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N ¼ 2 superconformal many-body quantum mechanics in arbitrary dimensions is governed by a

single scalar prepotential which determines the bosonic potential and the boson-fermion couplings. We

present a special class of such models, for which the bosonic potential is absent. They are classified by

homogeneous harmonic functions subject to physical symmetry requirements, such as translation, rotation

and permutation invariance. The central charge is naturally quantized. We provide some examples for

systems of identical particles in any dimension.
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I. INTRODUCTION

N ¼ 4 superconformal many-body quantum mechan-
ics in one dimension is governed by two scalar prepoten-
tials U and F which obey a coupled set of partial
differential equations. WhileUmay vanish, F always takes
nonzero values. Recent studies in [1–4] (for related devel-
opments see [5–10]) revealed an interesting link between
N ¼ 4 quantum mechanics and the Witten, Dijkgraaf,
Verlinde, and Verlinde (WDVV) equation [11,12] which
plays an important role in d ¼ 2 topological field theory
[11,12] and N ¼ 2 supersymmetric Yang-Mills theory
[13]. Because the WDVV equation underlies a potential
deformation of a Fröbenius algebra [14], it relates N ¼ 4
mechanics with Fröbenius manifolds. All N ¼ 4 models
with a nontrivial U constructed so far are based on the root
systems of simple Lie algebras or Coxeter reflection
groups.

A peculiar feature of N ¼ 4 mechanics concerns the
center-of-mass coordinate. Although it decouples from the
relative particle motion, its nonzero F prepotential gener-
ates an inverse-square potential for the center-of-mass
motion, thus breaking translation invariance. If this is
unwanted, one must give up N ¼ 4 and soften the model
to an N ¼ 2 system, which is ruled by the prepotential U
alone [15]. Our interest in N ¼ 2 mechanics is also
motivated by the desire to go beyond d ¼ 1 and to con-
struct new exactly solvable many-body models in higher
dimensions and to explore novel correlations (see e.g. [16]
and references therein). It is natural to expect that d > 1,
N ¼ 2 superconformal many-body models will provide
new insight into the nonrelativistic version of the AdS/CFT
correspondence which has currently sparked substantial
interest.

A minimal extension of the Galilei algebra by the dila-
tation and special conformal generators is known in the
literature as the Schrödinger algebra. A conformal exten-

sion obtained by contracting the relativistic conformal
soðdþ 1; 2Þ algebra gives an even larger algebra which
goes under the name of conformal Galilei algebra (for a
recent discussion and further references see e.g. [17]).
Because the conformal Galilei algebra requires vanishing
mass, the Schrödinger algebra has a better prospect for
quantum mechanical applications. Since the translations
are part of the Schrödinger algebra, N ¼ 2 interacting
many-body quantum mechanics is likely to be the maximal
superextension feasible in higher dimensions.
The purpose of this paper is to reconsider the construc-

tion of N ¼ 2 n-particle quantum mechanics in d dimen-
sions and to exhibit a new special class of models
determined by a single harmonic function. These ðn; dÞ
models are characterized by the absence of bosonic inter-
actions, yet retain (quantum) boson-fermion couplings.
They are classified by the homogeneous harmonic func-
tions on Rnd subject to physical symmetry requirements
(Euclidean and permutation invariance) and quantize the
central charge of the N ¼ 2 algebra.
In Sec. II we recall the conventional framework for

formulating N ¼ 2 many-body models in one dimension
and explore the hitherto unexploited possibility of purely
boson-fermion couplings. We show how the Laplace equa-
tion arises, explain the central charge quantization and
discover solutions related to Lie-algebra root systems.
In Sec. III the analysis is extended beyond one dimen-

sion. It is shown that the role of the Laplace equation
persists in higher dimensions, but the prepotential is further
constrained by Euclidean invariance in Rd, as part of the
N ¼ 2 Schrödinger supersymmetry. We finally present a
one-parameter family of ðn; dÞ models as well as a particu-
lar ðn; n� 1Þ system, both being invariant under particle
permutations. Conclusions follow.

II. SPECIAL N ¼ 2 MECHANICS

The conventional representation of the d ¼ 1, N ¼ 2
superconformal algebra on the phase space of n identical
particles (with unit mass) is provided by a single prepo-
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tential Uðx1; . . . ; xnÞ which gives rise to the operators [6]1

H ¼ 1
2pipi þ 1

2@iUðxÞ@iUðxÞ � @i@jUðxÞhc i
�c ji;

J ¼ hc i
�c ii;

D ¼ tH � 1
4ðxipi þ pixiÞ; K ¼ �t2Hþ 2tDþ 1

2xixi;

Q ¼ c iðpi þ i@iUðxÞÞ; �Q ¼ �c iðpi � i@iUðxÞÞ;
S ¼ xic i � tQ; �S ¼ xi �c i � t �Q; (1)

where the symbol h. . .i stands for symmetric (or Weyl)
ordering of the fermions. The operators H, D and K gen-
erate time translations, dilatations and special conformal
transformations, respectively, while Q and �Q are super-
symmetry generators, and S and �S generate superconfor-
mal transformations. TheUð1Þ R-symmetry transformation
generated by J affects only the fermions. Note that the
prepotential UðxÞ is defined up to an additive constant.

The operators (1) obey the (anti)commutation relations
of the d ¼ 1,N ¼ 2 superconformal algebra with central
charge C (Hermitian conjugates are omitted)

½H;D� ¼ iH; ½K;D� ¼ �iK; ½Q;D� ¼ i

2
Q;

½S;D� ¼ � i

2
S; ½Q; J� ¼ �Q; ½S; J� ¼ �S;

½H;K� ¼ 2iD; ½Q;K� ¼ �iS; ½S;H� ¼ iQ;

fQ; �Qg ¼ 2H; fS; �Sg ¼ 2K;

fQ; �Sg ¼ �2D� iJ � iC; (2)

provided the prepotential satisfies the linear partial differ-
ential equation

xi@iUðxÞ ¼ �C: (3)

The general solution to (3) reads

UðxÞ ¼ �C lnjx1j þ�

�
xi
xj

�
; (4)

where �ðxixjÞ is a function of the coordinate ratios xi
xj
for i <

j.
In order to extract a class of reasonable models from the

infinity ofN ¼ 2 systems encoded in the general solution
(4), one can impose additional restrictions like permutation
symmetry, translation invariance, etc. Another option is to
start with a specific bosonic theory,

HB ¼ 1
2pipi þ VðxÞ with ðxi@i þ 2ÞVðxÞ ¼ 0; (5)

and then solve the Hamilton-Jacobi equation

@iUðxÞ@iUðxÞ ¼ 2VðxÞ (6)

for the given potential �V and zero energy. Each solution
U yields anN ¼ 2 superconformal extension of the origi-
nal model (5). In particular, in this way one can treat
quantum integrable many-body models related to simple
Lie algebras, the prominent example being the N ¼ 2
Calogero model [15] (see also [6]).
Among the many possible bosonic starting points, there

exist special bosonic potentials V which can be absorbed
into a reordering of the fermions. Since a deviation from
Weyl ordering produces a term proportional to @i@jU inH,

this property translates to the condition

@iUðxÞ@iUðxÞ þ �@i@iUðxÞ ¼ 0 (7)

for some real parameter � of order @. Note that this forces
U to be of order @ as well, so that these models are
classically free. The value of � quantifies the deviation
from Weyl ordering and takes unit (@) value for normal
ordering. If (7) can be solved, then the Hamiltonian may be
brought to the form

H ¼ 1
2pipi � @i@jUðxÞ:c i

�c j:� (8)

for a suitable fermionic ordering prescription, so that the
interaction contains only boson-fermion couplings. We
now describe a class of solutions to (7) with quantized
central charge.
The conditions (3) and (7) simplify under the substitu-

tion

UðxÞ ¼ � lnGðxÞ to

�
xi@i þ C

�

�
GðxÞ ¼ 0

and @i@iGðxÞ ¼ 0; (9)

so thatGðxÞ is a harmonic homogeneous function of degree
‘ :¼ � C

� in Rn. Such functions are single-valued only for

‘ 2 Z and regular at the origin x1 ¼ x2 ¼ � � � ¼ xn ¼ 0
for ‘ � 0. These conditions quantize the central charge in
units of �,

C ¼ �‘� with ‘ ¼ 0; 1; 2; . . . ; (10)

and restrict the prepotential to2

G‘ðxÞ ¼ ðx21 þ � � � þ x2nÞ‘=2Y‘ ðanglesÞ; (11)

where Y‘ is a linear combination of Sn�1 spherical har-
monics for spin ‘. Note that linear combinations of G‘ are
forbidden by the homogeneity condition (9).
Each value of ‘ and choice of Y‘ produces a special

N ¼ 2 many-body quantum system. The demand for
permutation invariance or translation invariance puts re-
strictions on Y‘, which can be solved. For illustration, we
consider a solution related to the positive roots f�g of a
simple Lie algebra,

1We work in the standard coordinate representation, pi ¼�i @
@xi

, ½xi; pj� ¼ i�ij, and put @ ¼ 1. The fermionic operators
are mutually conjugate via ðc iÞy ¼ �c i and obey the anticom-
mutation relations fc i; c jg ¼ 0, f �c i; �c jg ¼ 0, fc i; �c jg ¼ �ij.
The t-dependent pieces in the generators are kept explicit so as to
have a direct link to the classical theory. Throughout the paper
summation over repeated indices is understood.

2If singular behavior is admitted at coincidence loci xi ¼ xj,
more general solutions appear.
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GðxÞ ¼ Y
�

ð�xÞ: (12)

In this case ‘ equals the number of positive roots. That (12)
solves Laplace’s equation is verified with the use of the
same root identities which were previously applied in [4]
for solving the WDVVequation (see Sec. 6 in [4] for more
details). Permutation and translation invariance is achieved
for the An root systems, fð�xÞg ¼ fxi � xjj1 � i < j �
nþ 1g. The interaction potential for these models reads

Vint ¼
X
�

ð�c Þð� �c Þ
ð�xÞ2 : (13)

III. SPECIAL N ¼ 2 MODELS IN ARBITRARY
DIMENSION

We proceed to the construction of N ¼ 2 models in
dimensions d greater than 1. At the algebraic level, extra
dimensions comewith additional generators corresponding
to spatial translations P�, spatial rotations M��, Galilei
boosts K� and super Galilei transformations L� and �L�

with �;� ¼ 1; . . . ; d. It is assumed that L� and �L� are
Hermitian conjugates of each other. The set of generators
fH;D;K; P�; K�;M��g spans a subalgebra known as the
Schrödinger algebra. In what follows, Greek letters are
reserved for spatial indices while Latin indices label iden-
tical particles of unit mass.
Apart from the structure relations (2), which persist in

higher dimensions, the nonvanishing (anti)commutation
relations of the N ¼ 2 Schrödinger superalgebra include
(Hermitian conjugates are omitted)

½H;K�� ¼ �iP�; ½D;K�� ¼ i

2
K�; ½K;P�� ¼ iK�; ½D;P�� ¼ � i

2
P�;

½M��; L�� ¼ ið���L� � ���L�Þ; ½Q;K�� ¼ �iL�; ½K�; P�� ¼ i���M;

½M��; P�� ¼ ið���P� � ���P�Þ; fQ; �L�g ¼ P�; fL�; �L�g ¼ ���Z;

½M��;K�� ¼ ið���K� � ���K�Þ; ½S; P�� ¼ iL�; fS; �L�g ¼ K�;

½M��;M��� ¼ ið���M�� þ ���M�� � ���M�� � ���M��Þ; ½J; L�� ¼ L�; (14)

where M and Z are the central charges.
In order to build a quantum mechanical representation of this algebra, one introduces bosonic operators x�i and p�

i and
fermionic operators c �

i and �c �
i , which obey the (anti)commutation relations

½x�i ; p�
j � ¼ i����ij and fc �

i ;
�c �
j g ¼ ����ij: (15)

The fermionic operators are related by Hermitian conjugation, i.e. ðc �
i Þy ¼ �c �

i . A representation of the superalgebra (14)
can then be constructed in terms of a single prepotential UðxÞ by analogy with the one-dimensional case,

Q ¼ c �
i ðp�

i þ i@�iUðxÞÞ; �Q ¼ �c �
i ðp�

i � i@�iUðxÞÞ; L� ¼ X
i

c �
i ; �L� ¼ X

i

�c �
i ;

S ¼ x�i c
�
i � tQ; �S ¼ x�i

�c �
i � t �Q; J ¼ hc �

i
�c �
i i; P� ¼ X

i

p�
i ;

M�� ¼ ðx�i p�
i � x�i p

�
i Þ � ihc �

i
�c �
i � c �

i
�c �
i i; K� ¼ X

i

x�i � tP�;

C ¼ �t2H þ 2tDþ 1

2
x�i x

�
i ; D ¼ tH � 1

4
ðx�i p�

i þ p�
i x

�
i Þ;

H ¼ 1

2
p�
i p

�
i þ 1

2
@�iUðxÞ@�iUðxÞ � @�i@�jUðxÞhc �

i
�c �
j i; (16)

where we abbreviated @�i ¼ @
@x�i

. This representation fixes

the values of the two central charges to Z ¼ M ¼ n.3 The
commutation relations of the N ¼ 2 Schrödinger super-
algebra (14) constrain the prepotential to obey a set of
partial differential equations,

ðx�i @�i � x�i @�iÞUðxÞ ¼ 0;
X
i

@�iUðxÞ ¼ 0;

x�i @�iUðxÞ ¼ �C:

(17)

The first two restrictions in (17) come from rotation and
translation invariance, while the last one is responsible for
conformal symmetry.3For particles of mass m one has Z ¼ M ¼ nm.
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Like in one dimension, we would like to absorb the
bosonic potential V ¼ 1

2@�iU@�iU into a reordering of

the fermions. The condition for this option generalizes
our principal equation (7) to

@�iUðxÞ@�iUðxÞ þ �@�i@�iUðxÞ ¼ 0: (18)

Introducing GðxÞ as in (9) one gets�
x�i @�i þ

C

�

�
GðxÞ ¼ 0 and @�i@�iGðxÞ ¼ 0 (19)

besides translation and rotation invariance for GðxÞ.
Formally, the n-particle model in d dimensions is just a

special nd-particle model in one dimension. However, the
physical symmetry requirement is different: We want the
potential to be invariant under permutations of the n par-
ticle labels only, and not under permutations of all nd
labels. The translation and rotation invariance, on the other
hand, is more restrictive in d dimensions, but this may be
dealt with by passing to a set of SOðdÞ invariants built from
relative coordinates. We shall see that for d > 1 it is
possible to construct physically acceptable ðn; dÞ models
for identical particles.

Like in one dimension, we consider prepotentials G
which are regular at the origin x�i ¼ 0. We do not know
how to write down the most general rotation and
translation-invariant harmonic function, but let us present
two classes of examples. In order to take into account
translation and rotation invariance, we switch to the rela-
tive coordinates r�ij ¼ x�i � x�j and form SOðdÞ scalars

ðrij; rklÞ and ��1...�d
r�1
i1j1

. . . r�d

idjd
from them. Here, ð ; Þ and

��1...�d
denote the Euclidean scalar product and the Levi-

Civita tensor, respectively, in Rd. It should be kept in mind
that these building blocks are not independent; e.g. the
triangle rule r�ij þ r�jk þ r�ki ¼ 0 implies that

ðrij; rjkÞ þ ðrjk; rkiÞ þ ðrki; rijÞ
¼ �1

2½ðrij; rijÞ þ ðrjk; rjkÞ þ ðrki; rkiÞ� ðno sumÞ: (20)

Our first example is a homogeneous and permutation
invariant polynomial of fourth order (thus C ¼ �4�),

GðxÞ ¼ �
Xn
i<j;k

ðrik; rkjÞ2 þ �
Xn
i<j;k

ðrik; rikÞðrkj; rkjÞ

þ �
Xn
i<j

ðrij; rijÞ2 (21)

with free parameters �, � and �. Computing

@�m@�mðrik; rkjÞ2 ¼ 4ðrik; rikÞ þ 4ðrkj; rkjÞ
� 4ðdþ 1Þðrik; rkjÞ;

@�m@�mðrik; rikÞðrkj; rkjÞ ¼ 4dðrik; rikÞ þ 4dðrkj; rkjÞ
� 8ðrik; rkjÞ;

@�m@�mðrij; rijÞ2 ¼ 8ðdþ 2Þðrij; rijÞ (22)

with sums over m only, and employing the identity

Xn
i<j;k

ðrik; rkjÞ ¼ 2� n

2

Xn
i<j

ðrij; rijÞ (23)

following from (20), one arrives at

@�m@�mGðxÞ ¼ �
Xn
i<j

ðrij; rijÞ; (24)

with � being a linear expression in �, � and �. Therefore,
solving (19) amounts to putting � ¼ 0, which is

ðn� 2Þðdþ 5Þ�þ ðn� 2Þð4dþ 2Þ�þ ð4dþ 8Þ� ¼ 0:

(25)

Since the scale of GðxÞ is irrelevant, this linear relation
leaves a one-parameter family (21) of ðn; dÞ prepotentials,
for d > 1 and n � 2. The formulas also work for d ¼ 1,
but produce GðxÞ � 0.
Viewing the three particle labels i, j, and k in (21) as the

vertices of a triangle, this prepotential appears to be con-
structed in terms of triangle areas and edge lengths. This
suggests to construct other prepotentials in terms of gen-
eralized volumes. The simplest such situation, specific to
d ¼ n� 1 dimensions, provides our second example,

GðxÞ ¼ ��1...�n�1
r�1

12r
�2

13 . . . r
�n�1

1n : (26)

This homogeneous polynomial of degree n� 1 measures
the volume of the simplex spanned by the n ¼ dþ 1
particle locations and is naturally permutation invariant
(up to an irrelevant sign). It trivially solves the Laplace
equation since each vector x�i occurs at most linearly in
(26). Hence, this example describes a valid (n, n� 1)
particle model.

IV. CONCLUSIONS

We have constructed new interacting N ¼ 2 many-
body quantum mechanics of a special kind: The bosonic
potential is absent, but interaction takes place through
boson-fermion couplings alone. These couplings are gov-

erned by a prepotential G ¼ eU=� which only has to be
harmonic and homogeneous. The central charge (in the
N ¼ 2 superconformal algebra) is given by the degree of
G and therefore naturally quantized. By changing the
fermionic ordering prescription, one may generate also a
particular bosonic potential which is purely quantum.
In d ¼ 1, the admissible prepotentials include models

built from the positive roots of simple Lie algebras. The An

root systems yield translation-invariant models of identical
particles. In dimensions d > 1, we provided a general
framework with N ¼ 2 Schrödinger supersymmetry and
gave two example models, one for generic ðn; dÞwith a free
parameter and another one for d ¼ n� 1.
Finally, let us discuss possible further developments of

this work. The quantization of the central charge may be
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weakened by letting the particle coordinates parametrize a
cone rather than Rn. The freedom of a deficit angle around
the singularity allows for more general harmonic functions
and therefore other N ¼ 2 models. In the higher-
dimensional situation, our examples were not the most
general ones. A physical classification needs an under-
standing of all homogeneous harmonic functions on Rnd

invariant under the n! permutations of the particle labels
and under the rigid translations and rotations of Rd. It

would be interesting to learn how the root-system solutions
fit into such a scheme.
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