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A B S T R A C T

The spin of electrons bound to neutral phosphorus donors in isotopi-
cally enriched silicon is a promising candidate for future quantum
information processing. In this thesis, the intriguing properties
of the associated optical transition, i.e., the donor bound exciton
(D0X) transition are investigated by means of high precision laser
absorption spectroscopy. The ultra-narrow spectral linewidth of the
D0X transition allows for individual optical addressability of the
electron spin and the phosphorus nuclear spin which is used to un-
ambiguously quantify the microscopic origin of the enhanced donor
electron spin lattice relaxation rate caused by optical excitation. For
this purpose, the transient decay of the donor electron polarization
is studied via a time-resolved pump-probe absorption spectroscopy
technique where a significant shortening of the polarization de-
cay with increasing laser excitation is observed. The theoretical
analysis of the complete optically driven donor system shows that
this shortening is caused by the creation of free electrons via the
ubiquitous D0X Auger recombination. It is shown that, in addition
to electron-phonon interaction, the hot Auger electrons relax their
excess energy via inelastic collisions with donors and promote the
donor electron from the ground state to a spin-mixed excited state
giving rise to an Orbach-type spin relaxation mechanism which sets
a fundamental limit to the spin relaxation and spin coherence time
of optically driven donor systems. Furthermore, the ultra-narrow
linewidth of the D0X transition enables the test of fundamental
semiconductor physics such as the low temperature behavior of the
silicon bandgap and the extraction of material parameters like the
Landé g-factors.
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L I S T O F A C R O N Y M S , S Y M B O L S A N D
C O N S TA N T S

acronyms

BR Balanced Receiver
BS Beamsplitter
CAD Computer-Aided Design
CTE Coefficient of Thermal Expansion
DBR Distributed Bragg Reflector
DSO Digital Storage Oscilloscope
DSP Degree of Spin Polarization
D0 Donor Bound Electron
D0X Donor Bound Exciton
ECDL External Cavity Diode Laser
EOM Electro-Optic Modulator
FWHM Full Width at Half Maximum
FEM Finite Element Method
HWHM Half Width at Half Maximum
HWP Half-Wave Plate
IGP Ion Getter Pump
LCR Liquid Crystal Retarder
LP Linear Polarizer
MBE Molecular Beam Epitaxy
OVC Outer Vacuum Chamber
PDH Pound-Drever-Hall
PSD Power Spectral Density
QWP Quarter-Wave Plate
ULE Ultra Low Expansion glass
SNS Spin Noise Spectroscopy
WLM Wavelength Meter or Wavemeter
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symbols

A phosphorus donor hyperfine coupling constant
a factor in the linear CTE of ULE
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B magnetic field
ED donor binding energy
EL bound exciton localization energy
EX exciton binding energy
E0 Orbach constant
F finesse
G optical excitation rate
ge electron g-factor
g1/2 light hole g-factor
g3/2 heavy hole g-factor
H Hamilton operator
I nuclear spin
L length
m∗ effective electron mass
n dispersive part of the refractive index
nd donor density
nd,i ionized donor density
R reflectivity
S electron spin
S∆ν(f) laser frequency noise PSD
T temperature
T0 cavity zero-crossing temperature
T1 longitudinal spin relaxation time
T2 spin dephasing time
T ∗2 inhomogeneous spin dephasing time



TX donor cross-relaxation time
w0 focused 1/e2 laser beam radius
α dissipative part of the refractive index (absorption coeffi-

cient)
αp pressure coefficient of the WLM calibration
β low energy stretching factor of the skewed Lorentzian
βT pressure coefficient of the WLM calibration
Γ FWHM linewidth of the D0X transition
Γ0 low temperature FWHM linewidth of the D0X transition
ΓD0T2 decay rate of the excited 1S-T2 donor state
γ HWHM linewidth of the D0X transition
∆ energy difference between the donor 1S-A1 and 1S-T2 state
∆P pump laser detuning
∆νrms root mean square laser linewidth
δ ULE ring coupling parameter
εr relative permittivity
ζ Number of collision a single hot Auger electron performs

with one donor
η Total energy loss of one Auger electron due to inelastic

collisions with donors
ΘF Faraday rotation angle
κ time constant of free exciton cooling
λ wavelength
µ∗ reduced effective mass
ν laser frequency
Π linear polarization
ρ donor electron spin polarization
σ+(−) left-handed (right-handed) circular polarization
τ lifetime
τA D0X Auger lifetime
τDAP donor acceptor pair recombination time constant
τc capture time
Ω phase modulation frequency
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ω laser angular frequency

constants

c vacuum speed of light, 2.997 924 58× 108 m s−1

e elementary charge, 1.602 176 62× 10−19 C
h planck constant, 6.626 070 15× 10−34 J s
h̄ reduced planck constant, 1.054 571 817× 10−34 J s
kB Boltzmann constant, 1.380 649× 10−23 J s−1

m0 free electron mass, 9.109 383 70× 10−31 kg
ε0 vacuum permittivity, 8.854 187 812 8× 10−12 A s V−1 m



Part I

I N T R O D U C T I O N A N D
F U N D A M E N TA L S





1
I N T R O D U C T I O N

Silicon is one of the most important semiconductors and forms the
building block of the information age due to its versatile use in
integrated circuits. This was only made possible through decades of
extensive research regarding electronic transport properties and the
physics of shallow dopants. Besides the charge degree of freedom,
shallow impurities also possess an additional spin degree of freedom
which has the potential to revolutionize conventional charge-based
electronics [1, 2, 3]. The understanding of the spin physics of lo-
calized states began in 1954 with the first electron spin resonance
experiments by Fletcher et al. [4] and the first relaxation time
measurement by Honig [5]. Supported by theoretical studies on the
electronic structure and spin relaxation [6, 7, 8, 9] Feher et al. have
contributed three related publications [10, 11, 12] which count up
to now to the most comprehensive experimental studies on shallow
impurities in silicon. Using the electron nuclear double resonance
(ENDOR) technique they were able to determine the electronic
structure of the ground states and excited states of donors and
the Landé g-factor of electrons. Most importantly, they find that
the donor electron spin exhibits extremely long T1 relaxation times
with a reported value of ≈ 3000 s at 1.25 K. Under these conditions,
the phosphorus nuclear spin relaxation time exceeded 10 h.
In 1998, these extraordinarily long relaxation times lead Kane to
the proposal of a quantum computer based on the hyperfine coupled
system of the phosphorus donor electron and nuclear spin [1]. In
this framework, the donor system will serve as the smallest unit
of information storage, the so called qubit, which allows for the
storage of superposition states, the key ingredient to the potentially
superior performance of quantum computers. The qubit itself could,
in principle, consist of any well defined quantum mechanical two-
level system as provided in semiconductor quantum dots [13] or
the nitrogen vacancy center in diamond [14]. However, the existing
know-how in the field of silicon growth, processing, and device fab-
rication favors silicon as the host for future quantum information
processing. Despite its numerous advantages, the relatively short
coherence lifetime T2 on the ms scale at low temperatures [15, 16,
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17] constitutes a drawback. Even though coherent control of a single
spin-qubit in natural silicon has been demonstrated [18], longer
T2 times are desirable for quantum computation. One reason for
this striking discrepancy between the T1 and the T2 time can be
found in the presence of 29Si isotopes with a nuclear spin I = 1/2
and an abundance of ≈ 4.7 % in natural silicon. These nuclear
spins are mutually coupled by dipolar interaction leading to spin
flip-flops. This is sensed as random field fluctuations by the donor
electron and thus leading to decoherence, an effect which has been
termed nuclear-induced spectral diffusion [19, 20]. This problem
was circumvented in 2004 in the course of the Avogadro project
[21] where isotopically purified crystals containing > 99.99 % of
28Si became available which has extended the coherence time of
the donor electron spins to ≈ 10 s [22].
The availability of highly enriched silicon not only brought about
an increase in spin coherence but also had a significant impact
on the optical properties. The optical recombination of an exciton
bound to a neutral phosphorus donor (D0X) in natural silicon was
already one of the narrowest transitions in the solid state with an
optical width of ≈ 1.2 GHz [23]. The lack of isotopical randomness
and the associated fluctuation in the bandgap energy in 28Si dras-
tically reduced the width to ≈ 36 MHz [24] and finally a width of
≈ 4.8 MHz was found in a so called hole burning experiment [25]
which is remarkably close to the 585 kHz natural linewidth set by
the 272 ns Auger decay time [26]. Most strikingly, the linewidth
has decreased below the value of the donor ground state hyperfine
coupling constant A = 117.53 MHz [10] which enables the optical
addressability of a specific donor or nuclear spin state by means
of optical spectroscopy [24]. In the context of qubit initialization,
it has been shown that this individual addressability can be used
to polarize the donor spin ensemble up to 90 % via selective spin
pumping [27]. The latter has paved the way for hybrid techniques
where qubit initialization and readout is achieved by optical means
and coherent manipulation is accomplished by conventional electron
spin resonance or nuclear magnetic resonance techniques [28, 29,
30].
A common feature to all schemes where qubit initialization is re-
alized by optical means is the generation of free electrons via the
D0X Auger decay and it has been recognized that the existence of
free electrons enhances the donor spin relaxation rate [27]. Earlier
studies [11] have also noted this enhancement but a convincing,
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quantitative microscopic picture did not exist so far. This is the
point where the present work sets in.
In this thesis, the spin dynamics of the donor bound electron sys-
tem is investigated under the influence of optically induced carriers
where a time-resolved pump-probe absorption spectroscopy tech-
nique is utilized to monitor the transient electron polarization decay.
In order to quantitatively account for the polarization decay, a set
of coupled differential rate equations for the complete optically
driven donor system is solved. It is found that each hot Auger
electron collides on average with ζ = 3.2 donors while promoting
the donor electron from the A1 ground state to the T2 excited state,
giving rise to an Orbach-type spin relaxation mechanism [31]. This
physical picture is supported by complementary calculations of the
transient energy loss of hot electrons mediated by acoustic and
optical phonons. Therefore, this mechanism provides a fundamental
limit to the spin pumping efficiency and quantifies the trade-off
relation between a high degree of spin polarization and slow longi-
tudinal spin relaxation.

This work is organized as follows: Part I summarizes the required
theoretical prerequisites on the material system under investigation
and the electronic structure of shallow donors in silicon and defines
the optical selection rules associated with donor bound excitons. In
part II the optical setup for (pump-probe) absorption spectroscopy
of donor bound excitons is outlined where special focus is placed
on the phase modulation technique. Part III introduces a laser
frequency stabilization scheme based on a high finesse Fabry Perot
resonator. It is shown that the resulting laser frequency stability
is in principle sufficient to resolve even the natural linewidth of
bound excitons which is < 1 MHz. In part IV the fundamental
properties of the D0X are investigated under external parameters,
i.e, temperature and magnetic field. Part V reveals the influence
of optically induced carriers on the donor T1 time (see above). Fi-
nally, part VI provides a detailed outlook on the feasibility of spin
noise spectroscopy in silicon and suggests the D0X transition as an
excellent detector for optical spin injection.





2
F U N D A M E N TA L S

2.1 isotopically enriched silicon

Silicon is located in the group IV (carbon group) of the periodic
table of elements with an atomic number of 14 and four valance
electrons under normal conditions. It crystallizes in the cubic di-
amond structure (see Fig. 2.1) which consists of two interleaved
face centered cubic (fcc) lattices displaced by ( a0

4 , a0
4 , a0

4 ) where
a0 = 5.43Å is the lattice constant [32]. The symmetry properties
of the lattice directly lead to the electronic bandstructure depicted
in Fig. 2.2 which has been obtained using a local-pseudopotential
method (solid lines) [33]. The dashed lines are experimental data.
The maximum of the top valance band (E = 0) occurs at k = 0,

Figure 2.1: Crystal structure of silicon. Adapted from [32].
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18 fundamentals

Figure 2.2: Local pseudo-potential calculation of the silicon bandstruc-
ture (solid lines) and experimental data (dashed lines).
Adapted from [33].

the so called Γ-point. The minimum of the lowest conduction band
however, is not located at the Γ-point but rather lies approximately
85 % towards the Brillouin zone boundary (X-point). Therefore,
silicon is termed an indirect semiconductor which is responsible
for the inherent weakness of optical processes across the indirect
gap (red arrow in Fig. 2.2). A further implication of the indirect
bandgap is the multivalley structure of the conduction band which
plays an important role in the energy spectrum of electrons bound
to shallow impurities (compare chapter 2.2). In nature, three stable
silicon isotopes exist which are listed in table 2.1.
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Isotope Nuclear spin natural abundance (%)
28Si 0 92.33
29Si 1/2 4.57
30Si 0 3.10

Table 2.1: Natural abundance of silicon isotopes

The natural abundance of silicon isotopes suggests the elimination of
the 29Si and 30Si isotopes. This has been achieved in the framework
of the Avogadro project [21] which aimed at a re-definition of the
Avogadro constant by counting the number of atoms in a sphere
containing more than 99.99 % of the 28Si isotope. The fabrication
of such crystals requires several steps which are the centrifugation
of SiF4 gas, the subsequent conversion of the enriched gas to SiH4,
the growth of a polycrystal by chemical vapor deposition and finally
the growth of a monocrystal by (several) float zone processes.
In this work, the sample under investigation is a cuboid with
dimensions of 4 mm× 2 mm× 0.8 mm enriched to 99.994 % and a
nominal phosphorus donor density of nd = 1.2× 1015 cm−3.

2.2 donor bound electrons

Phosphorus (P) belongs to the group V of the periodic table of
elements, holds one extra valance electron compared to silicon,
and acts as a substitutional donor which behaves effectively like
a hydrogen atom in the silicon lattice. The attractive Coulomb
potential between the P nucleus and the extra electron is screened
by the dielectric background of the silicon host and the remaining
four valance electrons giving rise to the notion of a hydrogen-like
impurity [32] where the extra electron is only loosely bound to
the P donor. A theoretical description of this extra donor electron
is usually accomplished by assuming that the positive charge of
the P nucleus is screened by the dielectric background of the host.
Therefore the attractive Coulomb potential reads [32]

VS = +
|e|

4πε0εrr
, (2.1)

where ε0 is the vacuum permittivity, e is the elementary charge and
εr is the dielectric constant of the silicon host. The corresponding
Schrödinger equation is given by

(H0 − |e|VS)Ψ(r) = EΨ(r), (2.2)
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where H0 is the one-electron Hamiltonian of the perfect crystal and
Ψ(r) is the donor electron wave function. In silicon, the positions
of valance band maximum and conduction band minimum do not
coincide at the zone center and the conduction band minimum
consists of six equivalent valleys which can be characterized by a
second-rank effective mass tensor

m =

 ml 0 0
0 mt 0
0 0 mt

 , (2.3)

where the subscripts l(t) denote the direction longitudinal(transverse)
to the [100] axis. Taking this into account, the Schrödinger equation
can be expressed in the effective mass approximation as[
−
(
h̄2

2

)(
2∇2

t

mt
+

2∇2
l

ml

)
− |e|VS

]
Fi(r) ≈ [E −Ec(k0)]Fi(r),

(2.4)

where Fi(r) is the envelope wave function which is related to the
complete donor electron wave function Ψ(r) by [34]

Ψ(r) =
6∑
i=1

Fi(r)φi(r), (2.5)

where the index i runs over the six equivalent conduction band
minima, and φi(r) is the rapidly varying Bloch function. Figure 2.3
illustrates Ψ(r) in real space. In the simplest case of a parabolic
conduction band with its minimum located at the Brillouin zone
center, the energy levels of the donor electron are given by a modified
Rydberg series

E −Ec(0) = −
R

N2 N = 1, 2, 3..., (2.6)

where Ec(0) is the conduction band minimum and R is the Rydberg
constant for the donor electron which is related to the Rydberg
constant RH of the hydrogen atom by

R =

(
m∗

m0

)(
1
ε2r

)
RH =

(
m∗

m0

)(
1
ε2r

)
m0e4

8ε20h2 , (2.7)

where m∗ is the effective band mass and m0 is the free electron
mass.
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F (r)

φ(r)

Figure 2.3: Real space representation of the donor electron wave function.
F (r) is the envelope function and φ(r) denotes the Bloch
function. Adapted from [32].

The impurity central cell correction leads in the case of silicon to
a coupling between the six degenerate conduction band valleys.
This effect is known as valley-orbit coupling and splits the Rydberg
ground state N = 1 into an A1 ground state and two excited
states labeled E and T2 1. This is illustrated in Fig. 2.4 for several
donor species. For the P donor, the values are A1 = −45.5 meV,
E = −32.6 meV and T2 = −33.9 meV [32]. Another important
mechanism which alters the energy level of the donor ground state
is the hyperfine interaction between the donor electron spin with
operator S and the phosphorus nuclear spin with operator I. For a
magnetic field B oriented in z-direction, the interaction Hamiltonian
Hint reads

Hint = γeBSz − γPBIz +AS · I, (2.8)

where A is the hyperfine coupling constant between the donor
ground state and the P nuclear spin. The constants γe and γP are

1It is customary to use the point group notations for the energy levels. This
directly reveals the symmetry of the underlying wave function.
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Figure 2.4: Theoretical and experimental donor energy levels of different
donor species. Taken from [32].

the gyromagnetic ratios of the donor electron and the P nucleus
respectively and are defined as

γe =
geµB
h

, γP =
gnµN
h

, (2.9)

where ge is the electron Landé g-factor, µB is the Bohr magneton,
gn is the nuclear Landé g-factor, µN is the nuclear magneton and
h is the Planck constant.
The eigenvalues of Eq. 2.8 are given by the Breit-Rabi equation
[35]

∆E =
E(F = ±1/2,M )

A
= − 1

2(2I + 1) −
M

γe/γP − 1x

± 1
2

√
1 + 4M

2I + 1x+ x2,
(2.10)

where F = S + I is the total angular momentum which is in the
case of 28Si : P either F = 0 for the singlet state or F = 1 for the
triplet state. The number M is the projection of F and ranges from
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−F to F . Figure 2.5 shows the result of Eq. 2.10 as a function of
the normalized magnetic field

x =
(γe − γP )B

A
. (2.11)

Given that A amounts to 117.53 MHz for P donors in silicon [10],
the energy splittings caused by hyperfine interaction are on the
same scale as the optical linewidth Γ of the D0X transition.

0 1 2 3 4 5 6
- 3
- 2
- 1
0
1
2
3

∆E
 (u

nit
s o

f A
)

n o r m a l i z e d  m a g n e t i c  f i e l d  x

A

Figure 2.5: Evolution of the hyperfine coupled donor system accord-
ing to the Breit-Rabi equation. The brackets denote
|F = S + I,M〉.



24 fundamentals

2.3 donor bound excitons and optical selection
rules

An exciton is a quasi-particle consisting of a free electron in the
conduction band and a free hole in the valance band which are
bound by Coulomb interaction. The exciton can be treated in
analogy to the hydrogen atom with its binding energy EX given by

EX = − 1
(4πε0εr)2

µ∗e4

2 h̄2
1
n2 , (2.12)

where µ∗ =
(
(m∗e)

−1 + (m∗h)
−1)−1 is the reduced mass of the

effective electron and hole masses. Using typical values for silicon
(µ∗ = 0.12m0, εr = 12.1) the binding energy of the n = 1 exciton is
determined to be ≈ 11 meV and the associated Bohr radius amounts
to aB,X ≈ 5.3 nm. This estimate reveals that excitons in silicon can
be classified as Wannier excitons. This type of exciton is most often
observed in covalent semiconductors and is characterized by an
extend of the wave function over many unit cells, i.e., aB,X � a02.
Furthermore, if an exciton is said to be free, it can move through
the crystal with a kinetic energy of

Ekin,X =
h̄2K2

2
(
m∗e +m∗h

) , (2.13)

where K is the momentum vector associated with the motion of
the exciton mass center.
The spectroscopic footprint of free excitons strongly depends on the
quality of the crystal and the existence of neutral impurities. The
latter represent an attractive potential to the free exciton giving rise
to the notion of bound excitons (BX) which can be regarded as a
three particle complex consisting either of two holes and an electron,
when bound to a neutral acceptor (A0X), or two electrons and
one hole, when bound to a neutral donor (D0X)3. Characteristics
of those bound excitons in the emission spectrum are narrower
linewidths due to the lack of kinetic energy and a redshift of the
emission lines both compared to the free exciton emission. The

2In contrast, a Frenkel exciton is characterized by a large binding energy
and aB,X ≈ a0. They can be observed in, e.g., organic semiconductors.

3The possibility of forming an exciton bound to an ionized impurity, i.e.,
(A−X) or (D+X), is neglected since these complexes cannot exist in silicon
[36].
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existence of bound excitons was first observed experimentally by
Haynes [37] who found that the localization energy EL of the D0X
depends on the specific donor ground state energy ED as

EL ∼= 0.1×ED, (2.14)

which enabled the identification of a variety of shallow impurities in
semiconductors. The recombination of D0X in silicon is dominated
by phonon-assisted emission lines due to the need for a wave vector
conserving phonon. However, it is also possible that the short range
central cell potential of the impurity scatters the electron towards
the Brillouin zone center which results in the so called no-phonon
transition investigated in this work.
The hyperfine interaction between the donor electron spin and the P
nuclear spin (compare Eq. 2.8) together with the Zeeman splitting
of the D0X leads to a rich structure and distinct optical selection
rules for the bound exciton which is displayed in Fig. 2.6. The
bottom left hand side shows the evolution of the hyperfine-coupled
D0 ground state as a function of the magnetic field (compare Fig.
2.5). The D0 state can be considered as the initial state of the
transition D0 + hν → D0X. Therefore, the evolution of the D0 state
has to be taken into account as well as the evolution of the final
state, i.e., the D0X. The Zeeman splitting of the latter is governed
by the hole spin only because the two electrons occupy a singlet
state. If the external magnetic field is substantially larger than the
hyperfine coupling constant, i.e. γeB > A, twelve dipole allowed
transitions can be observed which is depicted on the right hand side
of Fig. 2.6, where mh = 3/2 denotes the heavy hole and mh = 1/2
the light hole. It is worth noting, that these twelve transitions
can also be considered as six doublets where the doublet splitting
amounts to ≈ A/2.
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2.4 spin relaxation of bound electrons in silicon

The process of spin relaxation can be defined in terms of the
phenomenological Bloch equations [38] with an external magnetic
field B = B0z oriented in z-direction:

∂Sx
∂t

= γ (S×B)x −
Sx
T2

, (2.15)

∂Sy
∂t

= γ (S×B)y −
Sy
T2

, (2.16)

∂Sz
∂t

= γ (S×B)z −
Sz − S0
T1

, (2.17)

where S is the (ensemble) spin polarization and S0 is the equilibrium
polarization in the direction of the magnetic field. The symbol T2
is termed the spin dephasing time and determines the coherence
of the spin precession in the x,y plane. On the other hand, T1 is

Figure 2.6: (left) Evolution of hyperfine-coupled donor states in an ex-
ternal magnetic field and the corresponding Zeeman shift of
the D0X. (right) Level diagram of the twelve dipole allowed
transitions.
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the longitudinal spin relaxation time and describes the return of
the polarization along the direction of the magnetic field to its
equilibrium value.
The temperature dependence of the spin relaxation rate for donor
bound electron spins in silicon is given by the empirical formula4
[39]

1
T1

= AT +BT 7 +CT 9 +DT 13 +E0 exp
(
− ∆
kBT

)
(2.18)

where the constants A to D contain known material constants like
deformation potentials, velocities of sound, and E0 is the Orbach
constant5. The first term (AT ) arises from emission or absorption
of a single phonon with energy equal to the Zeeman splitting of the
donor ground state [9]. This causes the electron spin to flip from |↑〉
to |↓〉 or vice versa. The terms B to D arise from a Raman process
where a phonon is scattered from state q to a state q′ while the donor
electron spin flips. The T 7 term comes from anisotropic magnetic
interaction [8], the T 9 term is caused by spin orbit interaction
[39], and the T 13 term is obtained by only considering dilatational
deformations [7]. The most important relaxation mechanism in this
work (compare chapter 10.2) is the exponential term in Eq. 2.18
which can be attributed to Orbach spin lattice relaxation where
∆ is the level spacing between the A1 donor ground state and
the T2 excited state (compare chapter 2.2). Despite the fact that
the exact theoretical treatment of the Orbach process in silicon
is rather intricate (see Ref. [31]) an intuitive simplified picture is
straightforward.
Consider a |↑〉 electron in the A1 donor ground state. Thermal
excitation provides fractional occupation of the T2 states according
to exp(−∆/kBT ). The key to spin relaxation is that the T2 state
is a mixed spin state |↑↓〉. Therefore, the T2 electron originating
from the A1 |↑〉 state may also relax back to the A1 |↓〉 state.
The numerical value of the Orbach constant E0 can be obtained
from electron spin resonance experiments in 28Si by fitting the
experimentally determined spin lattice relaxation rate [17] with

1
T1

= E0 exp
(
− ∆
kBT

)
. (2.19)

4The magnetic field dependence of the A and B contribution is neglected
since it is only observed for magnetic fields > 800 mT. The magnetic fields
applied in this work never exceed 100 mT.

5In Ref. [39] the exponential dependence in Eq. 2.18 is not attributed to
the Orbach process since it was not known at that time.
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Figure 2.7: (left) Experimental spin relaxation data of donor electron
spins in 28Si. The red line is a fit which determines the Orbach
constant E0. Adapted from [17]. (right) Experimental spin
relaxation data on a wider temperature scale. The red line
denotes the sum of all relaxation processes. The different
contributions (dashed lines) are explained in the main text.
Adapted from [22].

This is shown in an Arrhenius plot in Fig. 2.7 (left) where the
temperature range has been chosen such that the Orbach relaxation
is the dominating mechanism. Therefore, an unambiguous value
of E0 = 3× 108 s−1 can be extracted which should hold for all P
doping concentrations ≤ 1× 1016 cm−3 according to Ref. [17]. The
right hand side of Fig. 2.7 shows experimental T1 times [22] also for
lower temperatures where the single phonon and Raman processes
dominate. The red line is a cumulative fit to the experimental data
containing the linear relaxation term, the T 7 and T 9 contribution
as well as Orbach relaxation with the previously determined E0.
The dashed colored lines represent the individual contributions to
the spin relaxation process.
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E X P E R I M E N TA L M E T H O D S





A B S T R A C T PA RT I I

This part describes the experimental setup used in this work and its
most important components, i.e., the external cavity diode laser, the
electro-optic modulator and the cryostat. The implementation of
phase modulation absorption spectroscopy is the key methodology in
this work. Quantitative calculations with respect to the modulation
frequency show the advantages as well as the pitfalls of this method
when a quantitative line shape analysis is desired. Furthermore, a
home-built helium reservoir is introduced which allows for absolutely
strain-free mounting of the sample while maintaining excellent
thermal contact to the cold finger of the cryogen-free closed cycle
refrigerator.
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E X P E R I M E N TA L S E T U P

3.1 important components

3.1.1 External Cavity Diode Laser

The working principle of a tunable external cavity diode laser
(ECDL) is based on the interplay of two cavities. A very common
geometry in this context is the Littrow configuration which is also
applied in the lasers used in this work1. A schematic diagram of a
Littrow laser is shown in Fig. 3.1 [40]. It consists of a laser diode
where the inward facets exhibit a finite reflectivity R and act as the
first (internal) cavity with the small length LD. The emitted laser
light is collimated by a lens and directed onto a diffraction grating
where the angle Θ matches the angle of the first order reflected
beam which is directed back into the laser diode. This forms the
second cavity with the larger length Lext. In this configuration, the
wavelength selection is accomplished by a piezo actuator at the

Figure 3.1: Schematic illustration of an external cavity diode laser in
Littrow geometry. Adapted from [40].

1The second common geometry is termed Littmann geometry. Here, the
first order diffracted beam is not directly reflected back into the diode but on
a mirror instead. This offers wavelength selection by a rotation of the mirror
instead of the grating with a slightly narrower linewidth but less output power
when compared to the Littrow configuration.

33



34 experimental setup

 f r e q u e n c y

m e d i u m  g a i n
w i d t h  ~  5 0 0 0  G H z

i n t e r n a l  m o d e
g r a t i n g  p r o f i l e

~ 5 0  G H z

~ 9  G H z
~ 6 4  G H z

e x t e r n a l  m o d e

e m i t t e d  f r e q u e n c y

Figure 3.2: Illustration of the interplay between the different cavity
modes in an ECDL. Adapted from [41].

back of the grating which changes Θ. From this simple geometry it
is evident that in order to work properly the optical feedback from
the grating into the laser diode has to be aligned perfectly. This can
be done by setting the laser diode current just below the operation
threshold where no lasing is observed. The position and angle of
the grating is then adjusted until lasing sets on again and the
output power is maximized. After that, the diode current is again
reduced below the laser threshold and the procedure is repeated
until no further reduction of the threshold current is possible. The
benefit of relatively narrow laser linewidth (≤ 1 MHz) of these
lasers stems from the interplay between the two cavities and the
grating profile which is outlined in Fig. 3.2 for the commercial
ECDL (Toptica DL 100) [41]. The cavity inside the laser diode with
small length LD and low reflectivity results in the orange spectrum
with a certain width given by the reflectivity of the laser diode’s
facets and a spacing proportional to L−1

D . On the other hand, the
external cavity (red line) exhibits a narrowly spaced (Lext > LD)
mode spectrum with sharp peaks. The key to stable operation lies
in the mutual maximum overlap between the grating profile (green
line), the internal mode, and one external mode which determines
the emitted frequency (black box). Achieving the optimal overlap
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is impeded by the fact that the particular modes behave differently
upon temperature and diode current, i.e., both will affect the laser
power and laser frequency differently.

3.1.2 Electro-Optic Modulator

The electro-optic modulator (EOM) is one of the most frequently
used devices in this work and plays a crucial role for laser stabiliza-
tion via the Pound-Drever-Hall technique (compare chapter 5.5)
and for the optical spectroscopy of donor bound excitons in 28Si : P
as presented in parts IV and V. The working principle of the EOM
relies on the Pockels effect which describes the birefringence in
a medium evoked by an electric field [42]. This work utilizes a
fiber based EOM2 (cf. Fig. 3.3) made from LiNbO3 designed for
wavelengths of λ = 1064(60) nm.
A common figure of merit is the half-wave voltage Uπ, i.e., the
voltage required to produce a phase shift of π. The half-wave
voltage is given by [43]

Uπ = − λg

n3
3r33LΓeff

, (3.1)

where r33 is the relevant entry of the electro-optic tensor, n3
is the refractive index along the applied electric field, and Γeff

Figure 3.3: Schematic diagram of a fiber-based EOM. Taken from [43].

2JenOptik PM-1064
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is the internal efficiency. The main advantage of a fiber-based
EOM compared to a free space EOM is the small dimension of the
electrode spacing g while maintaining a relatively long electrode
length L. This results in Uπ ≈ 10 V which is easily achievable
without the need for a high voltage amplifier and thus entails fast
modulation up to 5 GHz.

3.1.3 Cryostat

The cryostat used in this work is a cryogen-free, two stage pulse
tube refrigerator from Oxford instruments (Triton 400) with an
additional circuit for condensing and circulation of a 3He/4He mix-
ture. The latter allows the system to reach a base temperature
of T < 50 mK. The working principle of the pulse tube refriger-
ation is essentially the same as a (inverse) Sterling engine where
the temperature difference between two connected gas reservoirs
is used to do mechanical work by raising and lowering top-hats.
Here, mechanical work is required to compress the working gas
(helium) which is adiabatically expanded in the cold head of the
cryostat. Further details on the working principle can be found in
Refs. [44, 45]. Since this mechanism does not "consume" helium, it
allows for continuous long term operation up to six month where a
full cooldown takes ≈ 24 h and ends in this case in a temperature
of ≈ 3.8 K. This mode of operation is sufficient for most of the
experiments carried out in this work where the temperature can
be stabilized with an accuracy of ±2 mK in a temperature window
between 4 K and 6 K. If lower temperatures are desired (compare
chapter 7.3), the 3He/4He mixture has to be condensed into the
mixing chamber. Furthermore, the cryostat is equipped with three
mutually orthogonal superconducting magnets in Helmholtz geome-
try providing 2 T in the direction of light propagation and 200 mT
in each of the orthogonal directions.
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3.2 optical setup

A block diagram of the optical setup is shown in Fig. 3.4 where
the black solid lines represent electrical connections and the green
solid lines stand for optical fibers. Furthermore, the setup can be
divided into two parts. The first part is a classical phase modula-
tion absorption spectroscopy setup (compare chapter 4) where an
external cavity diode laser (Toptica DL 100) serves as excitation
source (ECDL probe). The wavelength of the laser is stabilized
and controlled by a high precision wavelength meter (HighFinesse
WSU-2) which provides a relative accuracy of 500 kHz. In order to
perform phase modulation spectroscopy, the laser is passed through
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plained in the main text.
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a fiber-based EOM (JenOptik PM-1064) which is usually3 driven by
a low frequency function generator (Agilent 33210A). After passing
the EOM, the beam is split by a 50/50 beam splitter (BS1) into the
signal beam which is focused onto the sample by a f = 30 cm plano-
convex lens and the reference beam which is used to compensate
the DC part of the signal beam on the balanced photo receiver (BR
- Femto OE300). The combination between the rotatable have-wave
plate (HWP) and the linear polarizer (LP) is used to adjust the
optical power. The output of the BR is fed into the lock-in amplifier
(Stanford Research SR844) which derives its frequency reference
from the signal generator. Data acquisition from the lock-in ampli-
fier takes place via a personal computer.
The second part of the setup incorporates the use of a second ECDL
(ECDL pump) which is stabilized by another wavelength meter
(HighFinesse WSU-30) and serves as the pump laser for the experi-
ments presented in chapter 10. The pump beam is passed through a
liquid crystal retarder (Meadowlark LRC-200) which basically acts
as a voltage controlled variable-wave plate. In the context of the
experiments performed in this work4 the LCR is used as a half-wave
plate to rotate the polarization by 90◦ in order to coincide with
the axis of the LP∗ which is orthogonal to all other LPs in the
setup. The pump and the probe beam are brought together on
BS2 and the LP after the cryostat blocks the pump beam. In order
to employ time resolved spectroscopy, a mechanical shutter (MS -
Thorlabs SH05/M) is placed in the pump beam’s path. In this case,
the signal is acquired by connecting the fast output of the lock-in
amplifier to a digital storage oscilloscope (DSO) which is triggered
by the same signal used to periodically switch the MS.

3The experiments at the beginning of chapter 9 are carried out with a high
frequency function generator (Rhode Schwarz SML)

4In future experiments, the LCR may also be used to generate circularly
polarized light in order to demonstrate optical spin injection (compare chapter
11.2). In this case, LP∗ has to be omitted.
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3.3 home-built helium reservoir

The use of a cryogen-free pulse tube refrigerator certainly yields
the benefit of very long measurement times compared to, e.g., a
helium bath cryostat where the measurement time is limited by the
size of the liquid reservoir and the helium consumption. However,
a bath cryostat provides excellent thermal coupling to the sample
because it is directly immersed in liquid helium for T ≤ 4.2 K
or surrounded by helium gas for T > 4.2 K. In a cryogen-free
refrigerator, the coupling between the thermal reservoir and the
sample is accomplished by contacting the sample to the cold finger
of the cryostat which is usually made from gold-plated copper. This
contact can either be made by the use of a low temperature contact
agent such as silver paint or Apiezon N grease or mechanically by
clamping the sample to the cold finger. Both methods will lead
to inevitable internal strain in the sample due to the difference
in the coefficients of thermal expansion of the materials which
manifests itself during the cooldown. When dealing with donor
bound excitons in GaAs this effect generally does not play a big
role because the transition is inhomogeneously broadened with a
spectral width of ≈ 50 GHz even for nominally undoped samples
[46]. With their ultra narrow linewidth of ≈ 100 MHz, donor bound
exciton transitions in 28Si are significantly more sensitive to strain.
Yang et al. [47] have examined the optical properties of MBE grown
28Si enriched to 99.9 % on natural silicon natSi. They find a rather
pronounced splitting in the spectrum of the D0X transitions of
≈ 4.4 GHz which is related to the slight mismatch in the lattice
constants a28 and anat. The fractional lattice parameter difference
amounts to

∆a
a
≡
∣∣∣∣anat − a28

anat

∣∣∣∣ ≈ 2.8× 10−6. (3.2)

To put this number into context we consider the lattice parameters
of GaAs and AlAs with aGaAs = 5.6533Å and aAlAs = 5.6611Å
[48]. These two binary semiconductors are generally said to be
lattice matched with(

∆a
a

)
GaAs,AlAs

≈ 1.4× 10−3. (3.3)

This is three orders of magnitude larger than the lattice mismatch
causing the spectral shift observed in Ref. [47]. Therefore, it is
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evident that the unperturbed observation of D0X transitions in 28Si
prohibits the use of a low temperature contact agent and any kind of
clamping. To ensure strain-free mounting of the sample without the
loss of thermal coupling to the cold finger of the cryostat, a sample
rod with attachable helium reservoir with optical access has been
designed. Fig. 3.5 (top) shows CAD drawings of the construction.
The construction consists of a gold-plated copper rod (a) which
can be mounted to the cold plate of the cryostat via the top plate
(b). The drilling (c) provides access to the actual sample chamber
(d) which is the heart of the construction. The bottom of Fig. 3.5
shows a close-up view of the sample chamber which is made from
a beryllium-copper alloy5. The connection (e) between the sample
rod and the chamber is properly sealed with indium wire and the
construction is held together by brass screws inside the mounting
holes (f). The choice of brass as material for the screws results
from the fact that the coefficient of thermal expansion for brass is
larger than for beryllium-copper. In this way the connection further
tightens upon cooldown of the cryostat. The protrusion (g) serves as
a holder for the optical windows (not shown) which are radially glued
in by a two component epoxy6. The small thickness of the protrusion
of only 100 µm reduces potential birefringence of the fused silica
windows due to the different CTEs of the joint materials which
is of high importance in polarization-sensitive experiments. The
sample (i) itself resides absolutely strain-free in a basin made from
Macor 7 which, in turn, resides in a bigger basin made from copper
where the latter is connected to the sample rod by brass screws. It
is of great importance that all connections are made with highest
care because the helium molecule is prone to even the smallest leak.
Therefore, the whole construction is put to extensive leakage tests
prior to cool down. The leakage detector essentially consists of a
vacuum pump attached to a mass spectrometer sensitive to helium.
In order to check for leaks, the chamber is evacuated by the leakage
tester and a hose with pressurized helium is manually placed at
the delicate connections. The construction is defined to be tight
when the reading of the leakage detector does not exceed its noise
floor of 2× 10−9 mbar L s−1. After that, the chamber is flooded

5Also another chamber, built from titanium, have been fabricated. Although
not used in this work, it provides interesting possibilities for measurements
where the earth’s magnetic field needs to be suppressed. This is possible because
titanium becomes superconducting below ≈ 500 mK.

6Araldite 2011
7machinable ceramic, developed by Corning Inc.



3.3 home-built helium reservoir 41

with helium at room temperature and a pressure of 1.5 bar− 2 bar.
This concept has proven to work extremely well if the cryostat
temperature stays well above TΛ = 2.1 K , i.e., the temperature at
which the phase of 4He changes from the liquid to the superfluid
state. Especially the temperature of the phase transition seems very
critical. At exactly Tλ, it has been observed several times that the
helium instantly leaves the sample chamber which is accompanied
by a drastic increase in the cryostat’s outer vacuum chamber (OVC)
reading. The origin of this behavior is not fully understood since
the notion of superfluid leaks [44] is very vague.



42 experimental setup

(a)

(b)

(d)

(c)

(e)

(f)

(g)

(h) (i)

Figure 3.5: (top) CAD drawing of the fully assembled sample rod. (bot-
tom) Close-up view of the sample chamber. For details, see
main text.
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P H A S E M O D U L AT I O N S P E C T R O S C O P Y

Sophisticated modulation techniques can be employed to improve
the signal to noise ratio of weak signals in an optical spectroscopy
experiment [49, 50]. The laser light at frequency ω and phase φ is
considered as a plane wave in the time domain

E(t) = E0 exp (i (ωt+ φ)) . (4.1)

Here, the phase of the light is periodically modulated at frequency
Ω by a fiber-based EOM which yields [51]

E(t) = E0 exp [i (ωt+M sin (Ωt))] (4.2)

= E0 exp (iωt)
+∞∑

n=−∞
Jn(M ) exp (inΩt) , (4.3)

where Jn is the nth order Bessel function and M is the modulation
index which is proportional to both the imprinted phase shift and
the applied modulation voltage at the EOM. The structure of Eq.
4.3 directly reveals that the laser light has acquired additional
spectral components at ω± nΩ. These additional components are
termed the nth sidebands and the original spectral component (n =
0) at ω is called the carrier. Fig. 4.1 displays the intensity I ∝ |E|2
of the modulated laser beam for n = 0, 1, 2 as a function of the
phase shift. If the phase shift or modulation index is sufficiently
small, the spectral components of the laser light mainly consist of
the carrier and the first sideband which is illustrated in the inset
of Fig. 4.1. The opposite vertical orientation of the negative and
positive sidebands at ω ±Ω indicate a phase difference of π. In
order to be useful for optical spectroscopy, the modulated laser has
to interact with a sample containing an absorption line of spectral
width Γ0. This interaction is modeled by a complex transmission
function

T (ωn) = exp(−δn − iΦn), (4.4)
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Figure 4.1: Sideband power of a phase modulated laser beam as a function
of the phase shift. The inset shows the phase relation between
the carrier and the first sidebands.

where ωn denotes the optical frequency of the nth sideband, δn
is the corresponding field amplitude attenuation, and Φn is the
optical phase shift. The transmitted electric field ET (t) now reads

ET (t) = E0 exp (iωt)
+∞∑

n=−∞
T (ωn)Jn(M ) exp (inΩt) . (4.5)

The sidebands of order n > 1 can be neglected in the present case
of small M . Using J0(M ) ≈ 1 and J1(M) ≈M/2, the transmitted
intensity IT reads

IT =
∣∣E2(t)

∣∣ ∝ E2
0 exp(−2δ0) [1 +M (δ−1 − δ1) cos (Ωt)] , (4.6)

where the terms containing the optical phase shift Φn have been
neglected. An inspection of the terms oscillating at cos (Ωt) reveals
that the transmitted intensity contains the difference δ−1− δ1 which
is nothing else but the absorption difference between the negative
sideband at ω−Ω and the positive sideband at ω+ Ω. This differ-
ence signal is easily retrieved by standard lock-in detection at the
modulation frequency Ω and yields in very good approximation the
derivative of the spectral absorption profile provided the modulation
frequency is small compared to the spectral width of the transition,
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Figure 4.2: Illustration of the phase modulation technique depicting
a Lorentzian absorption profile (dark green line) with an
FWHM of Γ0. The orange line is the derivative of the absorp-
tion profile and the red line is a simulated phase modulation
signal with Ω = 0.7× Γ0.

i.e. Ω� Γ0. Figure 4.2 shows the output of such a phase-modulated
scan across a Lorentzian transition (dark green line) with FHWM
of Γ0. In the case of Ω � Γ0, the shape of the phase modulation
signal approaches the shape of the absorption profile derivative
(orange line). However, if the modulation frequency is comparable
to the linewidth the phase modulation signal considerably deviates
from the derivative. This is demonstrated by the red line where
Ω = 0.7× Γ0. In an experiment, it is highly desirable to keep the
modulation frequency Ω well below the transition linewidth Γ0 in
order to measure an excellent approximation to the real derivative
of the absorption profile. This bears the advantage that the acquired
data can be integrated numerically in the post processing which
yields the true absorption profile without the need of correcting for
artifacts caused by large modulation frequencies. A first measure
for the optimum value of Ω is the squared residuum χ2 between
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Figure 4.3: (left - green line) normalized squared residuum illustrating
the influence of Ω on the lineshape of the phase modulation
signal. (right - orange line) normalized signal amplitude
illustrating the influence of Ω on the amplitude of the phase
modulation signal.

the phase modulation signal and the actual derivative absorption
profile. This is defined as:

χ2 =
∞∑

ν=−∞
[SL(ν)− SM (ν, Ω)]2 , (4.7)

where ν is the optical frequency, SL(ν) is the derivative of the
absorption line profile, and SM (ν, Ω) is the phase modulation signal.
In Fig. 4.3, the normalized calculated values for χ2 as a function of
Ω is shown as green solid line. The normalization is such that χ2 = 1
results in perfect agreement between SL(ν) and SM (ν, Ω). The red
square indicates the residuum of the phase modulation signal in
Fig. 4.2. As a rule of thumb we can derive that the modulation
frequency Ω needs to be well below 0.1× Γ0 in order to extract
the undisturbed lineshape. On the other hand, electric noise of,
e.g., the photo detector, sets a certain lower boundary for Ω since
the strength of the phase modulation signal is proportional to Ω 1.

1The proportionality is well defined for Ω � Γ0. For Ω ≈ Γ0 the signal
amplitude saturates
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This is shown by the plot of the phase modulation signal amplitude
(orange line) in Fig. 4.3 where the amplitude is normalized to
the lowest considered value of Ω. This clearly demonstrates that
the choice of Ω is a compromise between the need for sufficient
signal strength and the desire of an unperturbed lineshape. If not
stated differently, we use Ω = 0.045× Γ0 (black dots in Fig. 4.3)
throughout this work.
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A B S T R A C T PA RT I I I

The optical linewidth of defect-bound excitons in ultra low doped
and isotopically enriched silicon approaches the natural transform
limited linewidth of some 100 kHz. Here, external cavity diode lasers
provide an ideal tool for studying these optical transitions. How-
ever, the inherent frequency fluctuations of the commercial Toptica
diode laser range on the same scale like the optical linewidth and
thus need to be reduced. In order to obtain unambiguous spectral
resolution, we have designed a high finesse optical cavity made
from ultra low expansion glass and thus suitable for frequency
stabilization via Pound-Drever-Hall locking. A considerable part of
information regarding the technical design of the cavity assembly
and the temperature stability can be found in Ref. [52].
In this part, the focus lies on the extraction of important cavity
parameters and especially on the system’s effective zero crossing
temperature T0. Supported by detailed numerical simulations we
experimentally determine T0 = 19(3) ◦C.

Furthermore, a frequency domain analysis of the Pound-Drever-Hall
error signal shows that the laser noise power spectral density can be
significantly reduced which yields a frequency stability of ≈ 4 kHz
on a 1 s timescale. The table below shows a summary of important
parameters of the self-built reference cavity.

PARAMETER SYMBOL VALUE
finesse F 26(5)× 103

free spectral range ∆FSR 1.362 GHz
zero crossing temperature T0 19(3) ◦C

frequency stability ∆νrms,LOCKED 4 kHz
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C AV I T Y F U N D A M E N TA L S A N D D E S I G N

5.1 the fabry perot cavity

A Fabry Perot cavity (FPC) consists of two partly reflecting mirrors
with reflectivity R, which are separated by a spacer of length L.
Due to the condition of constructive interference for the traveling
light field inside the cavity, the optical frequencies are restricted to
discrete values:

νq = q
c

2nL = q∆FSR q = 1, 2, ..., (5.1)

where n is the refractive index of the medium between the mirrors
and ∆FSR denotes the free spectral range of the cavity.

Figure 5.1: Normalized transmission spectrum of a Fabry Perot cavity
for mirror reflectivities of 0.5 (green line), 0.7 (orange line)
and 0.9 (red line). The frequency axis is normalized to the
free spectral range (∆F SR).
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Figure 5.1 illustrates, for different mirror reflectivities R, the trans-
mission spectrum I(ν) of a FPC which is given by [53]

I(ν) =
(1−R2)

1 + (2F/π)2 sin2 (2πνnL/c)
, (5.2)

where the Finesse F is defined as

F =
π
√
R

1−R =
δν

∆FSR
(5.3)

and δν is the width of the transmission maximum.

5.2 cavity design considerations

Laser frequency stabilization to a FPC relies on the insensibility of
the resonator reference frequency to external perturbations such
as temperature fluctuations. The relative change of the resonance
frequency ν in a FPC is directly related to the spacer length L.
From Eq. 5.1 it directly follows that

dν

ν
= −dL

L
. (5.4)

Therefore, the frequency stability of the laser is related to the
thermal expansion

dL = Lα(T )dT (5.5)

of the cavity spacer, where α(T ) is the temperature dependent co-
efficient of thermal expansion (CTE). A desired absolute frequency
stability of 1 kHz excludes all common, easily machinable materials
for the cavity spacer, because the CTE of those materials is on the
order of 10× 10−6 K−1 and thus requires an absolute temperature
stability below 1 µK which is a hardly achievable condition in an
optical laboratory. This condition is relaxed by the beneficial proper-
ties of Ultra Low Expansion glass (ULE) manufactured by Corning.
In the vicinity of the zero crossing temperature T0, where the CTE
vanishes, the thermal expansion coefficient can be expressed as [54]:

αULE = a(T − T0) with a = 2.4× 10−9 K−2. (5.6)
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Figure 5.2: Calculated linear CTE of ULE (right axis) and the resulting
quadratic frequency change according to Eq. 5.4/5.5 (left axis)
as a function of detuning from the zero crossing temperature.

Figure 5.2 shows the calculated coefficient of thermal expansion for
ULE as a function of temperature detuning away from T0 (right
axis - blue line) and the resulting quadratic dependence of absolute
optical frequency change (left axis - black line). The previously
demanded frequency stability of 1 kHz is now well within reach of
laboratory temperature conditions as indicated by the dashed red
line.

5.3 fem simulation

The zero crossing temperature T0 of ULE is usually specified to lie
in the temperature range between 20 ◦C and 30 ◦C. However, the
relatively high CTE of the two, optically contacted, fused silica (FS)
mirrors tend to shift the zero crossing temperature of the combined
material cavity towards significantly lower temperatures. This prob-
lem has been addressed by Legero et al. [54]. They have shown
by means of finite element simulations (FEM) and high precision
measurements that the shift of the zero crossing temperature can
be substantially reduced if an additional ring made from ULE is
contacted on top of each FS mirror.
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For a perfectly rigid optical contact, a small temperature change
dT will only lead to a difference in radial expansion between the
spacer and the mirror expressed by

dR = (αFS − αULE)RdT , (5.7)

where R is the radius of the mirror. A change of the cavity length
is only caused by axial displacement dB which is related to the
radial expansion by a dimensionless coupling coefficient δ such that
dB = δdR. The effective CTE of the combined cavity can now be
described in terms of the coupling coefficient δ, the mirror radius
R, and the spacer length L such that dLeff = LeffαeffdT with

αeff (T ) = αULE (T ) + 2δR
L
[αFS (T )− αULE (T )] . (5.8)

We use the commercial FEM package COMSOL Multiphysics in-
stalled on the local university computation facility to simulate the
effective displacement of the inward mirror center point for different
temperature steps away from the nominal zero crossing tempera-
ture.
The effect of the additional ULE ring is demonstrated in Fig. 5.3.
The top left shows a magnified, color-coded plot of the axial dis-
placement without an additional ULE ring for a temperature step of
1 K away from the nominal zero crossing temperature. The bulging
of the FS mirror due to difference in radial expansion is clearly
visible. Furthermore, the axial mirror displacement along the inward
diameter (bottom left) shows a maximum axial displacement of
≈ 2.5 nm at the center of the mirror. This situation changes when
an additional ULE ring is contacted on top of the FS mirror (Fig.
5.3 right side). Here, the bulging of the mirror is clearly reduced.
Most importantly, the axial displacement at the center of the mirror
is close to zero which indicates that the effective zero crossing tem-
perature is close to the nominal ULE zero crossing temperature for
this particular ring geometry (inner bore diameter 8 mm, thickness
h = 7 mm).
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Figure 5.3: (left) FEM simulation results for a cavity without ULE ring.
(right)FEM simulation results with an additional ULE ring
(bore diameter = 8 mm, thickness h = 7 mm).

In order to find the optimal ring geometry for the present cavity
design we have simulated all possible combinations of the ring’s
inner bore diameter and the ring thickness h for different tempera-
ture steps. For each configuration, the effective length change at
the inward mirror center is extracted. A fit to the calculated length
change with Eq. 5.8 reveals the coupling coefficient δ and thus the
effective zero crossing temperature of the combined material cavity.
An exemplary result is shown in Fig. 5.4. For a fixed inner bore
diameter of 8 mm the ring thickness is varied and the coupling
coefficient δ is extracted. The lowest value of δ is found for a ring
thickness of 7 mm which results in a calculated shift of the zero
crossing temperature of only −3 K. The practical importance of the
additional ULE ring is clearly demonstrated for the case h = 0 mm
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Figure 5.4: Calculated coupling coefficients δ for different ULE ring thick-
ness. The corresponding zero crossing temperature shift is
indicated on the right axis.

which corresponds to the "no ring case". Here, the extracted cou-
pling coefficient δ ≈ 0.45 corresponds to a zero crossing temperature
shift of ≈ −25 K. In this case, an optimal working point of the
cavity close to 0 ◦C would require sophisticated temperature control
and isolation schemes apart from potential condensation at optical
windows.

Following the above considerations, the ULE rings have been man-
ufactured with a thickness of 7 mm and an inner bore diameter
of 8 mm. The optical contacting of the FS mirrors and the ULE
rings has been accomplished by Thomas Legero at the Physikalisch
Technische Bundesanstalt (PTB) in Braunschweig.
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5.4 cavity mounting and temperature stabiliza-
tion

Figure 5.5 shows computer-aided design (CAD) graphics of the
basic elements for isolation of the cavity from external temperature
fluctuations. The cavity resides in a CF flange which is mounted
to an optical bread board by aluminum holders. The whole con-
struction is enclosed by aluminum walls of 10 mm thickness (not
shown) and a thermal insulation made from Styrodur (not shown).
On the bottom of the bread board five peltier elements are installed
for PID temperature control of the system. The control sensor for
temperature stabilization is a standard 10 kΩ NTC sensor placed
on the bottom of the bread board and another sensor is attached
to the CF flange. The temperature of the inner system can now
be tuned from ≈ 10 ◦C to ≈ 40 ◦C with an accuracy of ≈ 1 mK
measured at the control sensor.
The pressure inside the flange is reduced to ≈ 1× 10−6 mbar by
a vibration-less ion getter pump (IGP). In addition to a reduc-
tion of temperature fluctuations through convection the vacuum
also ensures stability of the effective refractive index. The close
up view of the cavity in Fig.5.5 (b) reveals further measures to
decouple the cavity from the environment. We specially emphasizes
the two-stage decoupling by minimizing the mechanical contact to
the flange through the radial support surface of the black plastic
spheres with low thermal conductivity. Furthermore, a gold-plated
copper casing with low surface emissivity ε provides shielding from
thermal radiation of the flange’s inner surface.
To estimate the thermal low pass properties of the construction, we
employ a time-resolved FEM analysis of the entire cavity assembly
using the CAD model (cf. Fig 5.5 (a)). Here, we can only account
for the heat transfer caused by thermal conduction because the
available version of COMSOL Multiphysics installed on the LUIS
cluster computing is lacking the necessary modules for convection
and thermal radiation.
Figure 5.6 shows the result of the simulation (dashed lines) for
an instantaneous temperature step at t = 0 from 20 ◦C to 30 ◦C
induced at the position of the peltier elements. Comparing the
results of the simulation with measured temperatures at the control
sensor (solid dark green line) and the flange sensor (solid light green
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Figure 5.5: (a) Overview of the cavity assembly. (b) Close up view of
the cavity’s three-point mounting and the gold-plated copper
shield.
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Figure 5.6: Measured (solid lines) and simulated (dashed lines) tempera-
ture response of different components of the cavity assembly.

line) reveals that in both cases the measured time constant1 is a
factor of ≈ 2.5 larger than the calculated time constant. However,
this implies that the relative time scale between the temperature
at the control sensor and the flange sensor is reproduced correctly
by the model.
We further calculate the transient temperature at the copper (Cu)
shield and at the cavity (cav) which amount to τCu = 17.1 h and
τcav = 165.9 h.

1The time constant in this context is defined as 1/e rise time of the
temperature.
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5.5 the pound-drever-hall technique

Figure 5.7: Schematic experimental setup for laser frequency stabilization
with the Pound-Drever-Hall technique. Taken from Ref. [55].

In the experiment, frequency stabilization of the laser is realized by
means of standard Pound-Drever-Hall (PDH) locking and we leave
the description of the PDH technique to the experimental aspects
as outlined in [55] which also provides a quantitative understanding
of the technique. Figure 5.7 depicts the experimental setup for PDH
locking.

First, the laser light is send trough a Faraday isolator2 to prevent
the light which is reflected from the cavity to re-enter the laser.
The laser light with optical angular frequency ω (carrier) is phase
modulated with the frequency Ω (compare Part 2) a fiber based
EOM3 leading to sidebands at the optical frequencies ω−Ω and
ω+ Ω.
The optical isolator in front of the cavity consists of a polarizing
beam splitter and a quarter-wave plate. The beam reflected from the
cavity is detected by a photodetector where the reflected intensity
Pref is given by

Pref = |Ecarrier +Esidebands|2 . (5.9)

2We use two Faraday isolators which add up to ≈ 60 dB of isolation. (30 dB
internal isolator and 30 dB Thorlabs IO-2.5-1064-VLP)

3Instead of a Pockels cell.
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Equation 5.9 approximates for the carrier frequency ω close to the
cavity resonance to

Pref ∝ −
δω

δν
sin (Ωt) , (5.10)

where δω is the deviation of the carrier from the cavity resonance
and δν is the width of the cavity resonance. Inspection of Eq.
5.10 shows that Pref has the desired antisymmetric form4 close
to the resonance but oscillates with the modulation frequency Ω.
Therefore, the signal of the photodetector is fed into an electrical
mixer together with the local oscillator with frequency ΩLO. The
output of the mixer is given by

sin (Ωt) sin (ΩLOt) =
1
2 cos [(Ω−ΩLO) t]−

1
2 cos [(Ω + ΩLO) t] .

(5.11)

The mixer output consists for Ω = ΩL0 of a DC component and a
signal proportional to 2Ω, which is blocked by a lowpass filter. The
DC component is the characteristic PDH error signal depicted in
Fig. 5.8 for a modulation frequency of Ω = 2 MHz. The relatively
large noise in the error signal is a typical indicator for a cavity with
high finesse and reflects the laser frequency instability during the
scan across the resonance.
Finally, the error signal is passed through a servo amplifier and
directly fed into the tuning input of the laser. In the setup, the
servo is a field programmable gate array (FPGA)-based unit5 which
allows for two independent PID loops with different bandwidths.
The system is set such that the low frequency deviations (≤ 100 Hz)
are mainly compensated by the piezo actuator which drives the
optical grating in the ECDL. The high frequency components of
the laser noise are reduced by feedback of the laser current.

4The antisymmetric form of the PDH error signal is one of the major
advantages of this technique. It makes the quality of the lock independent on
the laser intensity and directly dictates the direction of the feedback signal by
its sign.

5Toptica Photonics DigiLock 110
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Figure 5.8: Measured PDH error signal as a function of the detuning
from the resonance (in units of the modulation frequency Ω).
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E VA L U AT I O N O F C AV I T Y PA R A M E T E R S
A N D S TA B I L I T Y

6.1 evaluation of stability and calibration of
the wavemeter

The evaluation of the frequency stability of a locked laser is usually
measured against another laser with known stability [56] or in the
best case by comparing the laser frequency against two other stable
lasers in a three corner hat configuration. However, even without
another stable laser, we still can give a quantitative estimate on
the stability of the laser by measuring the power spectral density
(PSD) S∆ν(f) (in units of Hz2 Hz−1) of the laser frequency noise.
A real time Fourier analysis of the in-loop PDH error signal reveals
the deviation of the error signal from its set point (e.g. 0 V) in
the frequency domain. From the known amplitude and width of
the error signal with respect to the optical frequency we can now
compute S∆ν(f) which is depicted in Fig. 6.1.

The graph shows the noise power spectral density for the free
running laser (solid blue) and the locked laser (solid red). The gray
line is the equivalent electrical noise of the photodetector which has
been subtracted to obtain the locked spectrum. The low frequency
PSD of the free running laser is governed by frequency flicker noise
S∆ν(f) ∝ f−α [57] with α = 1.78 and the flattening of the PSD
at higher frequencies suggest white noise with a constant S∆ν(f).
On the other hand, the locked laser shows a significantly reduced
PSD in a bandwidth of ≈ 100 kHz with the highest reduction of 14
orders of magnitude at the lowest frequency.
A more intuitive figure of merit is the laser rms linewidth ∆νrms
which coincides with the absolute frequency stability. It can be
calculated from the PSD as [57]:

∆ν2
rms =

∫ ∞
0

S∆ν(f)df . (6.1)

The explicit evaluation of the infinite integral is limited due to
finite measurement resolution. However, the integral can be eval-
uated numerically with the restriction that the result is valid for

65
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Figure 6.1: Frequency noise power spectral density for the free running
(blue line) and the locked laser (red line). The gray line
indicates the electrical noise of the detector.

a measurement time as long as the inverse of the lowest measured
Fourier frequency f−1

min ≈ 260 ms. The results are:

∆νrms,FREE = 220 kHz
∆νrms,LOCKED = 4 kHz.

We expect the value for the locked laser also to be approximately
valid at long times because the PSD is a strongly decreasing func-
tion of time. From the opposite argument, the value of the free
running laser is strictly pinned to this measurement time. The
order of magnitude of ∆νrms,FREE corresponds quite well to the
frequency reading of a high resolution wavelength meter (WLM)1
which fluctuates on the 1 MHz digit during 1 s. The uncertainty
is caused by the specified measurement resolution of 500 kHz and
an absolute accuracy of 2 MHz when calibrated every 2 min with
a stable calibration source. This is necessary, because the WLM
itself employs an interferometrically-based measurement and the
parameters of the interferometer are expected to change under ex-
ternal perturbations such as temperature change or changes in the
barometric pressure. Under these conditions, the cavity-stabilized

1HighFinesse WSU-2
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Figure 6.2: The upper panel shows the change in frequency output of
the wavelength meter (red line). The green line shows the
corrected values which are compensated for the pressure and
temperature changes depicted in the lower panel.

laser itself is a tool to characterize the performance of the WLM.
Therefore, we set the cavity to 20 ◦C and wait for several days to
ensure a stable temperature at the cavity. Afterwards, the change
of the frequency reading of the WLM is recorded for several hours
which is displayed in the upper panel (red line) of Fig. 6.2. Mean-
while, we also monitor the change of the internal temperature sensor
of the WLM (lower panel - gray line) and the change in barometric
pressure (lower panel - black line) by an external pressure sensor.
During the measurement time of tmeas ≈ 10 h the reading of the
WLM decreases by ≈ 2 MHz. Qualitatively, this can be explained
by two distinct events. In the first event at t ≈ 2 h the ambient
pressure increases quite strongly which is accompanied by a corre-
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sponding decrease of the WLM reading. Afterwards the pressure
continues to increase but with a reduced slope. This corresponds
to the general decreasing trend of the WLM reading. In the second
event at t ≈ 6 h the WLM reading increases against the pressure
trend which is caused by the decreasing temperature.
For a quantitative analysis, a linear dependence between the fre-
quency change ∆f and the external parameters is assumed:

∆f = αp∆p+ βT∆T (6.2)

where ∆p (∆T ) is the pressure (temperature) change with respect
to the value at t = 0. If we further require that the WLM reading
should not change during tmeas the coefficients αp and βT can be
extracted by a least square optimization. The corrected values for
the WLM frequency reading is shown as the green line in the upper
panel of Fig. 6.2 which has been calculated using the optimized
coefficients:

αp = −576 kHz hPa−1

βT = −14 kHz mK−1.

Upon request, the manufacturer of the WLM specified the sensi-
tivity of the device on pressures changes as ≈ 2 fm hPa−1 which
corresponds to2 516 kHz hPa−1. This is in good agreement with the
extracted value for αp.

2at a wavelength of λ ≈ 1078 nm
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6.2 determination of the zero crossing tempera-
ture

The evident way to determine the zero crossing temperature of a
ULE cavity is the stabilization of the assembly to different temper-
atures and measure the frequency change of the laser as a function
of temperature. However, the time required to complete this pro-
cedure for several temperatures can be quite long (e.g., 30 days
in Ref. [54]) because of the slow response time of the thermally
decoupled cavity. Instead, we use a different approach which is less
time consuming. The experimental protocol is illustrated in Fig. 6.3.

Starting from a constant temperature of Ts = 22 ◦C, the setpoint
of the temperature control loop is modulated with an amplitude
of 8 ◦C around Ts and a period of 6 h. After each period, Ts is
increased by 2 ◦C (cf. Fig. 6.3 blue line). During the modulated
ramping of the temperature we monitor the flange temperature
sensor (orange line) and the frequency change of the locked laser

Figure 6.3: Modulated temperature ramping of the cavity assembly (blue
line). The temperature response at the flange (orange line)
is recorded as well as the change in optical frequency (red
dots). Around t = 33 h the laser temporarily lost the PDH
lock.
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through the corrected3 WLM frequency readings (red dots).
A clear drawback of this method is that the measurement time
can not directly be linked to the temperature of the resonator
without knowledge of the temperature transfer function. As a first
estimate, the last point of the measurement is considered, where
the frequency has decreased by ≈ 42 MHz and the temperature at
the flange has increased from 22 ◦C to 32 ◦C. Applying the cavity
time constant τcav = 165.9 h from chapter 5.4 indicates that the
cavity has not warmed up to more than 24 ◦C. We recall from the
previous chapter that, around the zero crossing temperature T0,
the frequency change of the laser is given by

∆ν = −a2 · ν0 · (T − T0)
2. (6.3)

A frequency shift of −42 MHz for a temperature step from 22 ◦C
to 24 ◦C can only be realized if the zero crossing temperature is
as low as T0 ≈ −9 ◦C given that a stays in the range of reported
values.
Such a low T0 is not expected even in the absence of the compen-
sating ULE rings (cf. ch. 5.3). Therefore, we conclude that the heat
transfer from the vacuum flange to the cavity is neither governed
by thermal conduction nor convection4. Consequently, the heat
transfer has to be modeled by thermal radiation between the par-
ticipating surfaces. The power P emitted by a gray body of surface
area A and temperature T is given by

P = ε · σ ·A · T 4, (6.4)

where σ is the Stefan-Boltzmann constant and ε is the emissivity
of the surface. Taking into account the different surface areas and
emissivities we can set up the coupled differential equations for the
heat transfer, where in the following the subscript s denotes the
stainless steal flange, cu denotes the copper shield and u denotes
the ULE cavity.

dTcu(t)

dt
=

εsεcuσAs
(
T 4
s − T 4

cu

)
Ccu (εs + εcu − εsεcu)

−
εuεcuσAcu

(
T 4
cu − T 4

u

)
Cu (εu + εcu − εuεcu)

,

dTu(t)

dt
=

εuεcuσAcu
(
T 4
cu − T 4

u

)
Cu (εu + εcu − εuεcu)

,

where Ci is the heat capacity of the respective component.
3see previous section
4The pressure inside the flange is ≈ 1× 10−6 mbar.
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Figure 6.4: Time resolved laser frequency response to the modulated tem-
perature ramping for different start temperatures (dots). The
solid lines are the results of a simulation based on radiative
heat transfer.

The transient frequency change of the cavity can now be evaluated
by solving the differential equations and applying Eq. 6.2.
Figure 6.4 shows the result of this simulation for three different
starting temperatures and the respective experimental data where
we have used the measured temperature at the flange as input for
Ts(t).
The best agreement between the simulation and the data is obtained
for εs = 0.3, εc = 0.07, εu = 0.8, a = 2× 10−9 K−2 and T0 = 19 K.
We note that especially the literature values for the gold-plated
copper shield are rather widely scattered which can be compensated
by changing T0. Therefore, the zero crossing temperature can only
be specified in a confidence interval of ±3 K.
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Most importantly, we have shown that the use of additional ULE
rings on top of the FS mirror leads to an effective zero crossing
temperature, which is conveniently realized in the laboratory. Even
if detuned by 3 K from the zero crossing temperature, temperature
fluctuations of 1 mK only affect the frequency stability by 1.7 kHz.
This is still sufficient to unambiguously resolve the natural linewidth
of an exciton bound to a boron acceptor which amounts to ≈
150 kHz.
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A B S O R P T I O N S P E C T R O S C O P Y O F
D O N O R B O U N D E X C I T O N S





A B S T R A C T PA RT I V

This part addresses the fundamental properties of the phosphorus
donor bound exciton transition under variation of external parame-
ters such as temperature and magnetic field and lays the foundation
for the advanced experiments presented in part V.
The maximum absorption coefficient of the inherently weak donor
bound exciton transition is αmax = 0.142 cm−1 with an average
optical linewidth of ≈ 70 MHz which is small enough to reveal the
117 MHz hyperfine coupling between the donor electron spin and the
phosphorus nuclear spin. This extremely narrow linewidth enables
us to examine the low temperature limit of the silicon bandgap
energy where our analysis confirms the theoretical T 4 behavior.
Moreover, the temperature-dependent width of the transition has
been studied quantitatively and gives strong hints to elastic Raman
scattering with phonons obeying a T 7 law.

The magnetic field dependence of the transition not only reveals
the optical selection rules but also permits the extraction of the
Landé g-factor for electrons and holes and an associated anisotropy
with high accuracy. For a magnetic field applied along the [111]
direction, we find

ge = 2.01(2),
g1/2 = 1.42(1),
g3/2 = 1.27(1).
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A B S O R P T I O N W I T H O U T M A G N E T I C F I E L D

7.1 absorption coefficient of the no-phonon line

Here, we show the basic properties of the zero field absorption
spectrum of the phosphorus-bound D0X transition located at
≈ 1078.263 nm. The absolute frequency or wavelength depends
strongly on the calibration of the WLM and is of minor interest in
this context. Therefore, most of the presented spectra are plotted
in relative frequency units.
Figure 7.1 (bottom left) shows the transmitted signal of a scan
across the transition for a temperature of T = 4.5 K. After sub-
traction of a linear background due to increasing laser power with
increasing wavelength, the absorption coefficient of the transition
can be evaluated using Lambert-Beer’s law:

I(z) = I0 exp (−α · z) , (7.1)

where I(z) is the transmitted intensity after the laser beam has
traveled the distance z inside the absorptive medium, I0 is the
incident intensity, and α is the absorption coefficient of the medium
conveniently given in units of cm−1.
With a sample length of z = L = 0.4 cm and the values for I0 and
I(z) indicated in Fig. 7.1 (bottom left), the maximum absorption
coefficient can be determined as:

αmax = 0.142 cm−1.

Figure 7.1 (bottom right) shows differential phase modulation
spectroscopy data of the same scan. Direct comparison of the
collateral spectra clearly demonstrates the superior signal to noise
ratio of the differential technique.
Integration of the latter leads to the absorption spectrum depicted
in Fig. 7.1 (top), where the maximum is normalized to αmax.
The spectrum for 28Si shows in contrast to the bound exciton
spectrum of natural abundance silicon, which only contains a single
line [58], two distinct maxima separated by ≈ 120 MHz. This is
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Figure 7.1: (top) D0X absorption spectrum integrated from the differ-
ential spectrum shown on the bottom right. (bottom left)
Unmodulated absorption scan of the D0X transition.

in good agreement with the 117 MHz hyperfine splitting of the
phosphorus neutral donor ground state [10]. Therefore, the low
energy peak can be attributed to the three-fold degenerate triplet
state of donor electron spin and phosphorus nuclear spin (|↑⇑〉) and
the high energy peak corresponds to the anti-parallel singlet state
(|↓⇑〉).
The intensity ratio, extracted from a Lorentzian line shape analysis
(red line), of the two peaks amounts to 3.5 : 1 which confirms this
picture. The average linewidth of the transition is ∆ν ≈ 81 MHz.
The value of αmax can be compared to the value found by Dean [59].
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Taking his value of the oscillator strength f = 1.8× 10−6 for the
no phonon transition of the bound exciton, αmax may be estimated
as

αmax =
nd · f

0.97× 1016 · n · ∆νeV
= 0.2 cm−1, (7.2)

where nd is the donor density (in cm−3), n is the refractive index
of silicon and ∆νeV is the linewidth in eV.

7.2 considerations on spectral width and line-
shape

The presence of ionized acceptors A− will lead to an effective Stark
shift which manifests itself in the D0X spectra by a broadening of
the low energy tail [60]. The Stark shift can be accounted for by
fitting the differential1 spectrum in Fig. 7.1 (bottom right) with a
skewed Lorentzian of the form

L(x) =


1

1+
(
β
(x−x0)
γ

)2 for x < x0

1

1+
(

(x−x0)
γ

)2 for x ≥ x0
(7.3)

where x0 is the center of the transition, γ is the half width at
half maximum (HWHM) of the high energy side and γ/β is the
HWHM of the low energy side. Figure 7.2 illustrates on the left
hand side the standard derivative Lorentzian (β = 1) depicted by
the green line, and the red line denotes the fit according to Eq. 7.3
which significantly improves the agreement with the experimental
data, especially at the low energy tail of the F = 1 transition. The
mean FWHM linewidth Γ = 2 · γ is reduced to 72 MHz which is
still approximately two order of magnitude larger than the lifetime
limited linewidth [26], a fact has been addressed in Ref. [61]. On
the basis of high resolution spectroscopy on samples with different
isotopical purity ε they argue that the linewidth Γ varies as

Γ(ε) = αΓ

√
(1− ε). (7.4)

This is illustrated as black line in Fig. 7.2 (right) together with
experimental data from Ref. [61] (green dots). The constant αΓ =

1Here, the differential form is chosen because the deviations between the
skewed Lorentzian and the standard Lorentzian are clearly visible.
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Figure 7.2: (left)Differential D0X absorption spectrum (black dots) and
line shape fits with a skewed differential Lorentzian (see
Eq. 7.3) (red line) and a standard differential Lorentzian
(green line). (right) Evolution of the D0X spectral width as
a function of the isotopical purity ε. The green dots represent
experimental data from Ref. [61].

4366 MHz has been chosen to account for the 1.2 GHz linewidth in
natSi with ε = 0.9233. The red dot denotes the FWHM obtained
in this work and exhibits a value which is approximately two
times larger than expected from Eq. 7.4. However, the doping
densities in Ref. [61] are on the order of 1× 1013 cm−3 while the
doping density in the sample under investigation in this work is
nd = 1.2× 1015 cm−3. Therefore, the inter donor spacing is in our
sample significantly lower which leads to an enhanced probability
of nearest neighbor interaction. A semi-quantitative estimate of
this effect can be given by considering the wave function overlap of
the ground states for two neighboring donors

S(R(nd)) = 〈Ψ(r,R = 0)|Ψ(r,R = RNN (nd)〉 , (7.5)

where Ψ(r,R)) ∝ exp(−(r−R)/aB,D) is the donor ground state
wave function at the lattice site R and RNN (nd) = 0.54n−1/3

d is
the most probable nearest neighbor distance assuming the donor
distribution obeys Poisson statistics [62].
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Therefore, the fraction

S
(
R
(
nd = 1× 1015 cm−3))

S
(
R
(
nd = 1× 1013 cm−3)) =

10−8

10−48 (7.6)

reveals a huge increase in the overlap when increasing the dop-
ing density from 1× 1013 cm−3 to 1× 1015 cm−3 which may be
responsible for the larger linewidth found in this work.
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7.3 temperature dependent spectroscopy

The ultra-narrow linewidth of the D0X transition promises to be an
excellent marker for temperature related phenomena such as phonon
mediated broadening of spectral lines and the shift of the silicon
bandgap. In Fig.7.3 we exemplary show differential absorption
spectra for different temperatures ranging from 1 K (green line) to
9 K (red line).
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Figure 7.3: Differential D0X absorption data for different temperatures,
as indicated next to the respective line. The spectra are
vertically offset for clarity.
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Figure 7.4: Experimental temperature dependence of the silicon bandgap
(black dots) fitted by a power law (red line). The inset shows
a close up view of the low temperature limit. The exponent of
the fit favors the theoretical T 4 dependence (see main text).

Three major observations are evident:
First, the position of the peak shifts to longer wavelength (lower
energy) with increasing temperature. Figure 7.4 depicts the relative
shift of the center of the D0X transition (black dots) as extracted
from a Lorentzian line shape analysis over the whole range of
measured temperatures. A fit to the data (red line) with a power
law of the form ∆Egap = −Ag · T p shows satisfactory agreement
for p = 2.82(2).
In Ref. [63], Cardona et al. pointed out that the often used empirical
Varshni formula [64]

Egap = E (T = 0)− αT 2

T + β
(7.7)

can not account correctly for the temperature dependence of a
semiconductor’s bandgap in the low temperature limit2. Instead,
they argue that in the low temperature limit the bandgap energy
should behave like T 4. Utilizing high precision spectroscopy on

2This also holds for our data. The deviations are pronounced to such an
extend that a plot of Eq. 7.7 in Fig. 7.4 would almost completely vanish
underneath the inset and is therefore omitted.
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donor bound excitons in isotopically enriched silicon they are able
to extract an exponent between p = 3.6 and p = 3.9 depending on
the highest temperature used for the fitting procedure. Considering
the same range of temperatures (see inset of Fig. 7.4) we can
extract an exponent of p = 3.46(10) which is close to the lowest
value reported in Ref. [63].
A crucial physical aspect in the extraction of the bandgap shift
is to avoid laser heating of the lattice, which is expected to play
an important role at very low temperatures, because the thermal
conductivity κ of silicon decreases with T−3 for T < 20 K [65].
This effect is demonstrated in Fig. 7.5 where we plot the measured
temperature change of the silicon lattice (colored dots) as a function
of absorbed laser power at the maximum of the transition. For a
nominal temperature of 500 mK and an absorbed power of≈ 500 nW
the temperature change is as high as 2.2 K3 which corresponds to a
frequency shift of ≈ 19 MHz. Such a large shift would clearly distort
an exact determination of the temperature dependent bandgap
energy. Therefore, we have ensured that the experiments at very
low temperatures are conducted with appropriately low laser power.

Further insight into the laser-induced heating of the silicon lattice
can be gained by FEM simulations where the sample geometry as
well as the geometry of the heat source can be taken into account
properly. Using suitable low temperature values for the thermal
conductivity of silicon and helium, a maximum temperature change
of ≈ 11 mK is obtained which is in striking contrast to the experi-
mentally determined value. This contradiction can be resolved by
considering a thermal boundary resistance (Kapitza resistance) RK
[44] between the helium reservoir and the bulk silicon sample. This
thermal boundary resistance can be explained qualitatively by an
acoustic mismatch between the silicon sample and the helium reser-
voir which prohibits effective phonon transfer across the sample
boundary. As an estimate, the thermal contact between the helium
reservoir and the sample is modified by the Kapitza resistance be-
tween helium and silicon at ≈ 1 K [66]. The result of this estimation
is depicted in Fig. 7.5 as solid lines for different temperatures and
is in surprisingly good agreement with the experimental findings

3The temperature change is evaluated from the respective measured fre-
quency change of the D0X transition by using the T 4 dependence of the bandgap
shift.
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Figure 7.5: Experimentally determined temperature change of the silicon
lattice as function of absorbed laser power (colored dots).
The solid lines are FEM simulations taking thermal boundary
resistance into account.

given the simplicity of the estimate.

The second observation in Fig.7.3 is that the width of the transi-
tion increases between 6 K and 9 K drastically until the hyperfine
splitting is not resolved anymore at 9 K. Figure 7.6 (left) shows the
extracted linewidth Γ as a function of temperature. The linewidth
stays approximately constant at 70(3)MHz for temperatures up to
≈ 4.5 K and increases up to ≈ 550 MHz at 9 K. The solid red line
is a fit to the linewidth Γ(T ) with [67]

Γ(T ) = Γ0 + a× T 7. (7.8)

Such a T 7 dependence has been observed before, e.g., in rare earth
doped ceramics [68] and in rubidium [67] and has been attributed
to elastic Raman scattering with phonons.
Thirdly, the temperature dependent absolute strength of the D0X
is displayed on the right side of Fig. 7.6 as Arrhenius plot. For the
linear fit (red line) only inverse temperature vales up to 0.16 K−1

are considered. The slope yields a temperature of 20.4 K which
corresponds to an activation energy of Ea = 1.76 meV. This value
is lower than the expected value of one tenth of the donor ground
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Figure 7.6: (left) D0X linewidth for increasing temperature. (right)
Arrhenius plot of the D0X maximum intensity.

state binding energy EB = 45.3 meV according to Haynes’ rule [37].
The only other known energy value in the vicinity of Ea is the
ionization energy of the positively charged boron acceptor [69]. The
related competing electron capture mechanism leads to a decrease of
the D0X intensity for p-type silicon as described by Yang [60] which,
however, does not apply to the present n-type sample. Thermal
excitation of the excited D0X state can also be ruled out because
the associated energy difference amounts to ≈ 4.3 meV [70].
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8.1 optical selection rules

When an external magnetic field is applied, the ground state degener-
acy of the F=1 state is lifted and the energy of the hyperfine-coupled
donor electron evolves according to the Breit-Rabi equation (cf.
chapter 2.2). The Zeeman shift of the D0X is governed by the re-
spective quantum number for the hole spin which leads to the twelve
dipole-allowed transitions depicted in Fig. 2.6. Figure 8.1 shows
absorption spectra for an external magnetic field of 50 mT applied
in longitudinal direction z, i.e., the direction of light propagation.
When the excitation laser is right-handed circularly polarized (σ− -
red line) only the lines 1-4 are visible in accordance with the optical
selection rules.1 Consequently, left-handed circularly polarized light

Figure 8.1: Experimental verification of the circularly polarized D0X
transitions.

1The residual intensity at the position of line (9,10) might be due to slight
misalignment of the quarter-wave plate.
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Figure 8.2: High resolution scan revealing the hyperfine splitting in an
external magnetic field Bz = 50 mT

(σ+ - orange line) can only excite lines 9-12. Finally, a scan with
linearly polarized light (Πx - green line) addresses all of the afore-
mentioned lines with half intensity, because the linearly polarized
light can be regarded as a combination of σ− and σ+. A closer
inspection of the line structure in Fig. 8.1 shows a substructure near
the zero crossing of each peak which corresponds to the maximum
of the integrated spectrum. This is further investigated by the high
resolution scan depicted in Fig. 8.2 for σ− excitation.
The peak structure is fitted with a cumulative four Lorentzian
derivative function (red line) which yields excellent agreement with
the data, confirming the homogeneously broadened nature of the
transitions. The respective single contributions to the lineshape are
also indicated. This allows to determine the magnitude of the dou-
blet splitting and we obtain a splitting of ∆12 = 57(1)MHz for the
doublet (1,2) and ∆34 = 63(1)MHz for the doublet (3,4). Both val-
ues are in good agreement with the solution of the Breit-Rabi equa-
tion (compare Eq. 2.10) for 50 mT which yields ∆12 = 56.3 MHz
and ∆34 = 61.2 MHz.

The remaining linearly polarized transitions (lines 5-8), which have
not yet been discussed, are visible when the linear laser polarization
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Figure 8.3: Experimental verification of the linearly polarized D0X tran-
sitions.

is parallel to the external magnetic field as depicted by the green
line in Fig. 8.3 for both, the laser polarization and the external
magnetic field in x direction. Changing the laser polarization to
Πy, the linear components vanish and the circular components are
excited by half of their magnitude. These findings bear important
consequences for part V of this work. In the framework of pump-
probe experiments, it is often cumbersome to filter the usually
much stronger pump laser while detecting the weaker probe laser.
Here, the optical selection rules are in favor of such experiments
because it is possible to pump, for example, the doublet (3,4) with
Πy polarization and probe the doublets (5,6) and (7,8) with Πx

polarization. Hence, a linear polarizer in x-direction in the detection
path will suppress the cross-polarized pump beam efficiently.
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8.2 determination of the landé g-factors

The narrow linewidth of the D0X transition allows for the determi-
nation of the incorporated Landé g-factors at moderate magnetic
fields up to B ≈ 100 mT, in contrast to previous studies on natSi
[71] with magnetic fields up to 5.5 T. The main advantage of low
magnetic fields is that the line splitting is mainly governed by the
linear Zeeman energy and the diamagnetic shift of the D0X complex,
which is quadratic in B, can be neglected. In order to observe all
six magnetic doublets, the magnetic field is applied at the x and
the z coil with Bx = Bz. Figure 8.4 shows differential absorption
spectra for the highest magnetic field employed (Bx = Bz = 70 mT
- red line) and for the lowest magnetic field (Bx = Bz = 20 mT -
green line).
Below 20 mT at each coil, the spectra can not be fitted with six
individual Lorentzians. Therefore, our study is limited to the case
µB ·B > A, where µB is the Bohr magneton. Figure 8.5 (left) shows
the frequency shift of the spectral lines (colored dots) as extracted
from Lorentzian lineshape fits as a function of the total magnetic
field magnitude B =

√
B2
x +B2

z . The solid lines connecting the
dots are linear fits.

Figure 8.4: Exemplary differential absorption spectra for g-factor deter-
mination.
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Figure 8.5: (left) Color-coded frequency shifts of the six D0X doublets
in an external magnetic field. (right) lineshift difference used
to extract the Landé g-factors (see main text).

The individual g-factors can be obtained by subtraction of two
different lines. In the following, ge denotes the g-factor of the donor
bound electron and g1/2 and g3/2 are the g-factors of the light
and heavy holes, respectively. For the case of ge, the difference ∆e
between the doublets (7,8) and (1,2) reads

∆e (B) = δνB(7,8) − δνB(1,2)

=
1
2geµBB −

1
2g1/2µBB −

(
−1

2geµBB −
1
2g1/2µBB

)
= geµBB.

For g1/2 we have

∆1/2 (B) = δνB(5,6) − δνB(1,2)
= g1/2µBB.

The determination of g3/2 can be done in a similar way. However,
there is no possible combination which allows to express a line shift
difference as a function of g3/2 alone. With prior knowledge of ge,
g3/2 can be evaluated as

∆3/2 (B) = δνB(9,10) − δνB(3,4)
= (3g3/2 − ge)µBB.
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Figure 8.6: (left) Experimental anisotropy of the light hole g-factor
(black dots). The red line is a fit to the data with a sine
function. (right) Anisotropy of the heavy hole g-factor.

The three differences ∆i(B) are plotted on the right side of Fig.
8.5. From the slope of the respective linear fit, the g-factors are
determined and yield

ge = 2.01(2)
g1/2 = 1.42(1)
g3/2 = 1.27(1).

Furthermore, on the basis of symmetry considerations it is expected,
that the g-factors of the light hole and the heavy hole should differ
significantly if the external magnetic field is either applied parallel
to the [001] or parallel to the [111] crystallographic axis [71], i.e.,
the hole g-factors are anisotropic. This is demonstrated in Fig. 8.6.
The direction of the effective magnetic field is altered by keeping the
field of the coil oriented in [001] direction constant while ramping
up the magnetic field of the [110]-oriented coil. When the two
coils are operated at the same field, the resulting magnetic field
is oriented parallel to the [111] direction. The most pronounced
anisotropy is observed for the light hole (g1/2 (left)) where the value
changes from 0.84(1) for B ‖ [001] to 1.42(1) for B ‖ [111] in good
agreement with previous studies [71]. Moreover, the anisotropy is
extremely well characterized by a sine function (red line), enabling
full understanding of the Zeeman splitting of D0X transitions in an
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arbitrarily oriented magnetic field. For the heavy hole g-factor, it
was not possible to extract reliable values for angles < 20◦ because
the necessary lines vanish due to the D0X optical selection rules.
Instead, the value for the g-factor along the [001] axis is extracted
from the sine fit and is in very good agreement with the value
reported in Ref. [72].





Part V

O P T I C A L S P I N P U M P I N G O F
D O N O R B O U N D E L E C T R O N S





A B S T R A C T PA RT V

This part addresses the effect of optical spin pumping of donor
bound electrons by resonant excitation of donor bound exciton
transitions. First, the conceptual mechanism of spin pumping is
established in chapter 9 by continuous wave spectroscopy which
builds the basis for the time-resolved two-color experiments pre-
sented in chapter 10 allowing for a direct observation of the donor
electron polarization dynamics. Supported by detailed numerical
simulations, we are able to show quantitatively that inelastic col-
lisions between hot Auger electrons and donor bound electrons
lead to an Orbach-type spin relaxation mechanism which strongly
depends on the number of free electrons and thus the laser intensity.
As a key parameter we extract ζ = 3.2, i.e., the number of inelastic
collisions a single hot Auger electron undergoes during its energy
relaxation towards the band minimum. Furthermore, we find a
universal expression for the dependence of the spin relaxation time
on the density of conduction band electrons which only consists
of sample-specific constants such as doping density, free electron
capture time, and excited donor state lifetime.
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C O N C E P T U A L I D E A A N D M E C H A N I S M

The feasibility of donor electron polarization by optical pumping
of donor bound exciton transitions at moderate magnetic fields
relies on the individual addressability of a specific electron spin
state at each of the dipole allowed doublets and thus on the nar-
row linewidths of the D0X transitions. Table 9.1 summarizes the
essential properties of the six dipole allowed doublets.
The doublets (5,6) and (7,8) have identical oscillator strength but
different electron spin. Therefore, these transitions are ideally suited
to monitor the donor electron spin polarization ρ. Throughout this
work, the polarization is obtained by the integrated intensity I of
the respective line by means of a Lorentzian line shape fit and the
polarization is evaluated as:

ρ =
I(5 + 6)− I(7 + 8)
I(5 + 6) + I(7 + 8) . (9.1)

As a primary attempt to achieve donor electron spin polarization
a pump-probe scheme based on the broadband fiber-based EOM
is employed. In this scheme, the carrier at frequency ω serves as
the pump beam while the positive side band ω + Ω is scanned
across the D0X transitions by increasing the modulation frequency
Ω. The signal-to-noise ratio is substantially increased by amplitude

doublet electron spin rel. oscillator strength
(1,2) |↑〉 1/6
(3,4) |↓〉 1/2
(5,6) |↑〉 2/3
(7,8) |↓〉 2/3
(9,10) |↑〉 1/2
(11,12) |↓〉 1/6

Table 9.1: Summary of the direction of electron spin and relative oscillator
strength associated with the six dipole allowed doublets.
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Figure 9.1: Exemplary D0X spectra illustrating the electron spin po-
larization by optical pumping. The vertical arrows indicate
the spectral position of the carrier (pump). The spectra are
vertically offset for clarity.

modulation of the EOM driving voltage (at frequency Ω) by fmod =
50 kHz and subsequent lock-in detection at fmod.
Figure 9.1 shows D0X probe spectra for different detunings of the
carrier from the doublet (1,2) which is indicated by the vertical
arrows. Starting at a large detuning of ∆P = −400 MHz for the
pump (dark green line), the probe spectrum shows the equilibrium
situation with ρ = −2(2)%. When the pump detuning ∆P is
decreased the polarization builds up gradually and reaches its
maximum value of ρ = −68(2)% (red line) when the carrier ω is
quasi resonant with the doublet (1,2). The basic mechanism of the
polarization process is outlined in Fig. 9.2.
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Figure 9.2: (left) Dipole allowed D0X transitions. (right) Excitation
scheme for optical spin pumping of donor electrons.

In the quasi resonant case, donor bound excitons are created from
the state n1 = |↑⇑〉 by resonant laser excitation with the rate
G1 (orange arrow) which depends on the laser intensity and the
absorption coefficient of the respective line. The D0X subsequently
decays with high probability via Auger recombination with the
characteristic time τA = 272 ns [26] and promotes the donor-bound
electron into the conduction band. At this particular time, the
electron has lost its spin information resulting in an unpolarized
free electron ensemble n6. After the electron has relaxed its excess
energy to the lattice (compare chapter 10.2) it is captured back
into an ionized donor within the capture time τC . The number
of ionized donors in thermal equilibrium in the sample is nd,io =
1× 1014 cm−3 having equally distributed nuclear spins |⇑〉 and |⇓〉.
Therefore, a high chance exists that the free electron is captured
with equal probability into one of the donor states n1 − n4. While
n1 is constantly pumped, longitudinal spin relaxation denoted by
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the time T1 (blue arrows) and the cross relaxation denoted by the
time TX (red arrow) distribute the population such that it mainly
builds up in the states n3 and n4. This redistribution leads to
an effective electron spin polarization of the donor ensemble. The
cross relaxation time TX traces back to the fact that n2 = |↑⇓〉
and n3 = |↓⇑〉 are not exact eigenstates of the donor system’s
Hamiltonian. Therefore, each ionization event provides a small
probability of a spin flip with the relaxation time

T−1
X = sin (Θ/2)2 × (G2 +G3) , (9.2)

where Θ = arctan (A/(γ+B)) and γ+ is the sum of the electron
and nuclear gyromagnetic ratios [73].
In order to study this effect quantitatively, we have set up the
corresponding coupled differential equations for the population of
the donor states (n1 − n4), the D0X (n5), and the free electrons
(n6).

d

dt
n1 (t) = −G1 · n1 (t) +

n6 (t)

4 · τC
− n1 (t)− n3 (t)

2 · T1
,

d

dt
n2 (t) = −G2 · n2 (t) +

n6 (t)

4 · τC
− n2 (t)− n4 (t)

2 · T1
− n2 (t)− n3 (t)

2 · Tx
,

d

dt
n3 (t) = −G3 · n3 (t) +

n6 (t)

4 · τC
− n3 (t)− n1 (t)

2 · T1
− n3 (t)− n2 (t)

2 · Tx
,

d

dt
n4 (t) = −G4 · n4 (t) +

n6 (t)

4 · τC
− n4 (t)− n2 (t)

2 · T1
,

d

dt
n5 (t) = G1 · n1 (t) +G2 · n2 (t) +G3 · n3 (t) +G4 · n4 (t)−

n5 (t)

τA
,

d

dt
n6 (t) =

n5 (t)

τA
− n6 (t)

τC
.

An exemplary solution to the coupled rate equations is depicted in
Fig. 9.3 when the system is driven at the rates G2 and G1 = 0.1×
G2. This takes into account that even under resonant excitation
conditions on n2 there is still some residual absorption of n1 due
to the finite spectral width of the D0X transition.
Figure 9.3 (a) illustrates the calculated steady-state polarization
in a color-coded plot as a function of the two most important
parameters, i.e., the longitudinal spin relaxation and the laser
power1 used to drive the system. The drastic change in polarization

1A laser spot radius of 225 µm is used for the calculation (see next chapter).
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Figure 9.3: (a) Color-coded steady-state polarization as a function of
spin relaxation time and laser power. (b) Transient build-up
of donor polarization. (c) Transient occupation of D0X (red
line) and free electrons (green line). (d) Transient occupation
of the four hyperfine-coupled donor states. The occupation
in (c) and (d) is normalized to one donor.

inside the spanned parameter space confirms the importance of
these two quantities and further suggests the extraction of the T1
time from the steady-state polarization if the excitation conditions
are exactly known.
Figure 9.3 (b) shows for a laser power of 1 mW and T1 = 1 s (black
dot in (a)) the time evolution of the polarization which is calculated
from the evolution of the donor states n1 − n4 depicted in Fig. 9.3
(d). Furthermore, the model grants access to the population of the
D0X state (n5) and to the number of free Auger electrons (n6) (cf.
Fig. 9.3 (c)). Even though the steady-state number of free electrons
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normalized to one donor seems very low ≈ 1× 10−10, the resulting
electron density of ≈ 1× 105 cm−3 is comparable to the density
reported by Feher and Gere [11]. In their seminal publication they
find that in a sample with donor doping density of 7× 1015 cm−3

a free electron density of 5× 105 cm−3 reduces the spin relaxation
time almost by a factor of ten.
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10.1 experimental polarization dynamics

In order to unambiguously study the effect of free electrons on
the spin relaxation, we employ a two-color time-resolved pump-
probe technique with two ECDLs. In contrast to sideband pump-
probe spectroscopy, this allows for independent adjustment of the
laser polarizations and enables time resolution by, e.g., amplitude
modulation of the pump laser. Commonly, in two-color pump-probe
spectroscopy, the area of the focused pump laser is larger than the
area of the focused probe laser which allows to monitor a signal
even if the two lasers are slightly offset or tilted towards each other.
For the purpose of quantitative modeling, the beam parameters
and their relative orientation must be known precisely. Therefore,
a horizontal knife edge scan at the focal plane is performed for
both lasers. The derivative of the result is depicted in Fig. 10.1
for the pump laser (left) and the probe laser (right). The red line
is a Gaussian fit to the intensity profiles yielding a 1/e2 radius
of 225(5) µm for the pump laser and 86(3) µm for the probe laser,
respectively.
Optimal spatial overlap of the two lasers is achieved by establishing
a common path on the optical table. The optical axes of the two
lasers are then coarsely brought to coincidence with the aid of
adjustable iris blinds. Fine tuning of the overlap is accomplished
by maximizing the probe induced signal on the lock-in amplifier by
slight adjustment of the pump path. When repeated iteratively, this
procedure guarantees excellent spatial overlap between the focused
probe and pump spot.

Furthermore, the probe laser is sideband modulated and detected
by a fast lock-in amplifier which enables the superior signal-to-noise
ratio of the derivative spectroscopy technique. An example of such a
spectrum is shown in Fig. 10.2 for the pump laser fixed to the center
of the doublet 9/10. The probe laser is scanned across the doublets
5/6 and 7/8 which are ideally suited to monitor the donor electron
polarization due to the identical oscillator strength of the doublets.
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Figure 10.1: (left) Integrated horizontal knife edge scan of the pump
laser. (right) Integrated horizontal knife edge scan of the
probe laser. The red lines are Gaussian fits with w being
the 1/e2 radius.

The red line is a cumulative fit to the data with a four Lorentzian line
shape function and the extracted degree of polarization is −68(1)%.
The same degree of polarization is obtained if the polarization is
just evaluated by the depicted differential absorption local extreme
points α5 to α8. In the next step, the donor ensemble is prepared
with the maximum degree of polarization and then the pump laser
is shut off with a fast mechanical shutter (orange line in Fig. 10.3)
which defines t = 0. With the continuously present probe laser, the
time evolution of the polarization is now determined by measuring
the time-resolved transient of one of the spectral positions αi by
the fast lock-in amplifier with a time resolution of ≈ 1.5 ms. If this
procedure is repeated sufficiently often for all αi, the donor electron
polarization ρexp is calculated as

ρexp =
(α5 + α6)− (α7 + α8)∑8

i=5 αi
. (10.1)

An example of such a time-resolved polarization decay is depicted
in Fig. 10.3 as black dots. This clearly demonstrates that the steady-
state polarization of −68 % is reproduced for t < 0 s and t > 100 s,
i.e., when the pump laser is active. For 0 s ≤ t ≤ 100 s, the time
constant of the polarization decay is extracted by an exponential
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Figure 10.2: Typical differential probe absorption spectrum of the D0X
transitions 5 to 8. The black dots are measured and the red
line is the corresponding line shape fit with four differential
Lorentzians.

fit (red line) yielding excellent agreement.

In every optical pump-probe spectroscopy scheme, the optical power
of the probe laser can have a detrimental impact on the measure-
ment result. Therefore, we have investigated the time-dependent
polarization decay for a variety of probe intensities ranging over
three orders of magnitude. The extracted decay constants are shown
in Fig. 10.4 as black dots. It is evident that for higher intensity, the
probe laser itself depopulates the donor state of the corresponding
transitions αi which leads to a pronounced shortening of the po-
larization decay time. For decreasing intensity of the probe laser
however, the polarization decay time rises and approaches its equi-
librium value of 14 s which is the value for the longitudinal spin
relaxation time T1 at 4.5 K [22].
The dashed gray line is a simulation based on the rate equations with
a constant spin relaxation time T1 = 14 s. The calculation fully takes
into account the measured absorption coefficients for the different
spectral lines, the measured radii of the pump and probe laser at the
focal plane and, most importantly, the experimental protocol used
to obtain the experimental polarization time traces. Qualitatively,
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Figure 10.3: Time-resolved polarization decay of the donor ensemble
(black dots). The decay constant is extracted by an expo-
nential fit (red line) and the orange line illustrates the state
of the pump laser.

the simulation reproduces the general trend of decreasing decay
time with increasing probe power. Quantitatively however, the
simulation systematically overestimates the decay time which is
most pronounced for high probe power. Furthermore, the steady-
state polarization calculated by the numerical model is around
−90 % throughout the whole range of applied probe intensities
whereas the experimentally determined degree of polarization never
exceeds ≈ −70 %.
An inspection of the color-coded plot in Fig. 9.3 (a) reveals that for
constant probe power the only possibility of reducing the steady-
state polarization as well as the polarization decay time, is a short-
ening of the spin lattice relaxation time T1. As already stated
earlier, such a shortening can be caused by the interaction of donor
electrons with free electrons which stem, in the current case, from
the Auger recombination of the D0X.
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Figure 10.4: Measured polarization decay time in dependence on optical
probe intensity (black symbols). The dashed gray line is a
simulation based on the numerical model with T1 = 14 s.

10.2 a microscopic picture

The Auger electrons from the D0X recombination start upon excita-
tion with an initial excess energy of about 1.10(1) eV with respect
to the conduction band minimum. The main idea for the shortening
of the spin lattice relaxation time mediated by free electrons is that
these high energy Auger electrons collide inelastically with donor
bound electrons in the 1S-A1 ground state and promote the bound
electrons to the excited donor 1S-T2 state. As outlined in chapter
2.4, the thermal population of the spin-mixed T2 state is the cause
for the Orbach spin lattice relaxation which decreases the spin
lattice relaxation time exponentially with increasing temperature.
Since the temperature stays constant throughout our experiments,
the proposed mechanism can be thought of as an Orbach-type re-
laxation mechanism which causes an increase in the relative T2/A1
population not by temperature but rather by inelastic collisions
with free, hot conduction band electrons.
However, inelastic scattering between free and bound electrons is
not the only way for hot electrons to relax their excess energy to-
wards the band minimum. Interaction with the lattice via phonons
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has also to be taken properly into account in order to determine if
inelastic scattering is an efficient energy relaxation channel. The
electron density in the conduction band, n6, resulting from the D0X
Auger recombination depends on the laser intensity and the capture
time τc and ranges in the current case between n6 ≈ 3× 103 cm−3

and n6 ≈ 1× 105 cm−3. The corresponding electron-electron scat-
tering rates can be roughly approximated by 10−5 cm−3 s−1 × n6
[74] and are therefore negligible in comparison to all other relevant
scattering rates, i.e., the conduction band electrons do not ther-
malize by electron-electron scattering. On the one hand, energy
relaxation of hot conduction band electrons is governed by g−
and f−type scattering by TO, LO, and LA phonons which can be
calculated for low lattice temperatures by [74](

dE

dt

)
inter

=
Zi(DtK)2

im
3/2
e√

2π h̄2ρ
Ñq
√
E − εi, (10.2)

where (DtK)i is the interband deformation potential for the phonon
type i with energy εi, Ñq = Nq + 1 is the phonon occupation
number, and ρ is the density of the crystal. The factor Zi is either
1 for g−type scattering or 4 for f−type scattering. The emission
of optical phonons takes place on a sub 100 fs timescale and is
completed after about 2 ps. We further include first order scattering
by so called 190 K acoustic phonons with ε1 = kB190K [75] by the
energy relaxation rate(

dE

dt

)
inter,1

=
Ξ2

1 (2 ·me)
5/2

2π h̄4ρ
Ñq
√
E − ε1 ·

(
E − ε1

2

)
. (10.3)

After about 2 ps the energy loss is governed by two concurring pro-
cesses. The first one is intravalley scattering with acoustic phonons
with the corresponding rate(

dE

dt

)
intra

=
Ξ2

0 (2 ·me)
5/2

2π h̄4ρ
·E3/2, (10.4)

where Ξ is the intraband acoustic deformation potential. The second
mechanism is inelastic scattering of the electrons with neutral
impurities where the conduction band electrons excite the D0 1S-A1
to T2 transition. This is the relevant transition for the Orbach-
type process. The energy relaxation rate due to collisions can be
approximated by(

dE

dt

)
coll

= − ∆
τcoll(t)

, (10.5)
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Figure 10.5: Calculated dynamics of the hot Auger electrons after ex-
citation into the conduction band. The D0X Auger recom-
bination defines t = 0. The red line depicts the calculated
cooling dynamics including all relevant cooling mechanism.
The black line shows the same but without inelastic D0

scattering.

for E ≥ ∆ and zero otherwise. Here, ∆ is the D0 1S-A1 to T2
transition energy. The collision rate τ−1

coll(t) is defined as

1
τcoll(t)

= σcoll · v(E) · nd, (10.6)

where σcoll = 8× 10−12 cm2 is the collision cross section between
free electrons and neutral P-donors [76] and v(E) is the energy-
dependent velocity of the conduction band electrons calculated by
the parabolic band approximation. The red line in Fig.10.5 shows
the energy relaxation dynamics including intravalley scattering,
intervalley scattering, and inelastic collisions with donors. After
about 19 ps, the energy of the Auger electrons falls below the
transition energy ∆, i.e., the energy of the conduction band electrons
is not sufficient anymore for inelastic scattering with localized donor
electrons involving the 1S-A1 to 1S-T2 transition. At this particular
time, the energy fraction lost by the electron from its initial excess
energy by inelastic collisions with donors amounts to η = 26.4 meV,
i.e., each Auger electron excites according to this unpretentious
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(DtK)g,LO 11× 108 eV cm−1 [77]

εLO 62.0 meV [77]

(DtK)g,LA 2× 108 eV cm−1 [77]

εLA 47.4 meV [77]

(DtK)f ,T0 2× 108 eV cm−1 [77]

εTO 59.0 meV [77]

Ξ2
0 9 eV [77]

Ξ2
1 5.6 eV [75]

nd 1.2× 1015 cm−3

nd,i 1× 1014 cm−3

Table 10.1: Parameters for the calculation of the Auger electron cooling
dynamics.

calculation on average ζ = η/∆ = 2.3 1S-A1 to 1S-T2 donor
transitions. The constants used to calculate the electron energy loss
dynamics are summarized in table 10.1.
After having established that inelastic scattering between free and
bound electrons is an effective energy relaxation channel, we consider
next the transition from the 1S-A1 to 1S-T2 donor state as an ideal
two-level system. Let nT2 be the population of the excited state and
nA1 the population of the ground state. From a thermodynamic
point of view, the relative population of the two states is given by

nT2

nA1
= exp

(
− ∆
kBT

)
. (10.7)

On the other hand, the relative population can also be expressed
in terms of the Orbach-type process which is illustrated in Fig.10.6
(left). From the numerical model, the electron rate falling back to
one donor from the conduction band is given by n6

τcnd
. This quantity

has to be multiplied by ζ, i.e., the number of inelastic collisions
one electron undergoes. This comprises the complete excitation
rate from the ground state to the excited state. Unfortunately,
the downwards relaxation time is not known which is owed to the
fact that the 1S-A1 to 1S-T2 transition is not optically active. A
solution to this problem has already been given by Castner in his
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Figure 10.6: (left) Two-level scheme of the excitation and relaxation
processes responsible for the Orbach-type spin relaxation.
(right) Absorption spectra of exited donor states. Taken
from Ref. [78].

original publication on spin relaxation of bound electrons [31]. As
an estimate for the decay rate of the 1S-T2 he uses the spectral
width extracted from the dipole allowed 2P0 to 1S-A1 transition.
The corresponding data for isotopically enriched silicon have been
obtained by Karaiskaj et. al. [78] and is depicted in Fig.10.6 (right
a). When the homogeneous linewidth of 0.034 cm−1 is expressed
in frequency units, we arrive at the quantity for the 1S-T2 decay
rate which amounts to ΓD0T2 = 1.02 GHz. The expression for the
T2/A1 population then reads

nT2

nA1
=

n6
ΓD0T2τcnd

ζ. (10.8)

Comparing Eqs. 10.7 and 10.8 with Castner’s formula for the
Orbach spin lattice relaxation

1
T1

= E0 × exp
(
− ∆
kBT

)
, (10.9)
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Figure 10.7: Measured polarization decay time in dependence on optical
probe intensity (black symbols). The dashed gray line is a
simulation based on the numerical model with T1 = 14 s.
The solid red line is calculated including the Orbach-type
process due to hot Auger electrons (see Eq. 10.11).

we immediately find a universal expression for the Orbach spin
lattice relaxation as a function of temperature T and conduction
band electron density n6

1
T1 (T ,n6)

= E0

(
exp

(
− ∆
kBT

)
+

n6
ΓD0T2τcnd

ζ

)
. (10.10)

For a constant temperature, Eq. 10.10 reduces to

1
T1 (n6)

=
1
T1

+
E0

ΓD0T2

n6
τcnd

ζ, (10.11)

where T1 is just the intrinsic spin relaxation time at a given tem-
perature.
Figure 10.7 shows a reexamination of the polarization decay times
as function of the incident probe intensity. For comparison, the
dashed gray line is again the solution to the numerical model with
T1 = 14 s. The solid red line is a fit to the data with the spin lattice
relaxation depending on n6 according to Eq. 10.11 which yields
ζ = 3.2 as the only free fit parameter. This value is in surprisingly
good agreement with the value of ζ = 2.3 estimated from the
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Figure 10.8: Temporal change of the initial D0 polarization after the
pump laser is turned off at t = 0 s for different probe inten-
sities (colored dots). The corresponding solid lines are the
results of the numerical model including the dependence of
T1 on excitation density.

electron cooling dynamics. Furthermore, our model does not only
calculate the correct polarization decay times but also reproduces
the steady-state polarization quite accurately which is shown in Fig.
10.8. Here, we show as colored dots three exemplary experimental
polarization decays representing the whole range of measured probe
intensities. The solid lines are the corresponding solution of the
numerical model with ζ = 3.2. At this point it is worth emphasizing
that no other adjustable parameters are needed to account for the
polarization dynamics.
The parameter ζ, i.e., the number of 1S-A1 to 1S-T2 donor transi-
tions excited by a single Auger electron, is expected to be universally
valid for P-donors in n-type silicon for doping densities well below
the metal-to-insulator transition. Deviations are expected for p-type
samples because our model does not account for electron energy
relaxation via scattering with acceptors.
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A B S T R A C T PA RT V I

This final part lays the foundation for practicable future experi-
ments on donor bound excitons in 28Si. It is quantitatively shown
that the inherent weakness of the D0X absorption represents a
major challenge for the detection of optical spin noise in this system
which may be overcome by application of an optical cavity in order
to enhance the spin noise signal.
On the basis of the dynamics of the optically driven donor system
presented in part V, a simple detection scheme for optically injected,
spin-polarized conduction band electrons based on the high spin se-
lectivity of the D0X transition is introduced. Unlike other detection
schemes such as Hanle depolarization of photoluminescence, the
proposed experiment is capable of detecting the instantaneously
induced spin polarization in the conduction band since it relies on
the fast capture of polarized electrons into ionized donor states
which takes place on the ps timescale for moderately doped p-type
samples.
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11
O U T L O O K

11.1 spin and occupation noise spectroscopy

Spin Noise Spectroscopy (SNS) is an effective tool for probing the
spin dynamics of the underlying system in thermal equilibrium.
It does not rely on the generation of a non-equilibrium spin dis-
tribution (compare, e.g., Refs. [79, 80]) but rather monitors the
inherent spin fluctuations of the system which carriers the same
information as if the system was externally perturbed [81]. After
being established in solid state systems in 2005 [82] the sensitivity
of the technique has rapidly improved which allowed for SNS in
low dimensional systems such as semiconductor quantum wells [83]
and the ultimate limit of a single hole spin located in a (InGa)As
quantum dot (QD) [84]. However, all of these experiments were
performed on direct gap semiconductors and a demonstration of
SNS in an indirect semiconductor such as silicon is still lacking.
The general idea of SNS is straightforward as outlined in Ref. [85]
and illustrated in Fig. 11.1. Linearly polarized light is transmitted
through the sample where the optical frequency of the laser is ad-
justed such that it only weakly interacts with the resonance under

Figure 11.1: Schematic experimental setup for spin noise spectroscopy.
Taken from Ref. [85].
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Figure 11.2: Exemplary spin noise spectrum of conduction band electrons
in GaAs. Taken from Ref. [85].

investigation. Since the probed spin ensemble has a finite size, the
average spin polarization mz vanishes but the standard deviation
is non-zero with

σmz =
√
N/N , (11.1)

where N is the number of probed states, i.e., the number of probed
donor electrons in this case. This momentary spin imbalance leads
to a difference in absorption for σ+ and σ− light and thus, via the
Kramers-Kronig relations [86], translates into a difference of the
dispersive part of the respective refractive indices. This effectively
leads to a Faraday rotation [42] of the linearly polarized probe laser
which is resolved via a polarization bridge and detected by a bal-
anced photo receiver in the time domain. A spectral analysis of the
fluctuating Faraday rotation signal reveals the spin noise spectrum
which is shown in Fig. 11.2 for free electrons in bulk GaAs. The key
to obtain such a spin noise spectrum lies in the efficient averaging
of other noise sources, i.e., photon shot noise and electrical noise of
the detector, which might be orders of magnitude larger than the
spin noise signal. This can be achieved by subtracting two different
spectra, one without magnetic field and one with a finite magnetic
field which causes the electrons to precess with the Lamor frequency
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ωL. This difference spectrum exhibits a Lorentzian shape centered
around ωL where the FWHM is inversely proportional to the spin
decoherence(dephasing) time T2 of the system.
In order to examine the feasibility of SNS in silicon the D0X res-
onance is represented by the Drudel-Lorentz model [50]. In the
framework of this model, the dissipative part of the refractive index,
and thus the absorption coefficient α is given by

α = κ
2ω
c0

=
e2fnD

8mε0ωx
√
εB

Γ0
(ω− ωx)2 + Γ2

0/4
2ω
c0

, (11.2)

where f is the oscillator strength of the transition, ωx is the reso-
nance frequency of the D0X and Γ0 is the width of the transition.
The respective dispersive part of the refractive index n reads

n = nB + ñ =
√
εB −

e2fnD
8mε0ωx

√
εB

ω− ωx
(ω− ωx)2 + Γ2

0/4
, (11.3)

where nB =
√
εB arises from the static dielectric background. At

this point it is very important to restate that a spin noise signal
can only occur if there exists a finite circular dichroism, i.e.,

∆α = α+ − α− 6= 0 (11.4)

and a finite circular birefringence

∆n = n+ − n− 6= 0 (11.5)

which can cause a non-zero Faraday angle

ΘF =
π∆n · l
λ0

, (11.6)

where l is the thickness of the sample along the propagation of
light. Together with Eq. 11.1 this leads to an expression for the
squared fluctuation of the Faraday rotation angle which is more
conveniently termed the integrated spin noise power P :

P = σ2
ΘF =

π2∆n2l

λ2
0nDA

, (11.7)

where A = πw2
0 is the area of the focused probe laser. In 28Si : P the

criteria for circular dichroism/birefringence are more complicated
due to the D0X narrow linewidth and the D0X optical selection rules
(compare Fig. 2.6). The only possibility to meet these criteria is the
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Figure 11.3: (a) Experimental illustration of circular dichroism of the
D0X transition in a longitudinal magnetic field. (b) Dissi-
pative part of the refractive index for doublets (3, 4) and
(9, 10). (c) Dispersive part of the refractive index for the
same doublets as in (b) together with the squared differences
(orange line).
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application of a magnetic field parallel to the propagation of light,
i.e., the z-direction. Fig. 11.3 (a) demonstrates the circular dichroism
for a magnetic field of Bz = 50 mT where the dark green line denotes
σ− transitions and the red line denotes σ+ transitions. In order give
a quantitative estimate of the spin noise power we consider only
the doublets (3,4) and (9,10) and model the absorption coefficient
according to Eq. 11.2 where each doublet is represented by a single
resonance with a slightly larger FWHM. The Zeeman shift of the
respective transitions is properly taken into account by using the
Landé factors found in chapter 8.2 and the oscillator strength f is
adjusted to match experimentally determined absorption coefficient.
This leads to the spectrum depicted in Fig. 11.3 (b) for a magnetic
field of 20 mT. The dispersive part of the refractive index is easily
calculated using Eq. 11.3 which is displayed in Fig. 11.3 (c - left
axis). The orange line shows the squared difference of the latter
which amounts to

∆n2 =
(
n+ − n−

)2 ≈ 8× 10−18 (11.8)

at zero relative frequency. Inserting this into Eq. 11.7 yields

P ≈ 1× 10−20 rad2. (11.9)

In order to be useful for comparison with other experiments, the
signal strength η has been introduced which is the nothing else but
the peak of the integrated spin noise power density divided by the
photon shot noise and is defined as [85]

η =
PT2Plaser
h̄ωlaser

, (11.10)

where Plaser is the incident laser power and h̄ωlaser the photon
energy of the laser. Assuming Plaser = 1 mW and T2 = 100 ms 1

yields for the signal strength of donor bound electrons in 28Si

ηSi ≈ 3.3× 10−5. (11.11)

This quantity can directly be compared to the data on SNS of a
single hole spin in a QD. From Ref. [87], the relevant parameters
can be extracted which gives an estimate for the signal strength.
With Plaser ≈ 1 µW, T1 ≈ 3.3 µs and P ≈ 9× 10−10 we have

ηQD ≈ 2× 10−2. (11.12)
1This value is an upper estimate for spin decoherence time. Unavoidable

inhomogeneities in the external magnetic field give rise to a much shorter
inhomogeneous spin dephasing time T ∗

2 .
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This comparison clearly demonstrates that SNS in silicon is by no
means an easy task if the weak signal strength can not be improved.
A first approach to this may be placing the sample inside a cavity
since the number of photon round trips Nr will directly increase
the effective sample length leff = lNr. An "external" cavity at the
position of the focusing/collimating lenses is not an option because
the accumulated reflection loses of the cryostat windows prohibit
an efficient power buildup. Another possibility is a distributed
Bragg reflector (DBR) grown on the sample surface. However, from
a basic estimate of the cavity parameters, the following problem
arises2. A cavity length of l = 4 mm in a dielectric environment of
nB =

√
εB ≈ 3.42 exhibits a FSR of

∆FSR =
c

2nBl
≈ 10.9 GHz. (11.13)

On the other hand, the number of round trips should be as high as
possible in order to increase the spin noise power. This poses another
difficulty since Nr is inversely proportional to the transition width
δν of the cavity. For Nr = 100, δν only amounts to ≈ 35 MHz which
corresponds to a finesse of F ≈ 311. This means that without precise
knowledge of the cavity length, there is a chance of ≈ (1− 1/F)
that the desired probe frequency for SNS is not transmitting. The
only remaining possibility is the implementation of a scanning Fabry
Perot Cavity inside the cryostat where one of the mirrors can be
displaced by a piezo actuator. Therefore the experiment has to
be moved to a bath cryostat because the rigid construction of the
home-built helium reservoir for the closed cycle refrigerator does
not allow for moving parts (compare chapter 3.3). As a practical
constraint to the cavity parameter, we advise that the width of the
cavity resonance δν should be on the order of 5 MHz which still
allows phase modulation spectroscopy with Ω ≈ 2 MHz. This pins
the mirror reflectivities to R = 99.8 % for a conveniently chosen
cavity length lcav = 20 mm3. Furthermore, the sample surface has
to be anti-reflection coated to at least 99.5 % in order to keep

2Other difficulties can arise from strain inside the sample induced by the
DBR growth process.

3Scanning of the D0X in this case needs to be performed such that the
carrier frequency is always located at the maximum transmission of the sample
cavity. This can be achieved by either performing a PDH lock of the laser to
the sample cavity or by carefully calibrating the voltages used to drive the laser
frequency and the cavity piezo.
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the intra-cavity losses Zintra as small as possible. This yields the
following cavity parameters

∆FSR ≈ 2.2 GHz (11.14)
δν ≈ 5 MHz (11.15)
Nr ≈ 330. (11.16)

This is a very promising estimate because a cavity with the above
parameters would boost the spin noise signal strength to

ηSi,cavity ≈ 1.1× 10−2, (11.17)

which is the same magnitude as the signal from a single QD.
Besides the detection of optical spin noise, which might be feasible
in the near future, the uniquely narrow optical linewidth of the D0X
in isotopically enriched silicon offers the possibility to gain insight
into the underlying spin dynamics of the system by monitoring
the statistical fluctuation in the occupation of a distinct donor
level, i.e., occupation noise. This is illustrated in Fig. 11.4 where
the doublets (1, 2) and (11, 12) are shown for a magnetic field of
Bz = 20 mT. If the doublet (1, 2) is addressed with σ+ light at
the position indicated by the dashed line, there will be a non-zero
absorption signal a+ which is proportional to the occupation of the
|↑〉 donor state. The fluctuation of this signal σa+ is determined
by the photon shot noise of the laser, the electrical noise of the
photo detector and the occupation noise of the respective donor
level. The latter consists of a contribution related to photon shot
noise because the probed donor level is depopulated by the incident
laser and another contribution which is related to internal processes
such as longitudinal spin relaxation. In order to unambiguously
identify the noise contribution belonging to T1 spin relaxation, it
is not sufficient to solely probe the |↑〉 state via the doublet (1, 2).
Instead, a two-color experiment is proposed where also the opposite
spin state |↓〉 with absorption signal a− is probed via the doublet
(11, 12) ( red line in Fig. 11.4). Since the number of donor electrons
in the sample is constant, the occupation of |↑〉 and |↓〉 are linked
by the correlator〈

a+(t)a−(t)
〉
6= 0. (11.18)

The recommendation for the detection setup and the measurement
protocol is as follows: The two exiting beams from the sample are
first subjected to a quarter wave plate which transforms the two
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Figure 11.4: Calculated absorption spectra of D0X for doublets (1, 2) and
(11, 12). The dashed lines indicate a potential spectral probe
positions for correlation spectroscopy where the amplitude
a+(a−) corresponds to |↑〉 (|↓〉).

circular components into two orthogonal linearly polarized compo-
nents which are spatially separated by a polarizing beam splitter
and directed onto the two photo diodes of a balanced photo receiver.
The elimination of the spurious noise contributions may be achieved
by subtracting two noise spectra where the power of the two lasers
is sufficiently higher for one of the spectra which leads to a pro-
nounced shortening of the T1 relaxation which was demonstrated
in chapter 10. Therefore, the FFT difference signal from such an
experiment consists of the difference of two Lorentzians centered
around zero frequency with different widths.
The inherently long spin relaxation time in silicon at low tempera-
tures pins the width of the noise spectra and the absolute frequency
to the sub-kHz regime. In this regime, laser frequency noise is very
pronounced (compare chapter 6) and the ultra narrow linewidth of
the D0X may translate this frequency noise into amplitude noise
which represents another spurious noise contribution. This is quanti-
fied by a simple experiment which is outlined by the D0X absorption
spectrum at zero magnetic field in Fig. 11.5 (a). The absorption
signal for different detunings of the D0X transition is measured
in a homodyne configuration where the beam that passes through



11.1 spin and occupation noise spectroscopy 129

Figure 11.5: (a) Zero field D0X spectrum with indicated positions for
off resonant (Off), on resonant (On), and background (BG)
spectral positions. (b) Low frequency difference spectrum for
On-BG (red line) and Off-BG (green line). (c) Comparison
between the absolute value of the differential absorption
(black line) and the integrated noise power (red dotted
line). The gray dashed lines indicate the maxima of the
differential absorption. (d) Comparison between occupation
noise (green line) and laser frequency noise power spectrum
(red line).
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the sample is compared against a reference beam (compare Fig.
3.4). For every detuning a background spectrum (BG) is subtracted
which is taken at a far detuned spectral position. Consequently, the
difference between an off-resonant spectrum (Off) and the back-
ground yields a perfect baseline as evidenced by the green line in
Fig. 11.5 (b). The red line in (b) shows a typical spectrum on reso-
nance which exhibits pronounced and spectrally narrow peaks. A
straightforward way to clarify whether these peaks are footprints of
the underlying donor system or measurement artifacts due to laser
frequency fluctuation is to consider the integrated noise for different
detunings. This is depicted in Fig. 11.5 (c) as red dots (right axis).
The black line (left axis) shows the absolute value of the derivative
of the absorption lineshape. Clearly, the position of the maxima
and minima coincide quite well which favors the interpretation of
laser frequency noise mediated by the dissipative medium. 4 Fur-
thermore, Fig. 11.5 (d) also supports this conclusion where a typical
on-resonance noise spectrum (green line) is compared against the
frequency noise spectrum of the laser as determined in chapter 3.4.
From the above considerations it follows that an occupation noise
signal with a spectral width < 1 kHz centered around the frequency
origin, i.e, 0 Hz would be highly masked by this effect. This suggests
that any experiment regarding the occupation noise of a certain
donor level has to be carried out with the laser locked to the high
finesse optical cavity presented in part III of this work where the
laser frequency noise PSD5 is suppressed by up to 14 orders of
magnitude.

4Any signal which monitors the occupation of a donor level has to be
proportional to the absorption. On the other hand, laser frequency noise is
most pronounced where the change of the absorption spectrum is biggest, i.e.,
the maximum of the derivative.

5in Hz2 Hz−1
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11.2 optical spin injection and detection

Optical spin injection in semiconductors denotes the creation of a
finite electron spin polarization in the conduction band by exploit-
ing the optical selection rules and is a key concept in spintronics
[3]. The relatively simple optical selection rules for direct gap semi-
conductors such as GaAs render optical spin injection in those
materials a routine task. The same holds for the detection of the
spin polarization where important parameters such as the spin
dephasing or the spin relaxation rate can be extracted by means
of, e.g., Hanle depolarization of photoluminescence in an external
magnetic field [88].
In silicon however, the optical selection rules for spin injection via
the indirect bandgap are non-trivial. They have been calculated by
Cheng. et al. [89] by using an empirical pseudopotential descrip-
tion for the electron states and an adiabatic bond charge model
for phonon states. Fig. 11.6 shows as red dots the main result of
this calculation, i.e., the degree of spin polarization (DSP) in the
silicon conduction band caused by excitation with σ− light6 as a
function of the excitation wavelength. The peculiar, non-monotonic
dependence of the DSP is a result of the different phonon contri-
butions and demonstrates that a DSP of ≈ −25 % is possible at a
excitation wavelength of λmax ≈ 1044 nm. However, the efficiency
of spin injection this close to the bandgap is not very large due to
the decreasing absorption coefficient which has been measured by
McFarlane et. al. [90] (green dots in Fig. 11.6). Despite the fact that
the first demonstration of optical orientation in semiconductors has
been achieved in silicon [79], the detection of the DSP is difficult due
to the very weak photoluminescence signal which causes extremely
long integration times in Hanle depolarization experiments [91, 92]
and until now, we are not aware of any experimental study confirm-
ing the depicted theoretical dependence of the DSP. In this context,
the D0X transitions in 28Si : P may provide a unique optical spin
detector. The mechanism for detection relies upon the capture of
polarized free electrons into the donor states which is elucidated by
the following three gedankenexperiments:

1 In a two-color experiment where one laser is used to produce
the DSP at λmax and the other laser, with vanishing intensity,
is used to probe the D0X transition the detected polarization

6For excitation with σ+ light the sign is reversed.
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Figure 11.6: (red) Theoretical degree of spin polarization in silicon for
excitation with σ− light. Adapted from [89]. (green) Ex-
perimental absorption coefficient. Adapted from [90].

of the donor ensemble will still be ρ = 0 because the donors
are fully occupied and no polarized conduction band electrons
can be captured.

2 In a three-color experiment, two lasers are used to polarize the
donor ensemble to ρ = +ρ0 according to the spin pumping
mechanism discussed in part V. The third laser at λmax
excites spin polarized electrons with a polarization ±ρ1 if
the helicity of the laser is altered. Due to the spin pumping
of the donors, the donor levels are not fully occupied at a
given time and polarized electrons may be captured which
should change the resulting donor polarization to ρ = ρ0± ρ1.
Two limiting cases can be distinguished. First, the intensity
of the laser used for the free electron DSP is much weaker
than the donor pump laser. In this case, the change in donor
polarization due to the capture of polarized electrons is too
weak to be detected. Second, the two laser intensities are of
the same order of magnitude and the resulting number of
polarized free electrons is large. In this case the huge number
of free electrons will dramatically shorten the donor electron
spin relaxation time T1 via the Orbach-type relaxation which
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results in a vanishing donor electron polarization. Both cases
have been verified by numerical calculations throughout the
whole parameters space of reasonable laser intensities which
excludes the proposed three-color experiment for the detection
of optical spin injection.

3 As a consequence of the first two points it seems likely that
the donor states have to be unoccupied while the total number
of conduction band electrons stays low. This is the case in a p-
type or fully compensated sample where there are no neutral
donors in thermal equilibrium. The spin polarized conduction
band electrons are therefore captured rather quickly into
the ionized donor states with density nd,i since the capture
rate τ−1

c ∝ nd,i. For the sake of comparability we choose
the number of (ionized) donors to be nd,i = 1.2× 1015 cm−3

which results in τc ≈ 14 ps. This means that the polarized
conduction band electrons are captured quasi-instantly onto
the ionized donors on the timescale of the radiative decay and
the conduction band spin lifetime where both quantities are
typically > 100 ns at cryogenic temperatures [2].

In order to quantify the last statement, the set of differential
equations used for the spin pumping experiments in chapter 9
need to be modified which reads
d

dt
n1 (t) =

n6 (t)

4 · τC
− n1 (t)− n3 (t)

2 · T1
− n1 (t)

τDAP
,

d

dt
n2 (t) =

n6 (t)

4 · τC
− n2 (t)− n4 (t)

2 · T1
− n2 (t)− n3 (t)

2 · Tx
− n2 (t)

τDAP
,

d

dt
n3 (t) =

n7 (t)

4 · τC
− n3 (t)− n1 (t)

2 · T1
− n3 (t)− n2 (t)

2 · Tx
− n3 (t)

τDAP
,

d

dt
n4 (t) =

n7 (t)

4 · τC
− n4 (t)− n2 (t)

2 · T1
− n4 (t)

τDAP
,

d

dt
n5 (t) = −n5 (t)

τA
,

d

dt
n6 (t) =

n5 (t)

2 · τA
− n6 (t)

2 · τC
+ (1 + Ξ)Gp −

n6 (t)

τband
− n6 (t)− n7 (t)

2 · τs
,

d

dt
n7 (t) =

n5 (t)

2 · τA
− n7 (t)

2 · τC
+ (1− Ξ)Gp −

n7 (t)

τband
− n7 (t)− n6 (t)

2 · τs
.

Here, n1-n4 again denote the donor states. In the presence of both
neutral donors and acceptors, an additional depletion channel for the
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donor electrons has to be assumed which is the well-known donor-
acceptor pair recombination with a decay time of τDAP = 100 µs
[93]. The state n5 denotes the donor bound excitons. This state is
only shown for the sake of completeness, since it will negligible for
vanishing probe intensities. The states n6(n7) reflect the occupation
of the conduction band with spin up(down) where τs = 300 ns [2]
is the spin lifetime in the conduction band and τband = 100 ns[2]
is the radiative band-to-band decay time. The symbol Ξ = 0.25
at λmax represents the degree of spin polarization and Gp denotes
the overall generation rate of conduction band electrons which is
calculated assuming a spot radius of 225 µm and an absorption
coefficient of α = 8.3× 10−2 cm−1 for λmax according to Fig. 11.6
(green squares). The set of differential equations is solved for the
steady-state for different pump intensities, i.e., different Gp. The
resulting donor electron polarization ρ is depicted in Fig. 11.7 (a).
For low pump powers < 1 mW the donor system nicely reflects the
theoretically expected value. This is a huge advantage compared to
other methods such as Hanle depolarization which usually measure
the steady-state DSP Ξss in the conduction band which is given by

Ξss = Ξ ·
(

1 + τband
τs

)−1
. (11.20)

In this case however, the electrons are captured prior to spin re-
laxation or radiative decay into the ionized donor and the D0X
absorption spectrum reflects the true spin polarization as long as
τc � τs and τc � τband. For increasing pump intensities the donor
electron polarization ρ decreases which is due to the Orbach-type
spin relaxation mediated by the increasing number of free electrons
(cf. Fig. 11.7 (d)). This decrease of ρ continues until the donors are
completely occupied (cf. Fig.11.7 (c)) and the polarization drops
to zero which is marked by the red circle in each plot. In order to
find a suitable operating point (green circle) for an experiment the
normalized signal quality Q is depicted in Fig. 11.7 (b). This is
defined as the product between the normalized donor occupation
and the donor electron polarization and Q = 1 represents the signal
to noise ratio of a typical D0X spectrum (compare Fig. 10.2). It is
highly desirable to operate in a regime where the donor polarization
is still constant and the donors are at least moderately occupied.
In this example a pump power of 500 µW is chosen which results
in Q ≈ 0.05.
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Figure 11.7: (a) Calculated steady-state donor polarization for different
pump intensities. (b) Calculated signal quality Q for the
detection of optical spin injection. (c) Calculated normalized
donor occupation. (d) Calculated free electron density. In
all panels the red dot denotes the pump power where the
donor states are fully occupied, the orange square denotes
the approximate validity of the calculation (see main text)
and the green dot represents the suggested working point.
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a comment on the orbach-type spin relaxation
According to the results of chapter 10.2 the donor electron spin
relaxation rate due to the Orbach-type process reads

1
T1 (n6)

=
1
T1

+
E0

ΓD0T2

n6
τcnd

ζ. (11.21)

We recall that Eq. 11.21 has been formulated for a n-type sample
where the density of Auger electrons n6 << nd and therefore,
nd = const. In the present case of a p-type sample and polarized
above bandgap excitation the Auger electron density has to be
replaced by the number of photo excited electrons, i.e., n6 + n7.
Furthermore, an increasing pump power results in an increasing
free carrier density and a decreasing number of ionized donors. This,
in turn causes the capture time τc ∝ n−1

d,i to diverge as nd,i → 0.
Together with the increasing number of free carriers, this results in
a constant T1 time which would clearly contradict the mechanism
of the Orbach-type process which dictates that the polarization
and the T1 time should approach zero as the free carrier density
is increased. In order to account for this discrepancy the above
calculation has been carried out with a constant capture time of
τc = 27.8 ps which corresponds to nd,i = nd/2. Therefore, the
above calculations are an excellent approximation for a relative
donor occupation < 0.5. This is marked in each panel with an
orange square.



12
S U M M A RY

This thesis unambiguously clarified the microscopic origin of the
enhanced donor electron spin relaxation rate caused by optical
excitation. To this end, the complete dynamics of the optically
driven donor system has been studied theoretically and experimen-
tally. The experimental studies comprise a two-color absorption
spectroscopy experiment for optical spin pumping exploiting the in-
dividual optical addressability of a specific electron spin state which
originates from the magnetic-field induced splitting of the ultra-
narrow D0X transitions. In the case of continuous wave excitation,
the spin pumping protocol resulted in a steady-state polarization
of the donor spins of ≈ 70 % where the magnitude of the steady-
state polarization is mainly governed by the optical excitation rate
and the longitudinal spin lattice relaxation time T1. In order to
extract the T1 time, time-resolved two-color absorption experiments
have been performed which revealed a very pronounced correlation
between the optical intensity and the transient spin polarization
decay of the previously pumped donor electron system. This is
intuitive to some extent since higher optical intensity leads to faster
depopulation of the donor states and thus to a faster polarization
decay. However, it has been shown that in order to quantitatively
explain the degree of steady-state polarization and the polarization
decay time simultaneously also a shortening of the T1 time with
increasing optical intensity is required. This shortening traces back
to an Orbach-type relaxation mechanism where the hot Auger elec-
trons from the D0X recombination excite the donor 1S-A1 to 1S-T2
transition responsible for the thermal Orbach process. In fact, each
Auger electron has enough excess energy to excite approximately
thirty 1S-A1 to 1S-T2 transitions which would render optical spin
pumping inefficient. However, an unpretentious calculation of the
transient cooling dynamics of the Auger electrons by emission of
optical and acoustic phonons showed that each Auger electron can
excite on average only ζ ≈ 2.3 1S-A1 to 1S-T2 transitions which is
in remarkable agreement with the slightly larger value of ζ = 3.2
found in the analysis of the transient polarization decay.
These findings bear consequences for optical initialization and ma-
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nipulation of donor electron spins as a potential source for solid
state qubits. The interplay between optically excited Auger elec-
trons, the degree of spin polarization and T1 relaxation entails that
a high degree of spin polarization by optical pumping or any kind of
optical manipulation comes at the cost of a reduced spin relaxation
time T1. This may also affect the spin dephasing time T2 when the
optically enhanced spin relaxation rate is larger than the intrinsic
spin dephasing rate.
Furthermore, the extremely narrow linewidth enabled the test of fun-
damental semiconductor physics like the low temperature behavior
of the silicon bandgap. Here, temperature dependent spectroscopy
between 0.5 K and 9 K confirmed prior studies and the theoretical
T 4 behavior. Moreover, the temperature dependent width of the
transition was studied quantitatively in this temperature regime
which revealed a pronounced broadening of the transition with a T 7

dependence attributed to elastic Raman scattering with phonons.
While the optical linewidth in the sample under investigation is
still resolved by an external cavity diode laser which is frequency
stabilized by a high precision wavelength meter, this may not be
possible in future studies on samples with lower doping concentra-
tion and potentially higher isotopical enrichment where the D0X
linewidth should approach the natural linewidth which is below
1 MHz. Therefore, a laser stabilization scheme based on a high
finesse optical cavity has been designed and characterized which
provides sufficient frequency stability to unambiguously reveal the
natural linewidth of any D0X transition in 28Si.
Further insight into the electronic structure of the D0 system was
gained with the aid of magnetic field dependent absorption spec-
troscopy. This confirmed that in the presence of an external mag-
netic field the coupled system between donor spin and nuclear spin
splits according to the Breit-Rabi equation for two spin 1

2 -particles
resulting in six dipole allowed doublet transitions for the D0X.
Besides the confirmation of the optical selection rules of the D0X
transition, the Landé g-factors of the electron, the light hole and
the heavy hole have been determined with high accuracy. In ad-
dition, a pronounced anisotropy of the g-factors of the light hole
and the heavy hole has been found and continuously determined
for magnetic fields applied in between the [001] and [111] direction.
Finally, the combined insight into the electronic structure and spin
dynamics of the D0 system has lead to the proposal of further exper-
iments. It has been shown that, despite the very small absorption
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coefficient of the D0X transition, spin noise and occupation noise
spectroscopy is feasible but represents a challenging task. Finally,
we have outlined that the fast capture of conduction band electrons
into ionized donor states in p-type silicon poses an elegant and
efficient tool for the detection of optical spin injection in silicon.





Part VII

A P P E N D I X





A B S T R A C T

This time-resolved photoluminescence study unambiguously reveals
the microscopic origin of the slow photoluminescence rise time of
the free exciton emission in bulk Gallium Arsenide (GaAs) at low
temperatures. The ultra-pure GaAs sample under investigation
allows to monitor the second LO-phonon replica of the free exciton
transition which grants access to the exciton cooling dynamics and
the population dynamics of the entire exciton ensemble. It is shown
that the slow PL rise time is not solely governed by momentum
relaxation of hot excitons towards the zone center but rather by
the thermodynamic quasiequilibrium between free excitons and
the uncorrelated electron hole plasma as expressed by the Saha
equation.

This work was a collaboration with Dr. Steffen Bieker from the
Julius-Maximilians Universität Würzburg and the presented results
have already been published in Ref. [94].
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A
E X C I T O N F O R M AT I O N I N G A L L I U M
A R S E N I D E

It is well established that the onset of the free exciton photolumines-
cence (PL) in time-resolved studies at low temperatures can show
a pronounced delay with respect to the excitation pulse [95, 96,
97, 98, 99]. Due to momentum conservation during the recombina-
tion process, only the fraction of the entire free exciton population
nX (t) which is near the Brillouin zone center can be observed in
experiments monitoring the free exciton zero-phonon line (FX)
[100]. Therefore, an unambiguous interpretation of the complete
free exciton dynamics requires experimental access to the entire
free exciton population. This can be achieved by monitoring the
free exciton second LO-phonon replica (FX)− 2 h̄ΩLO where the
K vector selection rules of the FX recombination are fully relaxed
due to the flat dispersion of optical phonons [101].
The sample under investigation is a nominally undoped, 1.5 µm-
thick epilayer of (001)-oriented MBE-grown GaAs where the low
temperature PL spectrum depicted in Fig. A.1 is dominated by FX
emission. The inherent weakness of the defect bound excitons, i.e.,
A0X and D0X suggest a residual impurity density ≤ 1× 1012 cm−3

[98, 102].
Time resolution is achieved by optical excitation above the bandgap
(λexc = 780 nm) by a pulsed Ti:sapphire laser with a pulse width of
≈ 2 ps and a repetition rate of 4 MHz1 and the time-resolved PL is
dispersed in a 250 mm focal length spectrometer with a 1200 mm−1

grating and detected by a streak camera.
Above bandgap excitation at low temperatures usually leads to the
case where the optically induced carriers can be characterized by an
effective temperature which is considerably larger than the lattice
temperature [103, 104]. In the present case, pulsed excitation and
subsequent cooling of the hot exciton ensemble leads to the transient
cooling behavior depicted in Fig. A.2. The exciton temperature TX
is determined by a time-resolved Maxwellian lineshape analysis of
the (FX)− 2 h̄ΩLO line [105]. An exemplary spectrum of such a

1This repetition rate is accomplished by a dual pulse picker with an extinc-
tion ratio < 1 : 1500.
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Figure A.1: Continuous wave PL spectrum of the investigated bulk GaAs
sample at 5 K.

lineshape analysis is shown in the inset of Fig. A.2.
The temporal dynamics of TX can be well described (red line in
Fig. A.2) by

d

dt
TX = −κ(TX − T0), (A.1)

with κ = (0.9 ns)−1 and the final exciton temperature T0 = 9 K
which is higher than the lattice temperature TL = 5 K. The latter
may be explained by the fact that out of the thermalized exciton
distribution only the low energy fraction, i.e., K ≈ 0 recombine
radiatively. Therefore, cold excitons are constantly removed from
the ensemble giving rise to "recombination heating" [106]. Fig.
A.3 (a) depicts time-resolved spectra of the spectrally integrated
(FX)−2 h̄ΩLO transition for different excitation powers Pexc which
clearly shows the delayed onset of the (FX)− 2 h̄ΩLO PL and that
the maximum of the PL timetrace gradually shifts to longer delays
for decreasing Pexc. This result already indicates that the slow
PL rise is not mainly governed by relaxation of large wavevector
excitons towards the zone center since the (FX)− 2 h̄ΩLO replica
monitors the entire exciton density nX (t).
The population balance between the uncorrelated electron-hole
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Figure A.2: Time-resolved cooling of the exciton ensemble. The solid
red line indicates a cooling according to E. A.2 with
κ = (0.9 ns)−1 . The exciton temperature is extracted by a
Maxwellian lineshape analysis which is exemplary shown in
the inset.

plasma (EHP) and the free excitons is given by the Saha equation
[107]

nenh
nX

=

(
kBTX

2π h̄2

)3/2(memh

mX

)3/2
exp

(
− EB
kBTX

)
, (A.2)

where ne, nh and nX represent the electron, hole and free exciton
densities, mi is the effective mass corresponding to i = e,h,X and
EB = 4.2 meV is the bulk exciton binding energy in GaAs [108].
With the substitution ne = nh = (1− fX )n0 and nx = fXn0, Eq.
A.2 allows for the determination of the relative exciton fraction fX
from the total induced pair density n0. An instinctive understanding
of Eq. A.2, i.e., the population balanced between free carriers and
excitons is given in Fig. A.4 where the exciton fraction fX is shown
in a color-coded plot as function of the exciton temperature TX
and the total pair density n0.
For a constant exciton temperature TX , an increase in the pair
density n0 leads to an increase in the exciton fraction fX . This
is caused by the decreasing spatial distance between electron and
hole which favors exciton formation via Coulomb interaction. On
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Figure A.3: (a) Excitation power dependence of the PL rise time detected
on the (FX)− 2 h̄ΩLO transition. The red solid lines are the
results of the numerical model. (b) photocarrier density n0
resulting from a single excitation pulse as extracted from the
numerical model. (c) Decay constants τ used in the model.

the other hand, an increasing exciton temperature at constant pair
density leads to thermal dissociation of excitons and thus a reduced
exciton fraction fX .
In the next step, a conceptual model for the temporal evolution of
free exciton ensemble nX (t) after pulsed excitation is introduced
which accounts for the transient cooling of the exciton ensemble via
Eq. A.1 and the interplay between the exciton temperature and the
free exciton density, i.e., the Saha equilibrium (Eq. A.2). It is further
assumed that the photocarrier pair density n0(t) decays exclusively
via the dominant channel of free exciton recombination neglecting
the weak recombination from the EHP [99, 109]. Therefore, the
time evolution of the pair density is given by

d

dt
n0 = −n0 × fX (n0,TX )

τ
, (A.3)
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where τ denotes the ensemble lifetime. The time evolution of the
free exciton ensemble is related to n0(t) through the Saha equation
and reads

nX (t) = n0(t)× fX (n0,TX ). (A.4)

For each applied excitation power Pexc equations A.1-A.4 are solved
numerically and the result convoluted is with the instruments
response function (IRF) of the detector (green dashed line in Fig.
A.3 (a)) where the ensemble lifetimes τ depicted in Fig. A.3(c) have
been used. The respective results of the model are shown as red
lines in Fig. A.3 (a) and exhibit extremely good agreement with the
experimental data. As expected, the initial pair density n0(t = 0)
found in the model calculation is proportional to the excitation
power (compare Fig. A.3(c)).
Finally, an intuitive picture of the PL rise time and the gradual shift
of the PL maximum can be gained by considering the trajectories,
i.e., the model results of the PL rise time in Fig. A.4 (dash-dotted
lines). At high excitation power, and thus high photocarrier density
n0, the formation of excitons is thermodynamically favored despite
the high carrier temperature which leads to an early onset of the
(FX) PL emission. At low excitation power however, the high initial
temperature and the low carrier density lead to a substantially
reduced exciton population at early delays which gradually builds
up as the carriers relax their energy towards the zone center.
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the model time traces shown in Fig. A.3(a).
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