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Zusammenfassung

Zweiatomige Moleküle mit einem Alkali- und einem Erdalkaliatom werden derzeit un-
tersucht, um sie in späteren Experimenten zur Erforschung verschiedener physikalischer
Phänomene zu nutzen. Diese Arbeit beschreibt die Aufnahme und Interpretation des nah-
infraroten Spektrums eines Gases von LiSr-Molekülen. Die geringe reduzierte Masse von
LiSr bedingt eine vergleichsweise geringe Liniendichte im thermischen Emissionsspektrum.
Das thermische Emissionsspektrum wird ausführlich besprochen. Es zeigt deutliche

Vibrationsbanden, die aufgrund der Spin-Rotationskopplung zwei unterschiedliche Rotati-
onsspektren erkennen lassen. Weiterhin wird eine Methode zur schnellen Zuordnung von
Rotationsquantenzahlen vorgestellt, die durch die Verwendung von Laserstrahlung zur
gezielten Anregung der Moleküle ermöglicht wird.
Die Zusammenführung des thermischen Emissionsspektrums mit den Spektren verschie-

dener Laserexperimente erlaubt eine umfassende Beschreibung der Rotationsleitern der
niedrigsten Vibrationszustände v′′ = 0, 1, 2 und v′ = 0, 1 des (2)2Σ+–X(1)2Σ+-Systems. Im
(2)2Σ+-Zustand wurden mehrere starke Störungen gefunden, die einer Kopplung zwischen
den (2)2Σ+- und (1)2Π-Zuständen zugeschrieben werden. Ein Modell zur Beschreibung
dieses gekoppelten Systems wird entwickelt. Hiermit wird auch eine Beschreibung einiger
Vibrationsniveaus des (1)2Π- Zustandes erreicht.

Schlagworte: Optische Spektroskopie, Molekülspektrum, Alkali-Erdalkali-Moleküle

Abstract

Molecules consisting of an alkali and an alkaline earth atom are currently investigated
with the aim of using them in experiments to explore diverse physical phenomena. This
thesis is concerned with the observation and analysis of the infrared spectrum of LiSr in
the gas phase. The moderate reduced mass of LiSr implies a relatively low density of the
thermal emission lines. Individual transition lines can be discerned in the spectrum and
enable the tracing of rotational branches in the thermal emission spectrum.
An analysis of the thermal emission spectrum of LiSr is presented. The spectrum

displays clearly visible vibrational bands. Their line structure shows two distinguishable
rotational systems due to spin-rotation coupling. A method to readily find the assignment
of rotational quantum numbers by using laser radiation to excite the molecular sample at
different frequencies is demonstrated.
Using the thermal emission spectrum together with laser-induced fluorescence spectra

from different laser experiments allowed a thorough description of the rotational energy
ladders of the lowest vibrational states v′′ = 0, 1, 2 and v′ = 0, 1 of the (2)2Σ+–X(1)2Σ+

system. It was found that several large perturbations occur in the (2)2Σ+ state. These
perturbations are attributed to a coupling of the (2)2Σ+ to the (1)2Π and a model to
describe the coupled system is established here, which includes a description of a few
vibrational levels in the (1)2Π state.

Keywords: Optical Spectroscopy, molecular spectrum, alkali-alkaline earth-molecules
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Introduction

Physicists are currently utilizing diatomic molecules to investigate a vast range of physical
phenomena. Examples include characterizing collisions in the quantum regime [Yan+19],
measuring upper limits of the electron’s electric dipole moment [Cai+17] or exploring
dipole-dipole interactions in many-body systems [Yan+13]. Further proposals, for example
using molecular transitions for sensitive measurements of the proton-to-electron mass ratio
[DeM+08] or the fine structure constant [CFK09] have not yet been realized experimentally.
An extensive review of applications of molecules in various research topics is [Saf+18].
Many of these experiments were done with molecules consisting of two alkali metal atoms

at a low temperature and they have brought many insights about cold atomic or molecular
ensembles and how to manipulate them in the laboratory. Translating these principles to
different types of molecules would allow to realize other experimental schemes to explore
diverse subjects, like chemical processes at ultracold temperatures or the behaviour of
bosons, fermions or interacting dipoles arranged in lattice geometries [BRY17; GB17]. A
step in that direction is to work with molecules consisting of an alkali metal atom (group
IA of the periodic table) and an alkaline earth metal atom with one valence electron more
than an alkali metal atom (group IIA of the periodic table). This endows the molecule in
its ground state with a magnetic dipole moment in addition to their permanent electric
dipole moment [PHE16].
There are proposals for using such molecules to measure the proton-to-electron mass

ratio [Kaj+13; Kaj+14], which requires precise information of transition energies between
molecular states. To aquire this information, knowledge about the structure of these
diatomics, their quantum states and energy landscape is essential.
For various molecules in this class, ab-initio calculations have been published (e.g.

[PHE16]). They give a good approximation of the potential energy curves but are not
accurate enough to be used as basis for experimental work. Several molecules were also in-
vestigated experimentally. Examples include rovibronic spectroscopy of vaporous ensembles
(e.g. [DIn+94]), often in conjunction with laser-induced fluorescence spectroscopy (e.g.
[BM82]), photoionization spectroscopy (e.g. [BD97]), photoassociation spectroscopy (e.g.
[Nem+09]) or spectroscopy of the diatomics formed on helium nanodroplets (e.g. [Pot+15]).
A list of references for the ab-initio and experimental works is given in Appendix E.
A first step towards the characterization of alkali-alkaline earth molecules is to use

spectroscopic information to describe the molecular level structure. This information can
then be used to find an accurate model for the potential energy curves of their electronic
states. A description of the electronic, vibrational and rotational states of the molecule can
be derived from these curves. Understanding these states serves as a basis to investigate
the molecular hyperfine structure, which involves the nuclear spins. This information will
be needed for later applications like slowing [Tru+17b; Pet+18] and trapping [Tru+17a]
the molecules, cooling them with laser light [And+18; McC18] or transferring them into
their absolute ground state via stimulated Raman adiabatic passage [Vit+17].
Different spectroscopic methods allow to reveal different aspects of the molecular energy
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structure. For example, fluorescence spectroscopy can potentially reveal a wide vibrational
spectrum in one experimental run (see e.g. [Iva+11b]). Photoassociation spectroscopy
[SW99] probes the electronic potential curves, starting near the atomic asymptote, but
requires a high experimental effort to advance deeper into the potential well when compared
with thermal emission spectroscopy, which provides a broad spectrum of energy levels
near the potential bottom. All these methods can be combined to learn more about the
potential energy curves [Cia+18].
It can be expected from the ab-initio works that many of the alkali-alkaline earth

diatomics have reasonably strong transitions between their lowest electronic states in the
near-infrared region of the electromagnetic spectrum. The strongest transitions usually
take place between two 2Σ+ states (e.g. [Pot+17]). Investigating the rovibronica spectra
associated with these transitions allows insight into the rotational and vibrational energy
levels of these electronic states. Because many states and transitions are involved in
the formation of these spectra, it is challenging to work out the underlying molecular
configuration. Especially for molecules with larger reduced mass, the spectra would consist
of many overlapping lines, which are difficult to disentangle.
The present work is concerned with the interpretation of the near-infrared spectrum of

LiSr. Due to its relatively small reduced mass, a comparatively well-resolved spectrum
can be expected. By investigating this molecule, different analytical and experimental
methods can be applied and tested with regards to their feasibility in the study of the
more dense spectra of other group IA-group IIA diatomics. There exist several ab-initio
calculations concerned with LiSr [GAD10; Gop+11; Gop+13; PHE16; Pot+17; Zei+18]
and two experimental publications [Ste16; Sch+17b] concerned with its near-infrared
spectrum. [Sch+17b] presents methods and results that are also found in this thesis but
were expanded upon since then. A comparison of the spectroscopic constants derived here
and those from these published works will be given on page 104 near the end of this work.
This thesis is structured as follows: First, an overview of the basic structure of the

spectrum of a diatomic molecule will be given. The experimental setup used to investigate
the LiSr spectrum will be described afterwards. Then the approach to find transition
frequencies will be outlined, followed by a discussion of the features of the observed
LiSr spectrum. Next, the process to find molecular parameters that model the observed
spectrum with the Dunham expansion will be explained. In the course of this examination
it will be seen that the spectrum cannot be sufficiently explained as a simple rovibronic
spectrum, but that it has systematic perturbations. In order to explain these, the following
chapters are concerned with the discussion of the coupling between two electronic states
and the application of a coupling model to the spectrum. The last two chapters summarize
the findings, discuss their limits and examine possible ways to overcome them.

aUsually, the word ‘rovibronic’ refers to rotational, vibrational and electronic transitions or spectra. The combined
vibrational and electronic transitions or spectra are called ‘vibronic’, whereas ‘rovibrational’ refers to rotational
and vibrational transitions or spectra.
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Chapter 1

Spectra of Diatomic Molecules

In order to infer a molecule’s structure from its corresponding electromagnetic spectrum,
the principles governing the emission or absorption of electromagnetic radiation by a
molecule have to be applied. This chapter will briefly summarize the important concepts
used to describe the rovibrational states of a diatomic molecule and the transitions between
them. For a more didactic or in-depth encounter with the contents of this chapter, please
refer to the available literature, e.g. the textbooks [Her50; BC03; TS55; LF86].

Energy units

Throughout this thesis, frequencies and molecular constants will be given in units of
wavenumbers [cm−1]. They can be converted to SI units with Planck’s constant h and the
speed of light in vacuum c:

1 cm−1=̂c [cm/s]
1 cm ≈ 30 GHz (1.0.1a)

or

1 cm−1=̂h[J s] · c [cm/s]
1 cm ≈ 124 µeV, (1.0.1b)

depending on the context. This first chapter will explicitly mention the factor of hc in
front of constants that will later be written without it.

1.1 Energies of Molecular Quantum States

For the interpretation of the spectra, the molecules can adequately be described in the
Born-Oppenheimer approximation, which separates the nuclear motion and the electronic
motion, so that the kinetic energies of the nuclei and electrons can simply be added. The
state of a molecule is described by a wave function |ψ〉, which is defined by different
quantum numbers. In this thesis, the bases of Hund’s coupling cases (a) and (b) are used
for the molecular states with appropriate quantum numbers. In these bases, the wave
function |ψ〉 is expressed as

|ψ〉 = |Λ,Σ, S,Ω, J, v〉 for Hund’s case (a)
and

|ψ〉 =
∣∣Λ, (N,S)J, v

〉
for Hund’s case (b).
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Figure 1.1: Potential energy curves of LiSr doublet states from [Gop+13] (solid) and [Pot+17]
(dashed). 2Σ+ curves are drawn in black, 2Π curves in red and the only available 2∆ curve in
green. The asymptotic atomic levels are given on the right. The fact that the first excited states
of Li and Sr have a similar energy leads to many molecular states in LiSr that are close in energy.
See the text for an explanation of the term symbols.

Λ is the quantum number for the projection of the electronic angular momentum ~L on
the internuclear axisa. ~S is the electronic spin, with associated quantum number S and
with its projection on the internuclear axis given by Σ. In Hund’s case (b), ~N is the total
angular momentum without spin and ~J = ~N + ~S is the total angular momentum without
the nuclear spins. In Hund’s case (a), Ω = Λ + Σ corresponds to the projection of ~J on
the internuclear axis. With these quantum numbers, the term symbols 2S+1Λ±Ω are used to
label electronic states. The quantum number v gives the vibrational state of the nuclear
motion. Chapter 5 will show that the spin angular momentum is coupled to the molecular
rotation and the observed spectrum can be described more intuitively in Hund’s coupling
case (b). For this reason, Hund’s coupling case (b) is used in this chapter to discuss the
properties of the molecular states.

1.1.1 Electronic Energy

The electronic energy depends on the internuclear distance R. The minimum of the
potential energy curve of an electronic state, hc Te, is at the equilibrium distance Re for
that state. Electronic states with the same projection quantum number Λ and multiplicity

aStates with Λ = 0 are labeled Σ states, states with Λ = 1 are called Π states, then come ∆,Φ,Γ,H...
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(2S+ 1) are numbered according to the energy of the state. The absolute electronic ground
state will be further marked by X.
Figure 1.1 displays potential energy curves of several LiSr doublet states from two

ab-initio works [Gop+13; Pot+17]. The spectrum in question features transitions to
the electronic ground state X(1)2Σ+, so only transitions from Σ or Π states need to be
considered, as explained in Section 1.3 below. Chapter 4 will discuss what LiSr spectra
can be expected from these potential energy curves.

1.1.2 Vibrational Energy

The nuclei vibrate in the potential given by the electronic potential energy curves. Near
the bottom of the potential well, the vibration can be approximated by the harmonic
oscillator. The vibrational energy is then

Evib = hνe(v + 1/2) = ~c ωe(v + 1/2), (1.1.1)

with ωe = νe/c. The equidistant energy spacing is ~cωe. Because of the anharmonic shape
of the electronic potential, vibrational levels with higher v grow closer in energy. This can
be described by introducing terms proportional to (v + 1/2)n with n ≥ 2 and appropriate
sign.

1.1.3 Rotational Energy

In first order, a diatomic molecule can be treated as a quantum mechanical rigid rotator
with the energy

Erot = ~2

2µR2
e

J(J + 1) = hcBe J(J + 1). (1.1.2)

The constant depending on the internuclear equilibrium distance Re, and the reduced mass
µ, is known as the rotational constant Be. Due to centrifugal effects, a rotating molecule’s
internuclear distance grows with the rotational quantum number J . This leads to a slow
decrease in the rotational energy for higher J , which can be modelled with further terms
proportional to [J(J + 1)]n, where n ≥ 2.
For Σ states, Hund’s case (b) is an appropriate choice. Here, the rotation of the molecule

is given by the quantum number N and the following chapters will therefore use N instead
of J for the rotational quantum numbers and energy expressions. Generally, the rotational
energy in Hund’s case (b) scales with N(N + 1)− Λ2, but this thesis is mainly concerned
with states for which Λ = 0. Since Hund’s case (a) uses J as the rotational quantum
number, the value for the rotational constant will be different in order to parametrize the
same observed rotational energy levels.
In a vibrating molecule, the expectation value of R can differ from Re. Therefore, the

rotational constant Bv has to be used for a rotating molecule with vibrational quantum
number v.
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1.1.4 Spin-Rotation Coupling

Because of the unpaired electron, the ground state of LiSr can be in two possible spin
states. Due to the coupling of the spin to the rotation of the nuclei, these states are
not degenerate in energy and their energy difference grows with the rotational quantum
number.
In Hund’s case (b), the spin is decoupled from the nuclear rotation and this energy

can simply be added to the rovibrational energy. Following convention, the states with
J = N + 1/2 are labeled with F1 and the states with J = N − 1/2 are labeled with
F2. It will become important in Chapter 6 that, in the system under consideration,
they correspond to the rotation-independent e/f symmetry (see Figure 1.2). This label
describes a symmetry of +/−(−1)J−1/2 for an uneven number of electrons and is discussed
alongside other types of symmetry in [LF86, Section 2.2.2].
The energies of these states in Hund’s case (b) depend on the spin-rotation constant γ

and the nuclear rotation:

EF1(N) = +hc · γ/2 ·N for F1 (1.1.3a)
EF2(N) = −hc · γ/2 · (N + 1) for F2 (1.1.3b)

1.2 Dunham Expansion

Section 1.1.3 and Section 1.1.2 mentioned that the rotational and vibrational energies
both change in a nonlinear manner when reaching higher quantum numbers. Also, the
rotational and vibrational motions affect each other. These phenomena can be described
by the Dunham expansion [TS55, pp. 9-11] that models the rovibrational energies with

E(v,N) = hc
∑
m,n

Ymn[v + 1/2]m[N(N + 1)]n. (1.2.1)

The factors Ymn are called Dunham coefficients. They can in principle be added to an
infinite series describing the energy levels. The first terms approximate the molecular
constants at the equilibrium distance Re,

Y00 ≈ Te, (1.2.2a)
Y10 ≈ ωe, (1.2.2b)
Y01 ≈ Be (1.2.2c)

and the Kratzer relation

Y02 ≈ −4 (Y01)3

(Y10)2 . (1.2.2d)

Dunham coefficients for different isotopologues of molecules with no electric charge and
reduced masses µA and µB can be approximated via the relation

Y(A)
mn = Y(B)

mn

µ(A)

µ(B)

−
m+2n

2

. (1.2.3)
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The Dunham series does not consider the spin-rotation coupling. Since the spin-rotation
coupling constant γ can also depend on the rovibrational state [Ste+13], it will be expanded
in a similar fashion:

γ(v,N) =
∑
m,n

γmn[v + 1/2]m[N(N + 1)]n (1.2.4)

Contrary to the form of the Dunham series, this expansion has no physical justification
and its form is merely to remember the effect of a parameter by association with the
Dunham series. Further mentions of the Dunham model in this thesis are meant to include
this representation of the spin-rotation coupling unless stated otherwise.
The total rovibronic energy and the energy of spin-rotation coupling for a state |v,N, S〉

is given by equations (1.1.3), (1.2.1) and (1.2.4):

EF1(v,N) = hc
∑
m,n

(
Ymn + γmn

2 ·N
)
[v + 1/2]m[N(N + 1)]n for F1 (1.2.5a)

EF2(v,N) = hc
∑
m,n

(
Ymn −

γmn
2 · (N + 1)

)
[v + 1/2]m[N(N + 1)]n for F2 (1.2.5b)

The transition frequencies are obtained by subtracting the energy of the lower state from
the energy of the higher state.

1.3 Rovibronic Transitions

The observed electromagnetic spectrum represents transitions between two rovibrational
molecular statesb |ψ′〉 and |ψ′′〉. The stronger a transition, the higher is the observed
intensity of the corresponding transition line in an emission spectrum. When the Born-
Oppenheimer approximation is valid, the molecular states can be expressed as the product

|ψ〉 = |v〉 · |Λ, (NS)J〉 . (1.3.1)

Transitions between rotational states are subject to selection rules, which means that the
transition strength is zero if the rotational quantum numbers do not change by certain
amounts during the transition.

1.3.1 Vibrational Transitions

Transitions between vibrational states of different electronic states have no selection rules.
In principle, all vibrational transitions are allowed. The relative intensity of a transition
between a vibrational state in the electronic ground state, v′′, and a vibrational state in
an electronically excited state, v′, is approximated by the Franck-Condon factor (FCF),
which is calculated by squaring the overlap integral of the vibrational wave functions:

FCF(v′ → v′′) =
∣∣∣∣∫ ∞0 ψ∗(v′)ψ(v′′) dR

∣∣∣∣2 =
∣∣∣∣〈v′∣∣∣v′′〉∣∣∣∣2 (1.3.2)

bWhen discussing molecular spectroscopy, |ψ′〉 marks the state with higher energy and |ψ′′〉 the state lower in
energy. The frequencies and transition strengths are the same in both directions.
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1.3.2 Rotational Transitions

Within the scope of in the dipole approximation, transitions that change angular momenta
can be described by the dipole matrix element between two statesc

∣∣Λ′, (N ′, S ′)J ′,M ′〉
and

∣∣Λ′′, (N ′′, S ′′)J ′′,M ′′〉 for the interaction of a dipole moment ~µ with the electric field
~E (the electric part of an electromagnetic wave, i.e. light). This dipole matrix element
gives the strength of the transition. It is zero for certain combinations of quantum
numbers in the two involved states. In these cases, a dipole transition cannot take place.
Investigating the dipole matrix element mathematically yields selection rules that describe
which transitions are possible and which are forbidden. For the experimental observations
described in Chapter 2, the assumption can be made that only linearly polarized light
with the component E0 is observed. The expression for the dipole moment in this case is
discussed in more detail in Appendix A, where equation (A.9) gives a transition strength
of
∣∣∣∣ 〈Λ′, (N ′, S ′)J ′,M ′

∣∣∣µ0 · E0
∣∣∣Λ′′, (N ′′, S ′′)J ′′,M ′′

〉∣∣∣∣2 ∝
1∑

m=−1

δS′S′′ × (2J ′ + 1)(2J ′′ + 1)(2N ′ + 1)(2N ′′ + 1)×
 J ′ 1 J ′′

−M ′ 0 M ′′


2 N ′ 1 N ′′

−Λ′ m Λ′′


2N

′ J ′ S ′ = 1/2

J ′′ N ′′ 1


2 , (1.3.3)

written with Wigner 3-j and 6-j symbols. Here, M is the projection of J onto an axis in a
laboratory frame. Appendix A further examines the properties of these symbols and what
selection rules can be derived from equation (1.3.3). They are given in equations (A.11).
For the following chapters, these selection rules are important:

Electronic Transitions

The only allowed transitions between electronic states are those with

Λ→ Λ,Λ± 1. (1.3.4)

Since the electronic ground state is X(1)2Σ+, only transitions to Σ or Π states are allowed.

Spin

The spin is not affected by ~µ, therefore in all transitions |ψ′〉 → |ψ′′〉, the spin S or its
projection onto the internuclear axis Sz do not change:

S → S (1.3.5a)
Sz → Sz (1.3.5b)

cNote that these states have only angular momentum quantum numbers and are independent of the radial part
of their wave functions.



16 Chapter 1: Spectra of Diatomic Molecules

Thus, the observed transitions will not involve changing the spin. Appendix A also explains
that F1/2 → F2/1 transitions are weaker for large N than F1/2 → F1/2 transitions. Since
the former type of transitions was never assigned in this work, all transitions will be
assumed to be only of the latter type. In this approximation, all selection rules N ′ → N ′′

imply also J ′ → J ′′ of the same form.

Rotational Transitions

For rotational states, only dipole transitions with

N → N, N ± 1 (1.3.6a)
except

N = 0 9 N = 0 (1.3.6b)

are allowed. In the case of an electronic Σ→ Σ transition, the only rotational transitions
with non-vanishing transition dipole moment are of the type

N → N ± 1. (1.3.7)

Figure 1.2 illustrates the rovibronic transitions between the first two 2Σ+ states.

1.4 Rovibronic Spectra

1.4.1 P and R Bands

All rotational transitions allowed by (1.3.7) together form a spectrum with two rotational
branches. The so-called P branch has transitions with N ′′ = N ′ + 1 and the R branch has
transitions with N ′′ = N ′ − 1. The different rotational constants of the two electronic
systems let these branches appear as a shaded band and can be characterized with the
Fortrat parabola [Her50, p. 171ff.], which describes the transition frequencies in terms of
the square of the rotational quantum numberd. The rotational transition frequencies f are
given by:

fF1
P = (B′e −B′′e )N ′2 + (B′e − 3B′′e )N ′ − 2B′′e +

(
γ′ − γ′′

2

)
N ′ − γ′′/2 (1.4.1a)

fF2
P = (B′e −B′′e )N ′2 + (B′e − 3B′′e )N ′ − 2B′′e −

(
γ′ − γ′′

2

)
N ′ + γ′ − γ′/2 (1.4.1b)

fF1
R = (B′e −B′′e )N ′2 + (B′e +B′′e )N ′ +

(
γ′ − γ′′

2

)
N ′ + γ′′/2 (1.4.1c)

fF2
R = (B′e −B′′e )N ′2 + (B′e +B′′e )N ′ −

(
γ′ − γ′′

2

)
N ′ − γ′/2 (1.4.1d)

dSee Figure 4.2 for an illustration.
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Figure 1.2: Rovibronic transitions between the first two 2Σ+ states in Hund’s cases (a) and
(b). Red energy levels and arrows represent the F1 system and blue ones depict F2. Transitions
between the spin system are drawn grey, they are not relevant in this thesis. Since transitions can
take place between arbitrary vibrational states, the (2)2Σ+ states can decay to several vibrational
levels. The energy spacing of the vibrational levels with v′′ and v′′ + 1 in the X(1)2Σ+ state is
usually much larger than the rotational energy spacing. Note that the parity for F1 and F2 is
always e or f , respectively.

The distance ∆f = f(N ′)− f(N ′ − 1) grows as:

∆fF1
P = 2 (B′e −B′′e )N ′ − 2B′′e +

(
γ′ − γ′′

2

)
(1.4.2a)

∆fF2
P = 2 (B′e −B′′e )N ′ − 2B′′e −

(
γ′ − γ′′

2

)
(1.4.2b)

∆fF1
R = 2 (B′e −B′′e )N ′ + 2B′′e +

(
γ′ − γ′′

2

)
(1.4.2c)

∆fF2
R = 2 (B′e −B′′e )N ′ + 2B′′e −

(
γ′ − γ′′

2

)
(1.4.2d)

The absolute value of the distance ∆fRP between the R and P lines belonging to the same
upper rotational state |N ′〉 is (neglecting the centrifugal corrections):

∆fF1
RP = fF1

R (N ′)− fF1
P (N ′) = 2B′′e (2N ′ + 1) + γ′′ (1.4.3a)

∆fF2
RP = fF2

R (N ′)− fF2
P (N ′) = 2B′′e (2N ′ + 1) + γ′′ − γ′ (1.4.3b)
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As mentioned in Section 1.3, the P and R bands occur separately for the F1 and F2 systems.
The spin-rotation coupling is strong enough to deform the rotational spectrum, so that
four bands (F1 P, F1 R, F2 P, F2 R) can be resolved. The effect of the spin-rotation
coupling on ∆f or ∆fRP is not resolvable with the methods employed in this work, though.
Since γ � Be, the terms with the spin-rotation coupling constants in equations (1.4.2) and
equation (1.4.4) are negligible. The frequency difference between the R and P lines is then

∆fRP = 2B′′e (2N ′ + 1). (1.4.4)

1.4.2 Vibrational Bands

The energy spacing of the vibrational transitions is usually much larger than the spacing
of rotational transitions. Because the energy levels and transition energies of vibrational
and rotational states can simply be added, a spectrum given by equations (1.4.1) is
found for every vibrational transition v′ → v′′. This structure is called the (v′–v′′) band.
For low vibrational quantum numbers, the spacing of these bands is very regular but,
depending on the vibrational frequencies of the two electronic states, several bands can
be interwoven. The intensity of the rotational spectrum of a band is scaled with the
associated Franck-Condon factore.

1.4.3 Intensity Distribution of Rotational Spectra

If a molecular sample is in thermal equilibrium, then its emission spectrum depends on the
absorption coefficient α(f) according to Kirchhoff’s radiation law. Absorption or emission
of light can only take place for frequencies that correspond to the energy difference of an
intramolecular transition. Apart from the rotational factor (1.3.3) and Franck-Condon
factor (1.3.2), the intensity of a rotational emission line depends on the population of the
samples’ energy levels. For the thermal emission spectrum, the population distribution
can be approximated by

(2N ′′ + 1) · exp
(
−hcB

′′
vN
′′(N ′′ + 1)
kBT

)
(1.4.5)

for a given v′′. In other words, it is proportional to the number of energetically degenerate
energy levels of the rigid rotor multiplied with the Boltzmann distribution for the ground
state. Equation (1.4.5) ignores here the slightly different degeneracy for P and R transitions.
The overall intensity distribution of the rotational branches of a vibrational band is

given by the product of equations (1.3.2), (1.3.3) and (1.4.5). The spectrum can have
overlapping lines, for which the intensity is added at their common frequencies.

eThe Franck-Condon factor also depends on N in principle, which further influences the intensity distribution of
the band.
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Chapter 2

Experimental Setup

This chapter will describe the steps taken to acquire the infrared spectrum of LiSr. Two
types of spectra were recorded. One is a broadband thermal emission spectrum that shows
transitions between states following a thermal population distribution. The other is a
spectrum of the fluorescence of one rovibronic state excited by a laser tuned to an observed
transition frequency. The latter type of spectrum will be called ‘LIF spectrum’ (laser
induced fluorescence) in this thesis. All spectra were recorded by a Fourier-transform
spectrometer (FTS). The general experimental setup for both kinds of spectra is the
same. Registering a spectrum without the laser beam produces a regular thermal emission
spectrum. With the laser running, a LIF spectrum is superimposed on the thermal emission
spectrum.

2.1 Heat Pipe

The molecules were prepared in a heat pipe, which is a widely-used experimental setup for
molecular spectroscopy (see e.g. [VC69; NBM80; Iva+11b; Szc+18]). The molecules are
inside a heat-resistant metal pipe within an oven. The pipe is made of 1.4841 steel, which
is suitable for temperatures up to 1150 ◦C. A sketch of the heat pipe and the oven is given
in the centre of Figure 2.1. The oven is heated with heating coils whose winding direction
alternates, so that their current should not produce a magnetic field. In practice, a small
field remains. A magnetic field measurement in the oven suggested that during periods
of strong heating, a magnetic field of less than 2 G builds up at the heat pipe position.
The current is weaker when the target temperature merely needs to be held constant, so
an even weaker magnetic field can be expected. The energetic splitting of atomic levels
of both 7Li and 88Sr in a magnetic field of a few gauss are small enough to be neglected
because the Doppler broadening of transition lines (see Section 3.1) has a much greater
effect on the line shape [Sta10; Hil+14].
There are uncoated windows of BK7 glass at both ends of the pipe through which

the sample can be observed. The heat pipe is filled with a buffer gas and its ends are
cooled with water. The buffer gas slows the molecules’ diffusion towards the cold ends by
shortening their mean free path. This prevents the molecular vapour to reach the colder
windows and covering them with a metal film. On the inside, the heat pipe is covered with
a steel mesh. With this mesh, metal that condenses in the cooler parts of the heat pipe
is moved back into the heated region by capillary force. Thereby, the losses of metal by
condensation are limited. Once a heat pipe is prepared with a LiSr sample, it can usually
be used for monthsa, with no changes in the emission spectrum.

aFor a regular measurement day, the oven is switched on in the morning and switched off in the evening. The
heat pipe experiences many heating-cooling cycles during its lifetime.
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The heat pipes usually have to be changed because the mesh is deformed and protrudes
into the hollow pipe. Imaging the mesh into the spectrometer adds a significant black body
spectrum to the observed molecular spectrum. The mesh position cannot be corrected
without potentially destroying the sample. The steel used for the mesh is not an especially
heat resistant alloy (1.4401 steel), so there may be room for improvement here, although
the lifetime of a LiSr heat pipe is more than satisfying.

2.2 Preparing the Molecular Sample

LiSr was prepared in the the gas phase by putting granules of lithium together with
chunks of strontium in the centre of the heat pipe and heating both metals to 915 ◦C. This
approach is uncomplicated in the case of LiSr. As [Iva+11b] suggests, the success of simply
heating the metals to produce the desired diatomic molecules depends on their chemical
properties. For other combinations of elements, more elaborate setups may be needed.
Especially require combinations of other metals need more specific temperature conditions.
The vapour pressures for alkali and alkaline earth metals differs usually by several orders
or magnitude (see Figure 2.2). For the observation of the spectrum of a alkali-alkaline
earth molecule in the heat pipe, different temperatures in different sections of the heat pipe
(see [Ger+17; Szc+18]) might be required. It should be noted that the vapour pressure of
lithium is similar to that of the alkaline earth metals (compare Figure 2.2), whereas the
vapour pressure of the other alkali metals is significantly higher. So lithium and strontium
can be expected to behave similarly during the heating process.
Before being filled with the metals, the heat pipe was baked out at temperatures up

to 1000 ◦C until the pressure stabilized around 2× 10−6 mbar to 3× 10−6 mbar. After it
had cooled down again, it was filled with argon to slightly over atmospheric pressure to
prevent air leaking into the heat pipe.
Strontium pieces were cut to size under a nitrogen atmosphere and transported to the

heat pipe. The transport vessel was open and connected to the nitrogen supply so that
the whole time nitrogen streamed around the sample, displacing air. The heat pipe was
opened on one side and the strontium deposited in its middle. After that, it was evacuated
again and heated to 250 ◦C. After reaching around 10−5 mbar, the procedure was repeated
to fill lithium in the middle of the heat pipe. Because of the low melting point of lithium,
the heat pipe was then evacuated at room temperature until a pressure of 2× 10−6 mbar
to 3× 10−6 mbar was again reached.
The heat pipe was filled with approximately 2 g lithium and 25 g strontium. These

amounts were chosen to approximate the stoichiometric ratio of lithium and strontium,
that is, about 7/88. In that way, every Li atom is supplied with a Sr atom to form LiSr,
but this very optimistic approach disregards all other possible reactions.
The creation of the molecules and the subsequent measurements took place under a

buffer gas atmosphere. Before heating the metallic sample, the heat pipe was filled with
argon until the pressure inside was 30 mbar and then the heat pipe was closed off from
the pump and vacuum tubes. During the initial phase of the experiment series, pressures
ranging from 10 mbar to 40 mbar were used until the value of 30 mbar was finally chosen.
Experience shows that the pressure range from 20 mbar to 30 mbar can be used without
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Figure 2.2: Vapour pressure curves for the first five alkali (solid lines) and alkaline earth metals
and ytterbium (dashed lines). The Antoine coefficients for these curves were taken from [Yaw06]
and can be found in Appendix D. A square represents an element’s melting point, which is
barely affected by the pressure. The diamonds and circles represent the minimum and maximum
measured temperatures as given in [Yaw06]. The vapour pressure curve of Li is similar to those
of most alkaline earth metals. The hatched area indicates the experimentally relevant decade.

noticeable drawback. Spectra obtained at pressures close to 80 mbar seemed to have lower
intensity. However, no systematic series of experiments with quantifiable results was ever
conducted to gauge the effect of the buffer gas pressure on the quality of the spectra.
During the handling of the alkali and alkaline earth metals, both argon and nitrogen

were used as inert shielding gas.

2.3 Obtaining Spectra

The centre of the heat pipe was imaged into the entrance of a Fourier-transform spectro-
meterb [Gri83], which is capable of recording a broad spectral range with high resolution.
The image is fed into a Michelson interferometer that has a photodetector in the

recombination arm. One mirror is moved along the optical axis and the detected intensity
is recorded against the position of that mirror. The Fourier transform of this interferogram
is the frequency spectrum of the light source. The resolution of the resulting spectrum

bIFS 120HR from Bruker with the OPUS 3.1 controlling software.
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is higher with increased travelling distance of the mirror. A sketch of the spectrometer
is given on the right side of Figure 2.1. The FTS was evacuated to ≤ 100 µbar when
registering spectra.
In principle, the spectroscopic method of Fourier transform allows to detect all frequencies

of the light source. In reality, the frequency range is restricted to that part of the spectrum,
which in the end creates an electric signal in the photodetector. The windows and mirrors
of the FTS are specified for 4800 cm−1 to 45000 cm−1 and the beamsplitter used for the LiSr
observationc is specified for 1000 cm−1 to 10000 cm−1. The detector is an near-infrared-
enhanced silicon avalanche photodioded which is sensitive from 500 nm to 1150 nm. The
aperture size inside the FTS was set to 1.7 mm and the internal preamplifier was set to
level 2.
Using two lenses and a slotted mirror (IL and SM in Figure 2.1), the hot molecular

gas should be imaged as efficiently as possible into the FTS entrance. Apart from the
molecular emission spectrum, this image contains also thermal radiation from the heat
pipe walls. This blackbody radiation would dominate the recorded infrared LiSr spectrum
if the optics are not aligned properly. The mirror was aligned to minimize the light from
the heat pipe walls that is incident on the detector, while maximizing the light from the
hot sample within the heat pipe. In the optimum configuration, the optical axis of the
image almost coincides with the heat pipe axis. For the alignment, the detector signal
can be directly monitorede. A approximate alignment can found with an unfilled heat
pipe: first, a light is shone through the heat pipe and the detector signal is maximized by
adjusting the mirror. In this configuration, the optical axis is close to the heat pipe axis.
Afterwards, the light is turned off and the oven is switched on in order to get blackbody
radiation from the heat pipe walls. The mirror is aligned again to minimize the detector
signal. In this configuration, mainly the (empty) volume of the heat pipe is imaged. When
this optimum position is reached and the mirror is tilted around any axis, a large increase
of the detector voltage can be observed, as more and more of the hot wall area is imaged.
The minimum of the incident light in dependence of the tilting angle is rather broad.
Therefore, the experiment does not suffer if the slotted mirror is tilted a bit.
After the initial phase of testing the conditions leading to a reproducible spectrum,

several spectra were recorded to improve the signal-to-noise ratio. Also, when the sample
was heated up to conduct laser experiments (see Section 2.4 below), an emission spectrum
was first recorded to see if the spectrum looks like expected. These spectra were all
averaged and the final spectrum is the average of 1080 scans. This should nominally
improve the signal-to-noise ratio by a factor of

√
1080 ≈ 33.

The relevant LiSr spectrum appears around 9400 cm−1 [Ste16] and will be described in
detail in Chapter 4. To reduce noise in the spectrum, opticalf and electrical filtersg were
applied to limit the observed spectral range from 8000 cm−1 to 12000 cm−1. The light from
the heat pipe went through about 80 cm of air before entering the FTS. For this reason,

cSi on CaF2 from Bruker
dSi APD S11519 from Hamamatsu, operated at −150 V for all measurements
eFor the alignment procedures, which take place on mesoscopic timescales, the time average of the signal is
sufficient. It can be accessed directly at the detector in the FTS.

fFGL 850S from Thorlabs, with ca. 90 % transmision from 850 nm to 1800 nm and < 1 % for < 790 nm
gThe transmitted spectral range is indicated as 7899 cm−1 to 12638 cm−1 in the OPUS software.
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it cannot be ruled out that the observed spectrum shows some absorptions by the airh,
although no distinct absorption patterns were observed in the LiSr spectra. Because of
this lack of observation, possible absorptions can be assumed to be at most as large as the
noise of the spectra and are therefore neglected in the analysis of the spectrum.
The thermal emission spectrum was recorded with a resolution of 0.03 cm−1, which is

close to the expected line width (see equation (3.1.1)).
For a well-imaged operational LiSr heat pipe, the (time-averaged) detector signal is

around 200 mV with the setup described here.

2.4 Laser Setup

In addition to recording and interpreting the thermal emission spectrum of LiSr, a laser
beam was used to record LIF spectra of the molecular sample. This was realized with a
diode laser with a broad tuning range of 950 nm to 1110 nm (≈ 9000 cm−1 to 10500 cm−1).
The laser setup can be found in the left part of Figure 2.1. Two similar laser systems were
used. Each has a different laser diode with anti-reflective coating in a Littrow configuration.
Their linewidth can be expected to be below 1 MHz ≈ 10−5 cm−1 [WH91]. The laser diode
that was mainly used for the excitations in the LiSr spectrumi, was placed in the laser
head DL1 in Figure 2.1. The other head was used for experiments in other spectral ranges
in the LiSr spectrum (see Section 4.1.1) or for the investigation of other molecules.
The red line in Figure 2.1 describes the path of the laser beams. Both lasers were set

up to have the same optical path after a flippable mirror (FLM). After the mirror, the
laser beam passes through an optical diode and is split in two beams by a λ/2 plate and a
polarizing beam splitter. One beam is coupled into a fiber, which leads to a wavelength
meterj, win an accuracy of 10 MHz. The wavemeter was calibrated each day with a
HeNe-laser stabilized within 10 kHz to a I2 hyperfine transition. Experience shows that
even with a running experiment (that is, with a hot oven on the experiment table) a
recalibration once a day suffices for the required precision of a few hundred megahertz to
be within the Doppler-broadening of the lines (see Section 3.1).
The main part of the beam is sent across the experimental table via various optical

components in order to be shone into the heat pipe opposite to the direction of observation.
This is necessary to reduce the intensity of unwanted laser light that is imaged on the
detector (see Section 2.5.1 below). Over the distance between the laser diode and the
heat pipe (close to 3 m), the beam widens significantly. Since the laser diode has an
elliptical beam profile, the beam diameters along the axes parallel and perpendicular to
the optical table grow differently. To counteract the widening of the beam diameters,
a telescope consisting of two lenses (TL, at the bottom of Figure 2.1) was used. These
refocus both axes of the elliptical laser beam near the slotted mirror to avoid cutoff and
prevent the beam from becoming too broad before it exits the heat pipe again. The lenses
are spherical, so their corrections to the laser beam are not identical for both axes, but a
good compromise to fit all requirements.

hAccording to the HITRANS database [Gor+17], there are H2O and CO2 bands in the observed spectral range.
iGC-1030-160-TO-200-B from innolume
jWS-U from HighFinesse
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After passing the telescope, the beam is directed via three mirrors through the slotted
mirror and the heat pipe. Two iris diaphragms, one on each end of the telescope, help
with the beam alignment. In order to observe laser-induced fluorescence, the laser beam
should fall within the volume of the molecular vapour which is imaged into the FTS.
The imaging of diffuse reflections, e.g. from the backside of the slotted mirror or the
heat pipe wall, should be avoided, as it leads to undesirable artefacts in the recorded
spectra (see Section 2.5.1). When the laser path seems suitable, the laser frequency is set
to a known molecular transition line in order to record a test spectrum. If the (known)
fluorescence lines in that spectrum are strong and there are no artefacts, the alignment of
the laser beam is accepted. An iris diaphragm is installed on each end of the heat pipe
to facilitate the reproduction of the fruitful beam path. They were set according to an
already well-aligned beam. After passing the heat pipe, the laser beam is absorbed in a
beam dump.
The optical elements between the beam splitter and the molecular samplek lead to a

loss of about 35 % of the laser intensity (see Table 2.1). Because broadband optics were
used, this loss rate is relatively constant for a wide range of laser wavelengths. For the
laser diode used for the analysis of LiSr, the power of the laser beam measured directly
before the heat pipe was around 100 mW.
The laser frequency is recorded by the wavemeter during the measurement and stabilized

via a software PI controller. This setup can stabilize the frequency to ±10 MHz (about
±0.00034 cm−1).

Table 2.1: Approximate losses of the used optical elements as given by the vendor. For mirrors,
this refers to the reflectivity, for everything else, to the transmittance. Compare Figure 2.1

optical element approximate loss [%] wavelength range [nm]

laser mirror (LM) 0.05 750–1150
beam splitter 2–3 620–1050
λ/2 plate 2 690–1200
telescope lens (TL) 8 300–1800
beam mirror (BM) 3 450–10000
slotted mirror (SM) 3 450–10000
heat pipe window 8 300–1800
imaging lens (IL) 8 300–1800

2.5 Obtaining LIF spectra

Section 4.4 will explain the merits of laser-induced excitations in a molecule. To obtain
the LIF spectrum for a line known from the thermal emission spectrum, the laser was
tuned to the frequency of the line and the whole spectrum was recorded like the emission
spectrum. The laser light greatly increases the population of the target transition’s upper
state, whereas the other states remain populated according to the Boltzmann distribution.
Thus, all transitions from that excited state are enhanced and their corresponding spectral

k2× LM, 2× TL, 3× BM, 1× heat pipe window, see Table 2.1
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9375 9380 9385 9390 9395 9400 9405 9410 9415
frequency [cm−1]

Figure 2.3: The spectrum of the thermal emission of LiSr with superimposed LIF spectra. The
red LIF spectrum has many strong artefacts. The blue LIF spectrum, recorded at the same
laser frequency, shows no noticeable artefacts. The thermal emission spectrum with a higher
resolution is shown in black for comparison. Some of the artefacts can easily be mistaken for
fluorescence lines.

lines stand out against the thermal emission spectrum. Comparing such a LIF spectrum
with the thermal emission spectrum reveals all transition lines associated with the same
upper state.
To economize the measuring time, the LIF spectra were recorded with a resolution of
0.05 cm−1. This resolution is lower than that used for the thermal emission spectrum but
it is sufficient to relate an laser-induced fluorescence line to an emission line recorded
with higher resolution. Chapter 3 will discuss the influence of the resolution as well as
the expected accuracy of the recorded spectra. Typically, 10 scans were averaged for the
LIF spectra. Their noise amplitudes are 8 to 10 times higher than that of the averaged
thermal emission spectrum, which is in line with the estimation on page 23.

2.5.1 Artefacts

The narrow spectrum and relatively high intensity of stray light from the laser can lead
to artefacts in the obtained spectrum, as illustrated in Figure 2.3. Their position in the
spectrum depends on the laser frequency and their intensity as seen by the detector. They
resemble fluorescence lines and thus make it arduous to gain useful information from the
LIF spectra. To verify if an observed line in the LIF spectrum is indeed a fluorescence
line, the laser can be tuned to the frequency of the possible artefact in order to record
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a complementary LIF spectrum. When the line is indeed an artefact, the line at the
original laser frequency shows no laser-induced fluorescence. With a large number of
artefacts, this scheme would be very time-consuming. To reduce the artefacts, the amount
of laser light scattered on the mirror, heat pipe or optical elements that are imaged on
the photodetector needs to be minimized. To achieve this, the effect of the laser on
the time-averaged photovoltage can be monitored when aligning the laser beam through
the heat pipe. For a well-aligned beam, it is in the order of 5 % to 15 % of the voltage
corresponding to the hot gas in the heat pipe without a laser beam.
Additionally, a apodization function that suppresses the artefacts and makes their form

more distinguishable from proper fluorescence lines was used for the Fourier transforml.
For consistency, this apodization function was also used for the emission spectrum. The
IFS 120 HR manual states that with this function, a peak is broadened to 1.52× resolution,
which would with a resolution of 0.03 cm−1 lead to about twice the value of the Doppler
width calculated in equation (3.1.1). Chapter 3 will demonstrate that the actual measured
line widths in the emission spectrum are indeed close to the expected Doppler width, so
that the apodization function does not affect the measurements too strongly.

lnamed ‘Blackman-Harris 4-term’ in the OPUS software
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Chapter 3

Determining Peak Frequencies

The thermal emission spectrum (as seen in Figure 4.1) is composed of numerous transition
lines and the continuous blackbody radiation of the heat pipe. The registered lines are
deformed according to the instrument function of the FTS. The lines themselves can
overlap with other lines that are close in frequency. The most interesting information
gathered from the spectrum is the transition frequencies of the emission lines. This chapter
will explain how the frequencies were extracted from the recorded spectra using derivative
spectroscopy.

3.1 Line Characteristics

All experiments were done with molecules in a hot vapour (see Chapter 2). The transition
lines in the spectrum at around f = 9400 cm−1 have therefore a Doppler-broadened
Gaussian shape with linewidth [Dem88, p. 84, equation (3.30d)]

σ = (f0 = (9400± 300) cm−1)× 7.16× 10−7

√
T = 1188.15 K
m = 7 u + 88 u

= 0.0238(8) cm−1.

(3.1.1)

The hyperfine splitting of the 2S1/2 state of 7Li is approximately 0.027 cm−1 [Sta10]. Such a
splitting would lead to a line shape that differs from a simple Gaussian profile. This chapter
will demonstrate that the observed rovibronic transition lines have indeed a linewidth
comparable to the expected Doppler broadening. This leads to the conclusion that the
hyperfine structure of 7Li88Sr is narrower than that of the individual atomsa. Also, no
broadening due to possible magnetic fields in the oven, as discussed in Section 2.3, was
observed. The Doppler broadening mostly allows to distinguish between the individual
rotational transition lines in the thermal emission spectrum, except for lines that coincide
by chance.
A spectral line has a Voigt profile that is given by the convolution of the lines’ Lorentzian

profile with the Gaussian profile from the Doppler-broadening mechanism. In the registered
spectra, the resulting Voigt profile is further convoluted by the instrument function of
the FTS. The Doppler width is much larger than the expected natural line width of the
observed spectral lines, so the Voigt profile can be expected to resemble a Gaussian curve,
with small deviations far from the line centre. To acquire the frequencies of the spectral

a 88Sr does not have a hyperfine structure since its nuclear spin is zero.
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lines, they were fitted to one or more Gaussian curves, which are described by

g(f) = A× exp
−1

2

(
f − f0

σ

)2
 . (3.1.2)

Here, A is the amplitude, f0 the central frequency and σ the linewidth, which is defined by
g(f0±σ/2) = A/e. The letter g will also be used to refer to a sum of Gaussian curves with
different characteristics. The fit to a Gaussian curve needs only three parameters, which
all encode information that is relevant to the analysis of the LiSr spectrum (the frequency
of a transition, how strong the transition is and if the line width is close to the expected
Doppler width). The examples later in this chapter will show that this parametrization
of the spectral lines is sufficient. The instrument function of the FTS does not change
the line profile noticeably from a Gaussian profile. There are deviations at the feet of
the observed spectral lines. They are, however, very small and not relevant at all for the
derived data.

3.2 Untangling Gaussian Curves

For superimposed line structures, the first two derivatives of the sum of several curves can
help to find the peak positions and linewidths of the contributing Gaussian curves [Saa13].
Figure 3.1 illustrates this with several examples. The shape of the second derivatives g′′ of
the curves in Figure 3.1 (a) - (c) sets strong limits for the central frequencies f0 of the
involved Gaussian curves. Especially in the cases (b) and (c), where the total peak sum g

has no distinct points apart from the maximum, g′′ elucidates the underlying structure.
The concept of consulting the derivatives can be translated to peaks recorded with

finite resolution, albeit with expectable limitations. For each spectral peak of interest, one
or more Gaussian curves were fitted to its discrete data points. Figure 3.2 displays six
exemplary peaks or peak structures that will be discussed here.

3.2.1 Background

The recorded spectrum has a background on which the lines are added (or in which they
are engulfed). It originates from the imaged blackbody radiation and the presence of
many small lines that are too weak or overlap too much to be properly resolved. This
background cannot easily be subtracted from the spectrum because it is different over
several frequency scales. To illustrate this, a curve going from one local minimum of the
recorded spectrum to the next minimum can be plotted together with the spectrum itself.
This curve’s dynamic closely resembles that of the spectrum. If the minimum plotting is
iterated, that is, if the local minima of the minima curve are taken and plotted together
with the spectrum, the fine features of the background are slowly lost. Figure 4.1 illustrates
the third and fourth iteration step of this procedure in the inset and the fifth and sixth
step in the large figure. Comparing the iteration steps shows that there are background
features on many scales. Finer features extend over only few of the larger, discernible lines,
whereas the curve given by the sixth iteration approaches a reasonable parametrization of
the blackbody radiation multiplied with the photodetector’s response curve.
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(a) (b) (c) (d)

Figure 3.1: The sum g(f) of two Gaussian bell curves (first row) along with their first and
second derivatives g′ and g′′ (second and third row). (a) The derivatives of one curve can be used
to infer its characteristics. At the peak position, g′ is zero and g′′ has a minimum. The extrema
of g′ and zero-crossings of g′′ indicate the positions f, where g(f) = max(g)/

√
e, indicated by

thicker, dashed lines in (a). This is close to the position of σ/2 (indicated by lighter, dotted
lines), with σ/2 ≈ 1.18 f. (b) With two superimposed bell curves, g′′ can be used to approximate
the positions of the maxima and the linewidths. (c) Even the position of small peaks can be
detected with g′′. (d) If one peak is too dominant, the second peak is only hinted at by the
asymmetry of g′′ and the sum of the curves cannot wholly be disentangled. Similarly, peaks that
are too close together show no distinct features in the curve or its derivatives and cannot be
singled out.

Because the background cannot easily be parametrized, a local correction is applied for
every peak in the spectrum. When investigating a peak or peak structure, the two local
minima to the left and right of the line are used to determine a linear slope connecting
them. This slope is subtracted before applying equation (3.1.2) to the line to remedy
the distortions of the background. Figures 3.2 (a), (b) and (c) give examples of spectral
lines next to a large structure that adds a background slope. Most peaks, though, are far
enough away from the next peak that their slope is considerably less steep.

3.2.2 Line Fit

When investigating a peak, the discrete data points between the two minima are plotted
together with the slope. Their first and second derivatives, g′ and g′′, are plotted separately
on the same frequency scale.
The software MINUIT [JR75] was used to perform a nonlinear fit of the three parameters

given in equation (3.1.2) for a given number of lines in each peak or peak structure. The
quality of the fit is determined by the least mean square difference of the solution to the
data points g. Only the primary data g is used for fitting the lines; the derivatives are not
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(a)
9269.35 9269.40

(b)
9393.3 9393.4 9393.5

(c)
9195.8 9195.9 9196.0

(d) (e) (f)

9313.8 9313.9 9314.0 9326.4 9326.5 9326.6 9326.7 9388.4 9388.5 9388.6 9388.7

Figure 3.2: Examples of peaks described by Gaussian curves (coloured) according to equa-
tion (3.1.1). The first and second derivatives g′ and g′′ of the experimental data are plotted in the
middle and lower parts of each graph. (a) A slope function (dashed line) is calculated from the
outside-most data points to allow for the skewed background. The fitted curve (full black line)
deviates noticeably from the data at the feet of the peak. (b) g′′ shows the central frequencies of
two peaks that form a plateau. (c) A structure with four recognizable underlying lines. The first
one is weak and its determined frequency lies noticeably besides the small minimum in g′′. g′′
suggests the presence of two transition lines in the middle peak. (d) The position of a line in the
bulge of an asymmetric peak can be narrowed down by looking at the derivatives. (e) The small
curve to the left has a considerably higher σ that the other peaks. It should not be taken as a
transition line but is included to accommodate the structure’s left foot. This improves the fit
quality of the other lines. (f) g′′ indicates two lines in the peak, but they are so close together
that two fitted curves are highly correlated and there is no single, clear way to disentangle them.
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considered. The fit routine gives as errors for the fitted parameters one standard deviation.
These errors are used for the parameters’ uncertainties. The peak-to-peak amplitude of
the recorded spectrum’s noise is used for the intensity uncertainty of a data point. (For
the averaged thermal emission spectrum, shown in Figure 4.1, this amplitude is around
3× 10−3 of the intensity of the strongest spectral feature in the spectrum.) The frequency
uncertainty of a data point was assumed to be zero for the fit since the uncertainty
depends on the FTS and hence it is the same for every data point. This uncertainty of
the instrument can be determined separately and it will be shown in Section 3.4 that it is
well within the lines’ Doppler width.
The fitted Gaussian curves and their sum are displayed together with the spectral

peak and its derivatives, as in Figure 3.2. The fit is nonlinear and there is no simple
way of finding a global minimum, thus good starting values are required to fit a peak
with more than one line. The derivatives are used to determine a rough value for the
central frequencies and, if possible, the linewidths. The most useful feature for this are
the positions or shapes of g′′. Figures 3.2 (b) and (d) give examples of the minima of g′′
showing the approximate central frequencies of unresolved lines. The shape of a minimum
of g′′, as seen in Figures 3.2 (c) and (f), indicates that a peak is formed by more than one
line. Because the second derivative is very useful to detect the central frequencies, it is
worthwhile to calculate the discrete derivatives as accurately as possible. The FTS software
offers the possibility to have a higher data point density in g (not to be confused with the
resolution) by adding zeros to the ends of the recorded interferogram. The output of the
Fourier transform is then padded with data points between each significant spectral data
point. These additional points carry no information and merely let the spectrum appear
more smooth. However, the higher point density does help to calculate more accurate
derivatives. The spectra were transformed with a zerofilling factor of four, which the
manual defines to mean that the number of points in the resultant spectrum is multiplied
by four.
A sign of a plausible fit solution is that the sum of Gaussian curves approximates the

data points. This was generally achieved, except sometimes for points near the base of a
structure. Figure 3.2 (a) gives an example. This inconsistency is due to the selection of a
narrow fit window and the neglect of the farther surroundings of a peak, the assumption
of a pure Gaussian rather than an other profile or with pressure effects that shape the
base of a spectral line (see e.g. [MW36; Kuh37]) but are neglected in the model of the line
shape. If these deviations are too severe, a further Gaussian curve with small amplitude
can be added to facilitate the fit. For example, the line to the left in Figure 3.2 (e) is of no
further interest when examining the thermal emission spectrum due to its small size. It
might belong to the background of the rather broad peak structure. Nevertheless, adding
it allows the fit procedure to better approximate the data points with higher intensity.
In the case of one fitted line, σ can be verified by the derivatives as illustrated in

Figure 3.1 (a). With more lines, checking the linewidths is more difficult. In a good fit,
the linewidths of all lines are close together, as should happen when the lines come from a
physical process such as Doppler broadening. All lines in Figures 3.2 (a) to (e) have a
similar width, except the leftmost line in (e), which about 1.5 times broader. This line
was only added to allow the fit to model the shape of the peak’s left foot and will not
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be used to determine molecular parameters. Figure 3.5 illustrates the consistency of the
fitted linewidths.
The position of the central frequencies can often be checked against the position of local

minima in g′′. In Figure 3.2 (c), three fitted central frequencies lie either close to the
discrete minimum of g′′ (the rightmost frequency) or are arranged around a flat minimum.
Thus, they might indeed indicate the two Gaussian curves in the middle of the graph. The
leftmost frequency does not properly lie at a minimum position but the corresponding
line is weak compared with the others and a deformation of g′′ at this position has to be
accepted.
The uncertainty of the central frequency is also taken from the fit routine. These

uncertainties will later be applied in a fit of molecular parameters to weight the associated
transition frequencies. For sufficiently distinct lines, the fitted frequency uncertainty can
lie well below the Doppler width. The data points have an uncertainty along the intensity
axis, so the frequency uncertainty depends on the amplitude of the line in question. In
order to not give stronger transition lines too much weight when fitting the molecular
parameters, all frequency uncertainties below the threshold of 0.02 cm−1, slightly lower
than the expected Doppler width, were set to this threshold value. Each fitted line was
checked for plausibility via three criteria that were discussed above: congruency with
the recorded data points g, linewidth close to the Doppler width or agreement of the
fitted parameters with the shape of g′′. When a fitted line position remained suspect, the
frequency uncertainty was manually set to a higher value. For the majority of such lines,
the linewidth gave a reasonable uncertainty interval. For example, the peak shown in
Figure 3.2 (f) is probably formed by at least two transition lines but they are so close
together that the fit routine could find several solutions that describe the recorded data
g. The solutions depend on the starting conditions. Manually fixing one line position
according to the shape of g′′ would lead to a different description of the peak. However, that
characterization would not be any more trustworthy. For this peak, the parametrization
of one large Gaussian curve was used and the assumed frequency uncertainty is given by
the linewidth, which is larger than for lines from well-described peaks.

3.3 Fluorescence Lines

A recorded LIF spectrum (see Section 4.4) also shows the thermal emission spectrum with
a large laser line and fluorescence lines that are stronger than the corresponding line in the
thermal emission spectrum without the laser. The resolution of LIF spectra is lower than
for thermal emission spectra (see Section 2.5). An example of a LIF spectrum is shown in
Figure 3.3. Since less scans were averaged during fluorescence experiments than for the
thermal emission spectrum, the noise amplitude is higher here. The reduced resolution
and the larger noise amplitude generally lead to a higher frequency uncertainty than for
the thermal emission spectrum. The noise amplitude has to be measured for each LIF
spectrum before the peaks of a spectrum can be fitted. The laser lines appearing in the
LIF spectrum are usually 2 to 3 orders of magnitude larger than any other spectral feature.
They are also sufficiently well described by one Gaussian curve. This is not due to Doppler
broadening but rather the effect of the instrument function of the FTS. Thanks to the
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Figure 3.3: A LIF spectrum (in red) with an excitation in the (1–0) band and fluorescence lines
in the (1–0), (1–1) and (1–2) bands. Each band features fluorescence of a PR pair. The thermal
emission spectrum is overlaid in black for comparison. This spectrum has an unidentified line,
which might come from an other molecular system or, more likely, may be an artefact. At this
frequency, the thermal emission spectrum shows no peak.

laser lines’ high intensity, their fitted frequency uncertainty is very low. LIF lines also have
usually a much higher amplitude than the thermal emission lines and can be described
with one Gaussian curve. When a LIF line is close to a strong emission line, the emission
line might have to be considered in the fit.
There are cases of fluorescence lines so weak that the thermal emission spectrum, with

which they are recorded together simultaneously, dominates their peak structure. This
happens when a relatively weak transition is excited whose fluorescence frequencies are
close to stronger transitions, for example of a vibrational band with a larger Franck-Condon
factor. Two examples of this are displayed in Figure 3.4. In these cases, the fluorescence
was recognizable only by comparison with the thermal emission spectrum. For both
Figures 3.4 (a) and (c) and Figures 3.4 (b) and (d), there is a transition to the left that has
a higher relative amplitude in the LIF spectrum than in the thermal emission spectrum.
A direct comparison of fluorescence peaks and the thermal emission can also give hints at
unrecognized lines in the thermal emission spectrum if the fluorescence is strong enough
to elicit a line obscured by larger neighbouring lines in the thermal emission spectrum.
When comparing peaks fitted with fluorescence and thermal emission spectra, the

effect of the resolution becomes noticeable. Thermal emission lines have generally lower
linewidths than fluorescence lines. Figure 3.5 (a) compares the linewidths of thermal
emission, fluorescence and laser lines. The latter two were recorded with a resolution
of 0.05 cm−1 (see Section 2.5). Fits of the laser lines give an approximate linewidth of
0.03 cm−1. Because the actual laser is much narrower (see Section 2.4), this linewidth
sets a lower limit for the expected values with the experimental parameters. Generally,
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(a) (b)

(c) (d)

9345.2 9345.3 9345.4 9211 9211.2 9211.4

Figure 3.4: Comparison between two peak structures in the thermal emission spectrum ((a)
and (b)) and in two LIF spectra ((c) and (d)). The first derivative is omitted as it usually gives
no additional information. The structures in the LIF spectra look generally broader due to
their lower resolution. The linewidths of the fitted lines in (c) and (d) are also noticeably larger
than in (a) and (b). The fit ranges of the peak structures are different in the thermal emission
spectrum and the LIF spectrum because the local minima are not at the same frequency. In (d)
the fluorescence peak even alters the peak shape sufficiently to shift the left minimum beyond a
neighbouring line that was fitted separately in the thermal emission spectrum.

the fitted linewidths of the fluorescence or thermal emission lines lie below the spectra’s
resolution. Many thermal emission lines, recorded with a resolution of 0.03 cm−1, even
have linewidths comparable with the expected Doppler width given in equation (3.1.1).
Based on these findings, the broadening effects of the resolution and of the window function
described in Section 2.5.1 do not considerably impair the quality of the records. Figure 3.5
(b) and (c) show the frequency errors assigned by the fit. They are below 0.01 cm−1 for
lines with a sufficiently large amplitude, but for weak lines or lines that needed to be
fitted with several other lines, the assigned error can be higher than the linewidths. In the
range of 9400 cm−1 to 9570 cm−1 the lines are less intense than in the range of 9200 cm−1

to 9400 cm−1 (compare Figure 4.1). The reduced intensity leads to larger frequency errors.
The range of 9100 cm−1 to 9220 cm−1 features relatively weak lines, which also lie closer
together than in the other parts of the spectrum. Here, the assigned frequency errors are
very large. When it seemed reasonable from the appearance of the fitted line, the smaller
linewidth was used as frequency uncertainty instead of a high frequency error.
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Figure 3.5: Comparisons of the linewidth (a) and frequency uncertainty ((b) and (c)) of lines
from recorded thermal emission and fluorescence lines. Only lines with assigned quantum
numbers are included in these plots; lines that were included to improve the description of a
peak are disregarded. The frequency range of 9100 cm−1 to 9220 cm−1 has the highest frequency
uncertainties. (In this range there are relatively weak bands with many coinciding lines.) The
abundance of the linewidths or uncertainties is indicated on the right.

3.4 Frequency Precision

To fit the molecular parameters (see Chapter 5), the laser frequency of a LIF spectrum is
required. Since the wavemeter’s resolution and uncertainty is much higher than that of
the recorded spectrum, the frequency value from the wavemeter was used as the frequency
of the laser line. The uncertainty was set to 0.0006 cm−1 because the laser was stabilized
within an interval of ±10 MHz during a fluorescence measurement. The laser peak in
the LIF spectra was nonetheless fitted to a Gaussian curve and the difference between
the frequency displayed by the wavemeter and the fitted central laser frequency was
recorded for every LIF spectrum. These differences are plotted in Figure 3.6 (a) for all
LIF spectra whose data was used to fit the molecular parameters. There is a spread of
about 0.004 cm−1, with the centre shifting by nearly 0.005 cm−1 over several years. The
grey bar represents the 20 MHz uncertainty interval. For reference, the rovibrational states
excited during fluorescence experiments are given with date in Figure 3.6 (b). The latest
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measurements added transitions with upper rotational quantum numbers between ca. 70
to 120 in two vibrational levels. They expand the range of rotational energy levels that
was used until then, so molecular parameters describing higher rotational levels might
have a slight bias. These deviations are, however, within the assumed minimal uncertainty
of 0.02 cm−1 mentioned in the last paragraph of Section 3.2.2 and thus should not affect
the molecular fit.
For these reasons, the lower bound of the uncertainty value of 0.02 cm−1 is a reasonable

weighting factor for the fits and captures the expected frequency variations well.
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Figure 3.6: Observations regarding the frequency precision. (a) Deviation of laser frequency
measured with wavemeter and FTS. The grey bar represents the 20 MHz stability interval of
the laser. The centre shifts slightly over several years. (b) The quantum numbers of the excited
rovibrational states are plotted over time to give a reference for how much the observed states
might be affected by the drift.
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Chapter 4

Interpretation of the Spectrum of LiSr

After having considered individual lines in the previous chapter, this chapter will discuss
the large features of the broadband spectrum, especially the vibrational bands, and the
next chapter will describe the assignment of the finer rotational structure in detail.
The recorded emission spectrum Figure 4.1 gives a broad overview over all infrared

transition lines of LiSr. These lines have to be assigned to quantum states in order to find
molecular parameters that describe the states’ energy levels.
There are two distinct major structures in the spectrum, one from 9000 cm−1 to

10000 cm−1, the other from 10700 cm−1 to 12000 cm−1. (The spectral intensity decreases
for frequencies above 11400 cm−1 due to the effects of electronic filters in the FTS. In fact,
the latter structure continues to 15000 cm−1.) Using LIF spectra to find lines sharing the
same upper rovibronic state greatly helped to uncover the underlying spectral order. The
general layout of the spectrum can also be outlined by turning to recent ab-initio works.

4.1 Identifying the Spectrum of LiSr

The metallic sample contains Li and Sr in high purity. Besides LiSr, also Li2 and Sr2 could
form in the heat pipe. The samples of metals also contain impurities of other alkali or
alkaline earth metals and spectra of other atoms or molecular could also be recorded. A
broadband absorption spectrum (Figure 10.3) contains a few undesirable atomic lines but
there were no spectra from the impurities observed in the near infrared spectrum.
According to [Ste16], the spectral system of the Sr2 molecule with the lowest frequency,

(2)1Σ+
u –X(1)1Σ+

g , is not found at frequencies lower than ≈ 12800 cm−1. The occurrence of
Sr2 spectra in the recorded frequency range can be ruled out on these grounds. Atomic
transition lines are not visible in the spectrum, so it can reasonably be assumed to contain
only LiSr and Li2 transitions, which will be identified in the following.
The potential curves from ab-initio calculations [Gop+13; Pot+17; Zei+18] suggest

that LiSr spectra can be expected starting in the near-infrared above 6000 cm−1 (compare
Figure 1.1). These works agree that the transition dipole moment for (2)2Σ+–X(1)2Σ+ trans-
itions (expected around 10000 cm−1) is much stronger than that for (1)2Π–X(1)2Σ+ trans-
itions. The transition dipole moment of the (3)2Σ+–X(1)2Σ+ system (around 13000 cm−1)
is consistently calculated to be much stronger than that of the (2)2Σ+–X(1)2Σ+ system.

4.1.1 Near-Infrared Spectra of LiSr and Li2

A structure with clearly discernible bands is seen in the thermal emission in Figure 4.1 from
9000 cm−1 to 10000 cm−1 It lies in the spectral region of the predicted (2)2Σ+–X(1)2Σ+

or (1)2Π–X(1)2Σ+ transitions of LiSr. Since the ab-initio calculations predict a much
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Figure 4.1: The thermal emission spectrum of the molecular gas in the heat pipe. The LiSr
spectrum is in the left part of the figure and the Li2 spectrum at higher frequency. The most
prominent vibrational bands of LiSr are labeled (see text). They overlap with weaker unlabeled
bands at nearly the same frequencies. The positions of local minima after three ( ), four
( ), five ( ) and six ( ) iterations of the procedure described in Section 3.2.1 are plotted
to visualize the signal background. The photodetector is not sensitive for light with less than
8500 cm−1 and around 11700 cm−1 the effects of the optical and electronic filters start to attenuate
the spectrum. The inset shows the strong (0–0) and (0–1) bands with their rotational structure.
The weaker (1–1) band can be seen to the right. The third and fourth background iteration steps
are plotted here to better show how the first iteration steps approximate the spectral structure.

larger transition dipole moment for (2)2Σ+–X(1)2Σ+ transitions than for (1)2Π–X(1)2Σ+

transitions, the observed spectral system was attributed to transitions between the lowest
two 2Σ+ states of LiSr.
For frequencies above 10600 cm−1, the spectrum has no clearly perceptible band structure.

This part of the emission spectrum could originate from either Li2 or LiSr. From energetic
considerations alone (Figure 1.1), LiSr transitions could involve higher vibrational levels
in the electronic ground state and either (3)2Σ+ or (2)2Π states with low v′. The last two
states are unlikely to be involved because, according to [Pot+17], the Franck-Condon factors
for high v′′ and low v′ are expected to be small. In order to investigate the composition of
this spectrum, several fluorescence experiments were conducted in this spectral range (see
Section 4.4 below). The obtained spacing of the vibrational progression was consistent
with known spectroscopic constants of Li2. To judge the amount of Li2 transitions in this
part of the recorded emission spectrum, the spectrum was compared with a simulation
of a thermal emission spectrum of Li2 that was based on electronic potentials given by
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[CM06]. This simulation could adequately reproduce the recorded spectrum. There were
no recorded lines or lineshapes that could not be attributed to Li2. Any conceivable LiSr
transitions in the range of 10600 cm−1 to 12000 cm−1 are too weak to be identified among
the Li2 lines in a straightforward way.
For these reasons, the further discussion of the thermal emission spectrum of LiSr will

be restricted to the band structure from 9000 cm−1 to 10000 cm−1. It should be noted for
the understanding of Figure 4.1 that the photodetector is not responsive for frequencies
below 8500 cm−1, while optical and electronic filters prevent the registration of a spectrum
beyond 12000 cm−1. The weakest observed emission lines are at frequencies higher than
9000 cm−1, where the detector’s response is sufficient. It is unlikely that the emission
spectrum of the band system in question revives at frequencies that were not observed.

4.2 Vibrational Bands

The vibrational constants for the X(1)2Σ+ and (2)2Σ+ states from the ab-initio calculations
are almost the same, namely around 180 cm−1. Therefore, all bands ([v′ + k]–[v′′ + k]), for
k,∈ N, should for fixed v′ and v′′ lie close together in the spectrum and have considerable
overlap. Taking the frequencies of the band heads as an approximation, there are five
clearly visible bands that are approximately 180 cm−1 apart and thus fit well to the ab-
initio calculations. These are the labeled bands in Figure 4.1, according to the following
considerations:
The investigation of rotational lines by laser-induced fluorescence (see Section 4.3)

also shows which vibrational bands share the same upper vibrational quantum number.
Excitations in one of the bands labeled (0–0) and (0–1) in Figure 4.1 led to fluorescence
in only the same or in the respective other band. The higher-energetic one of these two
bands is assumed here to be the (0–0) band since the laser excitations in these two bands
never led to fluorescence lines with higher frequency than the (0–0) band head. Higher
frequencies would imply decay to a vibrational level with a v′′ quantum number lower
than that of the initial state and if the initial level is the lowest, this cannot happen.
This argument does not consider the Franck-Condon factors that might suppress fluores-

cence in a lower-lying band, and so the conclusion may be false. However, according to
[Pot+17], the Franck-Condon factors can be expected to be highest for v′ = v′′ near the po-
tential bottom, with Franck-Condon factors of the neighbouring bands being considerably
smaller and in such a situation the above-mentioned arguments would hold. The other
band is then the (0–1) band, whose transition frequency is reduced by one vibrational
quantum.
A weaker, but still clearly recognizable band head lies about 6 cm−1 higher than the

(0–0) band head. It is considered here to belong to the (1–1) band which extends into the
(0–0) band. Its rotational transition lines are much weaker than those of the (0–0) band
and are not always visible among the stronger lines. Laser excitations in this band led to
fluorescence in the band labeled (1–0) in Figure 4.1 and a band close to the (0–1) band,
which is then the (1–2) band. As with the (1–1) and (0–0) bands, most of the (1–2) lines
lie in the (0–1) region and are hard to discern in the thermal emission spectrum, while the
(1–0) rotational branches can easily be seen.
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The frequency of the band head labeled as (1–0) is about 180 cm−1 higher than for the
(0–0) band head. This leads to the conclusion that it is the (1–0) band and that the other
two bands with the same upper vibrational level are the (1–1) and (1–2) bands.
It becomes clear from these observations that the Franck-Condon factors allow only

transitions to neighbouring bands, which means that advancing to higher vibrational levels
in both electronic potentials can only be done in small steps.
The other bands labeled in Figure 4.1, namely the (2–0) and (3–0) bands were assigned

based on their frequency distance to the (0–0) band. They likely also overlap with other
bands, e.g. the (3–1) band, which should be weaker in intensity. A few laser experiments
were conducted in these bands but no fluorescence could be observed. Possibly, the
Franck-Condon factors for these bands are too small to see single transitions here.

4.2.1 Isotopologue

Since the sample was prepared without consideration of isotopic purity, it can be assumed
that LiSr was formed according to the natural abundance of Li and Sr isotopes. These
isotopologues of LiSr have slightly different molecular constants and hence spectra. This
leads to several variants of one rovibrational band with the same quantum numbers. Their
intensity varies according to the fraction of the corresponding isotopologue.

Table 4.1: Occurrence of different isotopologues of LiSr in percent. They were calculated from
the natural abundance of isotopes of Li and Sr taken from [BW11].

isotope Sr 84 86 87 88
Li % < 1 10 7 83
6 8 — 0.80 0.56 6.6
7 92 — 9.2 6.4 76

Table 4.1 suggests that the fraction of 7Li88Sr is around 3/4 and each other isotopologue
makes up at most 1/10 of the LiSr molecules. Because of this disparity in occurrence, the
assumption is made here that the spectrum comes from the most probable isotopologue,
7Li88Sr, and that the spectra of other isotopologues are too weak to be recognized.
In the observed spectrum, there are some less intense bands near bands of higher intensity

but these can be explained as different vibrational bands of the same isotopologue.

4.3 Rotational Quantum Numbers

The shape of a vibrational band is determined by the rotational spectrum added to the
vibrational transition frequency. As described in Section 1.4, the rotational transition
lines are arranged on the frequency axis according to equations (1.4.1). No transitions
with F1 → F2 or F2 → F1 could be assigned (which is in line with with the expectation of
weak lines discussed in Section 1.3) and the further discussion will omit them.
Figures 4.2 (a) and (b) illustrate the build-up of the (0–0) band heads near the reversal of
the R branches of the F1 and F2 systems. The spacing of the rotational lines of one branch
is in general larger than the linewidth given by equation (3.1.1), with the exception of lines
near the band head. The (0–0) band, being the most prominent one, was investigated first.



42 Chapter 4: Interpretation of the Spectrum of LiSr

The rotational constants that describe this band were then used as a basis for evaluating
other bands.

4.3.1 Spin Components

There are two band heads in the experimental recording in Figure 4.2 (b) with nearly the
same intensity. They could conceivably come from different vibrational transitions but, as
stated in Section 1.4, it is more likely that they are formed by the two spin systems. This
explanation is also in accordance with the fact that each of the studied vibrational bands
appears as two systems with similar intensity. As illustrated in Figure 4.2, the transition
lines of one system occur at higher frequency than the lines of the other system with the
same rotational quantum number N ′. This is due to the spin-rotation coupling as given in
equation (1.1.3). The present experimental method cannot determine the spin state, so
the transitions with the same N ′ at higher frequency were arbitrarily classified as F1 lines.
This would mean a positive difference of the spin-rotation coupling constants γ in both
electronic states. Changing this attribution results merely in the same value for γ with
negative sign.

4.3.2 Line Assignment

Many transition lines in the rotational spectrum are resolvable so that one such line can
be assigned a rotational quantum number Na. For larger N , the distance ∆f between
neighbouring lines of a branch can be expected to rise linearly with N in both the P and
R branch (see equations (1.4.2)). For a small enough range of N , the change in ∆f is even
small enough to be considered constant. As a result, it was in most cases straightforward
to find neighbouring lines with N ± 1, N ± 2, . . . to an already assigned line.
By trying a few assignments of quantum numbers to several sets of neighbouring lines

and comparing the implied rotational constants to the ab-initio calculations, a consistent
description of the rotational spectrum soon emerged. This approach is, however, only
feasible as long as the individual transition lines are easily distinguishable. For molecules
with smaller rotational constants, e.g. due to a larger reduced mass, it can be problematic
due to the Doppler broadening of the lines. For such molecules, fluorescence experiments
provide an effective path to determine the rotational constants of the involved states.

4.4 LIF spectra

Excited rovibrational |v′, N ′〉 states can decay to several states with different v′′ and N ′′
according to the selection rules for N (see Section 1.3) and Franck-Condon factors. As
explained in Section 1.3, only P and R bands appear in 2Σ+–2Σ+ transitions. These lines
have the same frequencies as the corresponding lines in the thermal emission spectrum but
are enhanced due to the laser pumping. Comparing the LIF spectrum with the thermal
emission spectrum shows which transitions in each branch are connected by their upper
state

∣∣∣(2)2Σ+, v′, N ′, F1/F2

〉
.

aN will be used as shorthand for knowledge of both N ′ and N ′′ or, equivalently, N ′ and whether the line is a P
or R line.
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Figure 4.2: Fluorescences in the (0–0) and (0–1) band heads (a) The Fortrat parabolas for
the F1 and F2 systems of the (0–0) band. (b) Exciting the band heads with a laser leads to
fluorescence of the corresponding P lines. Their intensity depends on how much the laser overlaps
with the spectral line. Two independent laser experiments are shown in different colours. (c)
The same excitations also result in fluorescence in the P and R branches of the (0–1) band. The
fluorescent R lines overlap too much to be all labeled here. Comparing the LIF spectra in both
bands immediately shows that their rotational spectra must be different because the distance
between the fluorescence lines is not the same in both bands. Since the upper states for both
bands are the same, this shows that the vibrational states in the electronic ground state have
different rotational constants. The labels of the lines refer to, for example, N ′ = 10→ N ′′ = 11
for P 11.
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The example given in Figure 3.3 shows the excitation of only one transition line in the
(1–0) band and fluorescence in the (1–0), (1–1) and (1–2) bands. These fluorescence reveal
a pair of P and R lines in each vibrational band.
Figure 4.2 displays the thermal emission spectrum of LiSr together with LIF spectra

from an excitation in each of the (0–0) band heads. Since the heads are formed by
many overlapping lines, these experiments populate several levels in (2)2Σ+, which leads
to multiple fluorescence lines. With the exception of F1 P 8, each LIF spectrum has
fluorescence lines belonging exclusively to one of the two spin systems. The P lines from
each LIF spectrum appear evenly spaced since the change in ∆f is small when considering
only a small N range (see Section 4.3.2). The intensity of the fluorescence lines depends
on the overlap of the excited rovibronic transition line with the laser frequency.
Figure 4.2 (c) shows the laser-induced fluorescence lines of the same excitations as

in Figure 4.2 (b) in the (0–1) band. Due to a smaller Franck-Condon factor, they are
weaker than the (0–0) lines, hence only the more intense peaks can be distinguished from
the thermal emission spectrum with certainty. It becomes clear from the laser-induced
fluorescence near the band heads that the rotational parameters for the (0–1) band are
different from those for the (0–0) band. Both bands have the same upper vibrational level,
so the rotational energies in the v′′ = 0 and v′′ = 1 levels must differb. This difference
affects also the frequency distance of consecutive P lines (see Equations (1.4.2)), which
can be seen when comparing Figure 4.2 (b) and (c).
By connecting two spectral lines with the same upper state, the upper state can be

eliminated and an energy difference between the states in the lower electronic state can
be determined directly. For example, the frequency difference of the F1 P 15 lines in
the (0–0) and (0–1) bands equals the spacing of the states

∣∣∣X(1)2Σ+, v′′ = 0, N ′′ = 15,F1
〉

and
∣∣∣X(1)2Σ+, v′′ = 1, N ′′ = 15,F1

〉
, which is the vibrational spacing in the X(1)2Σ+ state,

disregarding the anharmonicity. The same is true for all other P and R fluorescence lines
that occur in more than one bandc.
Occasionally, exciting a rotational transition leads not only to fluorescence of the

corresponding transition line in the other rotational branch but also to fluorescence of lines
with neighbouring N in both branches. Figure 4.3 gives an example. This happens due to
collisions of the excited molecule during which it loses or receives a rotational quantum.
These so-called rotational satellites have lower intensity than the principal fluorescence
line but are more intense than the thermal emission lines at the same frequencies. Here it
has to be considered that due to the lower resolution of the LIF spectrum, its peaks are
usually lower than those of the thermal emission spectrum. For example, the blue line
under the label ‘−4’ in Figure 4.3 (b) is as high as its counterpart in the black spectrum,
whereas its neighbours are lower than their black correspondents. This, together with the
distance between the satellite lines, leads to the conjecture that the line is a satellite. The
analysis of the (0–0) band described in Chapter 5 confirms this conclusion.
Rotational satellites give unquestionable evidence concerning a sequence of lines in a

rotational branch because they correspond to rotational levels that surround the excited
rotational level.

bγ was also found to be dependent on v, but the effect is smaller.
cFor a larger range of N or v, higher-order terms in the Dunham series become important, but here this is a
good approximation.
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Figure 4.3: Example of a LIF spectrum (blue) featuring rotational satellites of the F1 P 55 (a)
and R 53 (b) lines in the (0–0) band. The thermal emission spectrum is displayed in black as
a reference. N increases towards lower wavenumbers. The satellite lines are stronger than the
thermal emission lines. There are also satellites in the (0–1) band but due to the lower overall
intensity they cannot be tracked as far.

4.4.1 Determination of a First Approximation to the Rotational Constant

According to equation (1.4.4), the frequency difference ∆fRP between PR pairs that are
known from fluorescence depends only on the rotational quantum number N ′ and the
rotational constant B′′e in the lower electronic state. The relationship of N ′ and B′′e can
then be parametrized for experimentally determined values of ∆fRP. Figure 4.4 illustrates
these curves for all ∆fRP from the (0–0) excitations shown in Figure 4.2. Since the head
is made up of several lines with consecutive N , the assumption can be made that they all
share a very similar value for B′′e . This can be verified by looking for a linear factor for all
observed ∆fRP; with the same B′′e , they should be linearly dependent on N ′.
A further condition for the relation of ∆fRP, N ′ and B′′e is that N ′ is integer. Looking at

Figure 4.4, it emerges that the only B′′e values for which all ∆fRP allow for integer N ′ are
near B′′e = 0.205 cm−1. This value is close to the rotational constant given in [Gop+13].
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Figure 4.4: The relationship of N ′ and B′′e for a given ∆fRP as given by equation (4.4.2). The
grey curves represent N ′(B′′e ) with different ∆fRP (in cm−1), which were taken from Figure 4.2
(b). For the purpose of this graph, a global uncertainty of 0.04 cm−1 was assumed. Where two
curves from the F1 and F2 systems overlap, they appear darker. Within the displayed B′′e range,
all curves intersect with integer values of N ′ only for values of B′′e near the vertical black line.
The exception is the line with ∆fRP ≈ 7.15 cm−1 (the second curve from below). The uncertainty
for that observation is in fact larger than 0.04 cm−1.

To formalize this graphical approach, equation (1.4.4) can be used to define a function
N ′(∆fRP, B

′′
e ) and the distance of the function value to the nearest integer is the quantity

to be minimized. B′′e can thus be narrowed down to the values for which the N ′ values for
all plausible ∆fRP are closest to an integer. Mirroring a least squares fit, the expression

χ2
N ′ = 1

#obs
∑

i ∈ obs

(
N ′i(B′′e )−N ′i (B′′e )

(δfRP)i
× 2(δfRP)min

)2

(4.4.1)

is used for this calculation, where N ′i(B′′e ) is obtained by rearranging equation (1.4.4):

N ′(B′′e ) = ∆fRP

4B′′e
− 1

2 (4.4.2)

N ′i (B′′e ) is the closest integer to N ′i(B′′e ) and (δfRP)i is the experimental uncertainty of a
measured PR distance, while #obs is the number of observations. The factor of two times
the smallest uncertainty normalizes the expression.
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Figure 4.5: Plot of the function values given by expression (4.4.1) with the ∆fRP of (0–0)
from Figure 4.2. The unweighted (N ′i −N ′i )2 for each (∆fRP)i are plotted in (a). One curve is
highlighted in red so the parabola-like shape can be better seen. The sum χ2

N ′ of the weighted
data is drawn in (b) as a function of the rotational constant B′′e . The minimum of the curve
indicates the best-fitting value of B′′e .

A visualization of this function is presented in Figure 4.5, again with the ∆fRP of the (0–0)
band as seen in Figure 4.2. In Figure 4.5 (a), the squared distances from each calculated
N ′(B′′e ) to the nearest integer are plotted with equal weights. They describe parabolas
centred around every integer when plotted over 1/B′′e . A minimum for one (∆fRP)i is not
necessarily a minimum for other (∆fRP)j 6=i. Figure 4.5 (b) shows a plot of χ2

N ′ for the 15
individual lines weighted with proper experimental uncertainties. Here, ‘resonances’ can
be seen around 1

2B′′e
and 1

3B′′e
because for these values the first term of equation (4.4.2)

gives almost a multiple of N ′ without the correction of −1/2. Each individual curve will
therefore have a minimum close to these values but these minima do not exactly coincide.
Once B′′e is determined, equation (4.4.2) can be used to assign reasonable N to the

fluorescence lines. This information about the ground state together with the line fre-
quencies yields B′e in a straightforward fashion. This approach can be used to narrow
down the possible values of the rotational constant of the ground states, though to what
extend the constant can be identified depends on on the number of available ∆fRP and
their uncertainty. Evaluating the expression (4.4.1) for a large range of N ′ can shift the
obtained B′′e due to centrifugal effects (and hence different rotational constants) for larger
N . The choice of band head excitations is prudent because the head consists of transitions
with consecutive N . This can easily be checked by verifying that the fluorescence in the
other branch form the expected pattern of (quasi)equidistant peaks.
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The method described here is of great help for molecular spectra in which the rotational
transition lines are closer together so that a peak in the spectrum can consist of several lines.
For such spectra, the approach described in Section 4.3.2 would be more error-prone and
therefore time-consuming. As ab-initio calculations predict smaller rotational constants
for most diatomic alkali-alkaline earth molecules than for LiSr, measuring the ∆fRP by
laser excitation can be of great advantage. The advantages this LIF analysis have been
demonstrated with KCa [Ger+17].
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Chapter 5

Evaluation of the (2)2Σ+–X(1)2Σ+ Spectrum

With the general structure of the thermal emission and LIF spectra discussed, an attempt
to find a rigorous description of the underlying molecular parameters of 7Li88Sr can be
made. This chapter will describe how line frequencies determined with the methods
described in Chapter 3 were used to find molecular parameters according to the Dunham
model.

5.1 Dunham Fit

Each transition line represents an energy difference between two rovibrational levels, one
in the (2)2Σ+ state and one in the X(1)2Σ+ state. The energies are approximated by
equations (1.2.5) and the aim is to determine parameters Ymn and γmn for both states
that describe the observed lines.
In order to find these parameters, data sets with transition frequencies and quantum

numbers are needed. Because only transitions of the (2)2Σ+–X(1)2Σ+ system are considered
here, the parameters for the upper and lower rovibronic state in a transition belong to
the (2)2Σ+ and X(1)2Σ+ states, respectively. Additionally, the LIF spectra can be used
to incorporate information about only the ground state by including energy differences
between the X(1)2Σ+ energy levels. In the latter case, the frequency difference between
any two fluorescent lines with the same upper level and the quantum numbers of the two
lower levels are needed. Frequency differences that incorporate the excitation frequency
have generally a lower uncertainty because the laser frequency is measured with lower
experimental uncertainty than the fluorescence lines. The required data are

{f0, δf0, v
′, N ′, v′′, N ′′,Fi}

and
{∆f, δf, v′′1 , N ′′1 , v′′2 , N ′′2 ,Fi},

with the frequency f0 or frequency difference of two transition lines ∆f , the frequency
uncertainties δf0 or δf , the rovibrational quantum numbers of the involved levels N and v
and the index Fi, which assigns the observation to the F1 or F2 system.
With the frequencies and quantum numbers inserted into the energy expressions (1.2.5),

all unknown parameters are factors with a linear dependence. This allows for a direct
linear least squared fit to choose the appropriate molecular parameters of the infinite series
in equations (1.2.5). The expansion given by equations (1.2.5) can have an unlimited
number of terms in principle, but only a manageable number will be needed to describe
the observed spectrum within the experimentally achievable accuracy.
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5.1.1 Initial Dunham Fit

At first, only the rotational spectrum of the (0–0) band was taken into account for the
fit. Because it has the highest intensity, the lines of the thermal emission spectrum can
be distinguished here most clearly. Although there was also information about the (0–1)
band available from LIF experiments, the approach taken was to first have a reliable
understanding of the rotational branches of the (0–0) band and then to introduce corrective
terms to allow for the slightly different (0–1) rotational spectrum. This approach also
allows to reduce the number of fit parameters at the beginning by ignoring the vibrational
dependence.
The fluorescence from the band head (see Figure 4.2) allowed to derive a value for

Y′′01 with the method described in Section 4.4.1. Rotational quantum numbers and spin
states were assigned to the peaks using equation (4.4.2). This assignment immediately
allowed to obtain values for Y′01, γ′00 and Y′00. In this preliminary model, the Y′′00
and ground state vibrational parameters were set to zero, so that the energy of the∣∣∣X(1)2Σ+, v′′ = 0, N ′′ = 0,F1

〉
state was zero. The ground state energies are then only the

rotational energies calculated with Y′′01 and the three above-mentioned parameters for
the upper state can be determined. The effect of the spin-rotation coupling could not
be attributed to the upper or lower state with absolute certainty and so at first γ′00 was
sufficient for the description of the lines. The effect could have equally been modelled with
γ′′00.
These parameters were then used to predict further line frequencies in the rotational

branches with quantum numbers N around the already known N numbers. Lines in
the thermal emission spectrum close to these calculated frequencies were assigned the
appropriate quantum numbers and with the the increased data set a new fit was performed.
With the updated parameters from this fit, the added lines were checked for consistency.
Usually, iteration steps of this extrapolation added about five lines in each spin system
and branch. Further lines were predicted with the new parameters and new lines from the
emission spectrum were assigned. Where the peaks in the thermal emission spectrum are
sufficiently separated to regard them individually, this procedure yielded a large number
of lines without considerable problems. Only near around the branch origin near the
band head, where many lines overlap and lines with small N have low intensity (compare
Figure 4.2) was the assignment more challenging. For molecules with denser spectra, more
misattributions can be expected, so less new lines would be added in each iteration step.
Also, laser experiments were conducted at frequencies of arbitrarily chosen lines in the

(0–0) band, further from the band head. If the assignment from the thermal emission
spectrum advanced to a point where both lines from one LIF spectrum were included
in the model, the fluorescence lines could be used to verify whether the assignment was
consistent, i.e. if N ′′P −N ′′R = 2.
Other LIF spectra were used to accelerate the description of the (0–0) band. The

known Y′′01 parameter allowed to predict the rotational quantum numbers of the involved
transitions via the observed ∆fRP and by assigning the lines temporarily to F1 and F2, it
usually emerged which choice of Fi was in good agreement with the current parameters of
the model. LIF spectra with transitions around N = 55 were used to make a leap from
the lines near the band head with N ≤ 20. The rotational branches are mostly clearly
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visible in the thermal emission spectrum and the LIF spectra allowed to assign quantum
numbers to random lines in these branches. When a line in a rotational branch could be
identified via LIF spectra, more thermal emission lines close to the identified line were
added to the data set with appropriate quantum numbers. After updating the Dunham
parameters, this new range of rotational quantum numbers gave an additional starting
point for characterizing the rotational spectrum.

5.1.2 Expanding the Dunham Fit

In the initial description of the (0–0) band, rotational transitions with N up to around 70
were assigned. To incorporate the centrifugal effects (see Section 1.1.3), Y02 was required
for both electronic states. It was not necessary to include a rotational correction of γ. Later
fluorescence experiments allowed to continue the description of the rotational spectrum
beyond N ′ = 100 and Y04 was introduced during that phase.
With the P and R bands adequately characterized, the available LIF spectra were used

to extend the model description from the (0–0) band to the (0–1) band. As described in
Section 4.4, the rotational parameters of this band are slightly different from those of the
(0–0) band. Accordingly, Y′′11 was used in the model to allow for a vibrational dependence
of the rotational constant and Y′′10 was added to describe the vibrational energy. The
thermal emission spectrum was used to assign lines around the laser-induced fluorescence
lines in the (0–1) band. The process of adding emission lines was iterated as described for
the (0–0) band.
With knowledge of the rotational branches of the first two vibrational levels of the

ground state, new experiments were conducted with the laser tuned to frequencies of (1–0)
lines. They produced fluorescence lines in the (1–0), (1–1) and (1–2) bands (see Figure 3.3
for an illustration). Similar experiments in the bands labeled (2–0) and (3–0) in Figure 4.1
yielded no perceptible fluorescence and were discontinued.
The known differences ∆fRP for v′′ = 0 and v′′ = 1, were used for the assignment of

the rotational quantum numbers and spin states and more Dunham parameters were
introduced. They include Y′10 and further corrective terms to describe the differences
throughout the vibrational levels. Furthermore, γ was noticeably different in the (0–k)
and (1–k) bands and for that reason, a vibrational dependence of γ, γ′10 , was added to
the model. The spin-rotation parameters γ′′00 and γ′′10 needed to be introduced as well
and were found to be uncorrelated to the spin-rotation constants used for the (2)2Σ+ state.
The effect of γ is not noticeable in one ∆fRP observation, but due to the large number of
∆fRP included in the fit, an influence of the spin-rotation coupling in the X(1)2Σ+ levels
emerged.

5.2 Energy Level Coverage

The quantum number assignment of many lines from the thermal emission spectrum could
be confirmed with LIF spectra. Figure 5.1 lists the energy levels that were addressed via
laser experiments. This includes the excited transitions, fluorescence lines and rotational
satellites. The ground state was fitted with only differences between such lines. All
combinations of lines from a LIF spectrum were used to create difference data (see
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Figure 5.1: A list of all levels in the (2)2Σ+ state (a) and X(1)2Σ+ (b) states for which
transitions were observed in a LIF spectrum. The F1 and F2 states are shifted vertically to make
them all visible. For the excited states in (a), the observed rotational satellites are also listed
along the vertical direction: for example,

∣∣∣(2)2Σ+, v′ = 0, N ′ = 43,F1
〉
has one satellite point in

the positive direction, so at least one transition from |(2)2Σ+, v′ = 0, N ′ = 44,F1〉 was observed
in the P or R branches of the (0–0) and/or (0–1) band.

Section 5.4 below). An excitation in the (0–0) band with four relevant lines, one from
each P and R branch of the (0–0) and (0–1) bands, would yield six frequency differences.
They include differences ∆fRP for each vibrational band and the vibrational spacing of
two rotational transitions in different bands and thus are distributed over a large energy
range. The v′′ = 0 rotational ladder is well covered with N ′′ ranging from almost zero to
over 100. The v′′ = 1 rotational ladder has more gaps, especially for low N ′′, and for the
v′′ = 2 level, a N ′′ range of about 60 was observed. The addressed levels with v′ = 0, 1
have very similar N ranges due to the selection rule (1.3.7).

5.3 Deviations from the Dunham model in the (2)2Σ+ state

There are large ranges of N ′ for which the observed transition frequencies have considerable
deviations from frequencies calculated with the Dunham model. They cannot reasonably be
described by a large number of Dunham parameters. Transition lines with v′ = 1, N ′ > 70
were not included in the fit of the (2)2Σ+ parameters, as will shortly be discussed. Figure 5.2
shows the difference of the observed and calculated frequencies for each assigned transition
when plotted against N ′. These deviations occur consistently in all bands with the same
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Figure 5.2: Deviations (observed frequency minus predicted frequency) from the Dunham model
for transitions with v′ = 0 and v′ = 1. The thickness of the grey bar around zero represents an
uncertainty interval of 0.02 cm−1. Large perturbations centre around different N ′ for F1 and F2.
For the rotational levels with v′ = 1, a trend to negative deviations is seen for N ′ > 70 because
transitions with these N ′ were not be included in the Dunham fit.

quantum number v′. The upper part of Figure 5.2 shows transitions from the (1–0), (1–1)
and (1–2) bands and the lower part transitions from the (0–0) and (0–1) bands.
The v′ = 0 plot in Figure 5.2 suggests that the observed transition lines generally agree

with the Dunham model up to N ′ ≈ 90. The difference of the observed and modelled
frequency of a transition is mostly within the uncertainty for the observed line. (The band
head lines, around N ′ = 12, have a considerably higher experimental uncertainty as most
lines because they cannot be disentangled.) There are, however, interruptions by several
resonance-like shapes. These shapes will from here on be referred to as ‘perturbations’.
Likewise, the description of the v′ = 1 bands is adequate for N ′ between 50 to 60. The
perturbations also lack data points. There appears a larger disruption in the v′ = 1 levels
after N ′ ≈ 60, which seems to resolve with even higher N ′. This disruption is followed
by an other perturbation. Beyond this perturbation, the Dunham model predicts higher
transition frequencies in the v′ = 1 bands than observed. According to the observed
frequency differences from the LIF spectra, the electronic ground state is well described.
Thus, the (2)2Σ+ energy levels are calculated higher by the model than observed.
The latter phenomenon can be explained because the deviant lines were not taken into

account for the fit. Especially the N ′ between the two large perturbations around N ′ = 70
and N ′ = 90 with v′ = 1 could not be considered to be undisrupted. Without data for the
upper electronic level for this range of N ′, the Dunham parameters could not be adapted
and the extrapolation from the available N ′ range proved to be insufficient to describe the
high N ′ of the v′ = 1 ladder. Table 5.1 lists the N ′ that were excluded from the Dunham
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fit.

Table 5.1: Ranges of rotational quantum numbers N ′ that were excluded in the Dunham fit
due to being perturbed. Quantum numbers in parentheses lie within sharp perturbations, the
other in extended perturbations. The range of all observed N ′ is given for reference. Note that
for F2, the lowest assigned rotational level in v′ = 1 has N ′ = 49 and its transitions appear not
to be perturbed.

v′ = 1
F1

observed 40-63 74-89 99-109
perturbed 40-48 59-109 (77)

F2
observed 49-63 81,87
perturbed 61-87

v′ = 0
F1

observed 0-38 41-73 77-96 (81,82) 99-115
perturbed 28-50 (53) 68-84 (82) 91-115 (102-103)

F2
observed 2-40 45-74 81-99 105-111
perturbed 30-51 (53-55) 94-111 (106-108)

5.3.1 Regularities of the Deviations

Following the rotational branches of the (0–0) band from low N ′ at N ′ ≈ 30 and from
high N ′ at N ′ ≈ 50a towards N ′ = 40, the distance between neighbouring lines decreased
in a regular fashion when approaching N ′ = 40, in contrast to the behaviour predicted by
equations (1.4.2). This observation can be visualized with the lower left part of Figure 5.2.
The observed transition frequencies are higher than calculated with the Dunham parameters
for N ′ ≈ 30 towards 40 and similarly are lower than calculated for N ′ ≈ 50 towards 40.
Furthermore, the intensity of emission lines drops considerably with proximity to the

centre of a perturbation. Some lines could not be found and identified in the thermal
emission spectrum and there are gaps in the data set for the perturbed regions (see
Figure 5.2). Figure 5.3 compares the intensity distribution of thermal emission lines from
the (0–0) and (1–0) bands with the distribution calculated with equation (1.4.5). (The
latter distribution is a good first-order approximation for the intensity of a rotational
transition line and an average for P and R lines, as discussed in [Her50, pp. 124]) The
fitted line amplitude A from equation (3.1.2) was used for the intensity. Because of this
choice, intensities in Figure 5.3 tend to be overvalued for lines that could not be fitted
alone. Especially lines with low N ′ near the (0–0) band head have too high intensity values.
Nevertheless, a systematic loss of intensity can be detected in the perturbed regions, as
seen in Figure 5.2.
The next perturbation of the (0–0) branches sets in at N ′ ≈ 68. By tentatively

extrapolating from the Dunham parameters known at that point and taking into account
the systematic deviations from equations (1.4.2), the beginning of this perturbation could
be mapped. Due to the decreasing intensity and stronger shift in frequency, line assignment
could not be continued beyond N ′ ≈ 70 without further laser experiments.
All these observations appear also in the (0–1) band; lines with a given N ′ deviate in

the same manner as (0–0) lines with the same N ′.

aThe deviations occur at slightly different N ′ for the F1 and F2 systems.
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Figure 5.3: Intensities of thermal emission lines in the (0–0) and (1–0) bands compared with
an ideal intensity distribution calculated with Y′′01 (see text). Interruptions can be seen at the
positions of perturbations, as seen in Figure 5.2. Line intensities can be exaggerated for lines
that are superimposed with others. For high N ′, the (1–0) lines do not follow the calculated
distribution as well as the (0–0) lines, as the calculation was done without vibrational corrections.

A similar behaviour was noticed in the (1–0) band: in this band, the starting point from
LIF spectra was in the range of N ′ = 50 to 60. Proceeding to assign lines according to
the Dunham model was straightforward until perturbations were encountered. This was
mirrored in the other v′ = 1 bands.
These observations lead to the conclusion that the energy levels in the (2)2Σ+ state

are perturbed. Figure 5.2 shows the deviations plotted against N ′(N ′ + 1), which gives
the energy scale to first order. The perturbations appear to be evenly spaced in energy.
This hints at only one perturbing electronic state whose levels regularly cross those of the
(2)2Σ+ state.

5.3.2 Utilizing Fluorescence Experiments

The perturbations presented a substantial obstacle in the survey of the rovibrational
spectrum. The combination of shifted transition frequencies and decreasing intensity made
assigning the rotational lines in the thermal emission spectrum error-prone. Due to the
amount of affected N ′, a large extrapolation step is necessary to identify lines further up
the branches that seem to follow a regular pattern again. This requires a time-consuming
trial-and-error approach. Furthermore, weak lines within the perturbed region can easily
be mistaken for lines from other, less intense vibrational bands or from the other spin
system. A misassignment would lead to a slightly shifted data point in the perturbed
plot presented in Figure 5.2, the authenticity of which cannot be tested. Weak lines
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that coincide with other lines can also easily elude the analyst. All of this leads to large
information gaps for the perturbed regions.
In such a situation, much can be gained from LIF experiments. Since the perturbations

appear to take place in the upper electronic state, the ∆fRP are presumably unaffected.
This was utilized in two ways:
First, by looking over the thermal emission spectrum, unperturbed sequences of lines were
identified by checking the intensity and spacing of the peaks. In the (0–0) band, such
lines were found beyond the second large perturbation with N ′ ≈ 85. Laser excitations
of some of those peaks allowed to estimate the rotational quantum numbers from the
known rotational constant B′′v . These new data led to improved Dunham coefficients that
allowed to assign lines from the emission spectrum near the excited lines, as described
in Section 5.1. With this knowledge, the second perturbation could be mapped from the
other side (i.e. N ′ ≈ 85 towards 75) and a new perturbation, starting at N ′ ≈ 90 was
encountered. This improved model describes the v′ = 0 levels in Figure 5.2 relatively well
up to N ′ ≈ 90. In the (1–0) band, the same approach failed. Outside the already known
part of the spectrum, no sufficiently regular patterns were found and experiments at lines
with high intensity or the band head yielded no noticeable fluorescence. Also, excitations
in the band head did not lead to the observation of fluorescence.
The second use of the laser experiments is the assignment of perturbed lines. By

systematically addressing unknown lines in perturbed parts of a rotational branch and
searching for induced fluorescence in the corresponding branch, rotational quantum numbers
could be assigned to both lines simultaneously by comparing their ∆fRP with a calculated
one. This allowed narrowing the data gap near the centre of perturbations considerably.
Because fluorescence lines also occur in other bands with the same v′, several otherwise

non-assignable spectral lines could be assigned at once. In accordance with the emission
spectrum, the fluorescence lines get weaker, the more a line is perturbed. Occasionally
it turned out that a missing line is obscured by another line from a different rotational
branch or vibrational band, which would not have been noticed without the fluorescence
analysis. However, for strongly perturbed lines (which are very weak and have an at that
time unpredictable frequency shift), no line to excite could be found and for some very
weak lines, no fluorescence was seen in the other branch of the same band.
Since the perturbations occur in the (2)2Σ+ state, these LIF spectra could also be used

for fitting the parameters of the electronic ground state. The large deviations near the
right side of Figure 5.2 represent only the deviation in the upper state, while the Dunham
model for the ground state agrees well with measured frequency differences.
By cataloguing lines with N ′ up to about 100 in the v′ = 0 band and N ′ ≈ 40 to 65 in the

v′ = 1 bands, most of the strong lines in the spectrum from 9090 cm−1 to 9570 cm−1 were
assigned. At this point, there was a number of yet unassigned lines between 9260 cm−1 to
9300 cm−1 with moderate intensity. These seemed to be either a continuation of the (0–0)
band beyond the perturbation at N ′ ≈ 97 or a continuation of the (1–1) band beyond the
perturbation at N ′ ≈ 70. Their weak intensity is consistent with that of the high N ′ for
the (0–0) band (compare Figure 5.3) and the general intensity of the (1–1) band.
A thorough survey of the peaks in question using laser experiments yielded lines from

both of these vibrational bands (with LIF lines also in other bands). They make up the
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data points with N ′ > 70 in the upper part of Figure 5.2, and most of the data with
N ′ > 100 in the lower part.
The deviations of these data in Figure 5.2 suggests that none of their (2)2Σ+ levels

can be assumed to be unperturbed. Thus, they were only used to fit X(1)2Σ+ Dunham
parameters.

5.3.3 Irregularities of the Deviations

The perturbations depicted in Figure 5.2 introduce a seemingly systematic frequency shift
of the transition lines when compared with a Dunham description and get stronger for
higher N ′, as can seen by their amplitude (magnitude of deviation) and the size of the
data gaps. The next two chapters will discuss them in detail.
Apart from these observations, there are other peculiarities not so obvious from Figure 5.2.

There exist smaller, more local perturbations, spanning 2 or 3 N ′. This can be seen best
in the v′ = 0 part around N ′ = 82 for F1 and N ′ = 85 for F2. Smaller perturbations
are near N ′ = 55. There are similar disruptions around N ′ = 103 for F1 and N ′ = 107
for F2 and around N ′ = 76 in the upper part of the figure. These latter observations
have to be regarded with care, however, due to the large disruption of the plot by the
neighbouring large perturbations. These local, sharp perturbations appear to follow the
larger perturbations with an equidistant offset in the energy scale and their amplitude
seems to correlate with the amplitude of the larger perturbations.
A curious finding was that those LIF spectra for which lines affected by the small

perturbations were excited have a higher amount of rotational satellite lines than other
LIF spectra (see Figure 5.1). One fluorescence line with a quantum number N ′ could have
satellites with up to N ′ ± 5 for these lines. Others have usually N ′ ± 1 or N ′ ± 2 while
most LIF spectra showed no rotational satellites. This might hint at a different scattering
behaviour of the (2)2Σ+ states near the sharp perturbations. However, this is based on a
small data set and could be merely coincidental.
A further notable oddity is the discrepancy in the number of F1 and F2 observations. The

majority of laser experiments led to an assignment of an F1 transition. Most experiments
were conducted to map the perturbed regions of the spectrum and hence this disparity
is more apparent there: when comparing the gaps in the perturbations in the F1 and F2

systems in Figure 5.2, the F2 gaps are noticeable larger. No lines could be found in the
thermal emission spectrum that would make good candidates for the missing F2 lines.
This would imply that perturbed F2 transitions are generally weaker that perturbed F1

transitions and that the F2 system is more affected by the perturbation.
For two large spectral ranges, there were almost only F1 transitions assigned: the regions

with N ′ between about 74 to 89 and 99 to 106 in the v′ = 1 bands. The first range of N ′
has two pairs of laser experiments that yielded the same ∆fRP for two different excitation
frequencies. These double observations of the same ∆fRP led to the conclusion that the
excited line that is higher in frequency belongs to F1 and the other to F2

b.
The group of lines with N ′ > 98 and v′ = 1 turned out to be only one spin system and

the ∆fRP gave a consecutive series of N ′. The choice of F1 was taken here because the

bThis convention was established in Section 4.3.1.
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deviation of this group is consistent with the trend towards larger negative deviations of
the aforementioned group (compare Figure 5.2). An assignment of F2 would shift these
data towards positive deviations by around 3.5 cm−1, centred around a deviation of zero.
This is a possible scenario, but it would imply a more complex deviation pattern of the
v′ = 1 rotational energies.
Due to the encountered perturbations, the Dunham model proved to be insufficient for

faithfully describing the (2)2Σ+ state and therefore the observed emission spectrum.

5.4 Fit of the Electronic Ground State

Since the deviations described in the previous section all originate from the (2)2Σ+ state,
the X(1)2Σ+ state can still be described with the Dunham series. Using the LIF spectra,
the frequency difference between transition lines with the same upper state describe energy
differences of rovibrational levels in the electronic ground state. For example, from the six
identified lines seen in Figure 3.3 the rotational constants B0, B1 and B2 can be found
from the three PR pairs and the vibrational energy spacing can be obtained from the
frequency difference of the three P or the three R lines. For a Dunham fit of the ground
state alone, only frequency differences ∆f between lines with a common upper state were
used. The six exemplary lines in Figure 3.3 yield (6− 1) · 6/2 = 15 frequency differences.
All of them contain information of the rotational or vibrational spacing of the involved
X(1)2Σ+ levels or a linear combination thereof.
Since the laser frequency could be measured with more accuracy by the wavemeter than

the lines observed with the FTS, all ∆f data were recorded using the laser frequency as
reference. Most laser experiments were conducted in the (0–0) or (0–1) bands, however, and
confining the data to frequency pairs containing a laser line would put a disproportionate
weight on the energy distances to the v′′ = 0 and v′′ = 1 levels. To compensate this
weighting (and because the uncertainty advantage from using only laser line frequency
pairs is minor), a data set was created from the LIF spectra that contained all differences
of the observed frequencies of each LIF spectrum. In order to completely eliminate any
(2)2Σ+ information, no frequency differences including fluorescence of rotational satellites
(with would mean different N ′) were used in this data set because they contain information
about the energy splitting in the upper electronic state. The result of the linear fit is
presented in Table 5.2.

Table 5.2: Dunham and spin-rotation parameters for the X(1)2Σ+ state of 7Li88Sr in Hund’s
case (b). The parameters allow an accurate description for levels with N ′′ < 116 for v′′ = 0, 1
and 35 ≤ N ′′ ≤ 100 for v′′ = 2. All values are given in cm−1.

Y0n Y1n Y2n γ0n γ1n n

0 1.830781(39)× 102 −3.1018(17) × 100 8.18(37) × 10−3 −5.04(11)× 10−4 0
2.074024(45)× 10−1 −3.4164(18) × 10−3 −5.724(78) × 10−5 - - 1
−1.08317(50) × 10−6 −3.540(19) × 10−8 −6.628(71) × 10−9 - - 2

- - - - - 3
−2.309(15) × 10−16 −1.1953(51) × 10−16 - - - 4

To correctly model the energy differences of transitions with N ′ & 100, Dunham para-
meters up to m = 2 and n = 4 were necessary. Certain fit parameters were systematically
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excluded while fitting the same data set to find the minimal necessary number of paramet-
ers that describe the observed frequency differences. It became apparent that the Ym3

parameters could be omitted, and that the Ym4 parameters sufficed to describe levels with
high and intermediate N .
The rotational parameters Y01, Y02 and Y04 are highly correlated with each other.

The vibrational parameters Y10 and Y20 are also correlated. Several, but not all, of the
mixed parameters have a relatively high correlation with one or more of the vibrational
parameters, but only a small correlation with the rotational parameters. While the
experimental uncertainty was too high to resolve the spin-rotation splitting given by
equation (1.1.3) with the measured frequency differences, the large number of observations
gave rise to a distinction between F1 and F2 lines, so that both γ00 and γ10 were required
to find a satisfying description. These two spin-rotation parameters do not show correlation
with each other nor with the Dunham parameters.
The uncertainties given in Table 5.2 are taken from the linear fit of the Dunham

parameters. A total of 1657 frequency differences were fitted, giving one weighted standard
deviation of σ = 0.25. The maximum relative deviation of a difference (i.e. (∆fobs −
∆fcalc)/δf) is 2, while 99.64 % of observations have a value of 1 or lower, which means
that they are well described within their given uncertainty.
For a set of independent data points with appropriate uncertainties, the value of σ

should be close to 1. Therefore, the assumption of either the independence of the data or
the estimation of the uncertainties does not hold. The uncertainties were estimated with
at least 0.02 cm−1c, according to the Doppler width as discussed in Section 3.2.2 and given
in Figure 3.5. However, a LIF spectrum with n lines (n− 1 fluorescence lines and one laser
line) for an upper state |v′, (2)2Σ+, N ′,Fi〉 gives (n− 1) · n/2 line pairs for the fit of the
ground state. These will have different combinations of rotational and vibrational energy
spacings, which means that they are not all independent of each other. To compensate
the effect of the interdependent data, their uncertainties could be adjusted until their
average increase in uncertainty gives a more reasonable value for σ and thus more realistic
uncertainties of the fitted parameters, which can be expected to be about four times higher
on average.
Adapted uncertainty values would give the same minimum in the parameter space of the

fit and therefore the same results. The parameters found with the fit would only change
if the uncertainty distribution of the data points would be changed by assuming other
lower bounds for the uncertainties of the data. The data set contains indeed individual
frequency difference data with a higher uncertainty than the stated lower bounds. This is
due to the fact that especially weak laser-induced fluorescence lines have a higher frequency
uncertainty. The majority of data have, however, an uncertainty of the lower bounds given
here (see Figure 3.5 (b)) and the uncertainty distribution, and therefore the fit results,
would be very similar with an other lower bound for the uncertainties.

cFor frequency differences, 0.04 cm−1 were assumed. This is a very cautios estimation since the uncertainty for
the difference of two independently measured frequencies can be assumed to be

√
2 · 0.02 cm−1 ≈ 0.028 cm−1.
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Chapter 6

Coupling of Electronic States

The description of the LiSr spectrum with the Dunham model is only adequate for the
X(1)2Σ+ state. The (2)2Σ+ state features systematic deviations from the Dunham model,
as described in Section 5.3. These deviations assume a shape well known from the simple
model of two coupled quantum states: when the matrix representation of a two-state
Hamiltonian has an off-diagonal element d, i.e. when two states |ψ1〉 and |ψ2〉 are coupled
by an interaction of strength d, the eigenstates of the system, |ψ+〉 and |ψ−〉, will have
an energy difference of at least 2d. The deviation of |ψ±〉 from |ψi〉 is largest when the
uncoupled states |ψi〉 grow close in energy. This is illustrated in Figure 6.1. Assuming

0

E1 |ψ1〉

|ψ2〉

|ψ+〉

|ψ−〉
2d

energy difference

en
er
gy

Figure 6.1: Avoided crossing of two coupled states |ψ1〉 and |ψ2〉 (dashed lines). The eigenstates
are |ψ+〉 and |ψ−〉 (solid lines), with changing amplitudes of |ψ1〉 and |ψ2〉.

|ψ1〉 to represent the rotational states of (2)2Σ+, the observed systematic perturbations in
Figure 5.2 can be explained with another state that couples to (2)2Σ+. The positions and
shapes of the (avoided) crossings are determined by the difference of the rotational constants
of the two electronic states. The other state crosses from below (as |ψ2〉 in Figure 6.1) if
its rotational constant is larger than that of the (2)2Σ+ state. The perturbations would
centre around the crossing points of the uncoupled states. Furthermore, the contribution
of different electronic states to the resulting eigenstates could explain the intensity drop
in the spectrum. Such a drop would occur if the state that mixes with the (2)2Σ+ state
would have a lower transition probability to in X(1)2Σ+ than (2)2Σ+ has.
According to the ab-initio calculations (see Figure 1.1), the only state that is energetically

close to the v′ = 0, 1 levels in the (2)2Σ+ state around 10000 cm−1 is the (1)2Π state with
moderately high vibrational levels vΠ. The two theoretical papers [Gop+13; Pot+17] report
a small transition dipole moment for (1)2Π–X(1)2Σ+. Furthermore, [Pot+17] predicts a
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low transition probability for such high vΠ and low v′′ levels in the X(1)2Σ+ state.
Figure 6.2 demonstrates how the form of a deviation plot, like in Figure 5.2, changes

when a simple coupling, as in Figure 6.1, is not modelled correctly. The plotted points
in Figure 6.2 represent the deviations of the observed (2)2Σ+ (=̂ |ψ1〉) levels from the
eigenenergies of the coupled states with the larger (2)2Σ+contribution. The analogous data
points corresponding to (1)2Π (= |ψ2〉) deviations are not plotted because the (1)2Π state
could not be observed. Note that the label of (2)2Σ+switches from the higher to the lower
eigenenergies after the avoided crossing. Figure 6.2 (a) displays the deviation when no
coupling is taken into account. The curve looks like the |ψ+〉 curve to the left, and the |ψ−〉
curve to the right of the crossing point in Figure 6.1. Figure 6.2 (b) illustrates how the
form of the plot is changed when the coupled system is modelled incorrectly. The relative
slope, i.e. the difference of the slope of |ψ1〉 and |ψ2〉 in Figure 6.1, of the coupling partner
|(1)2Π〉 (=̂ |ψ2〉) is different in each column and the crossing point of the energy levels is
further shifted to the right in each row. The data is given for different assumed coupling
strengths d′. The modelled deviation generally changes sign or is overcompensated when
the coupling is assumed too strong. Note that the greatest differences between the graphs
are near the singularity. Because of this, recognizing if and how exactly the crossing levels
are modelled incorrectly is not possible when no data is available in this region.
Since a coupling between the (2)2Σ+ and (1)2Π states is the most likely explanation for

the perturbations, this chapter will formulate the general coupling scheme between 2Π
and 2Σ+ states. It is oriented on [LF86], where some of the required matrix elements are
explicitly given.
The Hamiltonian of the coupled system consists of the parts

Ĥcoupl = Ĥel + Ĥvib + Ĥrot + ĤSO + ĤSR. (6.0.1)

The electronic part Ĥel of the Hamiltonian contributes the appropriate electronic energy
Te and the potential energy curves (see Section 1.1.1). The vibrational part Ĥvib describes
the vibration of the nuclei, with the vibrational energy as discussed in Section 1.1.2.
They are included in the Dunham energies as defined in equation (6.4.4) and will not be
discussed separately in this chapter. The other terms represent the nuclear rotation (Ĥrot),
spin-orbit coupling (ĤSO) and spin-rotation coupling (ĤSR). They will be examined and
evaluated separately.
The matrix elements of the operators between the electronic and rotational wave functions

can be written as a product of αΛ′S′Σ′

Λ S Σ
(R), which depends on the internuclear distance

R, and a function f(J, S,Σ,Λ,Ω) of only the angular momenta. The different rotational
quantum numbers were explained in Section 1.1. The matrix elements of the different
operators Ĥ i are then a product of the form αΛ′S′Σ′

Λ S Σ
(R)× f(J, S,Σ,Λ,Ω). In the simplest

case, αΛ′S′Σ′

Λ S Σ
(R) is given by the overlap integral of two vibrational states multiplied by

the appropriate interaction strength of the electronic states under discussion. In contrast
to the Franck-Condon factors introduced in Section 1.3, the overlap integral can also be
negative.
The Hamiltonians will be given in units of wavenumbers, with the understanding that

all obtained values need to be multiplied by hc to convert them to a dimension of energy.
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0

0

energy difference

E
±

−
E

1
(a)

crossing
not
shifted d = 0

crossing
shifted
by d/10
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by 2d

d′ < d d′ = d d′ > d
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Figure 6.2: A deviation plot for one visible state |ψ1〉 of a coupled system is strongly dependent
on assumptions about the second, invisible state |ψ2〉. (a) E± − E1 for states as in Figure 6.1.
(b) The difference between the modelled and the correct deviation (coloured points) changes
when an erroneous model is applied. Each column shows the effects on a different assumed slope
for |ψ2〉 (too low, correct, too high); the rows show the effect of shifting the assumed crossing
point (correctly modelled in the first row, then with growing deviation to the correct one). The
deviations are plotted for the assumed coupling strength d′ set lower (green), equal to (violet) and
higher (blue) than the correct strength d. The vertical scale of the graphs in (b) is different than
that of (a) to better illustrate the different cases. The first graph in the middle row additionally
displays the plot of (a) again for reference. All graphs in (b) have the same scale.
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6.1 States

Because [LF86] discusses the coupling in Hund’s coupling case (a), this basis will be
adopted for the following discussion of the perturbations. The relations

J, e←→ N + 1/2 for F1 (6.1.1a)
J, f︸︷︷︸
(a)

←→ N − 1/2 for F2︸ ︷︷ ︸
(b)

(6.1.1b)

from Section 1.1.4 are used to convert between Hund’s cases (a) and (b). To account for
the e/f symmetry, the mapping

∣∣(NS)J = N + 1/2
〉←→|J, e〉 with parity (−1)J−1/2 = (−1)N (6.1.2a)∣∣(NS)J = N − 1/2
〉←→|J, f〉 with parity (−1)J−1/2 = −(−1)N (6.1.2b)

is used. Appropriate basis states are then
∣∣v, J, S = 1/2, Σ = ±1/2, Λ = 0,±1, Ω = ±1/2,±3/2

〉
or ∣∣v, J, S = 1/2, Σ = 1/2, Λ = 0, 1, Ω = 1/2, 3/2, e/f

〉
.

The different combinations of positive and negative Σ and Λ give the following six states:

|S,Σ,Λ,Ω〉
Λ

-1 0 1

Σ
-1/2

∣∣1/2,−1/2,−1,−3/2
〉 ∣∣1/2,−1/2, 0,−1/2

〉 ∣∣1/2,−1/2, 1, 1/2
〉

+1/2
∣∣1/2, 1/2,−1,−1/2

〉 ∣∣1/2, 1/2, 0, 1/2
〉 ∣∣1/2, 1/2, 1, 3/2

〉
Here, Λ, Σ and Ω in the term symbols are signed to indicate the orientation of the angular
momenta ~L, ~S and ~J with respect to the molecular axis. The physically relevant states
are properly expressed as a linear combination of the basis states:

|2Σ+
1/2, J〉 := 1√

2

( ∣∣J, 1/2, 1/2, 0, 1/2
〉± (−1)J−1/2 ∣∣J, 1/2,−1/2, 0,−1/2

〉 )
(6.1.3a)

|2Π1/2, J〉 := 1√
2

( ∣∣J, 1/2, 1/2,−1, 1/2
〉± (−1)J−1/2 ∣∣J, 1/2,−1/2, 1,−1/2

〉 )
(6.1.3b)

|2Π3/2, J〉 := 1√
2

( ∣∣J, 1/2, 1/2, 1, 3/2
〉± (−1)J−1/2 ∣∣J, 1/2,−1/2,−1,−3/2

〉 )
(6.1.3c)

Each of these states comes as a energetically degenerate pair. The sign ± corresponds
also to the eigenvalue of the parity operator, i.e. ±1. Including the e/f index, the states
can be written as:

|2Σ+,e/f
1/2 , J〉 := 1√

2

( ∣∣J, 1/2, 1/2, 0, 1/2
〉± ∣∣J, 1/2,−1/2, 0,−1/2

〉 )
(6.1.4a)

|2Π e/f
1/2 , J〉 := 1√

2

( ∣∣J, 1/2, 1/2,−1, 1/2
〉± ∣∣J, 1/2,−1/2, 1,−1/2

〉 )
(6.1.4b)

|2Π e/f
3/2 , J〉 := 1√

2

( ∣∣J, 1/2, 1/2, 1, 3/2
〉± ∣∣J, 1/2,−1/2,−1,−3/2

〉 )
(6.1.4c)

The latter set of states obey the symmetry relations (6.1.2). As discussed in Section 1.1.4,
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for a 2Σ+ state all F1 states have e symmetry and all F2 states have f symmetry (see also
Figure 1.2). The matrix elements need to be evaluated for all relevant combinations of the
basis states. For reasons of clarity, the |J〉 part of the states (6.1.3) and (6.1.4) will be
omitted in the following sections because there are no matrix elements that couple states
with different J .

6.2 Spin-Orbit Interaction

The Hamiltonian describing the spin-orbit interaction is

ĤSO = A ~L~S = A

2 (L̂+Ŝ− + L̂−Ŝ+) + A L̂zŜz, (6.2.1)

where ~L is the angular momentum of the electrons and A is the interaction strength. Since
A can have different values in matrix elements between different electronic states, the
constants AΣ, AΠ and AΣΠ are introduced, the first two for the (2)2Σ+ or (1)2Π state
alone and the third for non-diagonal matrix elements evaluated with both states.

Diagonal Elements

Since Λ and Σ are the projections of ~L and ~S on the internuclear axis, their matrix elements
are

〈Λ,Σ|A L̂zŜz |Λ,Σ〉 = A · ΛΣ, (6.2.2)

which evaluates to the following matrix elements:

〈2Σ+,e/f
1/2 |A L̂zŜz|2Σ+,e/f

1/2 〉 = AΣ · 0 (6.2.3a)

〈2Π e/f
1/2 |A L̂zŜz|2Π e/f

1/2 〉 = −AΠ/2 (6.2.3b)

〈2Π e/f
3/2 |A L̂zŜz|2Π e/f

3/2 〉 = AΠ/2 (6.2.3c)

Off-Diagonal Elements

The coupling part L̂±Ŝ∓ requires the conditions

∆Λ = ±1, ∆Σ,= ∓1 ∆Ω = 0 (6.2.4)

or otherwise yields zero. The off-diagonal terms can be calculated via

〈S,Λ,Σ| L̂±Ŝ∓ |S,Λ± 1,Σ∓ 1〉 =
√
L(L+ 1)− Λ(Λ± 1)

√
S(S + 1)− Σ(Σ∓ 1)

(6.2.5)
if L is an exact quantum number. Because only the projection of ~L is known, the
expectation values 〈L̂±〉 have to be estimated. With S = 1/2, Σ = ±1/2, they are

〈
vΠ, 1/2,Λ,±1/2

∣∣A/2 L̂±Ŝ∓∣∣vΣ, 1/2,Λ± 1,∓1/2
〉

= 〈vΠ|AΣΠ/2|vΣ〉
√
L(L+ 1)− Λ(Λ + 1)

√
3/4 + 1/4

= 〈vΠ|AΣΠ/2|vΣ〉
√
L(L+ 1)− Λ(Λ + 1) · 1,

(6.2.6)
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but only if L is a good quantum number. In principle, the value of AΣΠ may change with
the internuclear distance R. It is, however, doubtful that the small number of observed
perturbations allows to find an adequate model for this dependency. So the assumption is
made here that AΣΠ is independent of R and thus

〈vΠ|AΣΠ|vΣ〉 = 〈vΠ|vΣ〉AΣΠ =: VΣΠ · AΣΠ. (6.2.7)

Here, the symbol VΣΠ is defined for the overlap integral of a vibrational (2)2Σ+ and a
vibrational (1)2Π state. With equation (6.2.6), a constant p = 〈L̂±〉 〈Ŝ∓〉 is defined, so
that

p · VΣΠ · AΣΠ = 〈L̂±〉 · 〈Ŝ∓〉 · VΣΠ · AΣΠ. (6.2.8)

Because 〈Ŝ∓〉 = 1, p depends on 〈L̂±〉, which has to be determined by the experiment.
Taken together, the interaction matrix has the following elements:

|vΣ,
2 Σ+,e/f

1/2 〉 |vΠ,
2 Π e/f

1/2 〉 |v′Π,2 Π e,f
3/2 〉

〈vΣ,
2 Σ+,e/f

1/2 | p · VΣΠ · AΣΠ/2
〈vΠ,

2 Π e/f
1/2 | p · VΣΠ · AΣΠ/2 −AΠ/2

〈vΠ,
2 Π e/f

3/2 | AΠ/2

Couplings of the (1)2Π state to electronic states other than the (2)2Σ+ state are here
ignored. Their effect can be considered negligible due to the considerable energy distance
to those states, as can be seen from Figure 1.1. (In contrast, (3)2Σ+ levels would likely
show couplings to the (2)2Π as well as the (1)2Π states, depending on the strength of the
overlap integrals.) Figure 1.1 suggests furthermore that the asymptotes of the (2)2Σ+ and
(1)2Π states are either Li(2S) + Sr(3P) or Li(2P) + Sr(1S), so L = 1 is a reasonable starting
value. With this, equations (6.2.7) and (6.2.8) give

p =
√

2. (6.2.9)

Because p is not precisely known, the product [p · AΣΠ] cannot be disentangled to yield
AΣΠ. Therefore, the parameter to be determined is [p · AΣΠ].

6.3 Spin-Rotation Interaction

The interaction of the spin ~S and the angular momentum of the molecular framea ~R is

ĤSR = γ ~R~S = γ( ~J − ~L− ~S)~S = γ ~J ~S − γ~L~S − γ~S 2. (6.3.1)

This makes use of the fact that in Hund’s case (a),

~R = ~J − ~L− ~S. (6.3.2)

aThe conventional symbols for the molecular rotation ~R and the internuclear distance R are quite similar. The
former is written as a vector operator and the latter as a scalar throughout this thesis.
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The coupling constant γ can be different for the (2)2Σ+ and (1)2Π states. The last two
terms in equation (6.3.1) are readily obtained: ~S 2 gives only diagonal elements with

γ · S(S + 1) = γ · 3/4 (6.3.3)

and γ~L~S is of the same form as ĤSO in Section 6.2, only with γ in place of A. The
constants γΣ, γΠ and γΣΠ are used in analogy to AΣ, AΠ and AΣΠ

Diagonal Elements of γ ~J ~S

The projections of ~J and ~S on the internuclear axis are Ω and Σ, respectively. The matrix
elements of γ ĴzŜz are then

〈2Σ+,e/f
1/2 |γ ĴzŜz|2Σ+,e/f

1/2 〉 = γΣ/4, (6.3.4a)

〈2Π e/f
1/2 |γ ĴzŜz|2Π e/f

1/2 〉 = −γΠ/4 (6.3.4b)
and

〈2Π e/f
3/2 |γ ĴzŜz|2Π e/f

3/2 〉 = γΠ · 3/4. (6.3.4c)

Off-Diagonal Elements of γ ~J ~S

The off-diagonal part Ĵ±Ŝ∓ is only non-zero if the conditions

∆Λ = 0, ∆Σ = ∓1, ∆Ω = ±1 (6.3.5)

are fulfilled. In the reference frame of a non-rotating molecule, the eigenvalues of Ĵ± are
like those of Ĵ∓ in a laboratory frame ([LF86], Section 1.3.1) and therefore

〈Σ,Ω| Ĵ±Ŝ∓ |Σ± 1,Ω± 1〉 =
√
J(J + 1)− Ω(Ω∓ 1)

√
S(S + 1)− Σ(Σ∓ 1). (6.3.6)

Applying this to all combinations of basis vectors yields the non-zero matrix elementsb

〈2Σ+,e/f
1/2 |γ/2 Ĵ±Ŝ∓|2Σ+,e/f

1/2 〉 = ±γΣ/2 · (J + 1/2) (6.3.7a)

〈2Πe/f
3/2| γ/2 Ĵ±Ŝ∓ |2Πe/f

1/2〉 = γΠ/2 ·
√
J(J + 1)− 3/4. (6.3.7b)

Together with the matrix elements (6.3.4) this gives the matrix

|2Σ+,e/f
1/2 〉 |2Π e/f

1/2 〉 |2Π e,f
3/2 〉

〈2Σ+,e/f
1/2 | γΣ/4 · [1± (2J + 1)]

〈2Π e/f
1/2 | −γΠ/4 γΠ/2 ·

√
J(J + 1)− 3/4

〈2Π e/f
3/2 | γΠ/2 ·

√
J(J + 1)− 3/4 γΠ · 3/4

bThe matrix element (6.3.7a) results from a coupling between the states
∣∣S = 1/2,Σ = +1/2,Λ = 0,Ω = +1/2

〉
and

∣∣S = 1/2,Σ = −1/2,Λ = 0,Ω− 1/2
〉
.
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with all diagonal and off-diagonal matrix elements of ~J ~S. The 2Σ+
1/2 diagonal element

depends on the state’s e/f symmetry. The upper sign is for states with e and the lower
sign for states with f symmetry.
The value of γΠ in the matrix element 〈vΠ,

2 Πe/f
1/2|γ ~J ~S|v′Π,2 Πe/f

3/2〉 is considered to be
independent of R, so that the overlap integral VΠ = 〈vΠ|v′Π〉 can be factored out as in
equation (6.2.7).

γ ~R~S

The whole spin-rotation interaction is obtained by adding the various matrix elements
according to equation (6.3.1):

|vΣ,
2 Σ+,e/f

1/2 〉 |vΠ,
2 Π e/f

1/2 〉 |v′Π,2 Π e,f
3/2 〉

〈vΣ,
2 Σ+,e/f

1/2 | −γΣ/2 · [1∓ (J + 1/2)] −p · VΣΠ · γΣΠ/2

〈vΠ,
2 Π e/f

1/2 | −p · VΣΠ · γΣΠ/2 −γΠ/2
γΠ/2 · VΠ×√
J(J + 1)− 3/4

〈v′Π,2 Π e/f
3/2 |

γΠ/2 · VΠ×√
J(J + 1)− 3/4

−γΠ/2

Note that, using the relations (6.1.1), the diagonal matrix element for |2Σ+,e/f
1/2 〉 is exactly

as given by equation (1.1.3).

6.4 Nuclear Rotation

The Hamiltonian for the rotation of the nuclei is

Ĥrot = B ~R 2 (6.4.1)

with a rotational constant B. This was already used in Section 1.1.3. In the following, BΛ

is used to indicate the electronic state for which B is the rotational constant.
In Hund’s case (b), the rotation is written as ~R = ~N − ~L. Because L̂ does not give good

quantum numbers, all terms with non-zero expectation values of L̂ are usually incorporated
in the electronic energy or the Dunham parameter Y00. Other terms do not affect the
energy of an isolated 2Σ+ state but could allow coupling to other states. The rotational
energy can thus adequately be given by equation (1.1.2), with N as the rotational quantum
number, when no coupling is considered.

6.4.1 ~R in Hund’s Case (a)

In Hund’s coupling case (a), using equation (6.3.2) and rearranging terms allows to merge
some terms in a meaningful manner:

~R 2 = ~J 2 + ~L 2 + ~S 2 + 2(~L~S − ~J~L− ~J ~S)
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= ~J 2 + ~L 2 + ~S 2 + 2(L̂zŜz − ĴzL̂z − ĴzŜz)
+ (L̂+Ŝ− + L̂−Ŝ+)− (Ĵ+L̂− + Ĵ−L̂+)− (Ĵ+Ŝ− + Ĵ−Ŝ+)︸ ︷︷ ︸

=:R̂±

(6.4.2)

The operator Ĥrot,± := BR̂± will be discussed in Section 6.4.2. The remaining terms
describe the rotational energies that can be expressed together with the energies of the
Hamiltonians Ĥel and Ĥvib from equation (6.0.1) by using the Dunham series:

〈J, S,Σ,Λ,Ω|R̂2|J, S,Σ,Λ,Ω〉
= J(J + 1) +

〈
L̂2
x + L̂2

y

〉
+ Λ2 + S(S + 1) + 2 (ΛΣ− ΩΛ− ΩΣ)

Λ = Ω− Σ= J(J + 1) + S(S + 1)− Ω2 − Σ2 + 1
2
〈
L̂+L̂− + L̂−L̂+

〉
(6.4.3)

The term 1/2 (L̂+L̂− + L̂−L̂+), associated with the electronic angular momentum, is
described by an expectation value summed over all L and depends on the electronic state.
It can, like in Hund’s case (b), simply be summarized with other constant energies to Y00.
When L is known, (L2

x + L2
y) + Λ2 can be replaced with L(L+ 1).

For the basis states, the Dunham energies are then defined by

EΛ
Dun := E(v, J) =

∑
m,n

YΛ
mn[v + 1/2]m[J(J + 1) + S(S + 1)− Ω2 − Σ2]n. (6.4.4)

The rotational term
〈
~R 2
〉
can be explicitly calculated with equation (6.4.3):

diagonal matrix element
of ~R 2 − R̂±:

2Σ+
1/2

2Π1/2
2Π3/2

L unknown J(J + 1) + 1/4 J(J + 1) + 1/4 J(J + 1)− 7/4

L = 1 J(J + 1) + 9/4 J(J + 1) + 5/4 J(J + 1)− 3/4

The difference between unknown L and L = 1 is due to the term 1/2 (L̂+L̂− + L̂−L̂+),
as explained above. The Dunham coefficients are different for the (2)2Σ+ and (1)2Π
states. Notably, the case (a)-coefficients for (2)2Σ+ differ from the case (b)-coefficients
since they have to describe the energy dependence of other quantum numbers. Adding
equation (6.4.9a) gives the same expression for the rotational term as in Hund’s case (b).
Accordingly, the energy of EΣ

Dun ∓BΣ(J + 1/2) can be calculated with the Dunham series
for case (b) without the terms for the spin-rotation coupling.

6.4.2 Rotational Coupling

The operator Ĥrot,± from equation (6.4.3) consists solely of raising and lowering operators
for different angular momenta. It is a correction to the Born-Oppenheimer approximation,
in which the nuclear motion is uncoupled from the electronic motion. It has three terms:

Ĥrot± = Ĥrot±
LS + Ĥrot±

L + Ĥrot±
S (6.4.5)
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Spin-Electron Interaction

The term Ĥrot,±
LS = BΛ(L̂+Ŝ− + L̂−Ŝ+) acts like ĤSO in Section 6.2, but without the

diagonal term. The only matrix elements are

〈2Πe/f
1/2| Ĥrot,±

LS |2Σ+,e/f
1/2 〉 = p ·BΣΠ. (6.4.6)

L Uncoupling

The term Ĥrot,±
L = −BΛ(Ĵ+L̂− + Ĵ−L̂+) is zero unless

∆Λ = ±1, ∆Σ = 0, ∆Ω = ±1. (6.4.7)

The eigenvalues of Ĵ ± and L̂± were discussed in equations (6.2.5) and (6.3.6). The matrix
elements are:

〈2Πe/f
1/2| Ĥrot,±

L |2Σ+,e/f
1/2 〉 = ∓ p ·BΣΠ · (J + 1/2) (6.4.8a)

〈2Πe/f
3/2| Ĥrot,±

L |2Σ+,e/f
1/2 〉 = −p ·BΣΠ ·

√
J(J + 1)− 3/4. (6.4.8b)

The upper and lower signs are again for states with e or f symmetry. As in Section 6.2,
the product [p ·BΣΠ] will be determined as a model parameter.

S Uncoupling

Ĥrot,±
S = −BΛ(Ĵ+Ŝ− + Ĵ−Ŝ+) is the non-diagonal part of ~J ~S and was already discussed

in Section 6.3. Its only contributions are

〈2Σ+,e/f
1/2 |Ĥrot,±

S |2Σ+,e/f
1/2 〉 = ∓BΣ · (J + 1/2) (6.4.9a)

and
〈2Πe/f

3/2| Ĥrot,±
S |2Πe/f

1/2〉 = −BΠ ·
√
J(J + 1)− 3/4. (6.4.9b)

The whole rotational matrix, including the Dunham energies, is:∣∣∣∣vΣ,
2 Σ+,e/f

1/2

〉 ∣∣∣∣vΠ,
2 Πe/f

1/2

〉 ∣∣∣v′Π,2 Πe,f
3/2

〉
〈
vΣ,

2 Σ+,e/f
1/2

∣∣∣∣ EΣ
Dun

∓BΣ(J + 1/2)
p · VΣΠ ·BΣΠ×
[1∓ (J + 1/2)]

−p · VΣΠ ·BΣΠ×√
J(J + 1)− 3/4〈

vΠ,
2 Π e/f

1/2

∣∣∣∣ p · VΣΠ ·BΣΠ×
[1∓ (J + 1/2)]

EΠ
Dun −BΠ

√
J(J + 1)− 3/4

〈
v′Π,

2 Π e/f
3/2

∣∣∣∣ −p · VΣΠ ·BΣΠ×√
J(J + 1)− 3/4

−BΠ
√
J(J + 1)− 3/4 EΠ

Dun

The value of BΠ in the matrix elements 〈vΠ,
2 Πe/f

1/2|Ĥrot|v′Π,2 Πe,f
3/2〉 with different vibrational

quantum numbers will be discussed on page 72.
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6.5 Coupling Matrix in the Hilbert Space vΣ, vΠ1/2, vΠ3/2

With all matrix elements known, they can be added together according to equation (6.0.1):∣∣∣∣vΣ,
2 Σ+,e/f

1/2

〉 ∣∣∣∣vΠ,
2 Π e/f

1/2

〉 ∣∣∣∣v′Π,2 Π e/f
3/2

〉
〈
vΣ,

2 Σ+,e/f
1/2

∣∣∣∣ EΣ
Dun ∓BΣ(J + 1/2)

−γΣ/2 ·
[
1∓ (J + 1/2)

] VΣΠ · p/2×
[
AΣΠ − γΣΠ +

2BΣΠ(1∓ [J + 1/2])
] −VΣΠ · p ·BΣΠ×√

J(J + 1)− 3/4

〈
vΠ,

2 Π e/f
1/2

∣∣∣∣ VΣΠ · p/2 ·
[
AΣΠ − γΣΠ +

2BΣΠ(1∓ [J + 1/2])
] EΠ

Dun−
1/2(AΠ + γΠ)

(VΠ · γΠ/2−B(v)
Π )×√

J(J + 1)− 3/4

〈
v′Π,

2 Π e/f
3/2

∣∣∣∣ −VΣΠ · p ·BΣΠ×√
J(J + 1)− 3/4

(VΠ · γΠ/2−B(v)
Π )×√

J(J + 1)− 3/4

EΠ
Dun+

1/2(AΠ − γΠ)

The upper signs are to be used for states with e symmetry and the lower sign for states
with f symmetry, that is, for F1 and F2 states, respectively. Figure 6.3 illustrates the
different couplings between the (2)2Σ+,e/f

1/2 , (1)2Π1/2 and (1)2Π3/2 states. This matrix can
be used for any given |vΣ, N, (2)2Σ+, F1/F2〉 state known from the spectrum. There are no
couplings to states with other J . The coupling strength to (1)2Π states with a given vΠ

depends on the overlap integral and the energy distance between the states.
Using this coupling scheme between (2)2Σ+ and (1)2Π states, attempts to model the

perturbations observed in Section 5.3 can be made. To this extend, several parameters
have to be determined such that the coupled |v′, J ′, (2)2Σ+,e/f

1/2 〉 states conform with the
observed transition frequencies.
The diagonal matrix element 〈vΣ,

2 Σ+,e/f
1/2 | Ĥcoupl |vΣ,

2 Σ+,e/f
1/2 〉 is equal to the energy EDun∓

BΣ(J + 1/2) from the Dunham fit described in Section 5.1 plus the term −γΣ/2 ×[
1∓ (J + 1/2)

]
from ĤSR, which corresponds precisely to equation (1.1.3) in Hund’s case

(b). Therefore, this matrix element can be calculated by using the Dunham expansion
from Section 1.2 and the hitherto obtained (2)2Σ+ Dunham coefficients.
The (1)2Π Dunham energies are unknown but highly relevant because they determine

the energy difference between the coupling basis states. Only the most influential, that is
YΠ

00, YΠ
10 and YΠ

01, should be estimated at the beginning of a deperturbation attempt to
keep the number of parameters low. According to equation (1.2.2c), YΠ

01 also approximates
BΠ. To keep the coupled state model simple, both the 2Π1/2 and 2Π3/2 states are assumed
to have the same R-dependence of their potential energy curves. In this case, they
have the same Dunham coefficients and the overlap integrals between |vΠ,

2 Πe/f
1/2〉 and

|v′Π,2 Πe/f
3/2〉 are given by δvΠv′Π

. They are energetically separated by (AΠ − γΠ). The
spin-rotation coupling is usually much weaker than the spin-orbit coupling, so this term
can be merged to one parameter AΠ. The rotational constant BΠ in the matrix element
〈vΠ,

2 Πe/f
1/2|Ĥcoupl|v′Π,2 Πe/f

3/2〉 depends on the vibrational quantum numbers of the coupling
states and will be written as B(v)

Π . How B
(v)
Π should be chosen depending on the closest

2Π levels will be illustrated on page 72.
The values of p (see equation (6.2.8)) and the different overlap integrals have to be
determined, too. While p ∝ 〈L̂±〉 is assumed to be independent of the molecular vibration,
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Figure 6.3: Illustration of the couplings of |(2)2Σ+, vΣ, J, e/f〉 to the |(1)2Π1/2, vΠ1/2 , J,
e/f〉

and |(1)2Π3/2, vΠ3/2 , J,
e/f〉 states by the different operators described throughout this chapter.

Quantum numbers for the 2Σ+ states are given in Hund’s cases (a) and (b). Red energy levels
and arrows represent the F1 system and blue ones depict F2. See also Figure 1.2

the overlap integrals can differ greatly for different involved vibrational states. The
perturbations seen in Figure 5.2 involve different vΠ because the rotational energies of
the (1)2Π state rise faster with J than those of the (2)2Σ+ state, as was discussed at the
beginning of this chapter. A reasonable value for each of these overlap integrals has to be
found.
Similarly, the constants AΣΠ, γΣΠ and BΣΠ, differ from those of the uncoupled states

and appropriate values for them have to be determined. The first two parameters are only
encountered together, so they can be combined into

dΣΠ := AΣΠ − γΣΠ. (6.5.1)

The terms dΣΠ/2 and BΣΠ were fitted without the common factor of p. Neither coupling
parameter is known and both have to be found by deperturbing the 2Σ+ states. Including
p would add a further fit parameter that could not easily be disentangled from the
others. Accordingly, the products [p · dΣΠ] and [p ·BΣΠ] are the parameters to be found.
The remaining parameter, γΠ in the matrix element 〈vΠ,

2 Πe/f
1/2|Ĥcoupl|v′Π,2 Πe/f

3/2〉, can be
expected to be small compared to BΠ. It will be neglected in the following considerations.
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This last step also eliminates also the need for the overlap integral VΠ.
Appendix B gives an overview of the implementation of the deperturbation model

derived here.

Coupling Between 2Π States

Couplings between the (1)2Π states have an indirect effect on the observed (2)2Σ+ levels.
The model used to describe the perturbations by the (1)2Π state includes four (1)2Π states
for every (2)2Σ+ state with given vΣ and J : the two |vΠ,

2 Π1/2, J〉 and the two |vΠ,
2 Π3/2, J〉

states that are closest in energy to the |vΣ,
2 Σ+

1/2, J〉 state (see Figure 6.4). With the

Figure 6.4: When regarding the two |vΠ,
2 Π1/2〉 and the two |v′Π,2 Π3/2〉 levels closest to a

|vΣ,
2 Σ+

1/2〉 level, there are two possible arrangements, (a) and (b). Couplings between levels
with the same v are written as B(v)

Π , for levels with neighbouring v they are written as B̃(v)
Π .

Dashed lines represent levels that are not included in the model.

choice of states employed here, the states |vΠ,
2 Π1/2, J, e/f〉 and |vΠ ± 0, 1,2 Π3/2, J, e/f〉

can be coupled by (γΠ/2 − B
(v)
Π ) ·

√
J(J + 1)− 3/4, as depicted in Figure 6.4. For the

case of couplings between states with |v,2 Π1/2, J, e/f〉 and |v ± 1,2 Π3/2, J, e/f〉 (Figure 6.4
(a)), an approximation B̃(v) for the effective rotation constant BΠ has to be found. (γ
is usually much smaller than B and will be neglected.) In general, B is the expectation
value 〈v|~/(2µR2)|v〉 of the radial part of the nuclear motion (compare equation (1.1.2)). In
a rotating molecule with rotational quantum number J and two vibrational states, the
diagonal elements of the matrix

|v〉 |v + 1〉
〈v| E(v) + ~/(2µR2) · J(J + 1) ~/(2µR2) · J(J + 1)

〈v + 1| ~/(2µR2) · J(J + 1) E(v + 1) + ~/(2µR2) · J(J + 1)

give the rotational energies BvJ(J + 1) and Bv+1J(J + 1). The actual eigenvalues of the
matrix differ slightly from these energies and can be approximated by the second-order
term

Eeig − Ediag ≈
[ 〈v|~/(2µR2)|v + 1〉]2 · [J(J + 1)

]2
E(v + 1)− E(v) . (6.5.2)



6.6 Simplified Coupling Model 73

The expression (6.5.2) is proportional to [J(J + 1)]2. In the case of a non-rigid rotor, there
is a second-order correction proportional to [J(J + 1)]2 (see [Her50] and equation (1.2.2d)),
which can be used to get an approximate value for 〈v|~/(2µR2)|v ± 1〉. By equating equa-
tion (6.5.2) with the absolute value of the Kratzer relation (1.2.2d) (expressed in proper
spectroscopic notation), it follows that

[ 〈v|~/(2µR2)|v + 1〉]2
E(v + 1)− E(v) ·

[
J(J + 1)

]2 =
∣∣∣∣∣−4B3

e

ω2
e

· [J(J + 1)
]2∣∣∣∣∣

⇔ B̃(v) := 〈v|~/(2µR2)|v ± 1〉 ≈
√

4B3
e

ω
, (6.5.3)

where E(v + 1)− E(v) ≈ ω, according to equation (1.1.1). The value of B̃(v)
Π can be used

to approximate the coupling strength between |v,2 Π1/2, J, e/f〉 and |v ± 1,2 Π3/2, J, e/f〉
states.
Couplings between states |v,2 Π1/2, J, e/f〉 and |v ± 2,2 Π3/2, J, e/f〉 will be neglected even

if both states are included in the model (see Figure 6.4 (b)) because these couplings are
weak due to the large energy difference.

6.6 Simplified Coupling Model

The (1)2Π state is only roughly known from the ab-initio calculations, which makes
the description of all perturbations challenging. For this reason, only the best-charted
perturbed region, centred around N ′ ≈ 40 in the v′ = 0 level of the (2)2Σ+ state, was
approached in a first step of iterations, as will be discussed in the next chapter. To
simplify the problem further, the Ω = 3/2 component of the (1)2Π state was neglected
and only the two |vΠ, (1)2Π1/2, J, e/f〉 states closest to a state |v′, (2)2Σ+

1/2, J
′, e/f〉 will be

used. These simplifications greatly reduce the number of fit parameters to arrive at a first
approximation of the major coupling and (1)2Π parameters.
Merely three overlap integrals are needed within this scope. The energetic offset given by
half of the spin-orbit coupling constant AΠ can also be incorporated into the parameter
YΠ

00 of the (1)2Π state. The simplified coupling matrix is:∣∣∣∣vΣ,
2 Σ+,e/f

1/2

〉 ∣∣∣∣vΠ,
2 Π e/f

1/2

〉
〈
vΣ,

2 Σ+,e/f
1/2

∣∣∣∣ EΣ
Dun ∓BΣ(J + 1/2)−

γΣ/2×
[
1∓ (J + 1/2)

] p/2 · VΣΠ · [dΣΠ +
2BΣΠ(1∓ [J + 1/2])

]
〈
vΠ,

2 Π e/f
1/2

∣∣∣∣ p/2 · VΣΠ · [dΣΠ +
2BΣΠ(1∓ [J + 1/2])

] EΠ
Dun

Due to the lower number of parameters and states, the simplified model is more manageable
than that presented on page 70. The knowledge gained by the simplified model can then
be used to start the deperturbation with the extended coupling model. The next chapter
will describe the steps taken to apply first the simple and then the extended models to the
experimental data and discuss what can be learned about the (1)2Π state.
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Chapter 7

Characterizing the Observed Pertubations

The coupling model from the previous chapter was applied to resolve the perturbations
described in Section 5.3.
Only the perturbation, around N ′ = 40 in the v′ = 0 level of the (2)2Σ+ state, was

characterized at first with the simplified model discussed in Section 6.6. The thus gained
parameters were used with extended transition data sets to describe several perturbations
at once. The deperturbation model was iteratively extended to more perturbed regions in
the spectrum until a consistent modelling of all observed was achieved.
The coupling matrix given in Section 6.5 was calculated for every observed level of

the (2)2Σ+ state. The level energies were obtained by adding the observed transition
frequencies to the energies of the corresponding (unperturbed) X(1)2Σ+ levels, which were
calculated with the Dunham model. A non-linear least-squares fit was used to find effective
parameters that parametrize the observed levels with minimal overall deviation between
observed and calculated level energies. The MINUIT software [JR75] was also used for
this fit. Appendix B describes the minimization procedure in more detail.

7.1 One Perturbation

The perturbation around N ′ = 40 in the v′ = 0 level has the smallest data gap (see
Figure 5.2) and was therefore the best choice for the description of a single perturbation.
The rotational levels with quantum numbers up to N ′ = 65 were used for the initial fit

data set. They cover the first large perturbation but are not significantly influenced by
the second large perturbation (compare Table 5.1). The deviations of the (2)2Σ+ energies
from the Dunham fit can be seen in Figure 7.1 (a). The energies are plotted in Figure 7.2
together with the energy of their two closest (1)2Π1/2 levels. The (1)2Π3/2 states are not
considered in the simple model employed here. The (1)2Π state was not directly observed
and thus no accurate parameters for its description were available. Starting values were
taken from the ab-initio parameters given by [Gop+13]. As the (1)2Π levels were not
known precisely enough, the first step of the deperturbation process was to shift the
2Π energies such that their rotational ladder crosses the 2Σ+ ladder in the region of the
strongest perturbation, i. e. the data gap around N ′ = 40. The ab-initio calculations
suggest that the perturbing (1)2Π vibrational levels are around vΠ = 15. For the purpose
of the deperturbation, the 2Π levels were described with the Dunham parameters YΠ

00
(incorporating the spin-orbit coupling constant AΠ), YΠ

10, YΠ
02, YΠ

01 and YΠ
11. The higher-

order description of the vibrational levels proportional to (v + 1/2)m with m > 2 (see
Section 1.1.2) was ignored because only a few adjacent vibrational levels are actually
needed to describe the perturbation. The exact vΠ quantum numbers are not important,
so vΠ was set to 15 according to the ab-initio potential energy curves. The parameter
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Figure 7.1: Deviations (observed frequency - modelled frequency) for (2)2Σ+ levels with v′ = 0
up to N ′ = 65. The energy was calculated with the Dunham series (a) and the coupling to the
(1)2Π1/2 state with the simple coupling model (b). The thickness of the grey bar represents an
uncertainty interval of 0.03 cm−1. The data near the band head around N ′ = 12 have generally
a higher uncertainty than 0.03 cm−1. The data around N ′ = 53 for F1 and N ′ = 55 for F2 are
perturbed by a state not included in the model. Adapted from [Sch+17b].

YΠ
11, taken from [Gop+13], was used to rudimentarily model the non-equal energy spacing

of the relatively high vibrational states. This parameter was kept fixed during the fit
procedures.
The Dunham parameters for the 2Π state were manually adjusted to put the crossing in

the right energetic vicinity. Also, only one intersection of the vΣ = 0 rotational ladder with
the chosen vΠ ladders in the desired N ′ interval should occur. This was the case with the
rotational constant taken from the ab-initio calculations, so YΠ

01 was kept in the first step.
To completely evaluate the matrix given in Section 6.6 for every observed state
|(2)2Σ+, v′ = 0, N ′, e/f〉, the coupling parameters [VΣΠ · p · dΣΠ] and [VΣΠ · p ·BΣΠ] needed
to be determined. Because the overlap integrals and the spin-orbit parameter are unknown,
the common factor VΣΠ · p was set to

√
2 according to equation (6.2.8) at the beginning

of the fit. Three vibrational 2Π levels were considered in the model in total (they are
shown in Figure 7.2), whereas each individual 2Σ+ state was modelled with only two 2Π
states. Figure 7.2 shows that the involved vibrational 2Π levels change with the crossing
of the rotational ladders, which introduces an unsymmetrical effect on the (2)2Σ+ levels.
All overlap integrals 〈vΣ = 0|vΠ, vΠ ± 1〉 were assumed to be equal for the present case.
For the greatly perturbed observed levels, the contribution of the two next-nearest levels
with vΠ ± 1 is less than that of the closest vΠ level due to the higher energetic difference.
Therefore, the influence of the two overlap integrals corresponding to the next-nearest
states to the fit can be expected to be small and setting them to the same value as the
overlap integral of the principal perturbing state should not have a large effect on the fit
quality. In that way, the number of fit parameters could be reduced by incorporating the
overlap integrals in the common factor.
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Figure 7.2: Energy levels of the v′ = 0 rotational states of the (1)2Σ+
1/2 state with their two

closest (1)2Π1/2 states. The vibrational quantum numbers of the 2Π levels are not known.
Adapted from [Sch+17b].

By alternatively fitting the Dunham parameters for the 2Π state and the three coupling
parameters, the deviation from the observation could be reduced. Subsequently fitting
also the Dunham parameters for the (2)2Σ+ state yielded an even better description. The
coupling parameter BΣΠ was found to not critically affect the fit quality and was set to
zero. This left the product [VΣΠ · p/2× dΣΠ] as the only coupling parameter.
Because of the different perturbation of the F1 and F2 states, both systems were

deperturbed independently at first. The thus derived parameters were applied to describe
also the respective other system to compare the similarity of the fits. The parameters
from the F1 fit deperturbed also the F2 system sufficiently well, hence they were used as
starting points for a fit of the combined system.
New (2)2Σ+ levels were constructed using the unperturbed level energies from the

coupling model along with deperturbed transition frequencies. These were used in a new
fit of Dunham parameters for the (2)2Σ+-X(1)2Σ+ system. The new parameters were then
used for a new perturbation fit. This process was iterated until the change in the new
coefficients was in the order of uncertainty of the fit parameters, which means that the
Dunham fits and the perturbation fits had converged. The deviations (observed frequency
- modelled frequency) of the coupled system are shown in Figure 7.1 (b) and the energies of
the (2)2Σ+ and (1)2Π levels are shown in Figure 7.2. The fit achieved a weighted standard
deviation of σ = 0.49. There are still small deviations around N ′ = 53 (F1) and N ′ = 56
(F2). These hint at a local perturbation that might come from the 2Π3/2 state that was
disregarded in the employed model (compare Table 5.1). For this reason, these data points
were not used in the present fit.
It is possible that the coupling parameter BΣΠ affects the observed splitting of the (2)2Σ+

F1 and F2 levels because both BΣΠ and γΣ have the same J dependence (see the matrix
in Section 6.5). As a result, the coupling to the 2Π state could significantly influence the
energy splitting when compared to an uncoupled 2Σ+ state. Allowing combinations of BΣΠ

and γΣ to be fitted while fixing the other parameters showed that γΣ alone is sufficient
for the description of the observed transition frequencies. The introduction of BΣΠ does
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not considerably change the magnitude of γΣ. According to this finding, the observed
spin-rotation splitting in the (2)2Σ+ state can not be explained locally with the coupling
to the (1)2Π state.
This perturbation was modelled with the coupling parameter [p · dΣΠ], the (2)2Σ+

Dunham parameters including the spin-rotation coupling constant and the (1)2Π Dunham
parameters YΠ

00, YΠ
10 (fixed), YΠ

20 (fixed), YΠ
01 and YΠ

11 (fixed). The fixed parameters
were taken from [Gop+13]. The effect of BΣΠ is negligible, as was previously discussed.
Results of the deperturbation described in this section have been published together with
a description of the X(1)2Σ+ state in [Sch+17b].

7.2 Multiple Perturbations

The whole data set contains transitions with v′ = 0, N ′ < 120 and v′ = 1, N ′ < 110. See
e.g. Table 5.1 for an overview of the perturbed regions.
To simplify the fit procedure, the v′ = 0 and v′ = 1 levels were at first considered

separately. The deviations, as seen in Figure 5.2, show a trend towards negative values
for the v′ = 1 levels, which means that the calculated (2)2Σ+ levels are too high at larger
N ′. To compensate this trend, every observed v′ = 1 line was used for a fit of upper state
Dunham parameters. That fit used also the lines that were excluded from the (2)2Σ+ fit
described in Chapter 5 because they were considered perturbed (see Table 5.1). In that
way, an averaged rotational constant B1 for the (2)2Σ+ state was estimated.
The (2)2Σ+ vibrational constant needed to be adjusted to allow for the energy spacing of

the perturbations. The parameter YΠ
02 was introduced to the model as a variable to allow

a variation in the vibrational spacing in the perturbing 2Π state. To keep the effects of the
correlation of this parameter with YΠ

00 and YΠ
01 manageable, levels with low vΠ quantum

numbers were chosen to cross (2)2Σ+, which implies that YΠ
00 was set much higher as in

Section 7.1.
The value of the coupling parameter [VΣΠ ·p·dΣΠ] from the fit described in Section 7.1 was

used as a starting value for that parameter. For both v′ systems, the Dunham parameters
for the 2Π1/2 state were first changed manually to have the crossings at roughly the right
positions. As can be seen from Figure 5.2, the stronger perturbations have larger data
gaps. The 2Π1/2 crossings and overlap integrals were chosen partially by interpolating the
energy ladder of the 2Σ+ states and partially by monitoring the effect on the deviations
between the observations and the model.
Because [VΣΠ · p · dΣΠ] could neither alone nor in conjunction with [VΣΠ · p ·BΣΠ] explain

the varying coupling strengths seen in Figure 5.2, the overlap integrals VΣΠ were adapted
manually for each perturbation while [p · dΣΠ] was fitted. Dunham parameters for only
the (1)2Π or the (2)2Σ+ state were later fitted separately along with [p · dΣΠ] while the
parameters of the other state were fixed. Both separate vibrational systems were then
fitted together in order to improve the agreement in the strongly perturbed regions to
improve the relative values of the overlap integrals. Only 2Π1/2 parameters were used for
these steps, because their large, direct influence is easier to predict than that of a 2Π
system consisting of two coupled states.
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Figure 7.3: Energy levels of the rotational states of the two vibrational levels of the (1)2Σ+
1/2

state and their two closest (1)2Π1/2 and (1)2Π3/2 states. The vibrational quantum numbers of
the 2Π levels are the same as in the deperturbation model. The lowest vibrational level in the
model was assigned to vΠ = 0.

The crossing points, relative overlap integrals and coupling constants found by deperturbing
the individual vibrational levels were used as guidance when modelling both v′ states
together. The rotational and vibrational constants of the 2Π state did not adequately
connect the perturbations of both v′ states with the 2Π1/2 rotational ladder. Attempts
to manually alter the (1)2Π Dunham parameters to position all crossings close to all
perturbation centres proved tedious due to the correlation of the rovibrational parameters.
To find an approximate parametrization of the (1)2Π levels, the Dunham parameters
determined by the Dunham fit (see Chapter 5) were used to calculate the energies of
(2)2Σ+ states, which, by interpolation, appear to be close to the crossings. With these
energies and appropriate quantum numbers for the (1)2Π states, a linear Dunham fit
was performed to find values for YΠ

00, YΠ
10, YΠ

20 and YΠ
01 that describe the rotational and

vibrational energy ladders of the (1)2Π state in order to include all crossings. Because of
the different perturbation centres of the F1 and F2 systems, this linear fit was conducted
for only the F1 system. For this system, the crossing positions were better known, as there
were more data points available. Furthermore, the most plausible results were achieved
when all v′ = 0 crossings were used to characterize the vibrational spacing, with one v′ = 1
crossing to find the rotational constant. Only crossings with data on both sides of the
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perturbation were considered for this procedure.
With the crossings set to plausible positions to explain the shape of the larger per-

turbations, the 2Π3/2 states were also included in the model in order to describe the
smaller perturbations. The coupling matrix with all couplings described in Chapter 6
was applied from this point on. It is explicitly given in Appendix B. To proceed with
the deperturbation, different groups of parameters were alternatively fitted while the
others were kept fixed. This approach restricts the parameter space searched by the fit
routine and avoids physically unrealistic parameter values, which leads to a faster and
more reliable fit. The parameter groups are, broadly: the coupling constants [p · dΣΠ], AΠ,
[p ·BΣΠ], the overlap integrals VΣΠ and the (2)2Σ+ and (1)2Π Dunham parameters. If it
seemed reasonable, only subsets or combinations of several parameter groups were fitted.
When a fit led to an improved description of the perturbations, the fitted parameters
were fixed and other parameters were set as variable in a following iteration step. It was
noticed during that phase that a better description of the couplings could be achieved when
the overlap integrals were allowed to be fitted automatically with the other parameters
instead of being iterated by hand. Couplings to the next-nearest vibrational states are
considered as well as couplings to the nearest vibrational state, so that overlap integrals of
the same vibrational states, but with different J , might occur. Since overlap integrals are
J-dependent, some overlap integrals (see Table 9.2) VΣΠ were modelled via

VΣΠ = Vconst + VJ × J(J + 1). (7.3.1)

Higher-order Dunham parameters were added as fit parameters only when the description
with the lower-order parameters needed to be expanded.
In this way of iteratively alternating between sets of fit parameters, the weighted

standard deviation (σ) value of the measured deviations could be reduced from σ ≈ 27.10
to σ = 0.79. The first value represents the weighted sum-of-squares of all deviations as
seen in Figure 5.2 and the latter represents the deviations of the deperturbed model as
seen in Figure 7.4.
The deperturbation model greatly reduces the deviations, from several cm−1 (see Fig-

ure 5.2) to less than 0.3 cm−1. As can be seen in Figure 7.4, the small deviations described
in Section 5.3.3 (the N ′ in parentheses in Table 5.1) can adequately be modelled with
couplings to the 2Π3/2 states. This result grants confidence in the found spin-orbit coupling
constant AΠ. The centres of the perturbations are, however, not perfectly described as they
show relatively large and erratic deviations. This indicates that the model is incomplete
or that the description of the crossing points could be improved. Since the shape of the
deviations is greatly affected by the crossing geometry (see Figure 6.2), the parameter
space might be too complex for the fit routine to sample.
A better parametrization of the perturbation centres might require a more sophisticated

approach. The next chapter will describe how the depterurbation model was used to
identify more lines, which were subsequently used to improve the model. In most cases,
not all lines in a perturbed region could be found, and due to this lack of data it is not
possible to describe the crossing points more accurately.
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Figure 7.4: Deviations from the deperturbation model for transitions with v′ = 0 and v′ = 1.
The perturbation centres still show noticeable deviations from the model. (a) Absolute deviations
(observed frequency - modelled frequency). The thickness of the grey bar represents an uncertainty
interval of 0.03 cm−1. (b) Absolute deviations divided by the individual frequency uncertainty of
each level’s energy. The grey bar represents a ratio of 1 or lower. The plots include data that
were obtained by the method described in Chapter 8.

7.4 Relative Overlap Integrals

The overlap integrals VΣΠ found with the deperturbation fit are only fit parameters that
locally modify the global coupling strength given by [p · dΣΠ], [p ·BΣΠ] and BΠ. However,
they can be substantiated by comparing them with overlap integrals from ab-initio works.
For this comparison, shown in Table 7.1, the variance of the fitted overlap integrals V fit

ΣΠ
was compared with that of ab-initio overlap integrals V calc

ΣΠ via their residual sum of squares

χ2 =
∑
i

(
a · V calc

ΣΠ,i − V fit
ΣΠ,i

)2
. (7.4.1)

The sum was taken over the eight overlap integrals that are well described by the fit.
To make the comparison for a specific choice of vΠ, the vibrational quantum numbers of
(1)2Π, as seen in Figure 7.3, were shifted to values around vΠ = 11. According to the
ab-initio calculations, these vibrational levels should be energetically close to the lowest
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Table 7.1: Comparison of overlap integrals between the (2)2Σ+ and (1)2Π potential curves
taken from the deperturbation fit (top of the table) and from [Pot+17] (row pairs numbered
with ‘vΠ + 6, 7, ...’). To the right, the residual sum of squares χ2 = ∑

i(a · V calc
ΣΠ,i− V fit

ΣΠ,i)2 is given
together with the value of a for which χ2 is minimized. The overlap integrals 〈vΠ = 0|vΣ = 0, 1〉
and 〈vΠ = 1|vΣ = 0, 1〉 were ignored for χ2 because the data allowed them not to be as well
described as the others.

vΠ χ2 a

1 2 3 4 5
vΣ = 1 0.50 5.66 3.63 2.10 0.87
vΣ = 0 2.52 1.43 0.74 0.37 0.20

vΠ + 6 vΣ = 1 2.11E-01 3.24E-01 3.68E-01 3.51E-01 27.31 6.0
vΣ = 0 3.74E-01 3.09E-01 2.36E-01 1.66E-01

vΠ + 7 vΣ = 1 3.24E-01 3.68E-01 3.51E-01 2.92E-01 16.17 7.6
vΣ = 0 3.09E-01 2.36E-01 1.66E-01 1.08E-01

vΠ + 8 vΣ = 1 3.68E-01 3.51E-01 2.92E-01 2.16E-01 8.56 9.6
vΣ=0 2.36E-01 1.66E-01 1.08E-01 6.46E-02

vΠ + 9 vΣ = 1 3.51E-01 2.92E-01 2.16E-01 1.44E-01 3.87 12.4
vΣ=0 1.66E-01 1.08E-01 6.46E-02 3.56E-02

vΠ + 10 vΣ = 1 2.92E-01 2.16E-01 1.44E-01 8.75E-02 1.33 17.1
vΣ = 0 1.08E-01 6.46E-02 3.56E-02 1.81E-02

vΠ + 11 vΣ = 1 2.16E-01 1.44E-01 8.75E-02 4.82E-02 0.25 25.2
vΣ=0 6.46E-02 3.56E-02 1.81E-02 8.49E-03

vΠ + 12 vΣ = 1 1.44E-01 8.75E-02 4.82E-02 2.41E-02 0.07 40.1
vΣ = 0 3.56E-02 1.81E-02 8.49E-03 3.68E-03

vΠ + 13 vΣ = 1 8.75E-02 4.82E-02 2.41E-02 1.09E-02 0.53 68.9
vΣ = 0 1.81E-02 8.49E-03 3.68E-03 1.43E-03

vΠ + 14 vΣ = 1 4.82E-02 2.41E-02 1.09E-02 4.40E-03 1.41 128.6
vΣ = 0 8.49E-03 3.68E-03 1.43E-03 4.67E-04

vΠ + 15 vΣ = 1 2.41E-02 1.09E-02 4.40E-03 1.55E-03 2.60 262.0
vΣ = 0 3.68E-03 1.43E-03 4.67E-04 1.24E-04

vΠ + 16 vΣ = 1 1.09E-02 4.40E-03 1.55E-03 4.82E-04 4.15 585.7
vΣ = 0 1.43E-03 4.67E-04 1.24E-04 4.29E-05

vΠ + 17 vΣ = 1 4.40E-03 1.55E-03 4.82E-04 1.48E-04 5.86 1458.5
vΣ = 0 4.67E-04 1.24E-04 4.29E-05 2.40E-05

vΠ + 18 vΣ = 1 1.55E-03 4.82E-04 1.48E-04 4.40E-05 7.23 4143.9
vΣ = 0 1.24E-04 4.29E-05 2.40E-05 1.66E-06
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vibrational levels of the (2)2Σ+ state (see Section 7.1). The shifts are given on the left
side of Table 7.1.
The magnitude of the overlap integrals is correlated with that of the coupling parameters,

therefore an absolute magnitude cannot be obtained from the fit. For this reason, a global
scaling factor a is introduced for the comparison. The overlap integrals depend on the
rotational quantum number N . For the overlap integrals calculated with the ab-initio
potential, the relative Franck-Condon factors did not vary much for different N , so the
ab-initio overlap integrals shown in Table 7.1 were calculated with N = 40 to best fit the
perturbation at vΣ = 0, J ′ ≈ 40. The value of a that minimizes χ2 is shown together with
χ2 to the right of Table 7.1. According to Table 7.1, the best match is for the mapping
vΠ → vΠ + 12± 1 and a scaling factor of 40± 19. For other vibrational quantum numbers,
the differences become much larger. This analysis agrees with the discussion in Section 7.1,
where the (1)2Π vibrational quantum number for the perturbation at vΣ = 0, J ′ ≈ 40 were
estimated to be around 15. It should be noted that, while a good agreement for the variance
of the overlap integrals in question can be found, the ab-initio overlap integrals decrease
with increasing vΠ as well as with increasing vΣ, whereas the fitted overlap integrals at the
top of Table 7.1 show a different behaviour. When the ab-initio (1)2Π potential is shifted
by circa 0.4Å towards lower internuclear distance R, the overlap integrals distribution is
qualitatively similar to that of the overlap integrals determined by the deperturbation
fit for a shift of vΠ → vΠ + 12. Table 9.4 shows that the (1)2Π equilibrium distance Re

estimated in this work is roughly 0.3Å smaller than that from [Pot+17]. This analysis
shows that the fitted overlap integrals are not in conflict with the ab-initio calculations,
even if the actual values of the (1)2Π vibrational quantum numbers are not known.
An other means to corroborate the deperturbation fit is provided by the spin-orbit

coupling. The value of the fitted (1)2Π spin-orbit coupling constant, AΠ ≈ dΠ, is around
156 cm−1. The spin-orbit coupling constant for Sr is close to 190 cm−1 and for Li it is much
smaller [San13]. According to Figure 1.1, the Sr 3P state corresponds to the asymptote of
the LiSr (1)2Π state and the coupling constant of the molecular state appears to have a
spin-orbit coupling constant that is similar in magnitude, albeit smaller, to that of the
asymptotic atomic state.
Furthermore, by using the approximate mapping between the vibrational quantum num-

bers vΠ used in the deperturbation and the quantum numbers in the ab-initio calculations
[Pot+17], the ab-initio overlap integrals can be used to estimate the mixed spin-orbit
coupling constant AΣΠ. For this, the fitted parameters are equated to the product of AΣΠ,
the ab-initio overlap integrals and an estimated value of p =

√
2 (see equation (6.2.9)):

V fit
ΣΠ · [p · dΣΠ]fit = V calc

ΣΠ ·
√

2 · dΣΠ (7.4.2)

The ab-initio potential energy curves allow to calculate overlap integrals of vibrational
states in the electronic (1)2Π and (2)2Σ+ states. The choice the vibrational states with
vfitΠ + 12 in the (1)2Π state and the lowest (2)2Σ+ vibrational states is taken here, as
discussed above. With the numerical data from Tables 7.1, 9.2 and 9.3, rearranging
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equation (7.4.2) yields

AΣΠ ≈ dΣΠ = V fit
ΣΠ

V calc
ΣΠ

[p · dΣΠ]fit√
2

= (196± 14) cm−1. (7.4.3)

The large uncertainty comes mainly from the different ratios of calculated and fitted
overlap integrals. For the calculation presented here, only pairs of overlap integrals from
the ab-initio work and the deperturbation fit with a ratio around a = 40.1 (compare
Table 7.1) have been used.
The mapping vΠ → vΠ + 11 leads to AΣΠ ≈ (131± 46) cm−1, again only with overlap

integral ratios around a = 25 (see Table 7.1).
These values for AΣΠ for both mappings have the same order of magnitude as AΠ or

ASr. The ab-initio overlap integrals were used with no uncertainty limits. Since relatively
high vibrational (1)2Π states are involved in their computation, small corrections to the
potential energy curves can have a considerable effect on the the overlap integral. Thus, the
AΣΠ values calculated here seem compatible with the other spin-orbit coupling parameters.

7.5 F1 and F2 Assignment

As shown in Figures 5.2 and 7.1, perturbations of the F2 levels appear at slightly higher
rotational quantum numbers N ′ than the perturbations of F1 levels. Figures 7.2 and 7.3
illustrate that the reason for this finding is that the F2 rotational ladders have a higher
energy than the F1 ladders and are therefore crossed at higher N ′ by the (1)2Π ladders.
As indicated in Section 4.3.1, the spin-rotation coupling constant γ was assumed positive
and, according to equation (1.1.3), the F1 levels therefore have higher energy in Hund’s
case (b). The transition to Hund’s case (a) switches the states’ energetic order of the levels
when they are plotted over J . To illustrate this: for the pair of functions

EJ,F1 = B(J − 1/2)(J + 1/2) + γ/2× (J − 1/2) (7.5.1a)
EJ,F2 = B(J + 1/2)(J + 3/2)− γ/2× (J + 3/2), (7.5.1b)

the following energetic order holds, since B is positive:

EJ,F1 > EJ,F2 if γ > 2B (7.5.2a)
EJ,F1 = EJ,F2 if γ = 2B (7.5.2b)
EJ,F1 < EJ,F2 if γ < 2B (7.5.2c)

The energetic order of two states with the same N depends on the sign of γ, but the
energetic order of two states with the same J depends on the magnitude of B as long
as γ < 2B. The spin-rotation coupling constant γ′00 is considerably smaller than the
rotational constant Y′01 ≈ Be. This finding is not affected by the much smaller higher-order
terms of both electronic states (see Table 9.1). The appearance of the perturbation is
according to the J order, which therefore allows assignment of the F1 and F2 labels. The
initial, arbitrary, assignment of the F1 and F2 systems, with F2 states having higher energy
in Hund’s case (a), is the correct one to explain the shifted perturbation positions.



84

Chapter 8

Expanding the Deperturbed Model

The perturbations seen in Figure 5.2 could be explained with the coupling between the
(2)2Σ+ and (1)2Π states. The previous chapter explained how parameters were found that
adequately model the positions of the observed perturbed lines due to such a coupling. The
present chapter will now describe how new lines were identified with the deperturbation
model and how the description of the thermal emission spectrum was further improved.

8.1 Identification of New Transition Lines

The results of the deperturbation in Chapter 7 describe the thus far assigned spectral lines
reasonably well, with some exceptions near the perturbation centres (see Figure 7.4). To
test the validity of the deperturbation model, the fitted parameters were used to predict
previously not known (2)2Σ+–X(1)2Σ+ transition frequencies, which were compared with
the thermal emission spectrum. Because there are gaps in the data used for the fit,
transitions involving the missing N ′ near the borders of these gaps were used to check the
predictive power of the model and identify new transition lines.
The data set was thus expanded towards the perturbation centres with new assigned

lines, which improved the description of the perturbations. Iterating this process a few
times allowed to identify heretofore unknown line series.
Figure 8.1 gives an overview of the complete data set used for the deperturbationa.

It distinguishes the data used for the deperturbation process discussed in the previous
chapter and the data added by extrapolating the model. See the figure caption for details.
A comparison with Figure 5.1 reveals that most of the added lines in the perturbed regions
are neighbouring other perturbed lines that are known from LIF spectra. This emphasizes
how crucial the laser experiments were to assign even moderately perturbed lines by
providing a reliable test of their rotational quantum numbers via equation (1.4.4). On the
other hand, a strongly perturbed line could previously not be recognized and so not be
targeted for a laser experiment either due to its high deviation from the regularly expected
frequency or because its intensity was so low that it could only be found with the more
accurate prediction of the deperturbed model.
There are several sets of newly found lines worth being discussed in order to demonstrate

the limits of the identification of new lines. The line series examined in the following are
partially mirrored in other bands (compare Figure 8.1). Only examples in the (0–0) and
(1–0) bands will be displayed here because they are the most dominant bands in their
spectral region, which facilitates tracking the rotational branches. The lines are labeled
with the Hund’s case (b) quantum numbers in the figures to keep the labelling concise.

aCompare Figure 5.1 for the previous data set.
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Figure 8.1: Overview of all transition lines that could be assigned to quantum numbers were
used in the deperturbation fit. The upper and lower line of a single colour in a band represent
the R or P line, respectively, that is associated with the indicated N ′. The filled symbols indicate
lines that were identified with the deperturbation model, while empty symbols represent the
data set at the beginning of the deperturbation. The solid and dashed vertical lines indicate the
perturbation centre of the 2Π1/2 and 2Π3/2 crossings, respectively.

8.1.1 Perturbation Around v′ = 0, N ′ = 40

The (0–0) P and R branches around N ′ = 40 are plotted in Figure 8.2. The distance of
consecutive assigned lines becomes smaller towards the perturbation centre. This can most
easily be seen when tracking the F1 R branch from the left side of Figure 8.2 (a). The line
sequences on both sides of the perturbation are disrupted by a large gap in the spectrum.
The calculated and observed F2 branches in Figure 8.2 (b) illustrate this fact best in the
P branch.
For the F1 R branch, the predicted R 38 line has higher frequency than the R 37 line.

They are relatively close to the band head, so the distance between two lines are smaller
than in the P branch (see equations (1.4.2)). Notice how the predicted R 37 line and its
counterpart, P 39, are to the right of the observed spectral lines, for which the assignments
are known from fluorescence experiments. In contrast, the R 38 line is predicted at a
frequency where no distinct peak could be identified in the thermal emission spectrum.
The corresponding P 40 line lies in a structure that is already explained by other lines.
The F1 R 39 line is predicted at a weak shoulder and can be assigned to a line within

the peak structure with the methods from Chapter 3. The P 41 line falls between two
large peaks and cannot convincingly be assigned to an observation. For these reasons, the
small data gap in the F1 rotational ladder could not be fully closed.
The larger gap in the F2 system could also not be closed completely, although more lines

were identified. The predicted R 41 line lies slightly to the right of the small peak to which
it was assigned. The P 43 line is predicted to the right of a large, already assigned peak.
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The correct P 43 line could be assumed to have a slightly lower frequency than predicted.
In the case of the R 41 line, this assumption is not in conflict with the observed spectrum.
However, no spectral peak can be found in the thermal emission spectrum for the shifted
P 43 line. The other lines are likewise coinciding with stronger, already assigned peak
structures and should not be assigned. The exception is P 45, which is predicted at a
shoulder of the F1 P 46 peak and was added to the data set.

8.1.2 Perturbation Around v′ = 0, N ′ = 75

Figure 8.3 depicts the (0–0) P and R branches around N ′ = 75. For the F1 system, the
previously missing lines with N ′ = 76, 77, 78 were identified via the predictions by the
model.
The F2 branches were tracked up to lines with N ′ = 77. The predicted R 77 line seems

to be close to the predicted R 76 line, while the P 79 line is predicted at a position
where there is no discernible peak in the spectrum. Thus, the peak between the predicted
frequencies for R 76 and R 77 is likely the R 76 transition line. This assumption is further
corroborated by the fact that both the R 76 and the P 78 lines are predicted at slightly
lower frequencies than the closest spectral peaks. The remaining F2 transition lines are
in general not predicted at spectral peaks. (Not all of the missing P lines are shown in
Figure 8.3 (b).) If one of the missing lines coincides with a peak, the associated P or R
line does not. Because both lines mirror the energy shift of the same level in (2)2Σ+, this
is a clear sign of a mere coincidence of the prediction with a spectral structure. There is a
peak to the left of the P 80 line and the R 78 line is predicted within an already assigned
structure. However, since the N ′ = 79 level is the first after the perturbation centre (as
can be seen from the gap in the predicted branches) and the modelling of the perturbation
is not perfect, the P 80 and R 78 line positions were deemed not to be reliable enough to
be used for further fits.
The F1 R 74 line was added to the fit data set, even though the line coincided with a

large peak that was already explained by other transition lines. The P 43 line in Figure 8.2
(b) was not added to the data set, although there the situation looks similar. This is
because the former line is predicted in the middle of a peak, whereas the latter line is
predicted near a peak’s foot. In the former case, the transition frequency would probably
lie somewhere within the peak. This could be taken into account with a larger uncertainty.
In the latter case, attributing a frequency from within the peak to the transition would give
a skewed data point. Furthermore, the P 43 line is directly neighbouring the perturbation
gap. Because the perturbation centres are in general not modelled well, this position raises
doubts regarding the quality of the prediction of this line. The R 74 transition frequency
is, however, corroborated by the arguably correct prediction of the R 73 line on the other
side of the perturbation gap and the P counterparts of both. Similarly, predicted lines
that coincide with already well described peaks were added to the data set if they are
reasonably far away from a perturbation centre, while predicted lines closer to centres
are more questionable. Whether to add a line or not needs to be decided case by case,
depending on their neighbouring lines or lines with the same upper quantum numbers.
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Figure 8.2: The R (a) and P (b) branches of the (0–0) band showing the perturbation at N ′
around 40. Assignments above the spectrum were determined with the deperturbation model;
those below the spectrum were taken from the data set used for the fit. The black data were
used for the deperturbation, the coloured lines with the mark (•) represent lines identified with
the deperturbation model. The N ′ labels with the circle (©) indicate lines with the strongest
shift in a line sequence. Labels are omitted for lines that are not relevant to the discussion.
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Figure 8.3: The R (a) and P (b) branches of the (0–0) band showing the perturbation at N ′
around 75. Assignments above the spectrum were determined with the deperturbation model;
those below the spectrum were taken from the data set used for the fit. The black data were
used for the deperturbation, the coloured lines with the mark (•) represent lines identified with
the deperturbation model. The N ′ labels with the circle (©) indicate lines with the strongest
shift in a line sequence. Labels are omitted for lines that are not relevant to the discussion.
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Figure 8.4: Transition lines with N ′ beyond 100 of the R branch of the (0–0) band. Assignments
above the spectrum were determined with the deperturbation model; those below the spectrum
were taken from the data set used for the fit. The black data were used for the deperturbation,
the coloured lines with the mark (•) represent lines identified with the deperturbation model.
Labels are omitted for lines that are not relevant to the discussion. No lines with N ′ > 120 were
calculated.

8.1.3 Perturbation and Turnaround for v′ = 0, N ′ > 100

Figure 8.4 displays the R branch of the (0–0) band for the highest assigned rotational
quantum numbers. The corresponding section of the P branch is superimposed by the
stronger (0–1) band and only a few new F2 lines could be found (see Figure 8.1). Both
the R and P branches turn back for rotational quantum numbers close to N = 120.
This behaviour is also predicted by the bare Dunham modelb. Only rotational lines
with N < 120 were used to fit Dunham parameters, but with observations close to the
turnaround, its position should be approximated well enough. (Like for the band head, the
exact turnaround position is different in P and R branches and the F1 and F2 systems.)
Since there is a perturbation in the (2)2Σ+ levels at quantum numbers near N ′ = 120, the
exact turning point is different for the F1 and F2 branches. Because of the turnaround
and the relatively strong perturbation, the line series are to some extend out of order. For
example, the F1 R 114 line has a higher frequency than the R 113 line. The R 114 line
was known from a LIF spectrum, so its rotational quantum number could be assigned via
the distance to the P line. The R 113 line was later known from the deperturbation model.
Due to the irregular spectral structure, the LIF experiments were immensely helpful.

bSimilar to the Fortrat parabola that depends on the difference of B′ and B′′, a so-called ‘turnaround’ of the
branches can appear due to centrifugal corrections to the rotational energy.
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The F1 branch could generally be completed, except for the R 116 transition, whose
predictions coincided with a strong line from the P branch (and whose corresponding P
line could not be found due to the (0–1) band), and except for the R 119 transition, whose
prediction does not fall near a spectral line.
In the F2 branch, there were not so many high quantum numbers assigned prior to the

deperturbation process. (Chapter 5 discussed that there were generally less observed F2

fluorescence lines.) The added F2 lines are well described by the model. Because the F1

lines with the same rotational quantum numbers were already used for the deperturbation,
the F2 prediction quality indicates that the spin-orbit coupling is well described. With
this coupling, the shift of the F2 lines can be explained with the deperturbation of the
F1 system. The F2 branch was not tracked as far as the F1 branch since the lines move
closer together due to the turnaround and, without the confirmation from the P branch,
they were not deemed reliable enough to be in the data set. The addition of lines via the
deperturbation model should be done very carefully because they are highly sensitive to
the coupling and thus will constrain the fit significantly. In cases where only few data
points are found, these might then dictate the fitted difference in the (2)2Σ+ and (1)2Π
rotational ladders for a perturbation, especially with lines close to a perturbation centre.
The P and R lines with N > 100 have relative low intensity. This is in agreement with

the calculation plotted in Figure 5.3. The (0–1) P lines, around 9100 cm−1 and lower, are
not even detectable from the thermal emission spectrum without the aid of fluorescence
experiments. The turning of the branches around N = 117 leads to lines with N & 120
being harder to discover because they are dwarfed by lines with N . 115 of the same
branches. As a consequence, a continuation of the rotational ladder beyond N = 120 from
the present thermal emission spectrum is unlikely.

8.1.4 Perturbation and Band Head for v′ = 1, N ′ < 47

The P and R lines with the lowest assigned rotational quantum numbers in the (1–0) band
are shown in Figure 8.5. The line assignment in the (1–0) band started from fluorescence
experiments around N ′ ≈ 50 beyond the left of Figure 8.5. How far towards the (1–0) band
head the assignment proceeded can be seen in Figure 8.1. The frequency shift and reduced
intensity due to a perturbation did not allow to advance to the band head, however.
When first predictions of the deperturbation model became available, some lines with

lower rotational quantum numbers were added to the data set. Notably, the lines belonging
to |N ′ = 44,F1〉 were not identified before the deperturbation. This level is close to a 2Π3/2

crossing, which leads to a local perturbation (compare Figure 9.1). The new lines were
then used for further deperturbation fits. The thus obtained improved model could be
used to identify further lines. In this way, progress was made towards lines with N ′ = 32
for the F1 system. The F2 branches could not be tracked as far because the intermediately
predicted lines generally fell in oddly-shaped spectral structures. These are dominated by
a line already assigned to a F1 transition. There exist two solitary exceptions, for which
both the predicted P and R line fell on a distinguishable peak. The previous discussion
showed that the F2 system is similarly deperturbed as the F1 system and consequently,
these predictions were deemed reliable enough for an assignment, even though there are
large gaps to the next assigned F2 lines.
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The line assignment did not proceed beyond the perturbation centre. With lower N , both
F1 and F2 lines get closer in frequency. No frequency from the thermal emission spectrum
could reasonably be assigned to the predicted lines any more. The model, although not
too reliable here, predicts gaps of 4 cm−1 to 8 cm−1 in the various branches. Lines with
lower quantum numbers could not be identified.
In Figure 8.5 (a), also the (1–0) band heads are shown. As in the (0–0) band, the right

one belongs to the F1 R branch, the left one to the F2 R branch. Additionally, there is a
large peak at 9575 cm−1. It is likely formed by several coinciding F1 and F2 lines. The
predicted band heads are about 0.2 cm−1 to the left from the band heads in the thermal
emission. Before the extension of the deperturbation, they were approximately 0.7 cm−1

to the right of the thermal emission band heads and they drew closer in intermediate steps.
This improvement substantiates the quality of the deperturbation model, although it does
not adequately incorporate the low rotational levels of v′ = 1.
To rectify the band head discrepancy, the frequency of the right band head was assigned

to a F1 line from the modelled band head. It has been given a relatively high weight and
a deperturbation fit has been conducted in the hope that the added line would shift at
least the F1 band head to the observed position. This experiment did not succeed, nor
did it with other lines with similar rotational quantum numbers. Consequently, the low
rotational levels with v′ = 1 are not yet correctly modelled with the available data.

8.1.5 Perturbation Around v′ = 1, N ′ = 70

The R and P branches of the (1–0) band around the perturbation centred at N ′ ≈ 70 are
displayed in Figure 8.6. As can be seen in the plot of deviations from the deperturbation
model in Figure 7.4, the F1 lines near this perturbation seem to be overcompensated
when compared to the plot of deviations from the Dunham model in Figure 5.2, which
means that their deviation from the model changes sign. The deperturbed F2 lines on the
other hand still appear to be disturbed like in Figure 5.2, only weaker. The frequency
gaps in the P and R branches due to the perturbation are 10 cm−1 to 15 cm−1 wide. Both
sides of the perturbed regions are only shown for the F1 branches in Figure 8.6. The F2

branches have similar gaps, centred around lower frequencies than in the F1 branches. It
is difficult to decide on a peak to assign the F1 R 64 line, whereas the corresponding P
66 line is likely somewhere in the peak structure to the left of its predicted frequency.
The predictions of the F1 R 71 and P 73 lines, both with N ′ = 72, fall to the right of
two broader structures in the thermal emission spectrum. There exist two plausible line
positions in each structure and both their positions seem in agreement with the residual
perturbation shape in Figure 7.4. The (1–1) F1 P 73 line is also predicted next to a
broad spectral peak consisting of two lines. The (1–1) F1 R 71 line cannot be located
in the thermal emission spectrum with reasonable certainty. Since there are two close
candidates for all three lines with N ′ = 72, it is not possible to use information from other
branches to force a decision and so all six lines were added to the data set. Their spread
is about 0.01 cm−1, as can be seen in Figure 7.4 (a), and they were given an appropriate
uncertainty.
The F2 lines are consistently predicted to the left of spectral peaks. Their deviation from

these peaks is weaker as for the F1 lines, but that can be attributed to the fact that the
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Figure 8.5: The R (a) and P (b) branches of the (1–0) band showing the perturbation at N ′
around 30. Assignments above the spectrum were determined with the deperturbation model;
those below the spectrum were taken from the data set used for the fit. The black data were
used for the deperturbation, the coloured lines with the mark (•) represent lines identified with
the deperturbation model. Labels are omitted for lines that are not relevant to the discussion.
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F2 perturbation centre should be at a higher quantum number than the F1 perturbation
centre. F2 transitions with N ′ > 66 are not predicted next to an assignable peak. An
exception is the P 68 line because it can be expected to lie somewhere in the peak to the
right of the predicted frequency.
The other side of the F2 perturbation is not shown. Here, only few lines could be added

that are closer to the perturbation centre than lines already known from fluorescence, as
can be seen from Figure 8.1. For the other unassigned transition lines, the predictions do
not fall close to spectral features.
Considering that for the F1 and F2 systems a clear trend towards larger deviation

between the modelled and nearby thermal emission lines exists and that the two systems
show incompatible behaviour, this perturbation appears to be inadequately modelled near
its centre.

8.1.6 Identification of F2 Lines Around v′ = 1, N ′ = 85

Figure 8.7 shows the F2 series of the (1–0) P and R branches between the second (N ′ ≈ 70)
and third (N ′ ≈ 95) large perturbation in this band. Almost a dozen F2 lines could be
identified in each branch (coloured lines underneath the spectra) with the deperturbation
model, which further demonstrates that the spin-rotation coupling is well described.
There were also strong lines identified in the (1–1) band (see Figure 8.1). However, the
overshadowing (0–0) band did not allow to find all of the (1–1) lines.
Figure 8.7 further displays the beginning of the third perturbation towards its left side.

No F1 lines could be reliably identified with the deperturbation model beyond those known
from fluorescence experiments.

In conclusion, the deperturbed description of the 7Li88Sr spectrum allowed to substan-
tially reduce the data gaps in the rotational branches. Due to the inaccuracy of the model
near perturbation centres and random coincidences in the thermal emission spectrum, these
gaps could not be fully closed. The new data were used in an iterative process to better
describe the perturbations. Using the deperturbation model to identify new lines from the
thermal emission spectrum allowed to increase the number of known transition lines by
about 17 %. Fluorescence experiments might allow to identify a few more lines. However,
the predictive quality of the model near perturbation centres is generally insufficient for
targeted experiments.
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Figure 8.6: The R (a) and P (b) branches of the (1–0) band showing the perturbation at N ′
around 70. Assignments above the spectrum were determined with the deperturbation model;
those below the spectrum were taken from the data set used for the fit. The black data were
used for the deperturbation, the coloured lines with the mark (•) represent lines identified with
the deperturbation model. Labels are omitted for lines that are not relevant to the discussion.
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Figure 8.7: The R (a) and P (b) branches of the (1–0) band showing F2 lines with N ′ beyond
79. Assignments above the spectrum were determined with the deperturbation model; those
below the spectrum were taken from the data set used for the fit. The black data were used
for the deperturbation, the coloured lines with the mark (•) represent lines identified with the
deperturbation model. Labels are omitted for lines that are not relevant to the discussion.
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Chapter 9

Discussion of the Model

The model from Chapter 6 was used to fit parameters that describe the coupling of the
(2)2Σ+ state with the (1)2Π state to explain the perturbations discussed in Chapter 5.
Chapter 7 and Chapter 8 explained how parameters were found that characterize not only
the perturbations but also allow to predict formerly unidentified transition lines in the
thermal emission spectrum. This chapter will discuss the insights gained by the description
of the coupling and the limits of the model. The obtained spectroscopic constants will be
presented.

9.1 Physical Considerations

The model used for deperturbing the LiSr spectrum includes the four vibrational 2Π levels
that are closest to each individual 2Σ+ level with the same e/f symmetry. Six vibrational
2Π states are included in total for all 2Σ+ levels (see Figure 7.3). Figure 9.1 illustrates
how the squared 2Σ+ and 2Π amplitudes of the eigenstates vary when the rotational
ladders cross. (The plot includes only the 2Π1/2 and 2Π3/2 states closest to the 2Σ+ state.
The other two 2Π amplitudes are generally too small to be recognized in the graphs.) A
comparison with the list of satellite observations in Figure 5.1 (a) does not indicate a
correlation of the appearance of satellites with perturbation centres. The satellites are then
likely a product of fortunate experimental conditions rather than indicators of different
scattering behaviour as conjectured in Section 5.3.3.
Figure 9.1 further depicts the change in energy due to the perturbation when compared

with the Dunham model that was described in Chapter 1: they are larger than the
deviations seen in Figure 5.2. The reason for this difference is that also the (2)2Σ+

Dunham parameters were changed for the deperturbation. The coupling to (1)2Π states
has an influence even on not perceivably perturbed (2)2Σ+ states. The eigenstates of
the coupling matrix are therefore subject to a systematic energy shift and need different
Dunham parameters than the uncoupled (2)2Σ+ states to compensate for that shift. All
observed (2)2Σ+ states should be regarded as perturbed by the (1)2Π state, with the states
close to avoided crossings featuring a more perceivable energy shift.
Figure 7.4 shows how much the modelled transition frequencies deviate from the observed

ones. The observations are generally well characterized, except near the perturbation
centres. The only perturbation that could be completely bridged with the deperturbed
model is the one in the F1 system around v′ = 0, N ≈ 75. Since the perturbation centres
indicate the closest energetic approach of the (1)2Π levels to the (2)2Σ+ levels, this
exception implies that the (1)2Π energy levels are not modelled with sufficient accuracy to
predict the energetic shift of the (2)2Σ+ states that are perturbed most.
With knowledge of only one side of a perturbation, the centre position and strength
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Figure 9.1: Changes in the (2)2Σ+ states due to the coupling to the (1)2Π states for the
vΣ = 1 and vΣ = 0 levels ((a) and (b)). The upper plots in the two parts of the figure show
the squares a2, b2, c2 of the components of the states a |vΣ,

2 Σ+
1/2, N,Fi〉+ b |vΠ,

2 Π1/2, N,Fi〉+
c |v′Π,2 Π3/2, N,Fi〉. Only the 2Π1/2 and 2Π3/2 states that are energetically closest to the 2Σ state
are shown here. The lower plots illustrate the (2)2Σ+ energy shift due to the coupling. The lines
represent modelled data and the symbols indicate observed states. The labels indicate whether
the perturbation is due to a 2Π1/2 or a 2Π3/2 crossing.
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of that particular perturbation cannot be derived reliably, making an extrapolation of
the model beyond a perturbation centre difficult. For N > 115 in the v′ = 0 rotational
ladder, a few F1 R lines were identified that lie beyond the perturbation centre, but the
corresponding P lines could not be identified since they are surrounded by stronger (0–1)
lines. The first perturbation in the v′ = 1 rotational ladder, discussed in Section 8.1.4,
hindered the description of the (1–0) band head. The (1–1) band head is visible, but the
perturbation in this band is difficult to see due to the (0–0) band. Lines in the (1–2) band
are very difficult to make out near the band head and the closest assigned line is F1 R
39. Consequently, the (1–0) band head is most suitable for evaluating the quality of the
deperturbation model for the v′ = 1 levels. As described in Section 8.1.4, extending the
data set towards the band head did improve its calculated frequency, although a noticeable
difference between the calculation and the observed band head position remained. Because
data was available for only one side of this perturbation, the extrapolation to the (1–0)
band head could only give information about the lower-energetic vibrational level (vΠ = 5,
see Figure 7.3) and the corresponding overlap integral. Possibly, the absence of the
vΠ = 6 level in the model led to an asymmetric energy shift for the (2)2Σ+ states with
v′ = 1, N ′ < 27 (for F1) and as a result to an insufficient description of the lower rotational
levels and the band head. Extending the coupling matrix to include the three closest 2Π1/2

and 2Π3/2 levels, so that the vΠ = 6 level was covered for the known side of the perturbation,
did, however, not improve the description of the band head position. On these grounds,
the restriction of the model to only the two

∣∣∣2Π1/2, vΠ, J, e/f
〉
and two

∣∣∣2Π3/2, vΠ, J, , e/f
〉

states that are energetically closest to each rovibrational 2Σ+ state seems to be a good
choice. It keeps the number of model parameters low and considering more vibrational
levels adds no direct benefit.
The intensity drop of the (2)2Σ+–X(1)2Σ+ transitions near the perturbations, as seen in

Figure 5.3, can be explained with the smaller transition dipole moment for (1)2Π–X(1)2Σ+

transitions that was also calculated by the ab-initio works. (1)2Π–X(1)2Σ+ transitions
could potentially have an enhanced transition dipole moment when the (1)2Π states are
strongly coupled to a (2)2Σ+ state. These transitions could then be searched for in the
thermal emission spectrum. However, no such lines were identified. The 2Σ+ amplitudes
fall below

√
2/3 for at most four states per perturbation, as can be seen Figure 9.1. These

are also the states that are the least well modelled ones and could in most cases not be
reliably predicted or confirmed. Accordingly, there can only be few corresponding (1)2Π
states with a sufficiently strong transition dipole moment from their 2Σ+ component to be
expected in the thermal emission spectrum. Their identification might be as difficult as
for the missing (2)2Σ+ levels.

9.2 Parameter Uncertainties

The Dunham parameters for the (2)2Σ+ and (1)2Π states in Hund’s coupling case (a) are
presented in Table 9.1. The X(1)2Σ+ parameters and their uncertainties were taken from
Table 5.2. They are the parameters for Hund’s coupling case (b). To calculate the energies
in Hund’s case (a) from them, see the end of Section 6.4.1. The fitted coupling parameters
and overlap integrals are given in Tables 9.2 and 9.3.
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Table 9.1: Modelled Dunham and spin-rotation parameters for the first two 2Σ+ states and
the first 2Π state of 7Li88Sr. The parameters give an accurate description for levels with
N < 116, v = 0, 1 for both 2Σ+ states and 40 ≤ N ≤ 63, v = 2 in the X(1)2Σ+state. The (1)2Π
parameters given here describe the vibrational states around the observed (2)2Σ+ levels. They
are labeled vΠ = 0 to 5 in the deperturbation model. Their absolute vibrational quantum number
is not known. The X(1)2Σ+ parameters were taken from Table 5.2. All values are given in cm−1.

Y0n Y1n Y2n γ0n γ1n n

X(1)2Σ+ Hund’s case (b)
0 1.830781(39)× 102 −3.1018(17) × 100 8.18(37) × 10−3 −5.04(11)× 10−4 0

2.074024(45)× 10−1 −3.4164(18) × 10−3 −5.724(78) × 10−5 - - 1
−1.08317(50) × 10−6 −3.540(19) × 10−8 −6.628(71) × 10−9 - - 2

- - - - - 3
−2.309(15) × 10−16 −1.1953(51) × 10−16 - - - 4

(2)2Σ+ Hund’s case (a)
9.39206(20) × 103 1.814273(39)× 102 - 4.55(21) × 10−2 7.90(17)× 10−4 0
1.895372(41)× 10−1 −7.1642(38) × 10−4 - −7.96(36) × 10−8 - 1
−8.1774(38) × 10−7 3.577(19) × 10−9 - - - 2

4.536(30) × 10−12 - - - - 3
−1.671(11) × 10−17 - - - - 4

(1)2Π Hund’s case (a)
8.21144(18) × 103 2.816061(60)× 102 −4.7567(26) × 100 - - 0
2.690497(58)× 10−1 −4.1686(22) × 10−3 - - - 1
−2.3333(11) × 10−6 1.6694(90) × 10−8 - - - 2

8.506(55) × 10−11 - - - - 3
−2.816(18) × 10−15 - - - - 4

Table 9.2: Overlap integrals VΣΠ between the (2)2Σ+ and (1)2Π states as used for the deper-
turbation. The left and right values are Vconst and VJ according to equation (7.3.1). See the text
for an estimate of the uncertainties.

vΠ vΣ = 0 vΣ = 1
Vconst VJ Vconst VJ

0 0.5 a - 0.5 a -
1 2.57 - 0.5 a -
2 1.01 4.47× 10−5 5.66 -
3 0.689 9.05× 10−6 3.36 2.27× 10−5

4 0.326 2.00× 10−5 2.61 −1.13× 10−4

5 0.0296 - 1.05 4.03× 10−5

6 0.5 a - 0.98 b -
aThese parameters were kept fixed during the fit.
bThis parameter was not fitted but is an estimate from the ab-initio publication [Pot+17].

Table 9.3: Fitted coupling parameters of the (2)2Σ+–(1)2Π system in cm−1. The magnitude of
[p · dΣΠ] and [p ·BΣΠ] is correlated with the overlap integrals given in Table 9.2. See the text for
details.

parameter value
[p · dΣΠ] 7.17(15)
[p ·BΣΠ] 0.001228(23)
AΠ 155.52(70)
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(2)2Σ+ Parameters

The parameters of the upper rovibronic states were obtained by fitting the (2)2Σ+ energies,
which in turn were computed by adding the observed transition frequencies to the energies
calculated with the X(1)2Σ+ parameters. The X(1)2Σ+ state is well characterized by the
Dunham series, as can be read in Section 5.4. The standard deviation of the X(1)2Σ+ states
calculated with the parameters from the linear fit is approximately 0.02 cm−1 and the
observed transition frequencies have an average uncertainty of 0.02 cm−1 (see Chapter 3),
so that the constructed (2)2Σ+ states can be expected to have an average uncertainty of
about 0.03 cm−1. The relative uncertainty of the transition frequencies is approximately
10000 cm−1/ 0.02 cm−1 = 0.00002. In principle, this value can be taken as the relative
uncertainty of the (2)2Σ+ Y00 parameter. This parameter is, however, strongly correlated
with the vibrational Dunham parameters and will have a higher uncertainty because of
this.
For the description of only one perturbation (see Section 7.1), the X(1)2Σ+ and (2)2Σ+

Dunham parametersa were fitted alternatively in an iterative process until their change
from one iteration step to the next converged against the estimated standard deviation
(see [Sch+17b] for details). Such an iteration was deemed unnecessary for the present
model since the electronic ground state was described independently of the (2)2Σ+ state
by using only frequency differences, thereby eliminating information about the other state.
Due to the large number of fluorescence experiments (see Figure 5.1), the information
about the ground state was sufficient to model it in the relevant quantum number range.
Consequently, any change in the (2)2Σ+ description will have no effect on the X(1)2Σ+

parameters. To confirm this assumed independence, new frequency difference data were
created from the newly identified transition lines (see Chapter 7). The amended data were
then used for a new fit of the ground state parameters, but the fit quality did not change
compared to that discussed in Section 5.4. Because the X(1)2Σ+ parameters were found
independently of the observed (2)2Σ+ levels, nothing can be gained from iteratively fitting
the parameters of the ground and excited states. The energies of the (2)2Σ+ and (1)2Π
states used in the coupled model are plotted in Figure 7.3.
All Dunham parameters except Y00 describe the energetic differences between the

rovibrational levels of an electronic state. Only the first two vibrational levels were
observed and their difference is given by Y10. The higher-order terms Ym0 with m > 1
were set to zero. The difference of two vibrational levels with the same N has a maximal
uncertainty of 0.06 cm−1, so the vibrational spacing, and therefore the Y10 parameter,
have a relative experimental uncertainty of around 0.06 cm−1/180 cm−1 = 0.0003 (see
Table 9.1 for the parameter values). The situation is similar to the ground state fit
portrayed in Section 5.4. For the ground state, the relative uncertainty of the vibrational
parameters is around 0.0002 due to the experimental uncertainty of 0.04 cm−1 for the
frequency differences. Due to the large number of observations, the linear ground state
fit specified a relative statistical uncertainty that is one order or magnitude smaller. For
both fits, the magnitudes of the data uncertainties and of the parameters are similar, so in

aNote that the parameters γ′00 , γ′10 and γ′01 were used for the perturbation. The reason for their inclusion is
that already the Dunham model for both 2Σ+ states required spin-rotation parameters for the (2)2Σ+ state
(see Section 5.1.2).
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general the minimal relative uncertainty for the (2)2Σ+ parameters can be assumed to be
like in the linear fit.
In contrast, the upper state parameters were not obtained by a linear fit. They depend

on the nonlinear fit strategy as well as the uncertainty of the data. For these reasons,
the higher uncertainty given by the relative uncertainty of the energy levels can be an
adequate choice when one wants to be cautious. The deperturbation fit has a weighted
standard deviation of σ = 0.79. This means that, albeit the perturbation centres are not
well modelled, many observed (2)2Σ+ levels are better modelled than their experimental
uncertainty. Consequently, an adequate uncertainty of a parameter will lie somewhere
between one similar to the uncertainty of the same ground state parameter and the relative
experimental uncertainty. For most parameters, the latter is an order of magnitude larger
than the former. The former uncertainties are given in Table 9.1 for the (2)2Σ+ and (1)2Π
parameters.
There are many combinations of rotational levels from which energy differences can

be constructed. The higher the involved N are, the higher the energy difference used
to find the rotational constant, and the smaller is the relative uncertainty of Y01. The
high rotational levels need the parameters Y02, Y03 and Y04 (and Y12 and Y13 for the
vibrational dependency) to be properly described. The relative magnitude between these
higher-order parameters and the primary rotational constant Y01 is, however, not so large
that the higher-order parameters would dominate the description of the high rotational
energy levelsb. Because of this, the fit of the rotational parameters can be expected to take
many observations into account that have a relative uncertainty in the order of 0.00001
or lower. When comparing the Dunham parameters for the X(1)2Σ+ and (2)2Σ+ states
given in Table 9.1, each Y′mn has generally the same magnitude as its corresponding Y′′mn,
within one order of magnitude. The range of rotational quantum numbers is more or
less the same for both electronic sates, so it is a reasonable assumption that the relative
uncertainties of the (2)2Σ+ parameters are not very different from those of the ground
state parameters. This fit was not as straightforward as the linear ground state fit, though,
so it seems nevertheless prudent to assume the uncertainties of the rotational parameters
to be an order of magnitude higher than for the X(1)2Σ+ parameters, as in the case of the
vibrational constant.

(1)2Π and Coupling Parameters

The fitted coupling parameters (and overlap integrals) are not directly grounded in
frequency observations. The deviations seen in Figure 5.2, which are the primary source of
information about the coupling constants, are also dependent on the energetic position of
the unseen (1)2Π states. Because there are only discrete data points available, the energy
shift from the perturbation can approximated with many similar crossing geometries (see
Figure 6.2). As a consequence, the fitted (1)2Π state parameters may vary depending
on the available data, the initially guessed parameters and the fit strategy. The crossing
geometry is in principle given by the differences of the (2)2Σ+ and (1)2Π parameters that
lead to a crossing of the rotational ladders. Describing several perturbations at once with
a small set of parameters (see Section 7.2) does set rigid limits to the crossing parameters.

b(N = 120)(N = 120 + 1)×Y01 �
∣∣[(N = 120)(N = 120 + 1)]2 ×Y02

∣∣
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However, the description of the geometries is hindered by the density of the available
discrete data points in the perturbations. Different geometries can lead to highly similar
data deviations (as seen in Figure 6.2) and it is not plausible to assume to find an ideal
parameterization with the few available data points.
To estimate an uncertainty for the coupling parameters, the development of their values

when adding more and more data was taken into consideration. For this, the magnitudes
of the fit parameters from a model that described the crossing points, coupling strength
and 2Π1/2–2Π3/2 splitting relatively well (see Section 7.3), over some intermediate steps to
the model that incorporates the expanded data set (see Chapter 7) were compared. These
different parameter sets approximate the same physical system with different amounts
of available information. Since the (1)2Π energies are only known through the coupling
to the (2)2Σ+ levels, the (1)2Π parameters result from the crossings of the two energy
ladders and are additionally dependent on the coupling constants. The (1)2Π parameters
are therefore correlated with the (2)2Σ+ parameters. The relative change of a parameter
during these iteration steps was taken to be the parameter’s uncertainty. For most of the
(2)2Σ+ Dunham parameters, this change is one order of magnitude larger than the assumed
statistical uncertainty from the ground state fit and thus consistent with the experimental
uncertainty. By contrast, the changes of the (1)2Π Dunham parameters are about three
orders of magnitude higher than the assumed statistical uncertainty. This is not surprising
since the addition of more states near the perturbation centres allow to better characterize
the crossing geometries. The uncertainty estimated with these considerations was applied
to the coupling constants in Table 9.3. The parameter [p ·BΣΠ] is characterized mainly
by the 2Σ+–2Π3/2 coupling that is strongest at the 2Π3/2 crossings. These crossings lead
to sharp perturbations of the (2)2Σ+ rotational ladder (see Figure 9.1), so relatively few
data points are available to describes these couplings. In contrast, the 2Π1/2 crossings
perturb more rotational (2)2Σ+ levels, so the fit of the stronger parameter [p · dΣΠ] has
also more data available. Since the data is quantized, a higher number of data points
implies a better coverage of the observed energy range. Due to this difference in available
data, the relative uncertainty of [p · BΣΠ] should be assumed to be higher than that of
[p · dΣΠ]. The uncertainties in Table 9.3 give a relative uncertainty of about 2 % for both
parameters, but when the number of clearly perturbed (2)2Σ+ levels around the broad and
sharp perturbations is considered (compare Table 5.1), the relative uncertainty for [p ·BΣΠ]
is more likely around 10 % to 15 %. The identified spin-rotation coupling parameter AΠ

has an uncertainty of only 0.5 %. It is derived from the energetic distance between the
2Π1/2 and 2Π3/2 crossings. The latter can be determined rather accurately thanks to their
sharp perturbations (see Figure 5.2 for a plot over the rotational energy). The former,
while having data gaps, are known well enough to interpolate the energy spacing of the
2Π1/2 and 2Π3/2 components to estimate AΠ.

Overlap Integrals

The overlap integrals between the (2)2Σ+ and the (1)2Π states, given in Table 9.2, are
multiplied with the coupling parameters [p · dΣΠ] and [p · BΣΠ] to describe the coupling
strength (see Section 6.5 for the derivation of the non-diagonal matrix elements). Because
the magnitude of the perturbation effect depends on these products, the overlap integrals
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and coupling parameters are directly correlated. The relative uncertainty of the overlap
integrals is a few percent. The relative uncertainty of [p · dΣΠ] is 2 % and the term [p ·BΣΠ]
in the off-diagonal matrix element is too small compared with [p · dΣΠ] to have a large
influence on the uncertainty. The uncertainty for the overlap integrals is not explicitly
given in Table 9.2.
The overlap integral 〈vΣ = 0|vΠ = 0〉 influenced the fit weakly since it affects only a

dozen 2Π3/2 levels, which in most cases are the next-nearest state and thus have little
impact. Indeed, the value of 〈vΣ = 0|vΠ = 0〉 was arbitrarily set to 0.5. No adequate
value was found with the fitting procedure, but a non-zero value should be assumed
because otherwise there can never be a coupling to the vibrational state in question in
the model. The overlap integral 〈vΣ = 1|vΠ = 0〉 is not included in the fit because in the
data at hand the (2)2Σ+ and (1)2Π energy levels are too far apart. The overlap integral
〈vΠ = 6|vΣ = 1〉 was not fitted but taken from the ab-initio calculations for a vΠ shift
of +12 (see Section 7.4) in order to model a symmetric perturbation of the vΣ = 1 levels
with low N , as described in Section 8.1.4. All overlap integrals found by the fit are positive.
Since they appear in off-diagonal positions in the matrix, some of them may also have
negative values. That would have no effect on the fit result. The values given in Table 9.2
can therefore only represent the absolute value of the physical overlap integrals.
The presented solution is the result of many iterative steps of a non-linear search for

the minimum of the least-squares value. As such, it is most likely not the global minimum
in the parameter space, but a very close local minimum. The quantitative and to a high
degree the qualitative insights into the coupled (1)2Π–(2)2Σ+ system would not be changed
by a different parameterization of a similar or better quality.

9.3 Comparison of Spectroscopic Constants

Table 9.4 compares the spectroscopic constants for the three lowest electronic states of
7Li88Sr that were derived in this work with published ones. The data in the rows ‘this
work’ are taken from Tables 9.1 and 9.3. In the case of the (1)2Π state, the constants Te,
ωe and ωexe are adapted for the mapping vΠ → vΠ + 12± 1, as discussed in Section 7.4.
The value of the spin-rotation coupling constant AΠ is independent of the knowledge of
the absolute vibrational quantum numbers. It could be derived with a low uncertainty,
as was discussed earlier in this chapter. It amounts to broadly 4/5 of the spin-rotation
constant in the asymptotic (3P) state of Sr (see Figure 1.1).
For the two 2Σ+ states, the ab-initio constants are within ≈ 10 % of the experimentally

determined values, but the 2Π state shows larger disagreements. Since the survey of the
(1)2Π state was performed indirectly via a handful of local observations and the vibrational
quantum number assignment remains uncertain, this inconsistency is not surprising.



104 Chapter 9: Discussion of the Model

T
ab

le
9.
4:

C
om

pa
ris

on
of

m
ea
su
re
d
sp
ec
tr
os
co
pi
c
co
ns
ta
nt
s
of

7 L
i8
8 S
r
w
ith

re
su
lts

of
ot
he

r
au

th
or
s.

T
he

pr
es
en
t
wo

rk
is

a
co
nt
in
ua

tio
n
of

[S
ch
+
17

b]
,s

o
th
e
co
m
pa

ris
on

w
ith

[S
ch
+
17

b]
is

om
itt

ed
he

re
.
A
ll
va
lu
es

ar
e
gi
ve
n
in

cm
−

1
ex
ce
pt
R
e
,w

hi
ch

is
gi
ve
n
in

Å
.

M
et
ho

d
R

e
D

e
ω

e
≈

Y
10

ω
e
x

e
≈
−

Y
20

B
e
≈

Y
01

T
e

A
Π

R
ef
.

X
(1

)2 Σ
+

C
IP

SI
3.
48

25
87

18
4.
9

-
0.
21

0
[G

A
D
10
]a

U
C
C
SD

(T
)

3.
55

23
67

18
2.
2

-
-

0
[K

ot
+
11
]

C
C
SD

(T
)

3.
53
1

22
26
.4

18
2.
1

4.
29

0.
20
3

0
[G

op
+
11
]

SO
-M

S-
C
A
SP

T
2

3.
57
9

20
75
.3

16
8.
60

-
0.
20
4

0
[G

op
+
13
]b

M
R
C
I

3.
57

24
71

18
1

-
-

0
[P
H
E1

6]
c

M
R
C
I

3.
57
4

24
83

17
9.
1

3.
22

-
0

[P
ot
+
17
]b

M
C
SC

F/
M
R
C
I

3.
59
0

25
50
.1

18
6.
69

-
0.
20
3

0
[Z
ei
+
18
]a

sp
ec
tr
os
co
py

3.
53
7

-
-

-
0.
20
7

0
[S
te
16
]

sp
ec
tr
os
co
py

3.
54
04
82
(3
8)

d
-

18
3.
07
18
1(
39
)

3.
10
18
(1
7)

0.
20
74
02
4(
45
)

0
th
is

w
or
k

(2
)2 Σ

+
SO

-M
S-
C
A
SP

T
2

3.
78
5

68
60
.5

18
6.
91

-
0.
17
0

94
88
.6
3

[G
op

+
13
]b

M
R
C
I

3.
72
8

78
11

18
3.
0

1.
08

-
93
75

[P
ot
+
17
]b

M
C
SC

F/
M
R
C
I

3.
87
4

66
19
.1

17
1.
05

-
0.
17
4

87
02
.2
5

[Z
ei
+
18
]a

sp
ec
tr
os
co
py

3.
70
2

-
-

-
-

93
90

[S
te
16
]

sp
ec
tr
os
co
py

3.
70
35
82
(4
0)

d
-

18
1.
42
73
(3
9)

-
0.
18
95
37
2(
41
)

93
92
.0
6(
20
)

th
is

w
or
k

(1
)2 Π

SO
-M

S-
C
A
SP

T
2

3.
10
4

10
67
2.
3

28
9.
68

-
0.
27
4

55
86
.9
8

11
7.
85

[G
op

+
13
]b

M
R
C
I

3.
13
0

11
86
8

26
9.
5

1.
54

-
53
17

-
[P
ot
+
17
]b

M
C
SC

F/
M
R
C
I

3.
19
3

96
89
.2

25
8.
37

-
0.
25
7

57
19
.3
1

-
[Z
ei
+
18
]a

sp
ec
tr
os
co
py

2.
85
44
63
(3
1)

d
-

34
5.
3(
21
)e

4.
75
67
(2
6)

0.
31
90
72
7(
69
)e

41
47
.2
(3
8)

e
15
5.
5(
27
)

th
is

w
or
k

sp
ec
tr
os
co
py

-
-

28
1.
06
1(
60
)f

4.
75
67
(2
6)

0.
26
90
49
7(
58
)g

82
11
.4
4(
18
)f

15
5.
5(
27
)

th
is

w
or
k

a a
ss
um

in
g

7 L
i88

Sr
,a

s
no

ch
oi
ce

of
iso

to
pe

s
is

m
en
tio

ne
d

b v
al
ue

s
w
er
e
co
nv

er
te
d
to

7 L
i88

Sr
c v
al
ue

s
w
er
e
co
nv

er
te
d
to

7 L
i88

Sr
,a

ss
um

in
g

7 L
i84

Sr
as

in
[P
ot
+
17
]

d c
al
cu
la
te
d
fr
om

Y
01

e li
ne

ar
ly

ex
tr
ap

ol
at
ed

w
ith

v Π
→
v Π

+
12

f ta
ke
n
fr
om

fit
w
ith

lo
w
v Π

g t
ak
en

fr
om

fit
w
ith

lo
w
v Π

;B
v
≈

12
ra
th
er

th
an

B
e



105

Chapter 10

Summary and Outlook

This thesis described the experimental observation and theoretical modelling of the near-
infrared spectrum of 7Li88Sr. The vibrational (0–0), (0–1), (1–0), (1–1) and (1–2) bands
of the (2)2Σ+–X(1)2Σ+ system were observed and their rotational branches were described
for rotational quantum numbers up to 119. By characterizing couplings between the (2)2Σ+

and (1)2Π states, a local description of the (1)2Π state, which was not directly observed
from the spectrum, was also achieved. This last chapter will discuss how far the applied
methods and insights can be used to further analyze LiSr and other alkali-alkaline earth
diatomics.

10.1 Observed Perturbations

The perturbations in the near-infrared spectrum, caused by a coupling between the (2)2Σ+

state and the (1)2Π state, were described with a local model. This model shows consistency
with published ab-initio calculations. The discussion at the end of Chapter 7 pointed out
that the most perturbed (2)2Σ+ levels are not well modelled, however. The reasons for this
shortcoming are the lack of data in the corresponding spectral regions and the complex
parameter space of the local model. An iterative deperturbation allowed to obtain more
data in the perturbed regions, which led to a better description of the coupling parameters
and the (1)2Π state. As Chapter 8 exemplified, a satisfactory description of the centres of
the larger perturbations, with the strongest coupling, could still not be achieved in this
way. More information about the (1)2Π might allow to use a more global description, for
example with the (1)2Π potential energy curve, leading to a more accurate description of
the observed perturbations.

10.2 Further Vibrational Bands

Five vibrational bands, belonging to the lowest vibrational levels in the (2)2Σ+ and
X(1)2Σ+ potential curves, were rigorously investigated. Other bands, with slightly higher
v′ levels, were tentatively assigned in Figure 4.1. Figure 10.1 displays several vibrational
bands with v ≤ 3 that were identified with the updated Dunham coefficients. Lines from
these bands were not used for any fits, but their band heads are reproduced within 3 cm−1

with the known parameters. The (2–3) band seems to be confined to a relatively large
structure around 9250 cm−1. It has a dense band head to the right which is soon followed
by a turnaround to the left. Due to the spin-rotation coupling, there are two band heads
that are about 2 cm−1 apart. The spectral structure of the band heads resembles that of
very strong peaks with a width of circa 1 cm−1. The (0–0) branches are simply added on
top of the (2–3) structure. These uncommon peaks were very early the target of laser
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Figure 10.1: Vibrational bands of 7Li88Sr identified with the X(1)2Σ+ and (2)2Σ+ Dunham
parameters. The (3–3) structure is a turnaround at N ≈ 60. The (2–1) band head is close to the
(1–0) band head but it is not visible in this figure.

experiments. However, these never yielded fluorescence. The individual (2–3) lines are too
weak compared with (0–0) lines so that laser-induced fluorescence lines would be hard to
spot. The strong structures only arise due to the sheer number of overlapping lines. For
comparison, the (2–0) band is much weaker. The fluorescence lines would in most cases
also occur close to the laser frequency and hence be overshadowed by the comparatively
strong laser stray light.
The lack of further vibrational bands in the spectrum can be explained with weak

Franck-Condon factors for transitions for which the quantum numbers v′ and v′′ are too
far apart. Such a distribution of Franck-Condon factors has been reported to be a general
feature in alkali-alkaline earth diatomics [Pot+17] and was also observed in KCa [Ger+17].
Because of such a distribution, the strongest vibrational bands would mostly overlap.
According to the Boltzmann distribution, the states with lowest v are most populated and
therefore their bands dominate the spectrum.
For these reasons, no long vibrational fluorescence progressions can be expected from laser

experiments. Using the so far established molecular parameters to incrementally advance
towards higher vibrational levels does not seem worthwhile because the extrapolation to
higher bands is not precise enough to assign single transition lines and the intensity of
higher vibrational bands drops rapidly.
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10.3 Other Isotopologues

This work is restricted to the isotopologue 7Li88Sr. No signs of other isotopologues were
observed (see Section 4.2.1). On one hand, this simplified the interpretation of the thermal
emission spectrum, but on the other hand it also prohibited to learn anything about the
mass effects on the molecular constants. Due to the natural abundances of Li and Sr, the
7Li88Sr spectrum can be expected to dominate the spectra of natural LiSr samples (see
Table 4.1). To study the mass effects, a heat pipe would need to be prepared with a sample
of e.g. 6Li in a high concentration and a natural Sr sample. The chemical properties
should not change, so that the experimental setup presented in Chapter 2 can be used
without further adaption.

10.4 Hyperfine Structure
7Li88Sr is expected to have a hyperfine structure due to the spin of the Li nucleus. Section 3.1
discussed that the observed lines were too broad to see a hyperfine splitting of the rotational
lines and that the small magnetic field measured in the oven did also not broaden the lines
beyond the expected Doppler width. Recording Doppler-free spectra of spectral peaks via
saturation spectroscopy [Dem88] could be a straightforward extension of the current setup.
Splitting the diode laser into two counter-propagating beams, scanning the frequency
and observing the absorption with photodiodes are all simple tasks. Furthermore, the
plotting of absorption signals together with the frequency measured by the wavemeter is
already allowed by the frequency stabilization setup. Figure 10.2 displays the absorption
spectrum of two rotational lines in a narrow frequency range For these absorption spectra,
the intensity of a laser beam passed through the LiSr heat pipe was measured. The setup
used here was a conceptual test of the laser and cannot resolve the hyperfine structure.
The low frequency uncertainty, especially of the left absorption spectrum, can be improved
by transforming the photo diode current to a better dynamic range of the analog-to-digital
converter. The laser frequency was set to a transition line known from the thermal emission
spectrum and scanned via current modulation of the laser diode. The scan range was
set as high as possible without encountering mode hopping. The figure shows that the
corresponding frequency range is large enough to cover a single rotational line. The
experimental resolution of the registered absorption spectra in the given examples is higher
than that from the Fourier transform spectrometera. The frequency resolution of such a
laser registration can easily be improved further by decreasing the scan rate of the laser
frequency, so that the hyperfine structure should be detectable.
If an upgraded setup should lead to the observation of a hyperfine structure in a single

rotational transition line, the effect of the rotational quantum number on the hyperfine
levels should be observable by comparing the hyperfine splitting of transition lines [TS55,
p. 199] with low, intermediate and high rotational quantum numbers. The present work
allows to easily find transition lines to almost any rotational quantum number up to
119 (compare Figure 8.1). If LiSr molecules with other isotopologues are observed, their
hyperfine structure can be compared with that of 7Li88Sr. Due to the different nuclear

aThis comes at the price of a vastly decreased frequency range.
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Figure 10.2: Absorption spectra (dots) of a scanned diode laser passed through a typical LiSr
heat pipe. Two experiments were performed on individual rotational lines of the (0–0) band.
The inverted thermal emission spectrum is shown in black for reference.

spins of other isotopologues, the hyperfine structure would be different, which would allow
an independent fit of the hyperfine coupling constants. Furthermore, if a sufficiently high
magnetic field can be applied to the vapour in the heat pipe, its effect on hyperfine lines
could be recorded for different field strengths. The time scale for a laser scan is small
enough to record many such spectra with small magnetic field strength steps, which would
help the assignment of the hyperfine components.

10.5 Further Electronic Transitions of LiSr

The rotational energy ladder of the LiSr ground state was rigorously described and its
lowest vibrational energy levels can be estimated. Using this knowledge, rovibronic
transitions from other electronic states can readily be assigned by using frequency differ-
ences as described in Section 4.4. According to ab-initio calculations [Gop+13; Pot+17],
(3)2Σ+–X(1)2Σ+ and (4)2Σ+–X(1)2Σ+ transitions have a three to four times higher trans-
ition dipole moment than (2)2Σ+–X(1)2Σ+ transitions. According to Figure 1.1, the
(3)2Σ+–X(1)2Σ+ spectrum can be expected between 13000 cm−1 and 15000 cm−1. The
(3)2Σ+ state could conceivably couple with both the (1)2Π and the (2)2Π states, which
would necessitate a more complex coupling model to explain the spectrum. However, the
strength of the couplings depends on the overlap integrals, so that the perturbations may
be weak.
Figure 10.3 displays high absorptions in the LiSr heat pipe at the expected transition

frequencies. These appear to be molecular vibrational bands and begin at the Li 2P→ 2S
and/or Sr 3P → 1S transition lines near 15000 cm−1 [San13] at temperatures of about
600 ◦C. Since the near-infrared spectrum of LiSr starts to emerge at temperatures higher
than 850 ◦C, these bands are probably Li2 bands. They extend to 11000 cm−1 at 915 ◦C.
The thermal emission spectrum at these low frequencies was explained solely by Li2 lines
(see Section 4.1.1), which indicates that the observed bands between 11000 cm−1 and
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Figure 10.3: Transmission spectrum of the LiSr sample in the heat pipe at 915 ◦C. Due to
blackbody radiation of the oven, the spectrum could not accurately be normalized to the light
source but exceeds unity. Around 15600 cm−1, an optical filter in the spectrometer forbids
registering the spectrum.

15000 cm−1 are indeed Li2 bands. The absorption around 9400 cm−1 in Figure 10.3
resembles the form of the thermal emission bands seen in Figure 4.1. A comparison of
these LiSr absorption bands with the absorption around 14000 cm−1 suggests that the
latter are much stronger than the LiSr transitions and will hinder the discovery of LiSr
lines in the thermal emission or LIF spectra. The (4)2Σ+–X(1)2Σ+ system, at higher
frequencies, can be expected to be similarly obscured. For these two higher-lying 2Σ+

states, a search for bands by looking for fluorescence lines with the vibrational spacing
of the LiSr ground state would be the first step to localize the transitions to the ground
state. This approach was tested in the range above 11000 cm−1 for the (3)2Σ+ state
(compare Figure 1.1), but the search was unsuccessful due to the strong overlap with the
Li2 spectrum.
The presence of Li2, Sr2 and possible molecules formed by impurities in the metal

samples (e.g. Na) complicates finding LiSr lines. All these molecules cannot simply be
removed from the heat pipe (or at least the imaged region) without also destroying the
LiSr sample. The direct spectroscopic analysis of the heat pipe makes it difficult to identify
LiSr lines in the dense spectra without prior knowledge. Because the Li2 spectrum seems
to be the largest obstacle in finding the (3)2Σ+–X(1)2Σ+ spectrum, a comparison of the
absorption spectrum of the LiSr heat pipe with the spectrum of a heat pipe filled only
with Li could help to identify extra lines in the LiSr heat pipe spectrum. Since the LiSr
heat pipe is a simple single-section heat pipe without special attention to temperatures or
temperature gradients, such a comparison should be reasonable, as long as the Li2, and
not Sr2, dominates the absorption spectrum.
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There are experimental schemes to record 2D spectra that allow to detect coherences
between spectral lines, i.e. lines that have a common quantum state from the same
molecule can be distinguished from lines that have the same frequency but come from
transitions between different states (or different molecules). Chapter 3 in [Zha08] gives a
well-written overview of the principles. To scan a broad spectrum in a reasonable time, the
use of laser pules, providing a broad frequency range, seems necessary. Such experiments
would need to be set up around the heat pipe because they are too different from the
current setup.
The (1)2Π was only observed indirectly at vibrational quantum numbers around 15. The

published ab-initio transition dipole moments for (1)2Π–X(1)2Σ+ transitions in the relevant
nuclear distance range are at most ten percent of those of (2)2Σ+–X(1)2Σ+ transitions.
According to [Pot+17], transitions from (1)2Π states with v′ ≈ 15 have relatively high
Franck-Condon factors for only a few vibrational X(1)2Σ+ states with v′′ > 3. From
the perturbations it is known that transitions from these vibrational states will lie in
the (2)2Σ+–X(1)2Σ+ spectrum (because the (1)2Π and (2)2Σ+ rotational ladders are
crossing). Thus, these relatively strong (1)2Π–X(1)2Σ+ transitions would appear at lower
frequency than the observed (2)2Σ+–X(1)2Σ+ spectrum. No (1)2Π–X(1)2Σ+ transitions
were identified in the thermal emission spectrum, though. If they are very weak, and
added onto the (2)2Σ+–X(1)2Σ+ spectrum, the noise amplitude of the thermal emission
spectrum needs to be reduced in order to detect them, i.e. more recordings of the thermal
emission spectrum need to be averaged. Assuming the present signal-to-noise ratio to be
just a bit too low to prevent the observation of (1)2Π–X(1)2Σ+ transitions, the number of
scans needs to be 100000 or more to give a sufficient signal-to-noise ratio. Even when the
time is invested, the presence of the (2)2Σ+–X(1)2Σ+ spectrum would greatly hinder the
identification of long (1)2Π–X(1)2Σ+ series.
Transitions from low vibrational (1)2Π states should occur around 5000 cm−1 (see

Figure 1.1). The lower vibrational states are more populated than higher states and the
Franck-Condon factors are more favourable for low vibrational X(1)2Σ+ states. However,
the low transition dipole moment, multiplied with the factor of the cube of the frequency
for the transition probability, implies a relatively weak (1)2Π–X(1)2Σ+ spectrum around
5000 cm−1. The Si-based photodetector used in this work has no response for frequencies
below 8500 cm−1. A different avalanche photo diodeb based on InGaAs was used to see if
(1)2Π–X(1)2Σ+ spectra can be recorded. The results were negative for the following reasons:
The InGaAs detector is far noisier than the Si detector, thus considerably increasing the
necessary number of scans. The size of its active area is also less than 1 % of that of the
Si detector. According to the producer, the area cannot be increased in the foreseeable
future because InGaAs detectors would then be too noisy to be useful. The smaller
size worsens the signal-to-noise ratio further because less light from the experiment is
registered. Moreover, the thermal background radiation is higher at these wavelengths for
temperatures around 1000 ◦C, which leads to a larger background signal and more noise in
the spectrum. In these tests, even the strongest band heads of the (2)2Σ+–X(1)2Σ+ were
difficult to make out in averaged spectra, which implies that the search for weaker spectra
in the farther infrared with such a detector would take much time, if it is possible at all.

bG8931-20 from Hamamatsu
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To observe the expected (1)2Π–X(1)2Σ+ spectrum around 5000 cm−1, other methods need
to be applied. An absorption spectrum of the heat pipe could be recorded with the InGaAs
detector and a white light source. Due to the thermal background radiation (which in the
tests had a similar intensity as the (2)2Σ+–X(1)2Σ+ spectrum), a meaningful normalization
of the absorption spectrum cannot be achieved. However, the absorption of a scanned laser
passed through the heat pipe could be recorded with a photodiode while the background
radiation is screened by an aperture. As Figure 10.2 illustrates, there can be large gaps
between rovibrational lines and changing the laser frequency in small enough steps until a
line is encountered can take a considerable amount of time. The approximate knowledge
of the rotational and vibrational spacing for the higher vibrational levels of the (1)2Π state
and the X(1)2Σ+ Dunham parameters can help to estimate the spacing of rotational lines,
but the considerable offset due to the electronic energy cannot yet be guessed with high
accuracy. For these reasons, such experiments should start at higher frequencies than the
expected (0–0) transitions and proceed towards lower frequencies. In this way, transitions
to higher vibrational (1)2Π states are likely to be encountered along the way, even if the
estimation of the lowest transition were wrong.
Since the transition frequencies to many rotational states of the first two vibrational

(2)2Σ+ states are known, these states can purposefully be addressed via laser light to
search for transitions from the (2)2Σ+ state to other electronic states via two-photon
excitations. Fluorescence from the higher-lying electronic states to the X(1)2Σ+ state
induced by such a scheme would have a considerable blue-shift and would be thus easy to
identify. However, the published ab-initio works only communicated X(1)2Σ+ transition
dipole moments and none between two excited electronic states, so the prospects for such
experiments remain nebulous at this point in time.

10.6 Other Alkali-Alkaline Earth Diatomics

The methods presented in this thesis were successfully used to analyze the near-infrared
spectrum of LiSr and to model the lowest electronic states of the molecule.
Due to the relatively low reduced mass of LiSr, it is possible to recognize individual

transition lines in the thermal emission spectrum. This facilitated the assignment of
quantum numbers to spectral lines and allowed to expand the assignment using only the
thermal emission spectrum. For molecules with larger reduced mass, the spectra can be
expected to be more dense and the distinction between single lines becomes impossible at
high temperatures. In these cases, the use of LIF spectra, as described in Chapter 4, will
be greatly helpful for the assignment of quantum numbers. An example is KCa [Ger+17].
The rotational constants of KCa are about five times lower than those of LiSr and the
line density in the thermal emission spectrum did not allow to resolve individual lines.
The information from many LIF spectra was an immense help to find the rotational
constants and quantum numbers. Fluorescence experiments in the band heads also helped
to disentangle the more complex vibrational spectra.
LiSr is an experimentally uncomplicated molecule. Experiments with LiCa [Iva+11b]

and KCa [Ger+17] required heat pipes with carefully designed temperature differences
in order to observe the target molecules. Moreover, the heat pipes had a limited lifetime
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because the material slowly left the imaged regions or because metallic structures formed
in the colder parts of the heat pipes and obscured the view. In the case of KCa, there
were visible vortices in the gas in the heat pipe, which suggests a dynamic state of the
sample. In contrast, a heat pipe with one temperature section filled with Li and Sr in
their natural abundance produces a clearly distinguishable thermal emission spectrum
after a short initial waiting period. When that state is reached, the oven can simply be
switched off and at a later time switched on again, without loss of quality of the spectrum.
A LiSr heat pipe lasts for several months. The spectrum also reveals only the dominant
lines of the most common isotopologue; other lines were not seen.
In conclusion, LiSr provides a valuable test bed for experimental methods regarding the

spectroscopy of alkali-alkaline earth diatomics.
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Appendix A

Dipole Transition

All spectral lines presented in this work are, in good approximation, electromagnetic dipole
transitions. The presence of an electromagnetic field carrying an energy Eφ′ − Eφ′′ gives
rise to a non-zero probability of finding a molecule in a state |φ′′〉 when it was in a state
|φ′〉. Examining the dipole matrix element between the two states gives insight to what
kinds of transitions can be expected in the observed spectra. To describe the transition
dipole moment in Hund’s coupling case (b), the quantum numbers Λ, N, S, J and M are
needed. The first four describe different rotational quantum numbers in the molecular
reference frame and are known from Chapter 1. The total angular momentum, ~J , is a
constant of motion and is fixed in a laboratory reference frame. Its projection onto an
axis in the laboratory frame is given by M .
This derivation will make heavy use of the book of Edmonds [Edm96]. References to

equations or sections in his book are given like ‘[1.7]Edm’.

Dipole Interaction

The observed strength of a dipole transition between two rovibrational states |v′, φ′〉 =∣∣v′,Λ′, (N ′, S ′)J ′,M ′〉 and |v′′, φ′′〉 =
∣∣v′′,Λ′′, (N ′′, S ′′)J ′′,M ′′〉 is:

∣∣∣∣ 〈v′, φ′∣∣∣~µ · ~E∣∣∣v′′, φ′′〉∣∣∣∣2 ∝
∣∣∣∣ 〈v′, φ′∣∣∣~µ · ~p∣∣∣v′′, φ′′〉∣∣∣∣2 (A.1a)

[5.2.4]Edm=
∣∣∣∣∣∣
〈
v′, φ′

∣∣∣ 1∑
k=−1

(−1)kµ1
k p

1
−k
∣∣∣v′′, φ′′〉

∣∣∣∣∣∣
2

(A.1b)

[5.2.1]Edm=
∣∣∣∣∣∣
〈
v′, φ′

∣∣∣ 1∑
k=−1

(−1)k
 1∑
m=−1

µ1
mD

1
mk(ω)

 p1
−k
∣∣∣v′′, φ′′〉

∣∣∣∣∣∣
2

(A.1c)

=
∣∣∣∣∣∣
〈
v′, φ′

∣∣∣ 1∑
m=−1

µ1
mD

1
m0(ω)

∣∣∣v′′, φ′′〉
∣∣∣∣∣∣
2

(A.1d)

=
∣∣∣∣∣∣
〈
φ′
∣∣∣ 1∑
m=−1

D1
m0(ω)

∣∣∣φ′′〉
∣∣∣∣∣∣
2

× FCF (A.1e)

The interaction between an electric dipole ~µ and an electric field ~E with polarization vector
~p is written in tensorial form (A.1b). The dipole moment is then rotated with a rotational
operator D1

mk(ω), where ω represents the Euler angles, into the laboratory frame (A.1c).
Since the experiment is not sensitive to different polarizations, it is assumed that only
linearly polarized light is observed. Accordingly, only the component k = 0, representing
linear polarization, is kept (A.1d). Finally, the matrix element of the transition dipole
element and different vibrational states is expressed as the Franck-Condon factor (A.1e).
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By using the Wigner-Eckart theorem ([5.4.1]Edm), the M -dependency can be described by
a Wigner 3-j symbol:

∣∣∣∣∣∣
〈
φ′
∣∣∣ 1∑
m=−1

D1
m0(ω)

∣∣∣φ′′〉
∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
1∑

m=−1

 J ′ 1 J

−M ′ 0 M

 〈χ′||D1
m·(ω)||χ′′〉

∣∣∣∣∣∣∣
2

(A.2)

Here, |χ〉 is an abbreviation for |Λ(N,S)J〉. Phase factors of ±1 are omitted for this
whole discussion since their square is always unity.
Since the spin S is not affected by the electronic dipole moment, the relation [7.1.7]Edm

can be used, which introduces a 6-j symbol:

∣∣∣∣∣∣∣
1∑

m=−1

 J ′ 1 J ′′

−M ′ 0 M ′′

 〈χ′||µ1
mD1

m·(ω)||χ′′〉

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
1∑

m=−1

 J ′ 1 J ′′

−M ′ 0 M ′′

×
√

2J ′ + 1
√

2J ′′ + 1

N
′ J ′ S ′ = 1/2

J ′′ N ′′ 1

 〈ψ′||µ1
mD1

m·(ω)||ψ′′〉

∣∣∣∣∣∣∣∣
2

· δS′S′′ (A.3)

As above, a reduced vector |ψ〉 = |Λ, N〉 was introduced.

Reduced Matrix Element

The values of the 3-j and 6-j symbols can be calculated, while an expression for the
reduced matrix element in equation (A.3) is still needed. According to [4.7]Edm, the
rotation operators Dl

mq(ω) are eigenfunctions of the angular momentum operator L̂ with

L̂2 ·Dl
mq(ω) = ~ l(l + 1) ·Dl

mq(ω), (A.4a)
L̂lab
z ·Dl

mq(ω) = ~m ·Dl
mq(ω) (A.4b)

and
L̂mol
z ·Dl

mq(ω) = ~ q ·Dl
mq(ω). (A.4c)

Therefore, Dl
mq(ω) can be identified with the ket |Λ, N,MN〉, where MN is the projection

of N onto an axis in the laboratory frame. The normalization is given by [4.6.1]Edm:

〈Λ, N,MN |Λ, N,MN〉 = 2N + 1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
D∗NΛMN

(ω)DN
ΛMN

(ω)
=:dω︷ ︸︸ ︷

dα sin β dβ dγ = 1
(A.5)

The matrix element of the rotation operator is the integral〈
Λ′, N ′,M ′

N

∣∣∣D1
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Λ′′M ′′N
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[4.2.7]Edm=
√

2N ′ + 1
√

2N ′′ + 1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
(−1)−Λ′−M ′ND∗N

′
−Λ′−M ′N (ω)

×D1
mq(ω)DN ′′

Λ′′M ′′N
(ω) dω
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[4.6.2]Edm= (−1)−Λ′−M ′N

 N ′ 1 N ′′

−Λ′ m Λ′′


 N ′ 1 N ′′

−M ′
N q M ′′

N

√2N ′ + 1
√

2N ′′ + 1.

(A.6)

On the other hand, using again [5.4.1]Edm,

〈
Λ′, N ′,M ′

N

∣∣∣D1
mq(ω)

∣∣∣Λ′′, N ′′,M ′′
N

〉
= (−1)N ′−M ′N

 N ′ 1 N ′′

−M ′
N q M ′′

N

 〈ψ′||D1
m·(ω)||ψ〉 .

(A.7)
Comparing equation (A.7) with equation (A.6) gives

∣∣∣ 〈ψ′||D1
m·(ω)||ψ〉

∣∣∣2 =

 N ′ 1 N ′′

−Λ′ m Λ′′


2

(2N ′ + 1)(2N ′′ + 1). (A.8)

Final Expression

Using the reduced matrix element from equation (A.8) in equation (A.3) yields

∣∣∣∣ 〈v′, φ′∣∣∣~µ · ~E∣∣∣v′′, φ′′〉∣∣∣∣2 ∝ FCF×
1∑

m=−1
(2J ′ + 1)(2J ′′ + 1)(2N ′ + 1)(2N ′′ + 1)×

 J ′ 1 J ′′

−M ′ 0 M ′′


2 N ′ 1 N ′′

−Λ′ m Λ′′


2N

′ J ′ 1/2

J ′′ N ′′ 1


2

· δS′S′′ . (A.9)

The 3-j and 6-j symbols in equation (A.9) represent scalar values that depend on the
relation of their quantum numbers. They do not have to become quantitatively evaluated
for this discussion but their properties are physically meaningful. The 3-j symbols of the
form  J1 J2 J3

M1 M2 M3


are zero, and thus describe an impossible transition |φ′〉 → |φ′′〉 if one of the following
conditions is violated:

M1 +M2 +M3 = 0 (A.10a)
|J1 − J2| ≤ J3 ≤ |J1 + J2| (A.10b)

J1 + J2 + J3 even, if M1 = M2 = M3 = 0 (A.10c)
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With the conditions (A.10), the following selection rules can be derived from equation (A.9):

(A.10a): ∆Λ = 0,±1
(A.10b): ∆J = ∆N = 0,±1

but J ′/N ′ = 0 9 J ′′/N ′′ = 0 (A.11)
(A.10a): ∆M = 0 (A.12)
(A.10a) & (A.10c): ∆N = ±1 if Λ′ = 0→ Λ′′ = 0

The only further condition from the 6-j symbol is

J = N ± 1/2. (A.13)

Equation (A.10a) also implies that for a 2Σ+ →2 Σ+ transition only the m = 0 term does
not vanish.
Evaluating the 3-j and 6-j symbols for different cases also allows to estimate the relative

strength of certain transitions. For a transition with J = N ± 1/2 → J = N ∓ 1/2, that
is, F1/2 → F2/1, the 6-j symbols grow with 1/

√
N4 and the 3-j symbols containing J and

J ′ grow with 1/
√
N3 for large N and small M . For J = N ± 1/2→ J = N ∓ 1/2, that is,

F1/2 → F1/2, the 6-j symbols grow with 1/
√
N2 and the 3-j symbols with 1/

√
N . Therefore,

F1/2 → F2/1 transitions can be expected to be considerably weaker than F1/2 → F1/2, the
higher the rotational quantum number N is.
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Appendix B

Deperturbation Program

The flowchart of the program used for the deperturbation (see Chapter 7) is given on the
next page. The minimization steps in the grey area are handled by the software MINUIT
[JR75]. The value to be minimized is calculated in the steps within the dashed border.
The matrices that are actually used to describe the coupling from Section 7.3 onwards

have the following form for each observed |(2)2Σ+, vΣ, J, e/f〉 state:

∣∣∣∣vΣ,
2 Σ+,e/f

1/2

〉 ∣∣∣∣v(i)
Π ,2 Π e/f

1/2
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Π ,2 Π e/f

1/2
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Π ,2 Π e/f

3/2
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Π ,2 Π e/f

3/2

〉

〈
vΣ,
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1/2
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]
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V
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2

+V (i)
ΣΠ · [p ·BΣΠ]×
(1∓ [J + 1/2])

V
(ii)

ΣΠ · [p · dΣΠ] · 1
2

+V (ii)
ΣΠ · [p ·BΣΠ]×
(1∓ [J + 1/2])
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ΣΠ · [p ·BΣΠ]

×
√
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〈
v

(i)
Π ,2 Π e/f

1/2

∣∣∣∣
V

(i)
ΣΠ · [p · dΣΠ] · 1

2

+V (i)
ΣΠ · [p ·BΣΠ]×
(1∓ [J + 1/2])

EΠ
Dun

−AΠ/2
0

−B(i,iii)
Π ×√

J(J + 1)− 3/4

−B(i,iv)
Π ×√

J(J + 1)− 3/4
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+V (ii)
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(iii)
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3/2

∣∣∣∣ −V (iv)
ΣΠ · [p ·BΣΠ]
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√
J(J + 1)− 3/4
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Π ×√

J(J + 1)− 3/4 0
EΠ

Dun

+AΠ/2

The bold terms are the ones to be determined by the fitting procedure. The others are
given by the model introduced in Chapter 6. Some terms were fitted as a product with the
factor p, which is indicated with square brackets (e.g. [p ·BΣΠ] is one fitting parameter).
The off-diagonal rotational constants for the 2Π states B(v,v′)

Π depend on which vibrational
(1)2Π states are involved. See Section 6.5 for details. The Dunham energies EΛ

Dun depend
on J and v. For EΣ

Dun, only the (2)2Σ+ parameters were modified during the fit, while
the X(1)2Σ+ parameters were never changed during the deperturbation. As in the matrix
on page 70, upper signs are used in the e states matrices and lower signs in the f state
matrices.
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Appendix C

Physical Constants

This appendix serves as reference for the quantitative interpretation of the data presented
in the work at hand. Here the numerical values of relevant natural constants and units
other than from the International System of Units (SI) at the time of writing are given.
Table C.1 lists all non-SI units with their conversion into SI units. Table C.2 gives
numerical values of the physical constants encountered in this thesis.
Because the General Conference on Weights and Measures decided to redefine several

base units of the SI [BIP] effective to 20th May, 2019, Table C.2 lists both the current
constants from [MNT16] and the future ones. Since the spectral frequencies were measured
in wavenumbers, and the value of the metre is not affected by the change to the SI, all
presented molecular constants can be used in future. When converting them into energy
units via equation (1.0.1b), there will be a small difference in the order of 10−9 between
values calculated with old and new base units.

Table C.1: Non-SI units used in this thesis as taken from [Poi06; MNT16].
Name Symbol Magnitude Dimension

Ångström Å 10−10 m
atomic mass unit u 1.660539040(20)× 10−27 kg
bar bar 105 Pa
millimetre of mercury mmHg ≈ 133.322 Pa
electronvolt eV 1.6021766208(98)× 10−19 J
wave number (frequency) cm−1 102 m−1

wave number (energy ) cm−1 102 m−1

Gauss G 10−4 T
degree Celsius ◦C temperature [K]− 273.15 K

Table C.2: Physical constants used in this thesis in SI units.
Name Symbol Magnitude from [MNT16] Magnitude [BIP] Dim.

Boltzmann constant kB 1.38064852(79) × 10−23 1.380649 × 10−23 J K−1

elementary charge e 1.6021766208(98)× 10−19 1.602176634× 10−19 C
Planck’s constant h 6.626070040(81) × 10−34 6.62607015 × 10−34 J s
vacuum speed of light c 2.99792458 × 108 2.99792458 × 108 m s−1
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Appendix D

Vapour Pressure

Here the vapour pressure data used for Figure 2.2 is given. Table D.1 lists the Antoine
coefficients (A, B, C) for the first five alkali and alkaline earth metals and Yb as taken
from [Yaw06]. The temperature ranges given in [Yaw06], the metals’ melting points taken
from [Win18] and the corresponding pressures are listed as well.
Temperatures are given in ◦C and pressures in mbar. Because [Yaw06] used ◦C as unit

for temperature and mmHg as unit for pressure, the pressures P are calculated via

P [mbar] ≈ 133.322 Pa × 10A−B/(T [◦C]+C).

See also Appendix C.

Table D.1: Antoine coefficients for the first five alkali and alkaline earth metals and Yb.
Element A B C Tmin P (Tmin) Tmax P (Tmax) Tmelt P (Tmelt)

Ba 6.477 7779.9 266.45 638.00 1.00 × 10−2 1897.00 1.01× 103 727.00 5.90× 10−2

Be 8.084 13697.0 148.52 823.85 1.33 × 10−6 2483.85 1.01× 103 1287.00 4.65× 10−2

Ca 7.118 7084.4 188.26 351.85 1.34 × 10−6 1483.85 1.01× 103 842.00 2.33× 100

Cs 6.675 3515.8 255.57 21.85 1.34 × 10−6 671.00 1.01× 103 28.44 2.63× 10−6

K 6.974 4143.9 254.47 63.20 1.13 × 10−6 1949.85 1.66× 105 63.38 1.15× 10−6

Li 8.269 8884.6 307.17 180.54 1.50 × 10−10 3811.85 1.73× 106 180.54 1.50× 10−10

Mg 7.706 6303.0 216.22 243.85 1.35 × 10−6 1090.00 1.01× 103 650.00 3.58× 100

Na 7.488 5300.1 267.61 97.82 1.29 × 10−7 2299.85 3.54× 105 97.72 1.27× 10−7

Rb 7.000 3926.2 265.16 35.85 1.21 × 10−6 688.00 1.01× 103 39.31 1.70× 10−6

Sr 6.832 6128.7 168.97 308.85 1.35 × 10−6 1382.00 1.01× 103 777.00 3.01× 100

Yb 7.281 6060.2 181.30 463.00 1.00 × 10−2 1196.00 1.01× 103 824.00 2.39× 101
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Appendix E

Literature Overview of Alkali-Alkaline
Earth Diatomics

The following pages give an tabulated overview of the existinga literature concerned with
alkali-alkaline earth (A-AE) diatomics. There are publications which are concerned with
ionized A-AE molecules (e.g. [AGD11]) but here only the neutral molecules with a doublet
ground state are considered. Since Ytterbium has an electronic configuration similar to
neutral alkaline earth metals, alkali-ytterbium diatomics share the same attention as
A-AE molecules and are also included. There are more classes of molecules with the same
electronic configuration, for example alkaline earth hydrides or alkaline earth fluorines (i.e.
AE−H or AE−F diatomics). These are omitted here, in order to not stray too far from
this work’s topic, that is, alkali and alkaline earth metals.
Each of the possible molecules in the table is marked if a publication reports data for

it. Publications presenting experimental findings are marked in the column ‘exp.’. Other
works give solely theoretical calculations. A comment, if deemed helpful to relate to the
corpus of work on the subject or to this thesis in particular, is found to the right side of a
double page.
The following abbreviations are used for the comments:

– DE: dissociation energy
– FFR: Fano-Feshbach resonances
– GS: electronic ground state
– HFS: hyperfine structure
– HP: heat pipe experiment
– ND: nanodroplets
– PA: photoassociation spectroscopy, together with the probed frequency range
– pEDM: permanent electric dipole moment, usually of the electronic ground state
– PI: photoionization spectroscopy

There are efforts by the physical community to create (A-AE) molecules from colliding
ultracold atoms. This is a challenging undertaking, which produces research data con-
cerning the trappability and inter- and intraspecies scattering behaviour of the involved
elements. For the purpose of this compilation, however, only works that do present a
definite observation of a bound rovibrational molecular state are regarded. For example,
the publications [Iva+11a; Han+11; Khr+12; Han+13; Dow+15; Roy+16] tell success-
ively the story of the creation of weakly-bound RbSr, but only the latter two, describing
Fano-Feshbach resonances and photoassociation, will be listed in this overview.

aDespite best efforts to give a full overview, completeness of the list cannot be guaranteed.
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Ref. Li Na K
Be Mg Ca Sr Ba Yb Be Mg Ca Sr Ba Yb Be Mg Ca Sr Ba Yb

[BL74] x
[BLS77] x
[BS78] x
[NBM80] x
[NB82] x
[BM82] x
[Jon80] x x x
[NZ83] x
[RJ88] x

[PBK88] x

[Fan+89] x
[Pic+89] x
[Sch+90] x
[Fis+91] x
[Pak+91] x
[Mar+92] x

[BLP92] x x x x

[BSS93] x x

[BGS94] x x x x

[Rus+98] x
[DIn+94] x
[AA94a] x
[Ver+94] x
[Str+94] x
[AA94b] x
[BAA94] x
[BAA95] x
[BD97] x

[Jan01] x x

[BG02] x x x x x x x x x
[Rue+05] x x
[Sør+09]
[Nem+09]
[Mün+11]
[Bor+13]
[BG16]
[ZSD10] x
[Gop+10] x
[Kaj+11] x
[Gop+11] x x x x
[Gop+13] x x
[Gop+14] x x x x
[GAD10] x x x
[ŻGD14]
[Szc+18] x
[Cia+18]
[Bar+18]

[Dev+18]
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Ref. Rb Cs exp. comment
Be Mg Ca Sr Ba Yb Be Mg Ca Sr Ba Yb

[BL74]
[BLS77] x flowing afterglow reaction
[BS78] x HP
[NBM80] x HP
[NB82] x HP
[BM82] x HP
[Jon80]
[NZ83] x Knudsen cell, De

[RJ88] part of a study of small
heteroatomic clusters

[PBK88] part of a study of LikBe clusters
[Fan+89] LiBe calculations from [PBK88]
[Pic+89] x HP, exp. & theory
[Sch+90]
[Fis+91]
[Pak+91]
[Mar+92] more el. states than [Pak+91]

[BLP92] neutral molecules
and negative ions

[BSS93] various Li diatomics and ions

[BGS94] review of first two rows of
periodic table, now new data

[Rus+98] x PI, exp. & theory
[DIn+94] x HP
[AA94a]
[Ver+94]
[Str+94] x HP
[AA94b]
[BAA94]
[BAA95]
[BD97] x PI

[Jan01] part of a study of GS for small
molecules with atoms of H to Ar

[BG02] also HFS
[Rue+05] first three rows of periodic table
[Sør+09] x
[Nem+09] x x PA, 35 cm−1

[Mün+11] x x PA, 2 cm−1

[Bor+13] x x PA, 2 cm−1, exp.& theory
[BG16] x x PA, 70 cm−1

[ZSD10]
[Gop+10]
[Kaj+11] magic frequencies for optical traps
[Gop+11] GS only
[Gop+13]
[Gop+14] x x GS only, pEDM
[GAD10] x GS only, pEDM
[ŻGD14] x
[Szc+18] x HP, exp. & theory
[Cia+18] x x HP, PA, 0.2 cm−1

[Bar+18] x x FFR

[Dev+18] x further analysis of previous
calculations [GAD10; ŻGD14]
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Ref. Li Na K
Be Mg Ca Sr Ba Yb Be Mg Ca Sr Ba Yb Be Mg Ca Sr Ba Yb

[Kot+11] x x x x x
[PMK15] x
[Dow+15] x
[Roy+16] x
[Gre+19] x
[Iva+11b] x
[Ste+13] x

[Ste16] x x

[Sch+17b] x

[Ger+17] x

[AS12] x x x
[BH12]

[BH13]

[GH13] x
[AH18] x
[Gut+18b]
[Gut+18a]
[Xia+13] x
[You+15b]

[You+15a] x

[TK13]
[TKA15] x
[TK15] x
[TK16] x
[CEK17] x
[Hou+17] x
[Zei+18] x x x
[Kro+13] x
[Kro+14]
[Lac+14]
[Pot+14]
[Pot+15]
[PHE16] x x x x x x x x x x x x
[Pot+17] x x x x x x
[LE18]
[Che+14]
[Sch+17a] x
[Sha+17] x x x
[SM17]
[MS17b]
[MS17a]
[Li+18] x
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Ref. Rb Cs exp. comment
Be Mg Ca Sr Ba Yb Be Mg Ca Sr Ba Yb

[Kot+11] GS only, pEDM
[PMK15] x FFR
[Dow+15] x FFR
[Roy+16] x PA, 8 cm−1

[Gre+19] x PA, 40 cm−1

[Iva+11b] x HP
[Ste+13] x HP

[Ste16] x HP, preliminary work
for this thesis

[Sch+17b] x HP, part of work
presented in this thesis

[Ger+17] x HP, uses ideas
presented in Section 4.4.1

[AS12] x x GS only, pEDMs
[BH12] x

[BH13] x x part of study of formation
by magnetoassociation

[GH13] calculations of FFR
[AH18] x x HFS
[Gut+18b] x x PA, 17 cm−1

[Gut+18a] x x PA, 1 cm−1

[Xia+13]
[You+15b] x x

[You+15a] part of a study of a
laser cooling scheme

[TK13] x
[TKA15]
[TK15]
[TK16]
[CEK17] pEDM
[Hou+17] x x
[Zei+18]
[Kro+13] x He ND
[Kro+14] x x He ND
[Lac+14] x x He ND, exp. & theory
[Pot+14] x
[Pot+15] x x He ND, exp. & theory
[PHE16] x x x x pEDMs
[Pot+17] x x
[LE18] x x He ND
[Che+14] x also STIRAP scheme
[Sch+17a] x FFR
[Sha+17] x x GS only, pEDM
[SM17] x
[MS17b] x
[MS17a] x x also STIRAP scheme
[Li+18]
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