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We couple dual pairs of N= 8 superconformal mechanics with conical targets
of dimension d and 8 − d. The superconformal coupling generates an oscillator-
type potential on each of the two target factors, with a frequency depending on
the respective dual coordinates. In the case of the inhomogeneous (3,8,5) model,
which entails a monopole background, it is necessary to add an extra super-
multiplet of constants for half of the supersymmetry. The N= 4 analog, join-
ing an inhomogeneous (1,4,3) with a (3,4,1) multiplet, is also analyzed in detail.
C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4813720]

I. INTRODUCTION AND SUMMARY

N -extended superconformal mechanics (for a review, see Ref. 1) is defined on off-shell su-
permultiplets containing propagating bosons, fermions, and auxiliary fields and, following Ref. 2,
are denoted by (d,N ,N−d). Their invariant actions define one-dimensional sigma models with a
d-dimensional conical target manifold. The case of N = 8 has been studied less extensively than
those with N = 2 or N = 4. However, in the literature one finds supersymmetric actions for the
supermultiplets (1,8,7),3 (2,8,6), and (3,8,5),4 (4,8,4),5 (5,8,3),6 and 5 ≤ d ≤ 8.7 The superconformal
cases have been produced for (1,8,7),8 (3,8,5),4, 9 and (5,8,3).9, 10 The (2,8,6) model is free.

In this paper, we make use of a d ↔ N−d duality observed in Ref. 11 to couple for the first time
two dually related superconformal mechanics. Depending on the target dimension d, for N = 8 the
coupled systems are invariant under one of the four one-dimensional finite superconformal algebras
A(3, 1), D(4, 1), D(2, 2), or F(4). Their target manifold is a product of two asymptotically flat cones
of dimension d and 8 − d over the spheres Sd − 1 and S7 − d, respectively.

The possibility of consistently coupling dually related supermultiplets was first observed, for
homogeneous supersymmetry transformations, in Ref. 12. This produces N = 8 superconformal
systems with targets of dimension d = 1 + 7, 2 + 6 or 3 + 5 (the 4-dimensional system is degen-
erate, and the dual of the 8-dimensional system is empty). However, for the particular cases of
(N = 4, d = 1) and (N = 8, d = 3), an inhomogeneous deformation of the supersymmetry is ad-
missible (see, e.g., Refs. 13 and 11, respectively). The presence of an inhomogeneity parameter is
responsible for the appearance of a Calogero potential in the N = 4, A(1, 1)-invariant, (1,4,3) model
and of a Dirac monopole in the N = 8, D(2, 1)-invariant, (3,8,5) model, as will be reviewed below.
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In these instances, a consistent superconformal coupling of the inhomogeneous supermultiplet with
its (homogeneous) dual is non-trivial, as will be shown here. It requires the introduction of an extra
supermultiplet of constants for half of the supersymmetries and leads to new superconformal inter-
actions in the presence of a Calogero potential or a monopole. In all cases, an oscillator potential on
each of the two cones is generated, with a frequency depending on the mutually dual coordinate.

The description of the models is given in a Lagrangian framework. By setting all fermionic
fields to zero and eliminating the auxiliary fields, we are led to the dynamics of two interacting
bosonic sigma models whose parameters are fixed by superconformal invariance. Passing to conical
radial variables then reveals the geometry and the physical content of the coupled model. In this
fashion, our results provide an extension of the class of known superconformal models.

Some interesting questions are left for future investigations. In particular, it seems quite plausible
that the bosonic sector of the dually coupled models, whose parameters are fixed by superconformal
invariance, turn out to be integrable, as a remnant of the off-shell invariant transformations.

The paper is structured as follows. After reviewing general features of (d, 8, 8 − d) supermul-
tiplets in Sec. II, we present in Sec. III the superconformal pairing of dually related multiplets
and work out the coupled Lagrangian in the case of homogeneous supersymmetry, ending up
with the general bosonic potential on the cone product in the presence of Fayet-Iliopoulos terms.
Sections IV and V deal with the inhomogeneous (3,8,5) supermultiplet, its Dirac monopole back-
ground, and the corresponding gauge transformations. In Sec. VI, the dual (5,8,3) supermultiplet is
displayed, before Sec. VII couples it to the inhomogeneous (3,8,5) model. Here one finds the central
results of the paper. In Sec. VIII, we reduce the coupled system back to the (5,8,3) supermultiplet.
Complete actions and the N = 4 coupling of the inhomogeneous (1,4,3) supermultiplet with its dual
(3,4,1) partner are presented in detail in the three Appendices.

II. GENERALITIES FOR (d,8,8 − d) SUPERMULTIPLETS

N = 8 superconformal mechanical systems realize the one-dimensional global supersymmetry
algebra {

Qi , Q j
} = 2δi j H with i, j = 1, . . . , 8 and H = ∂t , (2.1)

where t parametrizes the particle worldline. The corresponding supermultiplets are denoted by
(d,8,8 − d), indicating d propagating bosonic, 8 propagating fermionic, and 8 − d auxiliary bosonic
coordinate functions for the superparticle, which thus moves on some d-dimensional target space
parametrized by x = {xa | a = 1, . . . , d}.

In the construction of N = 8 superconformal actions, we can make manifest at most four of the
eight supersymmetries. Picking by convention Q1, Q2, Q3, and Q8, an N = 4 invariant action reads

Sd =
∫

dt Ld =
∫

dt Q8 Q1 Q2 Q3 F(x) , (2.2)

where F(x) is a yet unconstrained function of all coordinates. The restriction to the manifest N = 4
superalgebra splits the N = 8 supermultiplet,

(d, 8, 8−d) −→ (d1, 4, 4−d1) ⊕ (d2, 4, 4−d2) with d1, d2 ≤ 4 and d1 + d2 = d (2.3)

and opposite chiralities (the construction fails if d1 = 0 or d2 = 0; there exists, however, a different
method which works in all cases, see Ref. 14.). It turns out7 that the action depends only on two
combinations of second derivatives of F, namely15

�1 = −�d1 F ≡ −F1 1 − . . . − Fd1d1 and �2 = �d2 F ≡ Fd1+1 d1+1 + . . . + Fd d ,

(2.4)
where we grouped the coordinates according to the decomposition above.

To enhance to N = 8 invariance, we must impose

Q�Ld = ∂t W� for � = 4, 5, 6, 7 . (2.5)
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This produces a harmonicity condition on F (see also Ref. 7),

�d F ≡ δab Fab = 0 . (2.6)

As a consequence, we have

�1 = �2 =: � with �d� = 0 . (2.7)

Clearly, for d ≤ 5, we may take d2 = 1 so that � = Fdd, singling out the last coordinate. Hence,
taking F to be harmonic, we obtain an N = 8 sigma model, with a conformally flat target space for
the propagating bosonic coordinates,7

ds2 = �(x) δabdxadxb . (2.8)

The remaining generators of the conformal sl(2) algebra are realized as

K = −t2∂t − 2t λϕ and D = −t ∂t − λϕ (2.9)

on functions ϕ with engineering dimension [ϕ] = λϕ . They give rise to 8 superconformal
generators11, 13

Q̃i = [K , Qi ] . (2.10)

Superconformal symmetry is imposed by also demanding that16

D Ld = ∂t MD and K Ld = ∂t MK , (2.11)

which yields two conditions on �, namely

[�] = −1 − 2λx and � = �(r ) with r2 = δabxa xb . (2.12)

The closure of the D-module representation for the N = 8 superconformal algebra determines a
critical value for the engineering dimension of x,

λx = 1
d−4 ⇒ [�] = −1 − 2

d−4 = d−2
4−d = (2−d)λx . (2.13)

As a consequence, the conformal factor is indeed fixed to the proper harmonic expression,

�(r ) = r2−d . (2.14)

Introducing the spherical line element d	d − 1 on Sd − 1 and changing the radial coordinate via

ρ = 2
|4−d|r

(4−d)/2 , (2.15)

the metric reads

ds2 = r2−d
(
dr2 + r2d	2

d−1

) = dρ2 + 1
4 (4−d)2ρ2d	2

d−1 . (2.16)

It reveals the target space to be a specific cone over Sd − 1, asymptotically flat with a linear relative
deficit of |4 − d|/2. Its scalar curvature comes out as

R = 1
4 (d−1)(d−2)2(d−6)rd−4 = (d−1)(d−2)2(d−6)(d−4)−2ρ−2 , (2.17)

which is negative for d = 3, 5 and positive for d = 7, 8. At d = 2, 6, we encounter flat space.
In any dimension d up to 8, the manifest N = 4 superconformal algebra must be a particular

member of the D(2, 1; α) family. It turns out that the value of α is determined (up to an S3

automorphism) by the relation

α = − 1
2 |4−d| = − 1

2|λx | . (2.18)
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In fact, only for the special values

α ∈ {−3,−2,− 3
2 ,−1,− 2

3 ,− 1
2 ,− 1

3 , 0, 1
2 , 1, 2, ∞}

(2.19)

attained via (2.18) (and its S3 orbit) is D(2, 1; α) extendable to an N = 8 superconformal algebra.

III. DUALITY AND COUPLING IN THE HOMOGENEOUS CASE

From the results of Sec. II, an obvious duality relates

d ↔ 8−d ⇔ λx ↔ −λx ⇔ {
r ↔ 1

r and Sd−1 ↔ S7−d
}

. (3.1)

The self-dual point at d = 4, however, represents a degenerate case, and the case of d = 0 is empty.
We summarize the values for all dimensions in the following table, which displays also the manifest
N = 4 superalgebra G4 and the full N = 8 superalgebra G8 for each case.

d 0 1 2 3 4 5 6 7 8

� r2 r 1 r− 1 r− 2 r− 3 r− 4 r− 5 r− 6

λx − 1
4 − 1

3 − 1
2 − 1 ∞ + 1 + 1

2 + 1
3 + 1

4

α − 2 − 3
2 − 1 − 1

2 0 − 1
2 − 1 − 3

2 − 2

G4 D(2, 1) D(2, 1; 1
2 ) A(1, 1) D(2, 1) A(1, 1) D(2, 1) A(1, 1) D(2, 1; 1

2 ) D(2, 1)

G8 D(4, 1) F(4) A(3, 1) D(2, 2) − D(2, 2) A(3, 1) F(4) D(4, 1)

The duality map indicated in (3.1) is easily performed by interchanging propagating and auxil-
iary bosons and flipping the direction of the supersymmetry transformations. If we summarily denote
the propagating bosons, fermions, and auxiliary bosons by xa, ψ i, and f α , respectively, and indicate
the components of the dual multiplet by overtildes and lowered indices, the structure schematically
takes the following form:

xa Q−→ ψ i Q−→ ( f α, ẋ a)
Q−→ ψ̇ i

� � �
˙̃ψi

Q←− ( ˙̃xa, f̃a)
Q←− ψ̃i

Q←− x̃α,

where the horizontal arrows encode the various supersymmetry transformations and the vertical
arrows depict the duality relations.

We have essentially three different cases of such a duality for N = 8 superconformal theories:

(1, 8, 7) ↔ (7, 8, 1) , (2, 8, 6) ↔ (6, 8, 2) , (3, 8, 5) ↔ (5, 8, 3) . (3.2)

The two members of each pair have different target dimensions but share the same superconformal
algebra. For this reason, they can be coupled together in a Lagrangian

Ld+(8−d) = Ld + L8−d + γ Ld,(8−d) (3.3)

with a coupling of dimensionless strength γ provided by a canonical pairing,

Ld,(8−d) = xa f̃a + ψ i ψ̃i − f α x̃α . (3.4)

Note that the dimensions in each pairing add up to one, and the duality guarantees the N = 8
superconformal invariance of the coupling term, as long as the transformations remain homogeneous.
This is the case for d = 1 and d = 2. In three dimensions, there exists an inhomogeneous deformation
of the (3,8,5) multiplet. When this is turned on, the coupling to the dual (5,8,3) becomes less obvious.
We will dwell on this point later on.
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Let us take a look at the bosonic part of the Lagrangian in the homogeneous case. It takes the
form

Ld+(8−d)

∣∣ = �(r )
(
ẋ a ẋa + f α f α

) + �̃(̃r)
(

˙̃xα
˙̃xα + f̃a f̃a

) + γ
(
xa f̃a − f α x̃α

)
. (3.5)

We may add Fayet-Iliopoulos terms with dimensionful parameters μα and μ̃a to get

L′
d+(8−d)

∣∣ = Ld+(8−d)

∣∣ + μα f α − μ̃a f̃a . (3.6)

Eliminating the auxiliary components by their equations of motion,

fα = 1
2�−1

(
γ x̃α − μα

)
and f̃ a = − 1

2 �̃−1
(
γ xa − μ̃a

)
, (3.7)

we arrive at

L′′
d+(8−d)

∣∣ = � ẋ a ẋa + �̃ ˙̃xα
˙̃xα − 1

4�−1(γ x̃α−μα

)(
γ x̃α−μα

) − 1
4 �̃−1(γ xa−μ̃a

)(
γ xa−μ̃a

)
,

(3.8)
which features a very specific potential in the joint target space of both multiplets.

For a physical interpretation, it is useful to fix �(r) = r2 − d and �̃ = r̃ d−6 and pass to standard
radial coordinates (up to a factor of 1

2 ),

ρ(r ) = 2
|4−d|r

(4−d)/2 and ρ̃ (̃r ) = 2
|4−d| r̃

(d−4)/2 . (3.9)

Introducing total angular momenta � and �̃ for the d- and (8 − d)-dimensional targets and unit vectors
via xa = rea and x̃α = r̃ ẽα , one arrives at

Lcone
d+(8−d)

∣∣ = ρ̇2 + 4�2

|d−4|2 ρ
−2 + ˙̃ρ

2 + 4�̃2

|d−4|2 ρ̃
−2 − 1

4�−1(γ r̃ �̃e − �μ)2 − 1
4 �̃−1(γ r �e − �̃μ)2

, (3.10)

where r = r(ρ) and r̃ = r̃ (ρ̃) is understood. Apart from the standard angular momentum “barriers,”
the potential for the coordinates r and r̃ is of oscillator type, centered around �r = �̃μ/γ and �̃r = �μ/γ

and with (position-dependent) frequencies ω = γ

2 �̃−1/2 and ω̃ = γ

2 �−1/2, respectively.

IV. D-MODULE REPRESENTATION OF THE (3,8,5) SUPERMULTIPLET

Let us adopt a convenient notation for the components of the (3,8,5) multiplet:

⎧⎪⎨⎪⎩
bosons xa : x, y, z or x1, x2, x3

fermions ψ i : ψ0, ψ1, ψ2, ψ3, ξ0, ξ1, ξ2, ξ3

auxiliaries f α : f1, f2, g, g1, g2

. (4.1)

For simplicity, we lower all indices. According to the relations of Sec. II, we have λx = − 1
and α = − 1

2 , so the N = 4 algebra D(2, 1; − 1
2 ) � D(2, 1; 1) � osp(4|2) should get enlarged to an

D(2|2) � osp(4|4) algebra. For the conformal factor we expect � = 1
r .

A unique feature specific to d = 3 is the option to deform the homogeneous superconformal
transformations by a constant shift in some transformations of fermions to auxiliaries. Without loss
of generality, we choose a frame in which only the auxiliary coordinate g appears shifted, and only
in the action of Q2, Q3, Q6, and Q7. Hence, half of the deformation is taken to be contained in
manifestly realized N = 4 supersymmetry.



072902-6 Gonzales et al. J. Math. Phys. 54, 072902 (2013)

The N = 8 transformations are captured in the following array.

Q8 Q1 Q2 Q3 Q4 Q5 Q6 Q7

x1 ψ0 ψ1 ψ2 ψ3 ξ0 ξ1 ξ2 ξ3

x2 ψ1 −ψ0 ψ3 −ψ2 ξ1 −ξ0 −ξ3 ξ2

x3 ξ0 −ξ1 −ξ2 −ξ3 −ψ0 ψ1 ψ2 ψ3

ψ0 ẋ1 −ẋ2 − f1 − f2 −ẋ3 −g −g1 −g2

ψ1 ẋ2 ẋ1 − f2 f1 −g ẋ3 g2 −g1

ψ2 f1 f2 ẋ1 −ẋ2 −g1 −g2 ẋ3 g+c

ψ3 f2 − f1 ẋ2 ẋ1 −g2 g1 −g−c ẋ3

ξ0 ẋ3 g g1 g2 ẋ1 −ẋ2 − f1 − f2

ξ1 g −ẋ3 g2 −g1 ẋ2 ẋ1 f2 − f1

ξ2 g1 −g2 −ẋ3 g+c f1 − f2 ẋ1 ẋ2

ξ3 g2 g1 −g−c −ẋ3 f2 f1 −ẋ2 ẋ1

f1 ψ̇2 −ψ̇3 −ψ̇0 ψ̇1 ξ̇2 ξ̇3 −ξ̇0 −ξ̇1

f2 ψ̇3 ψ̇2 −ψ̇1 −ψ̇0 ξ̇3 −ξ̇2 ξ̇1 −ξ̇0

g ξ̇1 ξ̇0 −ξ̇3 ξ̇2 −ψ̇1 −ψ̇0 −ψ̇3 ψ̇2

g1 ξ̇2 ξ̇3 ξ̇0 −ξ̇1 −ψ̇2 ψ̇3 −ψ̇0 −ψ̇1

g2 ξ̇3 −ξ̇2 ξ̇1 ξ̇0 −ψ̇3 −ψ̇2 ψ̇1 −ψ̇0

(4.2)

The action for the (3,8,5) multiplet reads

S3 =
∫

dt L3 =
∫

dt Q8 Q1 Q2 Q3 F(x, y, z) (4.3)

with

Fxx + Fyy + Fzz = 0 , (4.4)

and the conformal factor comes out as

Fzz = � = 1
r with r2 = x2 + y2 + z2 . (4.5)

Without loss of generality, the z coordinate is singled out because we had to make a choice in the
supersymmetry transformations.

The dependence on the inhomogeneous shift parameter c is linear, so we write

L3 = L(0)
3 + cL(1)

3 . (4.6)

After a lengthy but straightforward computation, we find

L(0)
3 = � (ẋ2 + ẏ2 + ż2 + f 2

1 + f 2
2 + g2 + g2

1 + g2
2) + fermionic terms (4.7)

and

L(1)
3 = � g + Ax ẋ + Ay ẏ + (4.8)

�x (ψ0ξ1 + ψ1ξ0) + �y(ψ1ξ1 − ψ0ξ0) − �z(ψ1ψ0 + ξ1ξ0) ,

where we introduced

Ax = Fzy and Ay = −Fzx . (4.9)

The complete expression of L(0)
3 is displayed in Appendix A. Setting all fermions to zero, we extract

the bosonic part

L3

∣∣ = � (ẋ2 + ẏ2 + ż2 + f 2
1 + f 2

2 + g2 + g2
1 + g2

2) + c (� g + Ax ẋ + Ay ẏ) . (4.10)
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We remark that only the z derivative of F appears, so it makes sense to define a prepotential

G := Fz ⇒ Gx = −Ay , G y = Ax , Gz = � , (4.11)

which inherits the harmonicity from F.
It is admissible to slightly deform our model by adding Fayet-Iliopoulos terms. This extends

the bosonic Lagrangian to

L′
3

∣∣ = L3

∣∣ + μα fα + ζg + ζαgα with α = 1, 2 (4.12)

and five real parameters μα , ζ , and ζ α .
We solve the equations of motion for the auxiliary fields,

fα = − μα

2�
, g = −ζ + c�

2�
, gα = − ζα

2�
, (4.13)

and eliminate them from the Lagrangian to arrive at

L′′
3

∣∣ = � (ẋ2 + ẏ2 + ż2) − 1
4�−1(μ2

α + ζ 2 + ζ 2
α ) − 1

2 c ζ − 1
4 c2� + c (Ax ẋ + Ay ẏ) . (4.14)

Apparently, there is not only a magnetic but also an electric field, together

Bx = c Gxz , By = c G yz , Bz = −c(Gxx+G yy) = c Gzz, and Ea = − 1
4 c2Gza

(4.15)
both being simply proportional to the gradient of Gz = �. With � = 1

r , we identify a magnetic
monopole, while for the interpretation of the electric field we better pass to the conical coordinates,

r = 1
4ρ2 ⇒ ds2 = dρ2 + 1

4ρ2d	2
2 and A0 = c2ρ−2 . (4.16)

The bosonic dynamics of this theory has been analyzed for general values of α in Ref. 17.

V. GAUGE FREEDOM

In order to explicitly write down the Lagrangian, we must “integrate” � to find the prepotential
G, from which the gauge potential A is obtained. The answer is not unique, due to abelian gauge
invariance,

δAa = ∂au and δG = v (5.1)

with a priori arbitrary harmonic gauge functions u and v. However, the invariance of � = Gz

enforces vz = 0, and the relation between G and Aa connects the two functions,

ux = vy and uy = −vx . (5.2)

The (local) solution introduces another function h(x, y) via

u = hy(x, y) + ũ(z) and v = hx (x, y) with hxx + hyy = 0 . (5.3)

The harmonicity of u implies that ũ is at most linear in z. Alternatively, we may interpret the above
relation as Cauchy-Riemann equations for the real and imaginary part of a holomorphic function of
w = x + iy,

v − i(u−ũ) = E(w) =: ∂w H (w) ⇒ h = H (w) + H (w) , (5.4)

where H and h are determined up to a constant. Therefore, the gauge freedom for the prepotential is
encoded in a single holomorphic function E.

For the magnetic monopole there does not exist a globally regular gauge potential; we must be
content with configurations on a “northern” (N) and on a “southern” (S) patch, related by a regular
gauge transformation in the equatorial overlap. The standard expressions obtained from Gz = 1

r read

G N = + ln(r+z) ⇒ AN
x = G N

y = y
r (z+r ) and AN

y = −G N
x = − x

r (z+r ) ,

(5.5)
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GS = − ln(r−z) ⇒ AS
x = GS

y = y
r (z−r ) and AS

y = −GS
x = − x

r (z−r ) ,

(5.6)

so that indeed (for a = x, y)

G N − GS = ln(x2+y2) =: hx ⇒ AN
a − AS

a = −2∂a arctan y
x =: ∂ahy , (5.7)

and the holomorphic combination

E = ln(x2+y2) + 2i arctan y
x = ln w2 (5.8)

gives rise to the correct “pre-gauge” function

H = 2w(ln w−1) ⇒ h = x ln(x2+y2) − 2x − 2y arctan y
x (5.9)

in the class described above and regular away from the poles. The singularity of the northern
functions along the negative z-axis and likewise for the southern patch signify the would-be Dirac
string in a global configuration.

VI. THE DUAL (5,8,3) SUPERMULTIPLET

Applying the duality reflection to the (3,8,5) multiplet, we obtain a (5,8,3) multiplet. However,
we must first put the inhomogeneous deformation parameter c to zero, since such a deformation
does not exist for d = 5. Section II tells us that λx = + 1 and � = r− 3, and we again realize an
D(2, 2) � osp(4|4) superalgebra. Naming the components as follows:⎧⎪⎨⎪⎩

bosons x̃α : v1, v2, w,w1, w2

fermions ψ̃i : χ0, χ1, χ2, χ3, λ0, λ1, λ2, λ3

auxiliaries f̃a : h1, h2, h3

, (6.1)

the array (4.2) gets transformed into the N = 8 transformations for the (5,8,3) multiplet:

Q8 Q1 Q2 Q3 Q4 Q5 Q6 Q7

v1 λ2 −λ3 −λ0 λ1 χ2 χ3 −χ0 −χ1

v2 λ3 λ2 −λ1 −λ0 χ3 −χ2 χ1 −χ0

w χ1 χ0 −χ3 χ2 −λ1 −λ0 −λ3 λ2

w1 χ2 χ3 χ0 −χ1 −λ2 λ3 −λ0 −λ1

w2 χ3 −χ2 χ1 χ0 −λ3 −λ2 λ1 −λ0

χ0 h3 ẇ ẇ1 ẇ2 h1 −h2 −v̇1 −v̇2

χ1 ẇ −h3 ẇ2 −ẇ1 h2 h1 v̇2 −v̇1

χ2 ẇ1 −ẇ2 −h3 ẇ v̇1 −v̇2 h1 h2

χ3 ẇ2 ẇ1 −ẇ −h3 v̇2 v̇1 −h2 h1

λ0 h1 −h2 −v̇1 −v̇2 −h3 −ẇ −ẇ1 −ẇ2

λ1 h2 h1 −v̇2 v̇1 −ẇ h3 ẇ2 −ẇ1

λ2 v̇1 v̇2 h1 −h2 −ẇ1 −ẇ2 h3 ẇ

λ3 v̇2 −v̇1 h2 h1 −ẇ2 ẇ1 −ẇ h3

h1 λ̇0 λ̇1 λ̇2 λ̇3 χ̇0 χ̇1 χ̇2 χ̇3

h2 λ̇1 −λ̇0 λ̇3 −λ̇2 χ̇1 −χ̇0 −χ̇3 χ̇2

h3 χ̇0 −χ̇1 −χ̇2 −χ̇3 −λ̇0 λ̇1 λ̇2 λ̇3

(6.2)

The full Lagrangian L5 is found in Appendix B. Its bosonic part is obvious,

L5

∣∣ = �̃ (v̇2
α + ẇ2 + ẇ2

α + h2
a) , (6.3)
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where the prepotential function is

�̃ = Fv1v1 + Fv2υ2 = −(Fww + Fw1w1 + Fw2w2 ) . (6.4)

VII. COUPLING (3,8,5) TO (5,8,3)

Since both (3,8,5) and (5,8,3) multiplets represent the same D(2, 2) superalgebra, it is natural
to couple them. The duality provides a canonical interaction term L(0)

3,5 in the joint Lagrangian

L(0)
3 + L5 + γL(0)

3,5 (7.1)

of the form

L(0)
3,5 = xaha − fαvα − g w − gαwα + ψiλi + ξiχi with a = 1, 2, 3 , α = 1, 2 , i = 0, 1, 2, 3 ,

(7.2)
with some dimensionless coupling constant γ . It is easy to check thatL(0)

3,5 is invariant (up to total time
derivatives) under all eight supersymmetries and their conformal partners, because the dimensions
of any two duality partners add up to one.

The superscript (0) reminds us that we turned off the inhomogeneous deformation in the (3,8,5)
multiplet. So the question arises as to whether it is possible to extend this coupling to the deformed
multiplet as well, and what this entails for the dual (5,8,3) multiplet. To answer this, we first observe
that

L3 + L5 + γL(0)
3,5 (7.3)

is indeed invariant (up to total time derivatives) under Q8, Q1, Q4, and Q5, but

Q2L(0)
3,5 = −cχ3 , Q3L(0)

3,5 = cχ2 , Q6L(0)
3,5 = −cλ3 , Q7L(0)

3,5 = cλ2 (7.4)

do not vanish. Yet, since c is a constant, these terms are linear and may be cancelled by adding other
linear terms to the interaction. To achieve this feat, however, one must view the deformation parameter
c as the highest component of an N = 4 multiplet of type (3,4,1) involving the supercharges Qj for
j = 2, 3, 6, 7. Denoting the components of dimension − 1, − 1

2 and 0 by ea, ωi, and c, respectively,
the transformation table takes the form

Q8 Q1 Q2 Q3 Q4 Q5 Q6 Q7

e1 0 0 ω2 ω3 0 0 ω0 ω1

e2 0 0 ω3 −ω2 0 0 −ω1 ω0

e3 0 0 −ω0 −ω1 0 0 ω2 ω3

ω0 0 0 0 −c 0 0 0 0

ω1 0 0 c 0 0 0 0 0

ω2 0 0 0 0 0 0 0 −c

ω3 0 0 0 0 0 0 c 0

c 0 0 0 0 0 0 0 0

(7.5)

It is important to realize that all these components are constants, i.e., time independent, otherwise
there could not be zeros in this table. For the same reason, it is admissible to have this multiplet
annihilated by the other four supercharges, Qk for k = 8, 1, 4, 5. If we add to our interaction
Lagrangian two extra pieces,

L(1)
3,5 = ω0χ2 + ω1χ3 + ω2λ2 + ω3λ3 and L(2)

3,5 = e1h1 + e2h2 + e3h3 , (7.6)

it is not hard to check that all unwanted terms get cancelled, and only total time derivatives remain.
In other words,

L3+5 := L3 + L5 + γL3,5 (7.7)
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is fully N = 8 superconformally invariant for

L3,5 = (xa+ea)ha − fαvα − g w − gαwα (7.8)

+ ξ0χ0 + ξ1χ1 + (ξ2+ω0)χ2 + (ξ3+ω1)χ3 + ψ0λ0 + ψ1λ1 + (ψ2+ω2)λ2 + (ψ3+ω3)λ3 ,

which adds to the pairings (7.2) a term linear in a (1,4,3) submultiplet (w; χ2, χ3, λ2, λ3; ha) inside
our dual (5,8,3) multiplet. Another interpretation is that the (1,8,5) components with inhomogeneous
transformation receive constant shifts which cancel the inhomogeneity produced in the canonical
coupling term.

Interestingly, there is another way to cancel the non-invariant terms (7.4). Observing that

Q jL(0)
3,5 = c Q jw for j = 2, 3, 6, 7 (7.9)

suggests repairing the deficit by adding

L(0′)
3,5 = −c w (7.10)

to the interaction. While Q jL(0′)
3,5 indeed just cancels the unwanted terms, now the other four super-

symmetries are compromised, however, as

Q8L(0′)
3,5 = −c χ1 , Q1L(0′)

3,5 = −c χ0 , Q4L(0′)
3,5 = c λ1 , Q5L(0′)

3,5 = c λ0 . (7.11)

Comparing with (7.4), we see that the deficiency has simply been shifted from the Qj to the Qk

with k = 8, 1, 4, 5, and the relevant fermionic components carry indices 0 and 1 instead of 2 and 3.
Hence, adding a suitable constant (3,4,1) multiplet for those supersymmetries and the appropriate
terms L(1′)

3,5 and L(2′)
3,5 to the interaction will accomplish the job just as well. The only difference for

the bosonic Lagrangians is an additional term of −γ c w.
Sticking with the first resolution and adding Fayet-Iliopoulos terms for all auxiliary components,

the bosonic part of the total action reads

L′
3+5

∣∣ = �
(
ẋ2

a + f 2
α + g2 + g2

α

) + c �A· �̇x + �̃
(
v̇2

α + ẇ2 + ẇ2
α + h2

a

)
− (

γ vα−μα

)
fα − (

γw−ζ−c�
)

g − (
γwα−ζα

)
gα + (

γ (xa+ea)−μ̃a
)

ha , (7.12)

and elimination of the auxiliary components produces

L′′
3+5

∣∣ = � ẋ2
a + c �A· �̇x + �̃

(
v̇2

α + ẇ2 + ẇ2
α

)
− 1

4�−1
(
(γ vα−μα)2 + (γw−ζ−c�)2 + (γwα−ζα)2

) − 1
4 �̃−1

(
γ (xa+ea) − μ̃a

)2
. (7.13)

The constant Lagrange multipliers ea serve to eliminate the zero modes of the ha. For convenience,
we relabel wα = v2+α and w = v5 and define v2 = vαvα + w2 + wαwα . In conical radial coordinates
ρ = 2r1/2 and σ = 2v−1/2, the bosonic action then takes the form

Lcone
3+5

∣∣ = ρ̇2 + 4�2ρ−2 + σ̇ 2 + 4�̃2σ−2 + c �A· �̇x
− 1

16ρ2
(
4γ σ−2�eσ − �μ − 4cρ−2�e5

)2 − σ−6
(
γ (ρ2�eρ+4�e) − 4 �̃μ)2

, (7.14)

where we introduced the angular momenta � and �̃ in the three- and five-dimensional targets, and
the vectors in the first and second brackets are five- and three-dimensional, respectively.
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VIII. A DEFORMED (5,8,3) SUPERMULTIPLET

If in (7.7), we set to zero the complete (5,8,3) multiplet, we simply come back to the original
deformed (3,8,5) theory. Let us then try the opposite and see whether we recover the (5,8,3) model.
However, due to (7.4) it is not consistent to put the (3,8,5) components to zero completely, but we
must keep the zero modes of xa, ψ2, ψ3, ξ 2, ξ 3, and g, which we denote by an overbar. With this
provision, the full Lagrangian (7.7) reduces to

L̂5 = L5 + γ
(
(xa+ea)ha + (ξ 2+ω0)χ2 + (ξ 3+ω1)χ3 + (ψ2+ω2)λ2 + (ψ3+ω3)λ3 − (g+c)w

)
=: L5 + γ

(
e′

aha + ω′
0χ2 + ω′

1χ3 + ω′
2λ2 + ω′

3λ3 − c′w
)
, (8.1)

and to the transformations (7.5) of the constants, we must add

Q8 Q1 Q2 Q3 Q4 Q5 Q6 Q7

x1 0 0 ψ2 ψ3 0 0 ξ 2 ξ 3

x2 0 0 ψ3 −ψ2 0 0 −ξ 3 ξ 2

x3 0 0 −ξ 2 −ξ 3 0 0 ψ2 ψ3

ξ 2 0 0 0 g+c 0 0 0 0

ξ 3 0 0 −g−c 0 0 0 0 0

ψ2 0 0 0 0 0 0 0 g+c

ψ3 0 0 0 0 0 0 −g−c 0

g 0 0 0 0 0 0 0 0

(8.2)

which is what remains of (4.2). We see that only the four Qj are effective. The upshot is a deformation
of the original (5,8,3) Lagrangian by linear terms in a (1,4,3) submultiplet. The linear coefficients
(e′

a, ω
′
i , c′) are just the sum of the (3,4,1) zero-mode submultiplet (8.2) of the original (3,8,5) multiplet

and the constant auxiliary (3,4,1) multiplet (7.5). This combination transforms as follows.

Q8 Q1 Q2 Q3 Q4 Q5 Q6 Q7

e′
1 0 0 ω′

2 ω′
3 0 0 ω′

0 ω′
1

e′
2 0 0 ω′

3 −ω′
2 0 0 −ω′

1 ω′
0

e′
3 0 0 −ω′

0 −ω′
1 0 0 ω′

2 ω′
3

ω′
0 0 0 0 −c′ 0 0 0 0

ω′
1 0 0 c′ 0 0 0 0 0

ω′
2 0 0 0 0 0 0 0 −c′

ω′
3 0 0 0 0 0 0 c′ 0

c′ 0 0 0 0 0 0 0 0

(8.3)

Hence, the coupling of the (5,8,3) multiplet to a dual inhomogeneous (3,8,5) multiplet leads to a
deformation of the former, which consists of the coupling of a (1,4,3) submultiplet to an auxiliary
constant (3,4,1) dual multiplet. The deformation is parametrized by γ and contains the (3,8,5)
inhomogeneity c as part of it. Of course, we may also add standard Fayet-Iliopoulos terms.
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APPENDIX A: ACTION FOR THE (3,8,5) SUPERMULTIPLET

The complete Lagrangian for the (3,8,5) multiplet reads

L(0)
3 = � (ẋ2 + ẏ2 + ż2 + f 2

1 + f 2
2 + g2 + g2

1 + g2
2) + (A1)

� (ψ̇0ψ0 + ψ̇1ψ1 + ψ̇2ψ2 + ψ̇3ψ3 + ξ̇0ξ0 + ξ̇1ξ1 + ξ̇2ξ2 + ξ̇3ξ3) +
�x ((ẏξ0ξ1 + f1ξ0ξ2 + f2ξ0ξ3) + (ẏψ0ψ1 + f1ψ0ψ2 + f2ψ0ψ3)

+(gψ0ξ1 + g1ψ0ξ2 + g2ψ0ξ3) + (gψ1ξ0 + g1ψ2ξ0 + g2ψ3ξ0)

−(ẏξ2ξ3 + f1ξ3ξ1 + f2ξ1ξ2) + (ẏψ2ψ3 + f1ψ3ψ1 + f2ψ1ψ2)

+(gξ3ψ2 + g1ξ1ψ3 + g2ξ2ψ1) − (gξ2ψ3 + g1ξ3ψ1 + g2ξ1ψ2)

+ż(ψ0ξ0 + ξ1ψ1 + ξ2ψ2 + ξ3ψ3)) +
�y((−ẋξ0ξ1 − f1ξ0ξ3 + f2ξ0ξ2) + (ẋψ1ψ0 − f1ψ3ψ0 + f2ψ2ψ0)

−(żξ1ψ0 − g1ξ3ψ0 + g2ξ2ψ0) − (żξ0ψ1 + g1ξ0ψ3 − g2ξ0ψ2)

+g(ξ0ψ0 − ξ1ψ1 + ξ2ψ2 + ξ3ψ3)

+ẋ(ξ2ξ3 − ψ2ψ3) − ż(ξ3ψ2 − ξ2ψ3)

+g1(ψ1ξ2 − ξ1ψ2) + g2(ψ1ξ3 − ξ1ψ3)) +
�z((gξ0ξ1 + g1ξ0ξ2 + g2ξ0ξ3) + (gψ0ψ1 + g1ψ0ψ2 + g2ψ0ψ3)

−(ẏψ0ξ1 + f1ψ0ξ2 + f2ψ0ξ3) − (ẏψ1ξ0 + f1ψ2ξ0 + f2ψ3ξ0)

+(gξ2ξ3 + g1ξ3ξ1 + g2ξ1ξ2) + (gψ2ψ3 + g1ψ3ψ1 + g2ψ1ψ2)

+(ẏξ3ψ2 + f1ξ1ψ3 + f2ξ2ψ1) − (ẏξ2ψ3 + f1ξ3ψ1 + f2ξ1ψ2)

+ẋ(ψ0ξ0 + ξ1ψ1 + ξ2ψ2 + ξ3ψ3)) +
�xx (ψ3ψ1ξ2ξ0 + ψ3ψ0ξ2ξ1 − ψ2ψ1ξ3ξ0 − ψ2ψ0ξ3ξ1) +
�yy(ψ2ψ0ξ2ξ0 + ψ3ψ0ξ3ξ0 − ψ2ψ1ξ2ξ1 − ψ3ψ1ξ3ξ1) +
�zz(−ξ3ξ2ξ1ξ0 + ψ3ψ2ξ1ξ0 − ψ1ψ0ξ3ξ2 + ψ3ψ2ψ1ψ0) +
�xy(ψ2ψ0ξ3ξ0 − ψ2ψ0ξ2ξ1 + ψ3ψ1ξ2ξ1 − ψ3ψ0ξ2ξ0

−ψ2ψ1ξ3ξ1 − ψ3ψ0ξ3ξ1 − ψ2ψ1ξ2ξ0 − ψ3ψ1ξ3ξ0) −
�xz(ψ2ξ3ξ1ξ0 + ψ2ψ1ψ0ξ3 − ψ3ψ1ψ0ξ2 + ψ3ψ2ψ1ξ0

+ψ3ξ2ξ1ξ0 − ψ0ξ3ξ2ξ1 + ψ3ψ2ψ0ξ1 − ψ1ξ3ξ2ξ0) −
�yz(ψ0ξ3ξ2ξ0 + ψ2ξ2ξ1ξ0 + ψ3ξ3ξ1ξ0 − ψ1ξ3ξ2ξ1

−ψ3ψ2ψ0ξ0 + ψ3ψ1ψ0ξ3 + ψ2ψ1ψ0ξ2 + ψ3ψ2ψ1ξ1)

and

L(1)
3 = � g + Ax ẋ + Ay ẏ + (A2)

�x (ψ0ξ1 + ψ1ξ0) + �y(ψ1ξ1 − ψ0ξ0) − �z(ψ1ψ0 + ξ1ξ0) .
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APPENDIX B: ACTION FOR THE (5,8,3) SUPERMULTIPLET

The complete Lagrangian for the (5,8,3) multiplet reads

L5 = �̃(v̇2
1 + v̇2

2 + ẇ2 + ẇ2
1 + ẇ2

2 + h2
1 + h2

2 + h2
3) +

�̃(λ̇0λ0 + λ̇1λ1 + λ̇2λ2 + λ̇3λ3 + χ̇0χ0 + χ̇1χ1 + χ̇2χ2 + χ̇3χ3) +
�̃v1 [v̇2(λ0λ1 + λ2λ3 + χ1χ0 + χ2χ3) + h1(λ1λ3 + λ2λ0 + χ3χ1 + χ2χ0)

+h2(λ2λ1 + λ3λ0 + χ0χ3 + χ2χ1) + h3(λ0χ2 + λ3χ1 + λ2χ0 + χ3λ1)] +
�̃v2 [v̇1(λ1λ0 + λ3λ2 + χ0χ1 + χ3χ2) + h1(λ2λ1 + λ3λ0 + χ1χ2 + χ3χ0)

+h2(λ0λ2 + λ3λ1 + χ3χ1 + χ2χ0) + h3(χ1λ2 + λ3χ0 + λ1χ2 + λ0χ3)] +
�̃w[ẇ1(λ3λ0 + λ1λ2 + χ0χ3 + χ1χ2) + ẇ2(λ0λ2 + λ3λ1 + χ2χ0 + χ1χ3)

+h1(χ2λ3 + χ1λ0 + χ0λ1 + λ2χ3) + h2(χ1λ1 + λ2χ2 + λ0χ0 + λ3χ3)

+h3(λ1λ0 + λ2λ3 + χ1χ0 + χ3χ2)] +
�̃w1 [ẇ(λ0λ3 + λ2λ1 + χ2χ1 + χ3χ0) + ẇ2(λ2λ3 + λ1λ0 + χ0χ1 + χ2χ3)

+h1(λ3χ1 + χ3λ1 + χ2λ0 + χ0λ2) + h2(χ1λ2 + χ2λ1 + λ0χ3 + χ0λ3)

+h3(λ2λ0 + λ3λ1 + χ1χ3 + χ2χ0)] +
�̃w2 [ẇ(λ3λ1 + λ2λ0 + χ0χ2 + χ3χ1) + ẇ1(λ0λ1 + λ3λ2 + χ1χ0 + χ3χ2)

+h1(χ0λ3 + λ1χ2 + χ3λ0 + χ1λ2) + h2(χ3λ1 + λ2χ0 + χ2λ0 + χ1λ3)

+h3(λ3λ0 + λ1λ2 + χ3χ0 + χ2χ1)] +
�̃ww(λ0χ0λ1χ1 + λ2χ2λ3χ3 + χ0χ1χ2χ3) +
�̃v1v1 (λ0χ0χ2λ2 + λ1χ1λ3χ3 + λ0χ1χ2λ3 − χ0λ1λ2χ3 + λ0λ1λ2λ3) +
�̃v2v2 (λ0χ0χ3λ3 + λ1χ1λ2χ2 + λ0χ1λ2χ3 − χ0λ1χ2λ3 + λ0λ1λ2λ3) +
�̃w1w1 (λ0χ0χ2λ2 + λ1χ1λ3χ3 − λ0λ1χ2χ3 + λ0χ1λ2χ3 + χ0χ1λ2λ3 +
−χ0λ1χ2λ3 + χ0χ1χ2χ3) +
�̃w2w2 (λ0χ0χ3λ3 + λ1χ1λ2χ2 − λ0λ1χ2χ3 + λ0χ1χ2λ3 + χ0χ1λ2λ3 +
−χ0λ1λ2χ3 + χ0χ1χ2χ3) +
�̃v1v2 (λ0χ0χ2λ3 − λ0χ0λ2χ3 − λ0χ1χ2λ2 + λ0χ1χ3λ3 + χ0λ1λ2χ2

+χ0λ1χ3λ3 + λ1χ1χ2λ3 − λ1χ1λ2χ3) +
�̃v1w(−λ0χ0λ1λ2 − λ0χ0χ1χ2 + λ0λ3λ1χ1 + λ0λ3χ2λ2 + χ0χ3χ1λ1

+χ0χ3λ2χ2 + λ1λ2χ3λ3 + χ1χ2χ3λ3) +
�̃v1w1 (λ0λ1χ2λ3 − λ0χ1λ2λ3 − χ0λ1λ2λ3 − λ0λ1λ2χ3 − χ0λ1χ2χ3

+χ0χ1λ2χ3 − χ0χ1χ2λ3 − λ0χ1χ2χ3) +
�̃v1w2 (λ0χ0χ2χ3 + λ0χ0λ2λ3 + χ0χ1χ2λ2 + χ0χ1λ3χ3 + λ0λ1λ2χ2 +
λ0λ1χ3λ3 + λ1χ1λ2λ3 + λ1χ1χ2χ3) +
�̃v2w(λ0χ0χ3χ1 + λ0χ0λ3λ1 + χ0χ2λ1χ1 + χ0χ2χ3λ3 + λ0λ2χ1λ1

+λ0λ2λ3χ3 + λ2χ2λ3λ1 + χ2λ2χ1χ3) +
�̃v2w1 (−λ0χ0χ2χ3 − λ0χ0λ2λ3 + χ0χ1χ2λ2 + χ0χ1λ3χ3 + λ0λ1λ2χ2

+λ0λ1χ3λ3 + λ1χ1λ3λ2 + λ1χ1χ3χ2)+
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�̃v2w2 (−χ0λ1λ2λ3 + λ0λ1λ2χ3 − λ0λ1χ2λ3 − λ0χ1λ2λ3 − χ0χ1λ2χ3

−λ0χ1χ2χ3 + χ0χ1χ2λ3 − χ0λ1χ2χ3) +
�̃ww1 (−λ0χ0λ1χ2 + λ0χ0χ1λ2 − χ0λ3λ1χ1 + χ0λ3λ2χ2 − λ0χ3λ1χ1

+λ0χ3λ2χ2 − λ3χ3λ1χ2 + λ3χ3χ1λ2) +
�̃ww2 (λ0χ0χ3λ1 − λ0χ0λ3χ1 − χ0λ2χ1λ1 + χ0λ2χ3λ3 + λ0χ2λ1χ1

+λ0χ2χ3λ3 + λ1χ3χ2λ2 − χ1λ3χ2λ2) +
�̃w1w2 (λ0χ0χ2λ3 − λ0χ0λ2χ3 + χ0λ1χ2λ2 + χ0λ1λ3χ3 + λ0χ1χ2λ2

+λ0χ1λ3χ3 + χ2λ3λ1χ1 + λ2χ3χ1λ1) . (B1)

APPENDIX C: N = 4 DUALITY

It is instructive to display the simpler case of N = 4 duality. Since only the (1,4,3) multiplet
allows for an inhomogeneous deformation, we concentrate on the d = 1 / d = 3 duality and the
coupling of these two multiplets.

Like in the N = 8 cases, the N = 4 Lagrangians have the form

Ld = �δab ẋa ẋb + . . . . (C1)

Scale (D) and special conformal (K) invariance require

� = rβ Y (angles) and �̇ r2 = d
dt Z for r2 = xa xa , (C2)

with some exponent β and functions Y and Z. It follows that Z = c
c+2rβ+2Y and Y = constant.

Let us denote the components of the two multiplets by{
(1, 4, 3) : x ; ψ0, ψ1, ψ2, ψ3; f1, f2, f3

(3, 4, 1) : v1, v2, v3; λ0, λ1, λ2, λ3; h
(C3)

and assign scaling dimensions (i = 0, 1, 2, 3 and a = 1, 2, 3)

[x, ψi , fa] = −1,− 1
2 , 0 and [va, λi , h] = 1, 3

2 , 2 , (C4)

so that the conformal factors for a dimensionless action become

� = x−1 and �̃ = v−3 with v2 = vava . (C5)

The bosonic target space is therefore the product of a (half) line with a three-dimensional cone. The
supersymmetry transformations are given by

Q1 Q2 Q3 Q4

x ψ1 ψ2 ψ3 ψ0

ψ0 f1 f2 f3 ẋ

ψ1 ẋ f3+c − f2 − f1

ψ2 − f3−c ẋ f1 − f2

ψ3 f2 − f1 ẋ − f3

f1 ψ̇0 −ψ̇3 ψ̇2 −ψ̇1

f2 ψ̇3 ψ̇0 −ψ̇1 −ψ̇2

f3 −ψ̇2 ψ̇1 ψ̇0 −ψ̇3

Q1 Q2 Q3 Q4

v1 λ0 −λ3 λ2 −λ1

v2 λ3 λ0 −λ1 −λ2

v3 −λ2 λ1 λ0 −λ3

λ0 v̇1 v̇2 v̇3 h

λ1 h v̇3 −v̇2 −v̇1

λ2 −v̇3 h v̇1 −v̇2

λ3 v̇2 −v̇1 h −v̇3

h λ̇1 λ̇2 λ̇3 λ̇0

(C6)

with inhomogeneous parameter c. The transformations can be written in terms of the quaternionic
structure constants δab and εabc (with ε123 = 1). We note that the two multiplets must have the same
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chirality to be coupled. Therefore, the overall sign of ε123 in the second multiplet is fixed in order to
allow the supersymmetric pairing of the multiplets.

The superconformally invariant action of the coupled system is given as a sum of three terms,

L1+3 = L1 + L3 + γL1,3 , (C7)

with

L1 = Q4 Q3 Q2 Q1 F(x) and L3 = Q4 Q3 Q2 Q1 F̃(�v) . (C8)

The supersymmetric pairing term reads (a = 1, 2, 3 and i = 0, 1, 2, 3)

L1,3 = L(0)
1,3 + L(1)

1,3 + L(2)
1,3 ,

L(0)
1,3 = x h − fava + ψiλi ,

L(1)
1,3 = ω1λ1 + ω2λ2 ,

L(2)
1,3 = e h , (C9)

where the extra constants ω1, ω2 and e have been added, with scaling dimensions [ω1] = [ω2] = − 1
2

and [e] = − 1. The supersymmetry transformations of the constant (1,2,1) multiplet are

Q1 Q2 Q3 Q4

e ω1 ω2 0 0

ω1 0 −c 0 0
ω2 c 0 0 0

c 0 0 0 0

(C10)

An alternative coupling possibility is the following:

L1,3 = L(0)
1,3 + L(0′)

1,3 + L(1′)
1,3 + L(2′)

1,3 ,

L(0)
1,3 = x h − fava + ψiλi ,

L(0′)
1,3 = −c v3 ,

L(1′)
1,3 = ω0λ0 + ω3λ3 ,

L(2′)
1,3 = e′h , (C11)

where the extra constants ω0, ω3, and e′ have been added, with scaling dimensions [ω0] = [ω3] = − 1
2

and [e′] = − 1. The supersymmetry transformations of this constant (1,2,1) multiplet are

Q1 Q2 Q3 Q4

e′ 0 0 ω3 ω0

ω0 0 0 c 0
ω3 0 0 0 −c

c 0 0 0 0

(C12)

The Lagrangians of the one- and three-dimensional systems read

L1 = �
{

ẋ2 + f 2
a + ψ̇0ψ0 + ψ̇aψa

}
+ �x

{
ψ0ψa fa + 1

2εabcψaψb fc
} + �xx

{
1
6εabcψ0ψaψbψc

}
+ c � f3 + c �xψ0ψ3 (C13)

and

L3 = �̃
{
v̇2

a + h2 + λ̇0λ0 + λ̇aλa
}

+ �̃a
{
λaλbv̇b + εabc( 1

2λbλch − λ0λbv̇c)
} + 1

6��̃ εabcλ0λaλbλc , (C14)
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where

� = Fxx and �̃ = �F̃ ≡ F̃aa , (C15)

respectively.
Finally, we add Fayet-Iliopoulos terms which are superconformal (not just supersymmetric)

invariants and introduce dimensionful constants μa and ν,

LFI = μa fa − ν h , (C16)

with [μa] = 1 and [ν] = − 1. The supersymmetry transformations act trivially on μa and ν.
Setting all fermions to zero, the total bosonic Lagrangian based on (C7) with (C9) becomes

L′
1+3

∣∣ = � (ẋ2 + f 2
a ) + �̃ (v̇2

a + h2) − (γ va − μa − cδa3�) fa + (γ x + γ e − ν) h . (C17)

If we use (C11) instead, an additional term −γ c v3 appears. Eliminating the auxiliary fields via

fa = 1
2�−1(γ va − μa − cδa3�) and h = − 1

2 �̃−1(γ x + γ e − ν), (C18)

we arrive at

L′′
1+3

∣∣ = � ẋ2 + �̃ v̇2
a − 1

4�−1
(
γ va − μa − cδa3�

)2 − 1
4 �̃−1

(
γ (x+e) − ν

)2
, (C19)

where the Lagrange multiplier e only ensures that the zero mode h vanishes. Hence, its value is

e = −(�̃−1x − ν/γ )
/
�̃−1. Specializing to � = x− 1 and �̃ = v−3, one gets

L′′
1+3

∣∣ = x−1 ẋ2 + v−3v̇2
a − 1

4 x
(
γ va − μa − cδa3x−1

)2 − 1
4v3

(
γ (x+e) − ν

)2
. (C20)

In order to interpret this Lagrangian, we pass to standard kinetic terms (up to a factor of 1
2 ) by

changing the radial coordinates via

x = 1
4ρ2 and v = 4σ−2 with [ρ] = [σ ] = − 1

2 (C21)

and arrive at

Lcone
1+3

∣∣ = ρ̇2 + σ̇ 2 + 4�̃2σ−2 − 1
16ρ2

(
γ σ−2�eσ − �μ − 4cρ−2�e3

)2 − σ−6
(
γ (ρ2+4e) − 4ν

)2
,

(C22)
where �̃ is the angular momentum in σ space, and �eσ and �e3 denote unit vectors in the σ and 3
directions, respectively. We find a rather complicated potential in the four-dimensional target. If one
employs the option (C11), then linear terms −γ c v3 and −4γ c σ−2�e3 have to be added to (C20) and
(C22), respectively.
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