is 

observed in the Tanabe-Sugano diagram at a value of Δ/B of 22.7. 

∆

𝐵
= 22.7 →    

𝐸ν2

𝐵
⁄

𝐸ν1

𝐵
⁄

=  
𝐸ν2

𝐸ν1

=  
20.1

13.4
= 1.5 (A.6) 

where 𝐸ν1
 and 𝐸ν2

 are the energies of transitions ν1 and ν2, respectively, and B is 

the Racah parameter. B can be calculated as: 

𝐸ν2

𝐵
= 20.1 → 𝐵 =  

12578.6 𝑐𝑚−1

20.1
≈ 626 𝑐𝑚−1 (A.7) 

𝐸ν1

𝐵
= 13.4 → 𝐵 =  

8333.3 𝑐𝑚−1

13.4
≈ 622 𝑐𝑚−1 (A.8) 

obtaining an average value of 624 cm-1. The energy of the crystal field, Δ, can be 

obtained from: 

∆

𝐵
= 22.7 =

∆

624𝑐𝑚−1
→ ∆ ≈ 14164𝑐𝑚−1 (A.9) 

Finally, the energy of transitions ν3, ν4, ν5, and ν6 can be predicted from the 

Tanabe-Sugano diagram. The following values are obtained for these transitions: 
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Transition Energy 

6A1g → 4A1g(G) (ν3) 20248 cm-1 (494 nm / 2.51 eV) 

6A1g → 4T2g(D) (ν4) 22300 cm-1 (448 nm / 2.76 eV) 

6A1g → 4Eg(D) (ν5) 24592 cm-1 (407 nm / 3.05 eV) 

6A1g → 4T1g(P) (ν6) 30445 cm-1 (328 nm / 3.8 eV) 

 

 

Application of DASF method to diffuse reflectance measurements 

 According to the absorption spectrum fitting (ASF) presented by Souri and 

Shomalian:8,9 

 
(A.10) 

where α is the absorption coefficient, λ is the wavelength, B is an empirical 

constant, h is Plank’s constant, c is the velocity of light, λg is the wavelength 

corresponding to the optical band gap, and m is the index which can have different 

values (1/2, 2/3, 2, or 3) according to the type of transition. 

 The absorption coefficient α is related to the reflectance of a sample by the 

Kubelka-Munk radiative transfer model:10 

 
(A.11) 

 
(A.12) 

where f(R) is the Kubelka-Munk function, R is the reflectance, and s is the scattering 

coefficient. 

By combining Eq. (A.10) and (A.12): 

 

(A.13) 

and considering that s is wavelength independent, the DASF method is deduced as 

follows: 
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(A.14) 

 

(A.15) 

 
(A.16) 

 
(A.17) 

 
(A.18) 

 

(A.19) 

 

(A.20) 

 Eq. (A.20) is the DASF equivalent for diffuse reflectance measurements. 

However, f(R) can only be used instead of α when a wavelength independent 

scattering coefficient is assumed. 

 

SEM pictures of the ZFO samples 
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Fig. A11. SEM images of the ZFO samples after calcination at (A) 773 K, (B) 873 K, (C) 973 K, (D) 

1073 K, and (E) 1173 K. Similar particle size and morphology are observed between the samples 

annealed at different temperatures. 

 
DASF analysis of zinc ferrite sample with x = 0.074 ± 0.011 

 
Fig. A12. Plot of ln[α(λ)λ-1] versus ln(λ-1 – λg

-1) for the ZFO sample with x = 0.074 ± 0.011.  

λg = 614 nm is the wavelength of the band gap transition. The value of the slope of the linear 

section of the graph indicates the nature of the optical carrier transition. A slope of 1.95 (≈ 2) is 

observed for the red dashed line, indicating an indirect allowed band gap. Identical results are 

found for the samples quenched at higher temperatures. 

(C) (D) 

(E) 
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Appendix B: Supporting information for Chapter 3: Effect of the Degree of 

Inversion on the Electrical Conductivity of Spinel ZnFe2O4 

 

Experimental methods 

 Polycrystalline ZFO samples were synthesized by means of a solid-state 

reaction as was reported in Ref. 1. Shortly, stoichiometric amounts of ZnO (Sigma 

Aldrich, ≥ 99.0%) and Fe2O3 (Sigma Aldrich, ≥ 99.0%) powders were ground in an 

agate mortar. The mixture was calcined in air at 1073 K for 12 hours, cooled down 

to room temperature, and ground once again. Aliquots of 0.500 g were pressed into 

13 mm diameter pellets applying a pressure of 55 MPa. The pellets were calcined at 

1273 K for 2 hours, cooled down to 1073 K and kept at this temperature for 12 

hours, then cooled down to 773 K and kept at this temperature for 50 hours, and 

finally quenched in cold water. Some of the pellets (referred as ZFO_773) were 

separated and the rest were divided into four sets of samples. The samples were 

heated up with a rate of 300 K h-1 and calcined at 873, 973, 1073, and 1173 K for 25, 

20, 12, and 10 hours, respectively. After this period of time, the calcined pellets 

were immediately quenched in cold water. These samples will be referred as 

ZFO_873, ZFO_973, ZFO_1073, and ZFO_1173.  

Impedance spectra were measured with a Novocontrol Concept 41 

equipped with an Alpha-A High-Performance Modular Measure System and a 

Novocool Cryosystem (Novocontrol Technologies, Germany). The measurements 

were performed in a nitrogen atmosphere at temperature intervals of 25 K from 

298 K to 448 K. A frequency range of 10 MHz to 100 mHz and a difference of 100 

mV in potential were used for the measurements. The ZFO pellets were sanded with 

Al2O3 sandpaper (KK114F, grit size P320, VSM Abrasives, Germany) to a final 

thickness of 0.75 mm ± 0.02 mm and attached in a sandwich configuration between 

two 20 mm diameter gold-plated electrodes using graphite conductive adhesive 

(186 Ω cm-2 sheet resistance @ 25.4 μm in thickness, Alfa Aesar, Germany). The 

capacitance of the sample holder alone was equal to 1.0 pF and all the impedance 
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measurements were corrected to this value. The EIS Spectrum Analyser software2 

was used for fitting the obtained impedance spectra. 

 

XRDs and Mössbauer spectra of the zinc ferrite samples 

 

 

 

Fig. B1. XRDs of the ZFO samples after calcination at (A) 773 K, (B) 873 K, (C) 973 K, (D) 1073 K, 

and (E) 1173 K. Details are given in Ref. 1. 
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Fig. B2. Mössbauer spectra of the ZFO samples after calcination at (A) 773 K, (B) 873 K, (C) 973 

K, (D) 1073 K, and (E) 1173 K. Details are given in Ref. 1. 
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Comparison of equivalent circuits commonly used for modeling the 

impedance spectra of spinel ferrite samples 

Table B1. Overview over the equivalent circuits commonly used to model the impedance 

spectra of spinel ferrite materials. The C, R, and CPE elements are capacitors, resistors, and 

constant phase elements, respectively. The subscripts “gb”, “g”, and “el” denote the grain 

boundaries, the grains (bulk), and sample-electrode interface, respectively. 

Equivalent Circuit Ferrite Reference 

I
I 

 

ZnFe2O4 

Zn0.5Ni0.5Fe2O4 

3 

3 

I
II 

 

ZnFe2O4 

Mn0.68Zn0.26Fe2.06O4 

(NixZn1−x)Fe2O4 (0.2 ≤ x ≤ 0.5) 

Ni0.5Zn0.5Fe2O4 

4 

5 

6 

7, 8 

I
III 

 

ZnFe2O4 

(MnxZn1−x)Fe2O4 (0 ≤ x ≤ 1) 

9 

10 

I
IV 

 

MnFe2O4 

Ni0.65Zn0.35Fe2O4 

11 

12 

V
V 

 

ZnFe2O4 

NiFe2O4 

13 

14 

V
VI 

 

Ni0.65Zn0.35Fe2O4 12 
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The Fig. B3−B5 show the modeling of the impedance spectra obtained at 298 

K for the ZFO sample with x = 0.074 ± 0.011 by three of the equivalents circuits 

presented in Table B1 (Equivalent circuits I – III). 

Equivalent Circuit I 

 

Fig. B3. Modeling of the impedance data using a simple equivalent circuit consisting of a resistor 

and a capacitor connected in parallel.  

Equivalent Circuit II 

 

Fig. B4. Fitting of the impedance data using an equivalent circuit consisting of a series 

connection of two R‖C elements.  
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Equivalent Circuit III 

 

Fig. B5. Fitting of the impedance data using an equivalent circuit consisting of a series 

connection of three R‖C elements.  

 

 

 

Results obtained for the modeling of the impedance spectra using an 

equivalent circuit with four R‖C elements connected in series 

 

Fig. B6. Equivalent circuit proposed in this work. 
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ZFO sample with x = 0.074 ± 0.011 (ZFO_773) 

 

    

       
Fig. B7. Experimental (black spots) and calculated (red dashed line) complex impedance data 

obtained at (A) 298 K and 323 K, (B) 348 K and 373 K, (C) 398 K and 423 K, and (D) 448 K for a 

ZFO sample with x = 0.074 ± 0.011. The complex impedance data was simulated using the 

equivalent circuit shown in Fig. B6. 
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Table B2. Parameters of the elements of the equivalent circuit (Fig. B6) used for the fitting of 

the complex impedance data obtained for a ZFO sample with x = 0.074 ± 0.011 (Fig. B7). The 

bulk capacitance (Cg = C2) and resistance (Rg = R2) are highlighted in yellow. 

Equivalent 

Circuit 

Element 

Temperature / °C 

25 50 75 100 125 150 175 

C1 / F 9.86 10-9 2.97 10-9 2.52 10-9 2.34 10-9 2.23 10-9 3.41 10-9 3.04 10-9 

C2 / F 2.82 10-11 2.88 10-11 2.83 10-11 2.81 10-11 2.79 10-11 2.85 10-11 3.43 10-11 

C3 / F 4.76 10-11 4.36 10-11 4.16 10-11 3.96 10-11 3.88 10-11 4.26 10-11 3.69 10-11 

C4 / F 2.22 10-10 1.33 10-10 1.22 10-10 1.16 10-10 1.12 10-10 1.28 10-10 1.10 10-10 

R1 / Ω 4.64 106 2.23 106 7.62 105 2.70 105 1.04 105 4.47 104 2.89 104 

R2 / Ω 6.25 106 1.54 106 5.03 105 1.81 105 7.16 104 3.61 104 2.21 104 

R3 / Ω 2.61 107 6.90 106 2.23 106 8.01 105 3.14 105 1.64 105 1.24 105 

R4 / Ω 2.38 107 9.01 106 2.98 106 1.06 106 4.16 105 2.13 105 1.49 105 
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ZFO sample with x = 0.104 ± 0.013 (ZFO_873) 

 

   

    

Fig. B8. Experimental (black spots) and calculated (red dashed line) complex impedance data 

obtained at (A) 25 and 50 °C, (B) 75 and 100 °C, (C) 125 and 150 °C, and (D) 175 °C for a ZFO 

sample with x = 0.104 ± 0.013. The complex impedance data was simulated using the equivalent 

circuit shown in Fig. B6. 

 

 

 

 

(A) (B) 

(C) (D) 
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Table B3. Parameters of the elements of the equivalent circuit (Fig. B6) used for the fitting of 

the complex impedance data obtained for a ZFO sample with x = 0.104 ± 0.013 (Fig. B8). The 

bulk capacitance (Cg = C2) and resistance (Rg = R2) are highlighted in yellow. 

Equivalent 

Circuit 

Element 

Temperature / °C 

25 50 75 100 125 150 175 

C1 / F 1.07 10-8 5.27 10-9 5.50 10-9 4.57 10-9 3.39 10-9 2.89 10-9 4.38 10-9 

C2 / F 2.76 10-11 2.76 10-11 2.70 10-11 2.70 10-11 2.73 10-11 2.82 10-11 3.40 10-11 

C3 / F 5.17 10-11 4.76 10-11 4.54 10-11 4.26 10-11 4.08 10-11 4.29 10-11 3.76 10-11 

C4 / F 2.37 10-10 1.73 10-10 1.72 10-10 1.55 10-10 1.34 10-10 1.20 10-10 1.20 10-10 

R1 / Ω 1.49 106 5.84 105 1.90 105 7.27 104 3.20 104 1.56 104 6.43 103 

R2 / Ω 2.11 106 6.02 105 2.15 105 7.94 104 3.05 104 1.23 104 5.50 103 

R3 / Ω 8.12 106 2.38 106 8.36 105 3.10 105 1.21 105 5.17 104 3.27 104 

R4 / Ω 7.64 106 2.68 106 9.01 105 3.40 105 1.42 105 7.02 104 3.67 104 
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ZFO sample with x = 0.134 ± 0.008 (ZFO_973) 

 

    

     

Fig. B9. Experimental (black spots) and calculated (red dashed line) complex impedance data 

obtained at (A) 25 and 50 °C, (B) 75 and 100 °C, (C) 125 and 150 °C, and (D) 175 °C for a ZFO 

sample with x = 0.134 ± 0.008. The complex impedance data was simulated using the equivalent 

circuit shown in Fig. B6. 

 

 

 

 

(A) (B) 

(C) (D) 
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Table B4. Parameters of the elements of the equivalent circuit (Fig. B6) used for the fitting of 

the complex impedance data obtained for a ZFO sample with x = 0.134 ± 0.008 (Fig. B9). The 

bulk capacitance (Cg = C2) and resistance (Rg = R2) are highlighted in yellow. 

Equivalent 

Circuit 

Element 

Temperature / °C 

25 50 75 100 125 150 175 

C1 / F 1.41 10-8 3.83 10-9 3.05 10-9 2.91 10-9 2.43 10-9 2.86 10-9 3.08 10-9 

C2 / F 2.48 10-11 2.63 10-11 2.66 10-11 2.71 10-11 2.75 10-11 2.60 10-11 2.65 10-11 

C3 / F 4.24 10-11 3.75 10-11 3.54 10-11 3.35 10-11 3.22 10-11 3.37 10-11 3.32 10-11 

C4 / F 2.40 10-10 1.36 10-10 1.22 10-10 1.14 10-10 1.10 10-10 1.29 10-10 1.28 10-10 

R1 / Ω 2.84 105 1.46 105 5.37 104 1.98 104 8.20 103 3.20 103 1.95 103 

R2 / Ω 5.69 105 1.49 105 4.94 104 1.84 104 7.61 103 4.00 103 2.01 103 

R3 / Ω 2.12 106 6.25 105 2.14 105 8.23 104 3.43 104 1.55 104 8.05 103 

R4 / Ω 1.61 106 6.70 105 2.35 105 8.95 104 3.57 104 1.39 104 7.29 103 
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ZFO sample with x = 0.159 ± 0.010 (ZFO_1073) 

 

    

   

Fig. B10. Experimental (black spots) and calculated (red dashed line) complex impedance data 

obtained at (A) 25 and 50 °C, (B) 75 and 100 °C, (C) 125 and 150 °C, and (D) 175 °C for a ZFO 

sample with x = 0.159 ± 0.010. The complex impedance data was simulated using the equivalent 

circuit shown in Fig. B6. 

 

 

 

 

(A) (B) 

(C) (D) 
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Table B5. Parameters of the elements of the equivalent circuit (Fig. B6) used for the fitting of 

the complex impedance data obtained for a ZFO sample with x = 0.159 ± 0.010 (Fig. B10). The 

bulk capacitance (Cg = C2) and resistance (Rg = R2) are highlighted in yellow. 

Equivalent 

Circuit 

Element 

Temperature / °C 

25 50 75 100 125 150 175 

C1 / F 1.06 10-8 7.59 10-9 8.19 10-9 9.66 10-9 1.13 10-8 1.37 10-8 1.42 10-7 

C2 / F 1.94 10-11 2.07 10-11 2.06 10-11 1.99 10-11 1.87 10-11 1.79 10-11 1.79 10-11 

C3 / F 3.92 10-11 3.56 10-11 3.65 10-11 4.44 10-11 6.51 10-11 1.38 10-10 3.04 10-10 

C4 / F 4.26 10-10 2.88 10-10 3.30 10-10 5.29 10-10 1.16 10-9 3.28 10-9 6.41 10-9 

R1 / Ω 1.42 103 790 369 178 89.8 43.4 10.2 

R2 / Ω 3.22 103 1.60 103 913 655 528 443 352 

R3 / Ω 7.71 103 4.03 103 2.06 103 1.06 103 521 208 101 

R4 / Ω 3.43 103 2.05 103 921 364 124 40.6 38.0 
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ZFO sample with x = 0.203 ± 0.017 (ZFO_1173) 

 

    

      

Fig. B11. Experimental (black spots) and calculated (red dashed line) complex impedance data 

obtained at (A) 25 and 50 °C, (B) 75 and 100 °C, (C) 125 and 150 °C, and (D) 175 °C for a ZFO 

sample with x = 0.203 ± 0.017. The complex impedance data was simulated using the equivalent 

circuit shown in Fig. B6. 

 

 

 

 

(A) (B) 

(C) (D) 
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Table B6. Parameters of the elements of the equivalent circuit (Fig. B6) used for the fitting of 

the complex impedance data obtained for a ZFO sample with x = 0.203 ± 0.017 (Fig. B11). The 

bulk capacitance (Cg = C2) and resistance (Rg = R2) are highlighted in yellow. 

Equivalent 

Circuit 

Element 

Temperature / °C 

25 50 75 100 125 150 175 

C1 / F 1.48 10-8 1.13 10-8 1.30 10-8 1.56 10-8 1.85 10-8 2.29 10-8 5.12 10-8 

C2 / F 1.98 10-11 1.98 10-11 1.92 10-11 1.85 10-11 1.83 10-11 1.90 10-11 2.00 10-11 

C3 / F 5.75 10-11 5.81 10-11 7.23 10-11 1.11 10-10 2.64 10-10 7.97 10-10 1.63 10-9 

C4 / F 1.50 10-9 1.54 10-9 1.95 10-9 2.59 10-9 3.51 10-9 4.73 10-9 7.69 10-9 

R1 / Ω 1.54 103 790 357 171 85.1 42.2 20.6 

R2 / Ω 3.10 103 1.56 103 895 582 412 282 197 

R3 / Ω 4.88 103 2.24 103 937 377 131 46.0 28.9 

R4 / Ω 1.91 103 799 357 174 89.1 47.7 34.3 
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Comparison between R2 and R3 as the bulk resistance of the ZFO samples 

      

Fig. B12. (A) Bulk conductivity and (B) logarithm of the bulk conductivity at 298 K obtained 

when considering R2 (black spots) or R3 (red spots) as the bulk resistance (Rg) of the ZFO samples 

having different degrees of inversion. The results obtained are in the same order of magnitude 

and exhibit the same trend whether R2 or R3 are correlated to Rg. 
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