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1. Introduction

Minkowski space R3,1 seems to admit finite-action solutions of the Yang–Mills equations only
in the presence of Higgs fields (for a review on classical Yang–Mills configurations, see [1]).
However, our universe appears to be asymptotically de Sitter at very large and very early times.
This is a good argument for searching finite-energy solutions in pure Yang–Mills theory on four-
dimensional de Sitter space dS4. In this talk we shall present the result of such an attempt, which
produced a family of classical smooth analytic finite-action pure Yang–Mills configurations on a
non-dynamical de Sitter background [2]. (We do not consider dynamical spacetime, i.e. the Ein-
stein equations.) The main idea is to employ the conformal invariance of Yang–Mills theory in four
dimensions to map the problem to a finite cylinder over a three-sphere, whose description as SU(2)
group manifold allows for elegant and powerful geometrical tools to solve the equations using a
highly symmetrical ansatz [3, 4, 5]. In the end we shall briefly discuss also the related instantons
on dS4 (i.e. solutions on S4) and what can be done on AdS4.

2. Description of de Sitter space

Four-dimensional de Sitter space dS4 is a one-sheeted hyperboloid in R4,1 via

δi jyiy j− (y5)2 = R2 where i, j = 1, . . . ,4 . (2.1)

Topologically, dS4 ' R×S3. Closed-slicing global coordinates (τ,χ,θ ,φ) are obtained by

yi = Rω
i coshτ , y5 = Rsinhτ with τ ∈ R and δi j ω

i
ω

j = 1 , (2.2)

where ω i = ω i(χ,θ ,φ) embeds a unit S3 ' SU(2) with metric dΩ2
3 into R4. The induced metric

reads

ds2 = R2 (−dτ
2 + cosh2

τ dΩ
2
3
)
. (2.3)

We introduce an orthonormal basis {ea}, a = 1,2,3, of SU(2) left-invariant one-forms via

ea = −η
a
i j ω

idω
j ⇒ dea + ε

a
bc eb∧ ec = 0 (2.4)

with self-dual ’t Hooft symbols ηa
i j. They simplify the S3 metric to dΩ2

3 = (e1)2 +(e2)2 +(e3)2.
Four-dimensional de Sitter space is conformally equivalent to a finite Lorentzian cylinder

I ×S3 via conformal time

t = arctan(sinhτ) = 2arctan(tanh τ

2 ) ⇔ dτ

dt
= coshτ =

1
cos t

, (2.5)

with a range τ ∈ R ⇔ t ∈I = (−π

2 ,+
π

2 ) (2.6)

being an open interval. In conformal coordinates, the metric takes the form

ds2 =
R2

cos2t

(
−dt2 +δabeaeb) =

R2

cos2t
ds2

cyl . (2.7)
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3. Reduction of Yang–Mills to matrix equations

We consider rank-N hermitian vector bundles over the cylinder I ×S3 conformally equivalent to
dS4. Since de Sitter space has a (conformal) boundary, we apply the standard procedure of framing
the gauge bundle over this boundary [6], i.e. gauge-group elements g are restricted to

g(∂dS4) = Id on ∂dS4 = S3
t=+ π

2
∪S3

t=− π

2
. (3.1)

The gauge potential A and gauge field F = dA +A ∧A are taken to lie in su(N), and we pick
the temporal gauge A0 = 0. Respecting the manifest SO(4) symmetry of our cylinder, we choose
an SU(2)-equivariant ansatz,

A = Xa(t)ea with Xa ∈ su(N) , (3.2)

resulting in a gauge field

F = F0a e0∧ea + 1
2Fbc eb∧ec = Ẋa e0∧ea + 1

2

(
−2ε

a
bcXa +[Xb,Xc]

)
eb∧ec (3.3)

with e0 := dt and Ẋa := dXa/dt. The vacuum Yang–Mills equations may be directly specialized
to this ansatz or obtained from varying the Yang–Mills action after inserting (3.3). Both ways, one
arrives at three coupled ordinary differential equations and “Gauß-law” condition for three N×N
matrix functions Xa(t),

Ẍa = −4Xa +3εabc [Xb,Xc]−
[
Xb, [Xa,Xb]

]
and [Ẋa,Xa] = 0 . (3.4)

4. Further reduction to quintuple-well dynamics

In our context, the most natural and simple choice of a gauge group is SU(2). So let us restrict Xa to
some su(2)⊂ su(N) by embedding a spin- j representation of su(2) into su(2 j+1) for j = 1

2(N−1).
We normalize the three SU(2)-generators Ia via

[Ib, Ic] = 2ε
a
bcIa and tr(IaIb) = −4C( j)δab for C( j) = 1

3 j( j+1)(2 j+1) , (4.1)

where C( j) denotes the second-order Dynkin index of the representation. The simplest (but by no
means general) choice for the matrices Xa is

X1 = Ψ1I1 , X2 = Ψ2I2 , X3 = Ψ3I3 with Ψa = Ψa(t) ∈ R , (4.2)

automatically obeying the Gauß-law constraint in (3.4). As a result, the Yang–Mills Lagrangian
density simplifies to

L = 1
8 trFµνF µν = −1

4 trF0aF0a + 1
8 trFabFab

= 4C( j)
{1

4 Ψ̇aΨ̇a− (Ψ1−Ψ2Ψ3)
2− (Ψ2−Ψ3Ψ1)

2− (Ψ3−Ψ1Ψ2)
2} ,

(4.3)

which describes a Newtonian particle with coordinates Ψa in R3, subject to a conservative force
from a potential

1
2V (Ψ) = (Ψ1−Ψ2Ψ3)

2 + (Ψ2−Ψ3Ψ1)
2 + (Ψ3−Ψ1Ψ2)

2 . (4.4)
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This three-dimensional generalization of a double-well potential has critical points (Ψ̂1,Ψ̂2,Ψ̂3) at

(0,0,0) = minimum , (±1
2 ,±

1
2 ,±

1
2) = saddle , (±1,±1,±1) = minima , (4.5)

with
V (minima) = 0 and V (saddle) = 3

8 , (4.6)

where the number of minus signs in each triple must be even.
The Euler-Langrange equations

1
4 Ψ̈1 = −Ψ1 +3Ψ2Ψ3−Ψ1(Ψ

2
2 +Ψ

2
3) ,

1
4 Ψ̈2 = −Ψ2 +3Ψ3Ψ1−Ψ2(Ψ

2
3 +Ψ

2
1) ,

1
4 Ψ̈3 = −Ψ3 +3Ψ1Ψ2−Ψ3(Ψ

2
1 +Ψ

2
2)

(4.7)

are still too hard to solve analytically in general, but their invariance under a tetrahedral S4 symme-
try helps finding two special solutions:

abelian : Ψ1 = Ψ2 = 0 , Ψ3 =: ξ

⇒ Vξ = 2ξ
2 and ξ̈ = −4ξ ⇒ ξ (t) = −1

2 γ cos2(t−t0) ,
(4.8)

nonabelian : Ψ1 = Ψ2 = Ψ3 =: 1
2(1+ψ)

⇒ Vψ =1
2 (1−ψ

2)2 and ψ̈ = 2ψ (1−ψ
2) ⇒ ψ(t) = elliptic function .

(4.9)

The abelian solutions describe harmonic oscillations around the central minimum, while the non-
abelian ones contain the vacuum ψ(t)≡±1, the unstable saddle point ψ(t)≡ 0,1 and the bounce

ψ(t) =
√

2sech
(√

2(t−t0)
)
=

√
2

cosh
(√

2(t−t0)
) , (4.10)

among the generic nonlinear oscillations. The ‘energy’ of this Newtonian dynamics is conserved
and determined by the value V0 of the potential at the turning points, hence

1
2 ψ̇

2 =V0−Vψ(ψ) =V0− 1
2(1−ψ

2)2 . (4.11)

5. Yang–Mills configurations on de Sitter space

Let us translate the nonabelian double-well solutions ψ(t) back to Yang–Mills fields on dS4. Firstly,
on the Lorentzian cylinder (with conformal time), the substitution yields

A = 1
2 (1+ψ)eaIa and F =

(1
2 ψ̇ e0∧ea− 1

4 (1−ψ
2)ε

a
bc eb∧ec)Ia , (5.1)

providing SU(2) color electric and magnetic fields

Ea = F0a = 1
2 ψ̇ Ia and Ba = 1

2 εabcFbc = −1
2 (1−ψ

2) Ia . (5.2)

1The solution ψ=1 implies A = Iaea = g−1dg. The solution ψ=0 yields A = 1
2 Iaea = 1

2 g−1dg, reminiscent of a
meron [7].
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Their energy densities read

ρe = −1
4 trEaEa = 3

4 C( j) ψ̇
2 and ρm = −1

4 trBaBa = 3
4 C( j)(1−ψ

2)2 , (5.3)

and the total field energy becomes

Et =
∫

S3
e1∧e2∧e3 (ρe +ρm) = 3

4 C( j)vol(S3)
(
ψ̇

2 +(1−ψ
2)2) = 3π

2C( j)V0 . (5.4)

The action functional computes to

S = 1
8

∫
I×S3

e0∧e1∧e2∧e3 tr(−2F0aF0a +FabFab) =
∫

I
dt vol(S3)(ρe−ρm)

= 3
2 π

2C( j)
∫

π/2

−π/2
dt
(
ψ̇

2− (1−ψ
2)2) = 3π

3C( j)V0 − 6π
2C( j)

∫
π/2

−π/2
dt Vψ

(
ψ(t)

) (5.5)

Secondly, for de Sitter space the time variable is τ̃ = Rτ thus

Eτ̃ =
dt
dτ̃

Et =
1
R

dt
dτ

Et =
1

R coshτ
Et =

3π2C( j)V0

R coshτ
(5.6)

which is not only finite but decays exponentially at early and late times. To evaluate the action on
de Sitter space, we need to relate the field components to the appropriate orthonormal basis,

A = Ãa ẽa and F = F̃0a ẽ0∧ẽa + 1
2F̃bc ẽb∧ẽc with ẽ0 := Rdτ and ẽa := R coshτ ea

⇒ Aa = R coshτ Ãa , Fbc = R2 cosh2
τ F̃bc , F0a = ∂tAa = R2 cosh2

τ ∂τ̃Ãa . (5.7)

The result

S = 1
8

∫
dS4

ẽ0∧ẽ1∧ẽ2∧ẽ3 tr(−2F̃0aF̃0a + F̃abF̃ab) =
∫
R

dτ vol(S3)
ρe−ρm

coshτ
(5.8)

agrees with the value (5.5) on Lorentzian cylinder. Remarkably, despite the infinite spacetime
volume of de Sitter space, it is finite and bounded from below.

For a very explicit representation, we pick some coordinates on S3,

ω
1 = sin χ sinθ sinφ , ω2 = sin χ sinθ cosφ , ω

3 = sin χ cosθ , ω
4 = cos χ , (5.9)

and spell out the corresponding left-invariant one-forms,

e1 = sinθ sinφ dχ + sin χ cos χ (tan χ cosφ+cosθ sinφ)dθ + sin2
χ sinθ (cot χ cosφ−cosθ sinφ)dφ ,

e2 = sinθ cosφ dχ− sin χ cos χ (tan χ sinφ−cosθ cosφ)dθ − sin2
χ sinθ (cot χ sinφ+cosθ cosφ)dφ ,

e3 = cosθ dχ− sin χ cos χ sinθ dθ + sin2
χ sin2

θ dφ .

Next, let us define three matrices I∗ by decomposing

eaIa =: dχ Iχ +dθ Iθ +dφ Iφ . (5.10)

4
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In the fundamental (spin j=1
2 ) representation of su(2) these read

Iχ = −i
( cosθ −i sinθ eiφ

i sinθ e−iφ −cosθ

)
,

Iθ = −i sin χ cos χ

( −sinθ (tan χ−i cosθ)eiφ

(tan χ+i cosθ)e−iφ sinθ

)
,

Iφ = −i sin2
χ sinθ

( sinθ (cot χ+i cosθ)eiφ

(cot χ−i cosθ)e−iφ −sinθ

)
,

(5.11)

and the field-strength components in these angular coordinates (χ,θ ,φ) are succintly expressed as

Eχ = 1
2

dψ

dτ
Iχ , Eθ = 1

2
dψ

dτ
Iθ , Eφ = 1

2
dψ

dτ
Iφ ,

Bχ = −1
2 (1−ψ

2) Iχ , Bθ = −1
2 (1−ψ

2) Iθ , Bφ = −1
2 (1−ψ

2) Iφ .
(5.12)

The SU(2) equivariance in our ansatz (3.2) guarantees that all fields are spatially homogeneous
over the three-sphere and only varying with time.

6. Explicit examples

Let us contemplate a few prominent sample solutions for ψ and ξ and the properties of the ensuing
Yang–Mills fields. The potential minima ψ ≡ ±1 just yield F = 0, which is uninteresting. The
local maximum ψ ≡ 0 is more enlightening:

A = 1
2 ea Ia =

cos t
2R

ẽa Ia =
1

2R coshτ
ẽa Ia , (6.1a)

F = −1
4 ε

a
bc eb∧ec Ia = −cos2t

4R2 ε
a
bc ẽb∧ẽc Ia = − 1

4R2 cosh2
τ

ε
a
bc ẽb∧ẽc Ia , (6.1b)

thus producing a purely magnetic and spatially homogeneous configuration with

Ẽa = F̃0a = 0 and B̃a = 1
2 εabcF̃bc = −cos2t

2R2 Ia = − 1
2R2 cosh2

τ
Ia . (6.2)

With V0=
1
2 , its energy and action are readily computed to be

Eτ̃ = 3π2C( j)
2R coshτ

and S = −3
2 π

3C( j) , (6.3)

respectively. We conjecture the latter to be the lowest possible stationary value.
Color electric components require a time-dependent double-well solution ψ(t). The simplest

such configuration comes from the famous bounce (4.10), which yields

A =
cos t
2R

{
1 +

√
2

cosh
(√

2(t−t0)
)} ẽa Ia , (6.4a)

F = −cos2t
4R2

{
4

sinh
(√

2(t−t0)
)

cosh2(√2(t−t0)
) ẽ0∧ẽa +

sinh2(√2(t−t0)
)
−1

cosh2(√2(t−t0)
) ε

a
bc ẽb∧ẽc

}
Ia . (6.4b)

5
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Since the turning point is the same as for the local maximum solution ψ ≡ 0, they have the same
energy, but the value of the action is given by

S
C( j)

= −3
2 π

3 +12π
2
∫

π/2

−π/2
dt

sinh2(√2(t−t0)
)

cosh4(√2(t−t0)
)

= −3
2 π

3 +
√

8π
2(tanh3( π√

2
+δ )+ tanh3( π√

2
−δ )

)
,

(6.5)

depending on the bounce modulus δ =
√

2 t0 because of the finite t-interval I = (−π

2 ,
π

2 ) 6= R,
so that only some length-π segment (depending on δ ) of the bounce profile is captured.

Let us also take a quick look at the abelian solutions. Inserting (4.8) into (4.2) and (3.3) gives

A = −1
2 γ cos2(t−t0) e3 I3 = − γ

2R cos t cos2(t−t0) ẽ3 I3 , (6.6a)

F = dA = γ

R2 cos2t
{

sin2(t−t0) ẽ0∧ẽ3 + cos2(t−t0) ẽ1∧ẽ2
}

I3 , (6.6b)

thus
Ẽ3 = γ

R2 cos2t sin2(t−t0) I3 and B̃3 = γ

R2 cos2t cos2(t−t0) I3 , (6.7)

producing
ρe = γ

2C( j) sin22(t−t0) and ρm = γ
2C( j) cos22(t−t0) . (6.8)

The amplitude γ is a free parameter. Finally, we present the energy and the action,

Eτ̃ =
dt
dτ̃

∫
S3

e1∧e2∧e3 (ρe +ρm) =
2π2γ2C( j)

R coshτ
, (6.9)

S =
∫

I
dt vol(S3)(ρe−ρm) = 2π

2
γ

2C( j)
∫

I
dt
(
sin22(t−t0)− cos22(t−t0)

)
= 0 . (6.10)

The vanishing is in tune with the limit of small nonabelian oscillations (V0→ 0) around ψ =±1.

7. Instantons on de Sitter space

In quantum considerations it is of interest to also know the Yang–Mills solutions on the Wick-
rotated spacetime with Eucliean signature. A prominent class of such solutions are self-dual con-
figurations known as instantons. In order to construct these on de Sitter space, we Wick-rotate the
latter to the four-sphere S4 according to the following scheme,

dS4
Wick rotation−→ S4 conf. equiv.−→ R×S3 (7.1)

(τ,χ,θ ,φ) −→ (ϕ,χ,θ ,φ) −→ (
r
T ,χ,θ ,φ) , (7.2)

with the coordinate relations

τ = i(ϕ−π

2 ) , ϕ = 2 arctan r
R , r

R = eT ⇒ sinϕ = 1
coshT . (7.3)

The S4 metric in different coordinates reads

ds2 = R2(dϕ
2 + sin2

ϕ dΩ
2
3) =

4R4

(r2+R2)2 (dr2 + r2 dΩ
2
3) =

R2

cosh2T
(dT 2 +dΩ

2
3) . (7.4)

6
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Clearly, Euclidean dS4 is conformally equivalent to Euclidean cylinder over S3, with Euclidean
conformal time T . The radial variable r = ReT together with the S3 angles constitute just the
standard stereographic coordinates of S4 ' R4∪{∞},

xi = r ω
i(χ,θ ,ψ) ⇒ ds2 =

4R4

(r2+R2)2 δi j dxidx j . (7.5)

Our goal is to solve the instanton (or self-duality) equation Fi j =
1
2
√

detgεi jklF
kl . To this

end, we employ the Euclidean cylinder with ds2
cyl = dT 2+dΩ2

3 and the gauge AT = 0. Our trusted
SU(2)-equivariant ansatz

A = Xa(T )ea ⇒ F4a =
dXa

dT
and Fab = −2εabc Xc + [Xa,Xb] (7.6)

with Xa ∈ su(N) reduces the instanton equation to a generalized Nahm equation,

dXa

dT
= 2Xa − 1

2 εabc [Xb,Xc] . (7.7)

Taking again

X1 = Ψ1I1 , X2 = Ψ2I2 , X3 = Ψ3I3 with Ψa = Ψa(T ) ∈ R (7.8)

yields Wick-rotated Newtonian dynamics in R3, or V (Ψ)→−V (Ψ), and thus

Ψ̈a = +
∂V

∂Ψa
⇐ Ψ̇a =

∂U
∂Ψa

with V = 1
2

∂U
∂Ψa

∂U
∂Ψa

(7.9)

for a superpotential

U(Ψ) = Ψ
2
1 +Ψ

2
2 +Ψ

2
3 − 2Ψ1Ψ2Ψ3 . (7.10)

The superpotential shares the tetrahedral symmetry of V , and the (inverted) double-well arises
again for the restriction

Ψ1 = Ψ2 = Ψ3 = 1
2 (1+ψ) ⇒ Uψ(ψ) = ψ− 1

3 ψ
3 and ψ̇ = 1−ψ

2 . (7.11)

The simplest non-vacuum solution is the kink, ψ(T ) = tanh2(T−T0), yielding

Xa(T ) =
[
1+ exp(−2(T−T0))

]−1 Ia =
r2

r2+Λ2 Ia with Λ
2 = e2T0R2 . (7.12)

We have absorbed the collective coordinate T0 and the de Sitter radius into the combination Λ. The
resulting gauge potential and field strength become

A = Xa ea = − 1
r2+Λ2 η

a
i j Ia xidx j and F = − Λ2

(r+Λ2)2 η
a
i j Ia dxi∧dx j . (7.13)

This is nothing but the familiar BPST instanton extended from R4 to S4.

7
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8. What about anti -de Sitter?

Before concluding, let us comment on the other maximally symmetric case, Yang–Mills on four-
dimensional anti-de Sitter space AdS4. It is embedded in R3,2 via

(y1)2 +(y2)2 +(y3)2− (y4)2− (y5)2 = −R2 (8.1)

and conformally equivalent to I ×AdS3 ' I ×PSL(2,R) , by repeating the arguments for dS4

modulo appropriate signature flips or analytic continuations. Moreover, AdS4 is also conformally
equivalent to S1×S3

+ (the upper hemisphere)[8]!
The construction for gauge group SU(N) is similar to the one on dS4, but the conformal factor

now depends on a spatial coordinate χ . Like on dS4, it vanishes on the (conformal) boundary,
so all our solutions decay to zero there. However, for the AdS3 slicing energy and action are
proportional to the volume of PSL(2,R) and thus infinite. In contrast, for the S3

+ slicing we can
import time-periodic dS4 solutions and restrict them from S3 to S3

+. Since the three-hemisphere has
finite volume and the time variable is periodic, both energy and action are finite in this case! The
conjectured bound (attained for the purely magnetic solution) is even identical to the one on dS4.
The Euclidean version of AdS4 is the hyperbolic four-space H4. Finite-action instantons also exist,
but they are unstable. Passing to the universal cover ÃdS4 will stabilize them though.

9. Summary and outlook

We have established the existence of pure Yang–Mills solutions with finite energy and action on
non-dynamical four-dimensional de Sitter space (with radius R), without Higgs fields. Our most
symmetrical configurations feature color-electric and -magnetic fields homogeneous in the spatial
S3 slices, hence SO(4) invariant, analogous to the Dirac monopole on R3 restricted to S2 or the
Yang monopole on R5 restricted to S4 [9]. They only depend on time, in a smooth and asymtoti-
cally decaying manner. We arrived at these solutions by using a simple SU(2)-equivariant ansatz
for the gauge potential, which reduced the Yang–Mills equations to ordinary matrix differential
equations. Further specialization lead to the analog problem of a Newtonian particle in three space
dimensions subject to a particular tetrahedric quintuple-well potential. Special analytic particle tra-
jectories yielded explicit Yang–Mills solutions, whose field strengths decay in de Sitter time τ as
(R coshτ)−2, the energy as (R coshτ)−1. Their action is finite and bounded from below by −3π3

(for the adjoint representation). As a byproduct, we recover the BPST instanton extended to S4.
Analog configurations on AdS4 with H3 slicing also enjoy finite energy and action. These classi-
cal field configurations may be relevant for the Yang–Mills vacuum structure on (A)dS4, but this
requires further (e.g. stability) analysis.

Generalizations are easily possible. Firstly, one may allow for a larger gauge group and a more
general matrix ansatz, which will bring us to quiver gauge theories. Secondly, the matrix dynamics
may be analyzed directly, for the potential and superpotential

V = −tr
{

2XaXa − εabc Xa [Xb,Xc] +
1
2 [Xa,Xb] [Xa,Xb]

}
, (9.1)

U = −tr
{

XaXa − 1
6 εabc Xa [Xb,Xc]

}
, (9.2)
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respectively. And thirdly, there exist many more Yang–Mills solutions corresponding to generic
three-dimensional trajectories in the analog Newtonian system, which can only be investigated
numerically. We hope to come back to these questions in due time.
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