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Abstract: I explain how to construct noncommutative BPS configurations in four and

lower dimensions by solving linear matrix equations. Examples are instantons in D=4

Yang-Mills, monopoles in D=3 Yang-Mills-Higgs, and (moving) solitons in D=2+1 Yang-

Mills-Higgs. Some emphasis is on the latter as a showcase for the dressing method.

1. Self-duality and BPS equations

In this talk I shall present a powerful method for and results of constructing classical

field configurations with finite action or energy in four-dimensional noncommutative gauge

theory and its lower-dimensional descendants:

D = 4+0 instantons −→ D = 3+0 monopoles (1.1)

D = 2+2 “waves” −→ D = 2+1 solitons (1.2)

I am setting up the formalism in such a way that it is completely transparent to the (Moyal-

type) noncommutative deformation. In other words, the noncommutative equations below

differ from the commutative ones merely in the interpretation of the symbols or their

product (stars are suppressed). This will be briefly explained in Section 6. The Yang-Mills

field equations are implied by first-order (self-duality or BPS) equations:

D=4 : DµFµν = 0 ⇐= Fµν =
1
2εµνρλF

ρλ (1.3)

↓ ↓ ↓
D=3 : DaFab = φDbφ

DaDaφ = 0
⇐= Fab = εabcD

cφ (1.4)

where F and φ are u(n) valued and Greek indices run from 1 to 4 while Latin ones stop

at 3. In complex coordinates (note the signs!) y = x1+ix2 and z = x3∓ ix4 the self-duality
equation F = ∗F becomes

[Dy,Dz ] = 0 = [Dȳ,Dz̄] and [Dy,Dȳ]± [Dz,Dz̄ ] = 0 (1.5)
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where the upper and lower signs belong to the signatures (4,0) and (2,2), respectively.

Dimensional reduction to D=3 is accomplished via

∂4 = 0 , A4 = φ for D = 3+0 or ∂3 = 0 , A3 = φ for D = 2+1 . (1.6)

2. Lax pair

The three self-duality equations (1.5) are the compatibility conditions of the linear system

(Dȳ − λDz)Ψ(x, λ) = 0 = (Dz̄ ± λDy)Ψ(x, λ) , (2.1)

where Ψ(x, λ) ∈ U(n) is a matrix function holomorphic in the spectral parameter λ ∈
CP 1 ' S2. From the auxiliary function Ψ the gauge potential can be recovered via

Aȳ − λAz = Ψ(∂ȳ − λ∂z)Ψ−1 and Az̄ ± λAy = Ψ(∂z̄ ± λ∂y)Ψ−1 . (2.2)

In addition, antihermiticity of A corresponds to a normalization condition for Ψ,

A†µ = −Aµ ⇐⇒ Ψ(x, λ)Ψ(x,∓1/λ̄)† = 1 , (2.3)

which involves a reflection of λ on the unit circle.

3. Gauge fixing

Out of the three self-duality equations (1.5), the (2,0) part Fyz = 0 and the (0,2) part

Fȳz̄ = 0 are solved by

Ay = g
−1∂y g

Az = g
−1∂z g

and
Aȳ = g̃

−1∂ȳ g̃

Az̄ = g̃
−1∂z̄ g̃

(3.1)

for g, g̃ ∈ GL(n,C), possibly with the restriction that

A†y = −Aȳ and A†z = −Az̄ =⇒ g̃ = (g†)−1 . (3.2)

Allowing for Ψ ∈ GL(n,C) I may transform to the so-called hermitean gauge,

Ψ→ g̃Ψ , Aȳ → 0 , Az̄ → 0 , Ay → h−1∂y h , Az → h−1∂z h , (3.3)

where h = gg̃−1 = gg† = h†. This gauge eliminates half of A, but the price to pay is that

now A†y 6= −Aȳ and A†z 6= −Az̄ as well as

Ψ(x, λ)Ψ(x,∓1/λ̄)† = g̃g−1 = h−1 6= 1 . (3.4)

The remaining (1,1) part of the self-duality equations (1.5) produces a second-order equa-

tion for the prepotential h:

Fyȳ ± Fzz̄ = 0 =⇒ ∂ȳ(h
−1∂yh)± ∂z̄(h−1∂zh) = 0 . (3.5)

In the hermitean gauge the linear system (2.1) reads

(∂ȳ − λ∂z)Ψ = λAzΨ and (∂z̄ ± λ∂y)Ψ = ∓λAyΨ . (3.6)

From its solution it is, in principle, always possible to retrieve an antihermitean gauge

potential by an appropriate gauge transformation.
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4. Dressing method

In hermitean gauge, the reconstruction (2.2) of A from Ψ simplifies to

Az = Ψ(λ) (∂z − 1λ∂ȳ)Ψ(λ)
−1 and Ay = Ψ(λ) (∂y ± 1λ∂z̄)Ψ(λ)

−1 (4.1)

where Ψ is subject to

h−1 = Ψ(λ)Ψ(∓1/λ̄)† . (4.2)

Since λ ∈ CP 1 a nonconstant matrix function Ψ(λ) cannot be globally holomorphic. Hence,
it must have poles at λ=µk, k=1, . . . ,m. The power of holomorphy then enables us to

find Ψ without knowing A, just by fixing its pole structure!

The dressing method [1] builds up Ψ(x, λ) multiplicatively: Ψk poles = χk · Ψk−1 poles,
employing the ansatz

χk(x, λ) = 1−
λ(1±µkµ̄k)
λ− µk

Pk(x) (4.3)

with moduli µk and matrices Pk(x), and starting from the trivial seed solution Ψ0 = 1.

An m-fold repetition of this dressing transformation yields

Ψm(x, λ) =
m∏
k=1

(
1− λ(1±µkµ̄k)

λ− µk
Pk(x)

)
= 1−

m∑
k=1

λRk(x)

λ− µk
(4.4)

if all moduli µk are mutually different.

5. Single-pole ansatz

A lot can be learned already from the simplest situation, namely m=1 (a single pole and

moduli µ):

Ψ(x, λ) = 1− λ(1±µµ̄)
λ− µ P (x) (5.1)

where the group-valued but λ-independent function P is to be determined. It is crucial to

observe that the left hand sides of (4.1) and (4.2) are λ-independent, implying that their

right hand sides must have vanishing residues for the poles at λ=µ and λ=∓1/µ̄. A short
computation reveals the following:

(4.2) =⇒ P 2 = P = P † hermitean projector (5.2)

⇐⇒ P = T 1
T †T T

† n× r(ank) matrix T (x) (5.3)

(4.1) =⇒ P (∂ȳ−µ∂z)P = 0 = (1−P ) (∂z±µ̄∂ȳ)P

P (∂z̄±µ∂y)P = 0 = (1−P ) (∂y−µ̄∂z̄)P

⇐⇒ (1−P )LT = 0 with L :=

{
∂z±µ̄∂ȳ
∂y−µ̄∂z̄

(5.4)

⇐⇒ LT = T γ for some r × r matrix γ . (5.5)
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I conclude: Every collection T (x) of r simultaneous “eigenvectors” of the differential op-

erators L gives rise to a valid projector P (x) which, in turn, yields a prepotential and a

self-dual gauge connection:

h−1 = 1− (1±µµ̄)P and Az =
1±µµ̄
µ ∂ȳP , Ay = ∓1±µµ̄µ ∂z̄P . (5.6)

6. Noncommutative deformation

Up to now it seems that I have just reformulated rather old results. However, everything

still makes sense if I understand all products of functions in the deformed sense, i.e.

(f g)(x) means (f ? g)(x) = f(x) exp
{
i
2

←
∂ µ θ

µν
→
∂ ν
}
g(x) (6.1)

= f(x) g(x) + i
2θ
µν (∂µf)(x) (∂νg)(x) + . . .

with θµν = −θνµ = constant in D = 4+0 dimensions. The coordinate functions then
obey the (star) commutation rule

xµ ? xν − xν ? xµ = iθµν . (6.2)

For a given noncommutativity matrix (θµν) I can choose an orthonormal basis in which(
θµν
)
=

( 0 θ 0 0
−θ 0 0 0
0 0 0 θ′
0 0 −θ′ 0

)
. (6.3)

In this talk I specialize to θ′ = θ in 4+0 dimensions (self-dual noncommutativity) while

lower dimensions enforce θ′ = 0. For my choice of complex coordinates this implies that

(note the asymmetry!)

y ? ȳ − ȳ ? y = 2θ = z̄ ? z − z ? z̄ . (6.4)

Via the Moyal-Weyl correspondence, this structure (the deformed function algebra) can

be realized equivalently by an operator algebra with the usual (compositional) product,(
f(y, ȳ, z, z̄), ?

)
'

(
F (a, a†, b†, b), ·

)
. (6.5)

The latter is generated by two sets (a, a†; b, b†) of oscillator annihilation and creation op-

erators subject to the Heisenberg algebra

[a, a†] = 1 = [b, b†] (6.6)

which can be represented on a Fock space H2. Putting 2θ=1 for convenience, the Moyal-
Weyl map and its inverse operate as follows,

F = Weyl-order
[
f(a, a†, b†, b)

]
and f = F?(y, ȳ, z, z̄) , (6.7)

where star multiplication is implied when writing out the Weyl symbol F? in terms of the

coordinates. It is also worth noting that

∂yf ' −[a†, F ] , ∂ȳf ' [a, F ] , ∂zf ' [b, F ] , ∂z̄f ' −[b†, F ] , (6.8)

and ∫d4x f(x) = (2πθ)2 trH2F , (6.9)

where the two-oscillator Fock space H2 is spanned by

|m1,m2〉 = 1√
m1!m2!

(a†)m1 (b†)m2 |0, 0〉 with m1,m2 ∈ N0 . (6.10)
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7. D=2+1: Solitons in noncommutative Yang-Mills-Higgs

Starting from D = 2+2 with signature (+ +−−) I put θ′ = 0 and

A3 = φ , ∂3 = 0 , x4 = −t , y = x1 + ix2 =
√
2θ a . (7.1)

Instead of using the hermitean gauge (see Section 3) it is more convenient in this situa-

tion to switch to the so-called unitary gauge. For the spectral parameter this entails a

transformation from the unit disk to the upper half plane,

λ → ζ = i 1+λ1−λ so that 1/λ̄ → ζ̄ . (7.2)

This time, the two combinations At−A2 and A1+φ are gauged away, but now staying
within U(n) so that the normalization condition remains

A†µ = −Aµ ⇐⇒ Ψ(x, ζ)Ψ(x, ζ̄)† = 1 . (7.3)

The linear system looks slightly different, and Ψ produces A via

2A1 = Ψ(ζ)
(
∂1 − ζ(∂t−∂2)

)
Ψ(ζ)−1 & 2A2 = Ψ(ζ)

(
(∂t+∂2)− ζ∂1

)
Ψ(ζ)−1 .

(7.4)

Consequently, the single-pole ansatz has to be modified to

Ψ(a, a†, t, ζ) = 1+
µ− µ̄
ζ − µ P (a, a

†, t) . (7.5)

Again, the absence of poles at ζ=µ or ζ=µ̄ in (7.3) and (7.4) leads to

(7.3) =⇒ P 2 = P = P † ⇐⇒ P = T 1
T †T T

† (7.6)

(7.4) =⇒ (1−P )LP = 0 ⇐⇒ LT = T γ (7.7)

where L denotes the differential operators in (7.4) for ζ=µ̄ and γ is some r×r matrix.
In the noncommutative setup [2] the (x1, x2) coordinate dependence gets traded for

operator valuedness while the time t remains a parameter. The Heisenberg algebra [a, a†] =

1, when represented on H1 with basis {|m〉,m∈N0}, turns A, Ψ and P into semi-infinite
n∞×n∞ matrices acting on Cn ⊗ H1 for the gauge group U(n). The collection T of r
column vectors is then seen as an n×r array of H1 kets:

|T 〉 =
(
|T `i 〉

)`=1...r
i=1...n

=⇒ P = |T 〉 1
〈T |T 〉 〈T | . (7.8)

As detailed in [2], the time dependence of the two operators L in (7.4) can be absorbed

into an ISU(1,1) coordinate transformation from a to

c = (cosh τ) a− (eiϑ sinh τ) a† − β t = U(t) aU †(t) (7.9)

with U(t) = eαa
†a†−ᾱ a a e(β a

†−β̄ a)t , (7.10)

– 5 –
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where the parameters τ, ϑ, β, α are specific functions of µ only. These “moving-frame”

coordinates are canonical, [c, c†] = 1, and describe moving squeezed states

|m〉t = U(t) |m〉 based on c |0〉t = 0 . (7.11)

It turns out that both operators L are proportional to [c, .], so that (7.7) mutates to

c |T `i 〉 = |T `
′

i 〉 γ ``′ for some r×r matrix γ = (γ ``′ ) . (7.12)

This equation may be interpreted as a holomorphy condition. It is solved by any collection

of states which spans a subspace of Cn⊗H1 invariant under the action of c. Each solution
yields a time-dependent exact noncommutative U(n) soliton

2A1 = (µ−µ̄) (∂t − ∂2)P , 2A2 = (µ−µ̄) ∂x P (7.13)

with a topological charge q and energy E = 8πq

√
1−v21−v22
1−v22

. Its energy density consists of

up to q lumps moving jointly in the (x1, x2) plane with a constant velocity (v1, v2) given

by µ. Having zero relative lump velocities these configurations cannot be considered as

true multi-solitons. For µ = −i one finds ~v = 0 and c = a, i.e. the static case U(t) = 1.
Let us first look at solutions with finite rank r <∞. An interesting class of solutions

occurs for diagonal matrices γ = diag(γ1, . . . , γr), because then (7.12) decouples to

c |T `i 〉 = |T `i 〉 γ` ∀ i = 1, . . . , n and ` = 1, . . . , r (7.14)

which is solved by coherent states based on the squeezed vacuum, as illustrated for n=1:

|T `〉 ∼ eγ`c† |0〉t = U(t) eγ`a
† |0〉 ∼ U(t) |γ`〉 = |γ`〉t . (7.15)

Obviously, γ` simply gives the position of the `th lump at t=0. For the simplest case, r=1

and ~v=0, one finds

P = |γ〉〈γ| = Weyl-order
[
2 e−2(a

†−γ̄)(a−γ)] =⇒ p(y) = 2 e−|y−
√
2θγ|2/θ

(7.16)

which becomes singular in the commutative limit θ→0. Any (abelian as well as non-abelian)
finite-rank solution |T 〉 has topological charge q = r and can be built from such coherent
states. Moreover, |T 〉 is always unitarily related to the standard choice (|0〉, |1〉, . . . |r−1〉)
belonging to (γ)r = 0. In this sense, all finite-rank solutions have abelian character, as

exemplified here for n=2, r=2 at ~v=0:(
|0〉 |1〉

0 0

)
=

(
|0〉〈0| S†

S 0

)(
|0〉 0

0 |0〉

)
, (7.17)

where S = 1√
aa†
a : |m〉 → |m−1〉 is the shift operator.

Infinite-rank solutions can also feature finite topological charge if they are truely non-

abelian. As a static U(2) example with r = 1+∞ but q = 1 consider

|T 〉 =
(
|0〉〈0|

S

)(
|0〉 |1〉 |2〉 |3〉 . . .

)
=

(
|0〉 0 0 0 . . .

0 |0〉 |1〉 |2〉 . . .

)
(7.18)

– 6 –



j
h
w
2
0
0
3

27th Johns Hopkins Workshop on Current Problems in Particle Theory:
Symmetries and Mysteries of M Theory Olaf Lechtenfeld

which yields P = |0〉〈0| ⊕ 1 on H1 ⊕ H1. Using S|0〉 = 0 and SS† = 1 but

S†S = 1−|0〉〈0|, the unitary transformation( ε
K |0〉〈0| −

√
a†a
K

ε
K S

†

S ε̄K S
√
a†a
K S

†

)|0〉〈0|
S

 =

ε
a

 1

K
(7.19)

with K =
√
a†a+ ε̄ε and parametrized by ε ∈ C clearly maps

|T 〉 → |T (ε)〉 = |T 〉 1√
〈T |T 〉

with |T 〉 =
(ε
a

)(
|0〉 |1〉 |2〉 . . .

)
. (7.20)

Since limε→0 |T (ε)〉 = |T 〉 the parameter ε may be regarded as a regulator. The complete
basis of kets drops out when building the projector, and so the choice of |T 〉 is equivalent
to taking

T = T̂ ≡
(
ε

a

)
=⇒ P =

( εε̄
K2

ε
K2
a†

a ε̄
K2
a 1
K2
a†

)
. (7.21)

Quite generally, for |T 〉 = T̂
(
|0〉 |1〉 |2〉 . . .

)
with T̂ being an n×r′ array of operators,

the condition (7.12) translates to

[ c , T̂ ] = T̂ γ̂ for some r′×r′ array γ̂ of operators . (7.22)

In case γ̂ = diag(γ1, . . . , γr′) with c-numbers γ` the solution takes the simple form

T̂ `i = eγ`c
†
f `i (c) (7.23)

with arbitrary functions f `i of c only. The corresponding projectors have infinite rank in

C
n⊗H1 but the topological charge (and the energy) is determined by the degrees of f `i if
the latter are polynomial.

These nonabelian solutions possess a regular θ → 0 limit where they coincide with the
known commutative solutions, which live in the Grassmannian Gr(n, r′) = U(n)

U(r′)×U(n−r′) .

Formally, their noncommutative deformations are elements of Gr(n∞, r=r′∞+q), and the
abelian solitons are included at (n=1, r′=0).

Proper multi-solitons [2] can be constructed by iterated dressing of (7.5):

Ψm(a, a
†, t, ζ) =

m∏
k=1

(
1− µk − µ̄k

ζ − µk
Pk(a, a

†, t)
)
= 1−

m∑
k=1

Rk(a, a
†, t)

ζ − µk
(7.24)

if all µk are mutually different. Repeating the previous analysis of the pole structure yields

Pk and Rk in terms of m moduli µk and ket matrices |T 〉k subject to

(1n ⊗ ck)|T 〉k = |T 〉k · γk where ck = Uk(t) aU
†
k(t) (7.25)

is the “moving-frame” coordinate derived from µk. In this fashion one arrives atm copies of

the single-pole solution; the corresponding (clusters of) lumps, however, move at mutually

– 7 –
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different velocities ~vk! Their topological charges and energies are simply additive. I should

stress that the time dependence of these configurations is exact and not just valid in the

adiabatic regime.

In this situation the question of scattering immediately emerges. An analysis of the

asymptotic behavior shows that the ansatz (7.24) can only lead to no-scattering solutions,

i.e. the lumps do not disturb one another. However, a slight generalization allowing

for coinciding poles in (7.24) produces nonabelian multi-solitons which scatter at angles

ϑ = π/` as well as abelian breather-type configurations [3].

8. D=4+0: Instantons in noncommutative Yang-Mills

I will construct a self-dual finite-action U(2) configuration on a self-dual noncommutativity

background. Not fixing the gauge, the basic relations are (2.2) and (2.3). A one-instanton

ansatz for Ψ with poles at λ=0 and λ=∞ reads [4, 5]

Ψ(x, λ) = G(x)
(
H(x) + λS(x)† + 1λS(x)

)
. (8.1)

On this I impose the following restrictions:

G =
( g− 0
0 g+

)
= G† , H =

( h− 0
0 h+

)
= H† , (8.2)

[G,H] = [G,S] = [H,S] = 0 . (8.3)

Inserting the above into (2.2) and (2.3) and separating different powers of λ produces

(2.3) =⇒ S2 = 0 , G2H2 = 1 +G2{S, S†} , (8.4)

(2.2) =⇒ S∂ȳS = 0 = S∂z̄S , (8.5)

H∂ȳS − S∂ȳH − S∂zS = 0 , (8.6)

H∂z̄S − S∂z̄H + S∂yS = 0 . (8.7)

A convenient choice for S is

S =

(
z 1
f(r)
y z −1

f(r)
z

y 1
f(r)
y y −1

f(r)
z

)
with r2 := ȳy + z̄z = 2θ (a†a+ b b†) . (8.8)

Then (8.3) is solved by g±(x) = g(r2 ± 2θ) and h±(x) = h(r2 ± 2θ), and furthermore

(8.6, 8.7) ⇐= h(r2) = −1 and f(r) = r2 + 2Λ2 , (8.9)

(8.4) =⇒ g(r2) = ± 1
2Λ

r2 + 2Λ2√
r2 + Λ2

, (8.10)

with some real parameter Λ.
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Putting it all together I arrive at

Ψ =
1

2Λ


1√

r2+Λ2−2θ 0

0 1√
r2+Λ2+2θ


r2+2Λ2−2θ−λȳz̄−

yz
λ −λȳ2+ z

2

λ

λz̄2−y
2

λ r2+2Λ2+2θ+λȳz̄+
yz
λ

 (8.11)

which finally yields the noncommutative BPST instanton (see also [6]):

Ay =

−
ȳ
2θ

(√
r2+Λ2−2θ
r2+Λ2

− 1
)

0

−z̄ 1√
r2+Λ2

√
r2+Λ2−2θ −

ȳ
2θ

(√
r2+Λ2+4θ
r2+Λ2+2θ

− 1
)
 , (8.12)

Az =


(√

r2+Λ2−2θ
r2+Λ2

− 1
)
z̄
2θ − 1√

r2+Λ2
√
r2+Λ2−2θ ȳ

0
(√

r2+Λ2+4θ
r2+Λ2+2θ

− 1
)
z̄
2θ

 . (8.13)

9. D=3+0: Monopoles in noncommutative Yang-Mills-Higgs

Beginning from D = 4+0 I set θ′ = 0 and

A4 = φ and ∂4 = 0 ⇔ ∂z − ∂z̄ = 0 and Dφ = ∗F (9.1)

One may again try to apply the dressing method, but it turns out that this situation is more

amenable to the (related) splitting method, which reformulates the linear system (2.1) as

a parametric Riemann-Hilbert problem [7]. Lacking the time to explain this approach in

any detail I will only sketch the salient features for the monopole case [8].

In all methods, the BPS equation gets reduced to a linear (differential) equation for

an auxiliary object, e.g. for T in (7.7) or (7.12), which restricts the coordinate dependence

of this quantity. Within the splitting approach, it is a matrix-valued so-called transition

function f+−(x, λ) which in D=3 depends on the coordinates x = (x1, x2, x3) only holo-

morphically through the combination (remember y = x1 + ix2 and [y, ȳ] = 1)

w(λ) = 2x3 + λȳ − λ−1y . (9.2)

The Riemann-Hilbert task of factorizing

f+−(x, λ) = Ψ
−1
+ (x, x

4, λ)Ψ−(x, x
4, λ) with Ψ±(λ) holomorphic for |λ| <> 1 (9.3)

requires the multiplicative and additive decompositions

w = 1
λ (yξ

−1 + λξ) (λξ−1ȳ − ξ) = (z + λȳ) − (λ−1y − z̄) = u − v , (9.4)

where ξ was computed in [9] and obeys ξ2
θ→0−→ r − x3 with r2 = ȳy + x3x3.
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In case of u(2) monopoles, the simplest ansatz for the 2×2 matrix f+− contains a
function ρ which for the BPS monopole can be reduced to the Weyl-ordered expression

ρ = eu w−1 eu − ev w−1 ev (9.5)

= e−2ix
4 +1∫
−1
dt e2tx

3
eλ(1+t)ȳ+λ

−1(1−t)y (9.6)

= e−2ix
4∑

m∈Z ρm λ
m (9.7)

where ρ0 = sinh(2R)/R with R = x3 + ξξ
θ→0−→ r , (9.8)

ρ±1 = explicitly known in terms of (y, ȳ, x
3, R) . (9.9)

The gauge potential is entirely expressed in terms of ρ0 via [8]

Ai = εijk
σk
2i

(
ρ
+ 1
2
0 ∂j ρ

− 1
2
0 − ρ

− 1
2
0 ∂j ρ

+ 1
2
0

)
(9.10)

+
12
2

(
ρ
− 1
2
0 ∂i ρ

+ 1
2
0 + ρ

+ 1
2
0 ∂i ρ

− 1
2
0

)
+ σi , (9.11)

φ ≡ A4 =
σi
2i

(
ρ
+ 1
2
0 ∂i ρ

− 1
2
0 − ρ

− 1
2
0 ∂i ρ

+ 1
2
0

)
. (9.12)

The expression for Ai is not antihermitean and was not expected to be because I did not

impose a reality condition on the factorization on f+−. However, it is possible to pass to

an antihermitean configuration via a nonunitary gauge transformation generated by

g =
[
Ψ+(λ)Ψ

†
−(−1/λ̄)

∣∣
λ=0

]1/2
. (9.13)

Unfortunately, the matrix g2 is quite complicated and involves ρ±1 as well [8]. Reassuringly,

the commutative limit reproduces the familiar result:

Ai = εijk
σk
2i

xj

r

(1
r
− 2 coth(2r)

)
+ σi

g=ex
iσi−−−−−→ εijk

σk
2i

xj

r

(1
r
− 2

sinh(2r)

)
.

(9.14)

10. Other applications

The methods outlined in this talk have also been applied successfully towards the con-

struction and study of various other noncommutative field configurations (see for example

[10, 11, 12, 13] and references therein1). In my group, in particular, we have investigated

[14, 15, 16, 17, 18]

• Relations of noncommutative integrable models with open N=2 strings

• Seiberg-Witten monopole equations on R4θ, related with vortex-type equations on R2θ

• Donaldson-Uhlenbeck-Yau equations on R2nθ ×S2 give vortex-type equations on R2nθ
1This is not a review. I apologize for my incomplete citation.
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• Moyal-deformed extended superspace and gauge theory thereon

• Open superstring field theory (à la Witten or Berkovits), which can be interpreted
as an integrable infinite-dimensional noncommutative field theory

Numerous open problems remain to be tackled, such as finding nontrivial classical super-

string configurations, analyzing the quantum fluctuations around our BPS solutions, or

substantiate their D-brane interpretation.
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