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The noncommutative baby Skyrme model is a Moyal deformation of the two-dimensional sigma model
plus a Skyrme term, with a group-valued or Grassmannian target. Exact abelian solitonic solutions
have been identified analytically in this model, with a singular commutative limit. Inside any given
Grassmannian, we establish a BPS bound for the energy functional, which is saturated by these baby
Skyrmions. This asserts their stability for unit charge, as we also test in second-order perturbation theory.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction and summary

The baby Skyrme model is a useful laboratory for studying
soliton physics. It is the 2+1 dimensional analog of the usual
Skyrme model [1], which describes the low-energy chiral dynam-
ics of quantum chromodynamics [2]. This model has direct appli-
cations in condensed matter physics [3], where baby Skyrmions
give an effective description in quantum Hall systems. The ac-
tion of this model consists of three terms: a kinetic sigma-model
term (scale invariant), the (four-derivative) Skyrme term (break-
ing scale invariance) and a potential (or mass) term (stabilizing
the size of solutions). All three terms are needed to prevent the
collapse of topological configurations which yield to Skyrmion so-
lutions. These stable baby Skyrmions can be determined numeri-
cally [4]. Their mass is strictly larger than the Bogomol’nyi bound
given by the topological charge (Skyrmion number), and the two-
Skyrmion configuration becomes stable showing the existence of
bound states [4].

A noncommutative deformation (for reviews see [5]) serves
as a substitute for the potential term, because it introduces a
new length scale into the theory, which also stabilizes solitons
against collapse or spreading. Moreover, Moyal-deformed field the-
ories have a much richer soliton spectrum than their commutative
counterparts (see, e.g., [6,7] and references therein). Indeed, the
noncommutativity gives rise to a new class of baby Skyrmions, as
was shown in [8]. Furthermore, the noncommutative deformation
may be of help in semi-classically quantizing the (perturbatively
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non-renormalizable) baby Skyrme model, since it introduces a reg-
ulating parameter. The two above applications of noncommutativ-
ity are our main motivation for Moyal-deforming the baby Skyrme
model.

In a previous paper [8] by one of the authors on this sub-
ject, the Moyal-deformed baby Skyrme model was introduced1 for
group-valued or Grassmannian target spaces and without a poten-
tial term. In the abelian case, a class of exact analytic solitonic
solutions was discovered, which are stable against scaling due to
the noncommutativity but have no analogues in the commutative
theory. This surprising feat succeeded because certain BPS config-
urations of the Moyal-deformed ordinary sigma model extremize
the Skyrme part of the energy as well. The static energy of these
noncommutative baby Skyrmions and their repulsive potential at
large distances was computed [8]. However, their stability could
not be ascertained, because a BPS bound for the full baby Skyrme
model (in a given Grassmannian) was not available.2

In the present Letter, we fill this gap. After reviewing the salient
features of the noncommutative baby Skyrme model and its known
solutions, we prove the expected BPS bound for the Skyrme term
in the energy functional. The special case of unit topological charge
is established independently by mapping it to the quantum me-
chanical uncertainty relation. Finally, we develop the second-order
perturbation of the energy functional around a classical solution
and apply it to the charge-one baby Skyrmion, affirming our pre-
vious results.

1 See also [9] for different aspects of Moyal-deforming a Skyrme model.
2 For the pure sigma model, the energy is of course bounded by the topological

charge [10]. The Skyrme term together with a potential also enjoys a BPS bound
which, however, becomes trivial for zero potential [11,12].
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2. The noncommutative abelian baby Skyrme model

The Moyal-deformed baby Skyrme model was first introduced
in [8]. Its abelian version describes maps g from a time interval
I � t into the unitaries U(H) of a Hilbert space H or into a Grass-
mannian subspace

Grk ≡ Gr(P ) = U(H)

U(imP ) × U(kerP )
(2.1)

for a hermitian projector P of finite rank k. In other words, the
field variable g(t) is a unitary operator-valued function of time.
Inside the Grassmannian Grk ⊂ U(H), it satisfies the constraint

g2 = 1 ⇔ g† = g ⇔ g = 1 − 2P with P † = P = P 2,

(2.2)

defining a hermitian projector P (t) of rank k as an alternative
field variable. The Hilbert space H carries a representation of the
Heisenberg algebra,
[
a,a†] = 1, (2.3)

which acts on the orthonormal basis states

|m〉 = 1√
m!

(
a†)m|0〉 for m ∈ N0 and a|0〉 = 0 (2.4)

in the following way,

a |m〉 = √
m |m−1〉, a† |m〉 = √

m+1 |m+1〉,
N |m〉 := a†a |m〉 = m |m〉. (2.5)

With the help of the auxiliary gauge potentials

At = g† ġ and

Az = g†[a†, g
]

as well as Az̄ = g†[a, g] = (Az)
†, (2.6)

the model is defined by its action functional,

S = −2π

∫
dt TrH

{
θ

2
A2

t + Az Az̄

− κ2[At, Az][At , Az̄] + κ2

2θ
[Az, Az̄]2

}
, (2.7)

which depends on two parameters: the noncommutativity scale
θ ∈ R+ of the dimension of length2 and a coupling parameter κ of
the dimension of length. Note that no potential term is needed, be-
cause the presence of the scale θ stabilizes the solitonic solutions.
In the limit θ→0, which includes scaling away the central charge
of the Heisenberg algebra (2.3), one recovers the commutative
U(1) baby Skyrme model on R

1,2, which is a free theory because
all commutators vanish. Sending the Skyrme coupling κ→0 also
removes the quartic terms, leaving us with the Moyal-deformed
abelian sigma model. The latter has been investigated intensively
and features static BPS solitons (see, e.g. [10,13]).

In this Letter we are concerned with static solutions to the
equation of motion, ġ = 0. These extremize the energy functional

E = 2π TrH

{
Az Az̄ + κ2

2θ
[Az, Az̄]2

}
=: E0 + κ2

θ
E1

= 8π TrH
{

Q a† Pa + Q aPa†} + 32π
κ2

θ
TrH

{
PaQ a† PaQ a†

+ Pa† Q aPa† Q a − PaQ a† Pa† Q a − Pa† Q a† PaQ a
}

(2.8)

which, for later convenience, we have expressed in terms of the
projectors
P and Q = 1−P via

Az = −2
(

Q a† P + Pa† Q
)

and Az̄ = −2(Q aP + PaQ ). (2.9)

The energy depends only on the dimensionless combination κ2

θ
.

It was shown in [8] that the diagonal projectors

P (k) :=
k−1∑
n=0

|n〉〈n| (2.10)

and their translates

P (k|α) := eαa†−ᾱa P (k)e−αa†+ᾱa for α ∈C and k ∈N (2.11)

extremize both E0 and E1.3 The Moyal deformation is essential for
this property; in the commutative (nonabelian) case, sigma-model
BPS solitons can never obey the baby Skyrme equation of motion.
The projector P (k|α) can be interpreted (via the Moyal–Weyl map)
as a localized rank-k baby Skyrmion, formed by k rank-one baby
Skyrmions sitting on top of each other. These configurations form a
complex one-parameter subfamily inside the complex k-parameter
family of BPS projectors for the noncommutative abelian sigma
model (at κ=0), where they saturate the bound

E0 = 8π TrH
{

Q a† Pa + Q aPa†} = 8π TrH
{

P + 2Q aPa†}
= 8πk + 16π TrH|Q aP |2 � 8πk. (2.12)

No such bound was known for E1, but the full energy of P (k|α) was
easily computed [8],

E
[

P (k|α)
] = 8π

(
k + 4

κ2

θ
k2

)
, (2.13)

and is independent of α. The ensuing inequality

E
[

P (k|α)
]
� E

[
P (1|α1)

] + E
[

P (1|α2)
] + · · · + E

[
P (1|αk)

]
= kE

[
P (1)

]
(2.14)

signals an instability of the localized rank-k baby Skyrmion against
decay into its constituents, a collection of k well-separated rank-
one baby Skyrmions. Indeed, a repulsive force between two
rank-one baby Skyrmions was found in [8]. General multi-center
BPS solitons of the κ = 0 sigma model do not solve the baby
Skyrme equation of motion, but approach a classical solution for
near-infinite mutual separation. This observation suggests a BPS
bound also for the Skyrme term,

E1 � 32πk. (2.15)

We will establish this bound in the following section.

3. BPS bound for the Skyrme term

It is well known that, inside the full group of U(H), one can
connect any Grassmannian solution to the vacuum via

g(s) = ei(π−s)P = 1 − (
1+e−is)P

with P † = P = P 2 and s ∈ [0,π ], (3.1)

which monotonically decreases the energy from that of g(0) =
1 − 2P to the zero value of the vacuum g(π) = 1 [8]. Therefore,

3 Actually, one can show that any diagonal projector solves the baby Skyrme
equation of motion.
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noncommutative baby Skyrmions can be stable only in the Grass-
mannian models. Moreover, in Grk , only configurations of k well-
separated rank-one baby Skyrmions have a chance to be stable, as
we argued above.

To prove this assertion, we rewrite the energy functional as

E = 8π TrH

{
|F |2 + |G|2

+ 2
κ2

θ

(
F F † − G†G

)2 + 2
κ2

θ

(
F † F − GG†)2

}
(3.2)

with the abbreviations

F = PaQ and G = Q aP ⇒
F † = Q a† P and G† = Pa† Q . (3.3)

The positivity of this expression is obvious, but improving the
lower bound requires using the Heisenberg algebra (2.3) and the
topological charge formula [10]

TrH
{

F † F − GG†} = TrH
{

F F † − G†G
}

= TrH
{

Paa† − Pa†a
} = k. (3.4)

Note that all four operators

F F †, F † F , GG† and G†G (3.5)

are hermitian and non-negative definite with a rank at most equal
to k. Therefore, the spectral theorem guarantees that both differ-
ences F F † − G†G and F † F − GG† have, in appropriate orthonormal
bases, the form

diag(λ1, λ2, . . . , λ�,−μ1,−μ2, . . . ,−μm,0,0, . . .)

with
�∑

i=1

λi −
m∑

j=1

μ j = k, (3.6)

where λi,μ j > 0 and � + m � 2k. It may happen that m = 0 (no
negative eigenvalues), but always � � 1 (since the trace is positive).
We claim that � � k. Indeed, in the first case,

im
(

F F † − G†G
) ⊆ im P ⇒ rk

(
F F † − G†G

)
� k, (3.7)

so that the stronger condition � + m � k holds. In the second case,

im
(

F † F − GG†) ⊆ imQ , (3.8)

and F † F − GG† is obviously non-positive definite on ker F . But
ker F is the orthogonal complement to im F † and, therefore, has
codimension at most equal to k. In case � > k, it would have a
non-zero intersection with the �-dimensional linear span of all
eigenvectors of F † F − GG† corresponding to the positive eigenval-
ues λ1, λ2, . . . , λ� . The resulting contradiction shows that � � k in
the second case as well.

To prove our inequality (2.15), we have to estimate the trace of
the square of the two difference operators, which in each case is
given by
∑

i

λ2
i +

∑
j

μ2
j subject to

∑
i

λi −
∑

j

μ j = k and λi,μ j > 0. (3.9)

Implementing the first subsidiary condition via Lagrange multi-
pliers in the variational problem, one sees that the existence of
extrema is in contradiction with the positivity of the μ j . There-
fore, a minimum is attained for any � � k but only for m = 0 (no
negative eigenvalues) and at

λ1 = λ2 = · · · = λ� = k

�
⇒

∑
i

λ2
i � �

(
k

�

)2

� k. (3.10)

This bound is saturated only for � = k, i.e. when there are precisely
k eigenvalues of magnitude one. We have thus shown that

TrH
{(

F F † − G†G
)2} � k and TrH

{(
F † F − GG†)2} � k, (3.11)

and (2.15) follows. The complete bound in Grk then reads

E � 8πk

(
1 + 4

κ2

θ

)
. (3.12)

This confirms the exclusive stability of the noncommutative
abelian rank-one baby Skyrmion and widely separated collections
of them,

P (k|α1,α2,...,αk) =
k∑

i, j=1

|αi〉
(〈α.|α.〉

)−1
i j 〈α j|

for αi ∈C and |αi−α j| → ∞
≈

∑
i

e−|αi |2 |αi〉〈αi |, (3.13)

employing k coherent states defined by |αi〉 = eαia† |0〉 and the ma-
trix of their overlaps 〈αi |α j〉. These are the only configurations
saturating the BPS bound (3.12).

The rank-one case Gr1 is critical, so let us give it a different
look. Any rank-one hermitian projector is determined by a state
vector |ψ〉 ∈H,

P = |ψ〉〈ψ | with 〈ψ |ψ〉 = 1. (3.14)

After some algebra, the energy functional in Gr1 takes the follow-
ing form,

E = 8π
{〈

aa†〉 + 〈
a†a

〉} + 32π
κ2

θ

{
1 + 〈

aa†〉〈a†a
〉 − 〈aa〉〈a†a†〉}

= 8π
{〈

x2〉 + 〈
p2〉}

+ 32π
κ2

θ

{
3

4
+ 〈

x2〉〈p2〉 − 1

4
〈xp+px〉

}
, (3.15)

with the connected expectation values

〈Y 〉 = 〈ψ |Y |ψ〉 and 〈Y Z〉 = 〈ψ |Y Z |ψ〉 − 〈ψ |Y |ψ〉〈ψ |Z |ψ〉.
(3.16)

In the second and third lines of (3.15), we expressed the rais-
ing and lowering operators through the hermitian combinations x
and p (quantum mechanical position and momentum),

a = 1√
2
(x + ip) and a† = 1√

2
(x − ip) ⇒ [x, p] = i1.

(3.17)

The Robertson uncertainty relation [14] of elementary quantum
mechanics tells us that

〈
x2〉〈p2〉 �

∣∣∣∣ 1 〈[x, p]〉
∣∣∣∣
2

= 1 ⇒ 〈
x2〉 + 〈

p2〉 � 1, (3.18)

2i 4



306 A. Domrin et al. / Physics Letters B 727 (2013) 303–307
which recovers the familiar bound (2.12) for E0. To estimate E1,
we need the (stronger) Schrödinger uncertainty relation [15],4

〈
x2〉〈p2〉 �

∣∣∣∣1

2

〈{x, p}〉
∣∣∣∣
2

+
∣∣∣∣ 1

2i

〈[x, p]〉
∣∣∣∣
2

⇒ 〈
x2〉〈p2〉 − 1

4
〈xp+px〉 � 1

4
, (3.19)

which bounds the second curly bracket on each line of (3.15) by 1
and thus yields E1 � 32 κ2

θ
, as anticipated. Mathematically, it is

nothing but the Cauchy–Schwarz inequality at work.

4. Second-order perturbation around baby Skyrmions

It is instructive to study the energy functional in the neigh-
borhood of a classical solution g . In order to remain inside the
Grassmannian, where g† = g = 1 − 2P , we set up a multiplicative
perturbation expansion,

g(ε) = geφ with φ† = −φ, {φ, g} = 0 and φ = O (ε), (4.1)

which is ‘odd’ with respect to P in the sense that

Pφ = φQ and φP = Q φ ⇔ φ = Pφ + φP . (4.2)

To second order in the perturbation, we compute

P (ε) = P − 1

2
(1−2P )

(
φ + 1

2
φ2 + O

(
ε3))

= P + 1

2
[P , φ] + 1

8

[[P , φ], φ] + O
(
ε3) (4.3)

and introduce the abbreviations

A = Az = g
[
a†, g

]
, Ā = Az̄ = g[a, g],

B = [
a†+A, φ

]
, B̄ = [a+ Ā, φ]. (4.4)

The equation of motion takes the form

[a, C] + [
a†, C̄

] = 0 with

C = A − κ2

θ

[
A, [A, Ā]] and C̄ = Ā − κ2

θ

[
Ā, [ Ā, A]]. (4.5)

After a straightforward but lengthy calculation, the energy func-
tional inside Grk , expanded to second order in ε around a classical
projector P subject to (4.5), can be simplified to

E
[

P (ε)
] = E[P ] + π TrH

{
2 B B̄ − [C, φ]B̄ − [C̄ , φ]B

}

+ 2π
κ2

θ
TrH{2B Ā A B̄ + 2B̄ A ĀB − B Ā ĀB − B̄ A AB̄

− B A Ā B̄ − B̄ Ā AB + B ĀB Ā + B̄ A B̄ A − B Ā B̄ A

− B AB̄ Ā} + O
(
ε3). (4.6)

Note that B and B̄ contain φ and are thus of O (ε), and there is a
hidden κ dependence in C and C̄ .

Let us evaluate this expression for the unique (up to translation)
rank-one baby Skyrmion,

P (1) = |0〉〈0| ⇒ A = −2|1〉〈0| and C =
(

1+8
κ2

θ

)
A,

(4.7)

and the most general perturbation inside Gr1,

4 We are grateful to Reinhard F. Werner for the hint.
φ =
∑∞

n=1

{
φn|0〉〈n| − φ∗

n |n〉〈0|} with φn ∈C. (4.8)

One finds that

B = −
∞∑

n=1

{
φn|1〉〈n| + √

nφn|0〉〈n−1|

− 2δn1φ1|0〉〈0| + √
n+1φ∗

n |n+1〉〈0|} (4.9)

and

[C, φ] = −2

(
1+8

κ2

θ

) ∞∑
n=1

{
φn|1〉〈n| − δn1φ1|0〉〈0|} (4.10)

and finally

E
[

P (1)(ε)
] = 8π

(
1+4

κ2

θ

)
+ 8π |φ2|2

+ 4π

(
1+2

κ2

θ

) ∞∑
n=3

n|φn|2 + O
(
ε3). (4.11)

A φ1 perturbation corresponds to the translational mode and does
not cost any energy. The Skyrme term does not see the φ2 pertur-
bation either. Clearly, the bound (3.12) for k = 1 is respected.

One can go beyond perturbation theory by probing all basis di-
rections in Gr1 exactly,5

P (1)
n (ε) = ∣∣ψn(ε)

〉〈
ψn(ε)

∣∣ with∣∣ψn(ε)
〉 = cosε|0〉 + sinε|n〉 and ε ∈ [0,2π ]. (4.12)

Inserting these projector families into (3.15), we arrive at

E
[

P (1)
n (ε)

] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

8π(1+2 sin4 ε) + 32π κ2

θ
(1+2 sin6 ε)

for n = 1,

8π(1+4 sin2 ε) + 32π κ2

θ
(1+6 sin4 ε)

for n = 2,

8π(1+2n sin2 ε) + 32π κ2

θ
(1+n sin2 ε+n sin4 ε)

for n � 3.

(4.13)

To order ε2, this precisely reproduces the coefficients of |φn|2
in (4.11) after matching |φn|2 = 4ε2. Again, it is apparent that only
P (1)

n (0) = P (1) is stable. Beyond O (ε2), the flat valley traced by
P (1|α) = e−|α|2 |α〉〈α| deviates from the curves defined in (4.12).

We close with a list of open problems. It would be interest-
ing to work out the scattering of two rank-one baby Skyrmions in
the Moyal plane. It is also an open question whether there exist
abelian noncommutative baby Skyrmions not based on diagonal
projectors. Another promising task is to deform the full Skyrme
model (on R

1,3) and to construct noncommutative Skyrmions from
noncommutative instantons [16].
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D 81 (2010) 085007, arXiv:1002.0851 [hep-th].
[13] M. Klawunn, O. Lechtenfeld, S. Petersen, J. High Energy Phys. 0606 (2006) 028,

arXiv:hep-th/0604219.
[14] H.P. Robertson, Phys. Rev. 34 (1929) 163–164.
[15] E. Schrödinger, Zum Heisenbergschen Unschärfeprinzip, Sitz.ber. Preuss. Akad.

Wiss. Phys.-Math. Kl. 14 (1930) 296–303.
[16] M.F. Atiyah, N.S. Manton, Phys. Lett. B 222 (1989) 438–442;

T.A. Ioannidou, Nonlinearity 13 (2000) 1217–1225, arXiv:hep-th/0004174.

http://refhub.elsevier.com/S0370-2693(13)00816-2/bib53s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib414E57s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib4D6163s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib4D6163s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib4D6163s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib5A616Bs1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib5A616Bs1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6E63s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6E63s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6E63s2
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6E63s2
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6E63s3
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6E63s3
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6E63s4
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6C65706F3031s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6C65706F3031s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6C65706F3031s2
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6C65706F3031s2
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib73656E646169s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib73656E646169s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib73656E646169s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib696F6C65s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib696F6C65s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6D6965636Bs1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib646F6C657065s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib646F6C657065s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib67697061s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib67697061s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6164616Ds1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6164616Ds1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6B6C616C657065s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib6B6C616C657065s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib726F62s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib736368s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib736368s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib696E7374s1
http://refhub.elsevier.com/S0370-2693(13)00816-2/bib696E7374s2

	Exact BPS bound for noncommutative baby Skyrmions
	1 Introduction and summary
	2 The noncommutative abelian baby Skyrme model
	3 BPS bound for the Skyrme term
	4 Second-order perturbation around baby Skyrmions
	Acknowledgements
	References


