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Abstract 

Current text mining applications statistically work on the basis of linguistic 

models and theories and certain parameter settings. This enables researchers 

to classify, group and rank a large textual corpus – a useful feature for 

scholars who study all forms of written text. However, these underlying 

conditions differ in respect to the way how interpretively-oriented social 

scientists approach textual data. They aim to understand the meaning of text 

by heuristically using known categorisations, concepts and other formal 

methods. More importantly, they are primarily interested in documents that 

are incomprehensible with our current knowledge because these documents 

offer a chance to formulate new empirically-grounded typifications, 

hypotheses, and theories. In this paper, therefore, I propose for a text mining 

technique with different aims and procedures. It includes a shift away from 

methods of grouping and clustering the whole text corpus to a process that 

sorts out uncategorisable documents. Such an approach will be demonstrated 

using a simple example. While more elaborate text mining techniques might 

become tools for more complex tasks, the given example just presents the 

essence of a possible working principle. As such, it supports social inquiries 

that search for and examine unfamiliar patterns and regularities. 
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1. Introduction 

Before starting to answer the title of the paper, the exact nature of text mining needs to be 

identified. Text mining is a combination of statistical and linguistic approaches of text 

analysis that has lately gained attention in the field of digital humanities. An important 

forerunner was the Italian literary scholar Franco Moretti (2007) with his concept of 

“distant reading”. He proposed that scholars who are used to employing in-depth 

interpretations (close reading) are unable to read and study the ever-increasing amount of 

data that is produced worldwide. Because of this, he recommends a different approach. In 

contrast to printed books, Moretti accesses digitally-accessible texts and identifies patterns 

in large corpora. This kind of distant reading includes a growing number of visualisations 

such as maps, graphs, and trees (Jänicke et al., 2015). Such visualisations usually show 

relations between such things as actors, names and places; text mining tools, in contrast, 

concentrate on linguistically small units: words and phrases. Text mining can be defined as 

a set of “computer-based methods for a semantic analysis of text that help to automatically, 

or semi-automatically, structure text, particular very large amounts of text” (Heyer, 2009: 

2). So, such applications practically count, relate, rank, cluster, and classify single and 

groups of words in large text corpora and present the outcomes in frequency graphs, word 

clusters, and networks. 

In recent years there has also been a growing interest in text mining for social science 

research. Various works (i.e. DiMaggio, Nag & Blei, 2013; Marres 2017; Philipps, Zerr & 

Herder, 2017) present mostly exploratory studies using algorithmic information extraction 

approaches to demonstrate the power of such tools for text analysis in the social sciences. 

Proponents of these computer-based methods primarily address qualitatively-oriented social 

scientists for two reasons (i.e. Evans & Aceves, 2016; Wiedemann, 2013). Firstly, such 

tools help researchers, who mainly work with textual data, to deal with the increasing 

number of digitally-accessible texts. Secondly, it is argued that, in a similar way to the 

grounded theory approach (Glaser & Strauss, 1967), text mining is employed to identify 

patterns. However, these propositions are slightly misleading. This is a rather unbalanced 

representation of qualitative and interpretive social research and might explain, to some 

extent, why (semi)-automatic analysis of textual data has, up to now, been widely ignored 

in interpretive social sciences (for more details see Philipps, 2018). 

This paper therefore primarily takes a closer look at how text mining analyses textual data 

and in what respect that analysis differs from methods commonly employed by 

interpretively-oriented social scientists. In this respect, I suggest a different aim and 

operating procedure for text mining which is more appropriate for interpretive social 

science. It includes a shift from standardised procedures of classification and clustering of 

large text corpora to detecting documents that do not fit to applied constructed concepts. To 

demonstrate this approach, I am presenting an exemplary working principle of low 
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complexity. Later, adapted text mining techniques might become tools for more complex 

tasks. These seek to support interpretive social science that examine unfamiliar patterns and 

the regularities of socially-produced meanings. 

 

2. Analysing textual data with text mining and in interpretive social science 

Text mining techniques comprise of a wide range of methods from frequency and co-

occurrence analysis to sentiment analysis and then to more complex approaches such as 

topic models and machine learning (Marres 2017; Wiedemann, 2016, 2013). While 

frequency and co-occurrence counts and identifies the use of words and the relationship 

between groups of words in large text corpora topic models, machine learning transforms 

words into numbers and computes statistical interferences in textual data. By no means can 

these methods be successfully employed to detect thematic shifts or networks of knowledge 

structures on a trans-textual level in social research studies (i.e. Adam & Roscigno, 2005; 

Blei & Lafferty, 2006). However, applying text mining requires the setting of some 

parameters before research is started. For frequency and co-occurrence analyses, for 

example, researchers need to determine relevant words or groups of words in advance. For 

a sentiment analysis they have to define classes, ranging from extremely negative to 

extremely positive. In addition, most machine-learning algorithms demand supervised 

training (intermediate results are controlled and evaluated by analysts during processing) 

and even for unsupervised topic models (without interference of external data or human 

control) researchers have to determine the exact number of clusters to be computed. Hence, 

current text mining methods have certain characteristics in common; before analysis, 

researchers define, even to the smallest degree, what is relevant and can potentially be 

found in textual data. Based on these (standardised) parameter settings, whole text corpora 

are classified, ranked, or grouped. 

However, standardised approaches are, for a great deal of interpretively-oriented social 

scientists, the opposite to how they were trained. For the most part, they learned and share 

the basic premise of interpretive social science working with non-standardised methods. 

This means that a researcher should approach their object of investigation with an open 

mind and be prepared for surprises. Hence, these researchers seek to situationally 

understand meanings produced in interactional settings – being ready to overcome previous 

classifications and schemes. They aim to generate assumptions based on identified content-

related, functional and formal aspects of the examined empirical material (for more details 

see Soeffner, 1999). Nonetheless, while these interpretively-oriented social researchers 

avoid standardised settings, they employ heuristic models to interpret textual data. They 

work with commonly-known (scientific) classifications and typifications in order to see 

how useful this knowledge is for understanding the meaning of given textual data and, at 
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the same time, they search for unfamiliar regularities and patterns. Thus, these researchers 

translate and describe the world of the observed “into one that we find comprehensible” 

(Abbott, 2004: 31) and only if they discover so far incomprehensible phenomena do they 

seek to grasp the underlying working principle and meaning in the form of new but 

empirically-grounded typifications, hypotheses, and theories. 

Against this background, I presume that currently-operating text mining applications for 

classification and information extraction are often insufficient to be “complementing 

techniques” (Wiedemann, 2013: no page) for most social scientists with special training in 

interpretive methods. Under certain circumstances text mining might enable qualitatively-

oriented researchers to learn about the variety and development of relevant categories. It is 

also reasonable to assume that machine learning algorithms which demonstrate knowledge 

about statistical characteristics of language and text-external knowledge manually coded by 

analysts (e.g. categories or example sets) will help to retrieve or annotate information in 

unknown material. However, in all these cases text mining is used to classify and group the 

entire textual data based on determined parameter settings. We therefore need to think of 

additional text mining strategies more adjusted to interpretative social science and its basic 

premise.  

 

3. Adjusting text mining for interpretive social science 

Text mining applications might become more relevant for interpretive social science, I 

suppose, if they enable researchers to divide a large corpus of documents into those with 

and without comprehensible patterns and components. Such information will stimulate the 

power of interpretive social inquiry, interpretively explore hidden patterns and unveil 

unfamiliar meaning. The working principle of such a search strategy might be best 

described with Max Weber‟s (1949) limiting concept of ideal types: “It is a conceptual 

construct (Gedankenbild) which is neither historical reality nor even the „true‟ reality. It is 

even less fitted to serve as a schema under which a real situation or action is to be 

subsumed as one instance. It has the significance of a purely ideal limiting concept with 

which the real situation or action is compared and surveyed for the explication of certain of 

its significant components” (Weber, 1949: 93, italics in the original work). Thus, ideal 

types are not the final outcome of empirical investigations but are used as an heuristic 

limiting concept to identify the significant aspect of real situations or actions. Practically, if 

an ideal type has not fully-grasped all aspects of the social phenomena, the researcher will 

pay full attention to this and mark it for further interpretation. In Weber‟s book Economy 

and Society (2013) he, for example, applied ideal types in a “procedure of the „imaginary 

experiment‟” (10) comparing a purely rational constructed course of actions with the 

concrete course of events: “By comparison with this it is possible to understand the ways in 
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which actual action is influenced by irrational factors of all sorts, such as affects and errors, 

in that they account for the deviation from the line of conduct which would be expected on 

the hypothesis that the action were purely rational” (Weber 2013: 6). Thus, he intellectually 

constructs an ideal type of pure rationality to grasp favouring or hindering circumstances 

which are devoid of subjective meaning “if they cannot be related to action in the role of 

means or ends” (Weber 2013: 7). Generally speaking, with ideal types as limiting concepts 

he describes a common strategy among interpretive social scientists to approach their object 

of investigation in that one employs conceptual constructs to understand social phenomena 

and by paying attention to unfamiliar regularities and patterns (in Weber‟s terms: 

deviations). The latter phenomena are of special interest because their interpretation offers a 

chance to broaden or even to rewrite established scientific knowledge. However, one has to 

note that Weber was interested in understanding and explaining social action 

motivationally. The construction of ideal types thus is not restricted to a rational course of 

actions. 

Applying this search strategy to text mining, a modified variant might become central for 

interpetative social research working with large digitally-accessible text corpora. In contrast 

to currently operating mining techniques which classify and group an entire text corpus, an 

adaptation would use constructed concepts to identify documents which show 

characteristics assumed in the formulated concept and those that do not fit. Therefore, in 

contrast to present computer-based applications working with linguistic models and 

theories, an adjusted text mining technique would operate with preliminary ideas and 

assumptions, formulated by interpretively-oriented researchers. In particular, for a large 

corpus of documents the latter will come up with a constructed concept after analysing 

some selected documents and heuristically employ this to sort out documents that display 

conceptually anticipated features and relations. In the next step, researchers examine and 

interpret the specificity of the remaining documents. In this process they might adjust 

existing concepts or formulate others. 

In addition, from the perspective of the humanities one could also say such a modified text 

mining technique mimics the hermeneutic circle (see Gadamer, 2004). Suggestions 

formulated in a first round of interpreting textual data are used to identify what is 

comprehensible and what is not. Incomprehensible textual data will be analysed in further 

interpretive rounds producing altered or additional suggestions which become the basis for 

more interpretive sequences. The process will come to an end with working interpretations 

(constructed concepts) to understand the textual data of interest. Nonetheless, like the 

hermeneutic circle the process will be impossible to finish as other researchers might find 

more appropriate readings for understanding certain textual data in the future.  
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4. An example for sorting out uncategorisable documents 

Often interpretively-oriented social scientists work with and interpret a small number of 

documents. However, sometimes they are confronted with a large corpus of textual data 

such as an archive of interview transcripts, protocols, letters and other forms of written 

documents. There are various ways of dealing with such conditions. With Merkens (2004), 

one might select some documents according to specific characteristics (i.e. relevant for the 

research goal) and concentrate on these cases or apply the theoretical sampling strategy 

starting with a few documents and selecting further documents for interpretation based on 

minimal and maximal contrasts. Theoretical sampling comes to an end if additional 

analyses of documents reveal no further information. However, there always remain 

documents that are not interpreted and may contain unexplored patterns and meanings. 

Under such circumstances an adapted version of text mining technique would offer an 

opportunity to search these documents for deeper analyses. 

In the following paragraphs, I present an instance of low complexity to give an idea of how 

such an variant of text mining can support interpretively-oriented research projects. It does 

not involve a reprogrammed text mining application but rather it demonstrates a possible 

working principle. The case in point is an investigation of applied approaches to promote 

unconventional ideas in 93 grant proposals sent to a major
 
research-funding organisation in 

Germany in 2013 (for more detail on method and findings see Philipps, forthcoming). The 

study started by skimming through the textual data and selecting proposals for deeper 

analysis. Without any predefined assumptions about specific approaches to unconventional 

ideas, I began to read a number of grant proposals to get an idea of these. Based on a 

preliminary impression of the material, I then employed closer readings in a contrastive 

manner. Using maximal and minimal contrast cases, I searched for specific structural and 

rhetorical patterns in the rationales of the grant proposals. My interpretation of research 

proposals continued until typical approaches to unconventional ideas could be identified 

and separated. After scrutinising 20 proposals and skimming through further applications I 

came up with a typology of distinct approaches. In an additional and laborious step the 

typology of identified argumentative patterns was separated into segments and described in 

a codebook. After a group of interpreters applied segment descriptions to a randomly 

selected sample of proposals and discussed disagreements and questions, amended codes 

were used by the author to annotate all 93 research grant proposals. Finally, the manual 

coding process enabled us to categorise all documents and search for cases with different 

argumentative patterns or other aspects.  

Especially for studies with a greater corpus, automatic text mining would be another option 

searching for empirically-identified patterns before establishing a codebook and manually 

annotating the remaining documents. However, such a search strategy requires a limiting 

concept to sort out documents that show conceptually-suggested patterns and those that do 
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not. In my study, such a concept might, for example, be typical wordings that appear with 

the identified approaches. Applicants who promoted ideas of solving practical problems 

typically discussed “drawbacks” or “disadvantages” of earlier solutions and what “benefit” 

or “advantage” their solution offers in contrast. Concentrating on these wordings, of course, 

is one-sided and does not fully capture all possible variants and other typical aspects. 

However, by producing two groups of documents (with and without these certain 

wordings), one can reduce the number of proposals demanding deeper analysis. In the case 

of this research project, a simple retrieval of these terms shows that 48 grant proposals used 

at least one of the terms if not all of them. Combining this result with the already examined 

proposals (n=20) 33 uncategoriseable documents remain. Hence, this procedure already 

condenses the number of non-examined documents from 73 down to 33. Apart from 

applying additional limiting concepts to further reduce the amount of these documents it 

should be clear that such a search strategy assists interpretively-oriented social scientists to 

single out documents for further examination. 

 

5. Conclusion 

In this paper, I discussed how standardising procedures of current text mining techniques 

differs in respect of methodological premises commonly employed by interpretively-

oriented social scientists. Without question, text mining features such as ranking, grouping 

or classifying textual data are useful for many research questions in social sciences. 

However, I presume an adjusted mining techique will greatly support interpretive social 

science if it shifts from standardised procedures of classification and the clustering of large 

text corpora to detect documents that do not fit into applied constructed concepts. It is also 

important to note that such a mining technique would not be based on linguistic theories 

and information management concepts but on suggestions offered by interpretively-oriented 

social scientists. As demonstrated at a low level, such an approach can help interpretive 

social inquiries to single out documents and examine them for unfamiliar patterns and 

regularities of socially-produced meanings. Nonetheless, as the complex topic of this paper 

shows it is still a long way from translating the methodological premises of interpretive 

social sciences into working additional text mining techniques. 
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