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ABSTRACT:

The environment of the vehicle can significantly influence the driving situation. Which conditions lead to unsafe driving behaviour is
not always clear, also not to a human driver, as the causes might be unconscious, and thus cannot be revealed by expert interviews.
Therefore, it is important to investigate how such situations can be reliably detected, and then search for their triggers. It is
conceivable that such insecure situations (e.g. near-accidents, U-turns, avoiding obstacles) are reflected, for example, as anomalies

in the movement trajectories of road users.

Collecting real world traffic data in driving studies is very time consuming and expensive. However, a lot of roads or public areas
are already monitored with video cameras. In addition, nowadays more and more of such video data is made publicly available over
the internet so that the amount of free video data is increasing. This research will exploit the use of such kind of opportunistic VGI.
In the paper the first step of an automatic analysis are presented, namely: to introduce a real time processing pipeline to extract road

user trajectories from surveillance video data.

1. INTRODUCTION

Getting insight into critical driving maneuvers is an important
prerequisite for improving the safety in traffic. As a matter of
fact, the environment of a driver has a big influence on the driv-
ing behaviour. Such information ranges from the static envi-
ronment in terms of lanes, the infrastructure, but also the dy-
namic environment in terms of other traffic participants, chang-
ing conditions (such as weather). The knowledge about this
kind of information is important for human drivers, but even
more so for autonomous cars. For autonomous vehicles this
information about the surrounding has to be highly accurate
and current to directly interpret and evaluate the surrounding,
measured by sensors. The richer the information is, the better
a vehicle can judge the situation, predict next steps and react.
The surrounding of the vehicle can significantly influence the
driving situation: e.g. obstacles, limited visibility due to veg-
etation, mix of many traffic participants (cyclists, pedestrians,
car drivers), busy situation on street due to event (e.g. in front
of cinema). Which conditions lead to unsafe driving behaviour
is not always clear - even more so, as they might be uncon-
scious, and thus cannot be revealed by expert interviews. Thus
the idea of so-called Naturalistic Driving Studies (NDS) is to
capture normal traffic situations with a set of different sensors,
e.g. cameras inside and outside the car (Campbell, 2012). Such
sensor data have the potential to detect critical situation - and
once they are detected, it is possible to infer their triggers in
the data as well. It is conceivable that such unsafe situations
(e.g. near-accidents, U-turns, avoiding obstacles) are reflected,
for example, as anomalies in the movement trajectories of road
users. Thus, the idea in this paper is to observe the behaviour
of traffic participants in terms of movement trajectories and an-
alyze it.

Collecting real world traffic data in driving studies (e.g. (Barnard
etal., 2016)) is very time consuming and expensive. Also, NDS
can suffer from the problem that the user behaviour may be in-
fluenced by the knowledge of being observed. On the other
hand, a lot of roads or public areas are monitored with video

cameras today. Also, more and more of such video data is
made publicly available over the internet so that the amount
of free video data is increasing. The disadvantage of this kind
of data is that it typically was not acquired for this purpose,
hence, the setup of the cameras is not optimized, nor is the
quality of the images. Thus, this kind of data can be considered
as so-called opportunistic Volunteered Geographic Information
(VGI) (Goodchild, 2007). One challenge of this research is
therefore to handle and exploit such data. The long term goal of
this research is to provide a mechanism to extract potential criti-
cal situations (both spatio-temporally, but also abstract in terms
of events and relationships) from observed traffic trajectories.
Critical situations can on the one hand be spatio-temporal, e.g.
a dangerous maneuver of a car triggered by a UPS-van park-
ing in the street; on the other hand also a generic relationship,
e.g. a situation, which occurs when many people wait at a traf-
fic light (at any place and time). In this paper, the first steps
of this research are presented, namely: (a) to introduce a real
time processing pipeline to extract road user trajectories from
surveillance video data and (b) to sketch possible ways to ana-
lyze the trajectories with respect to anomalies.

2. RELATED WORK

In order to capture road users trajectories, different measure-
ment systems can be used, ranging from Floating Car Data, via
sensors in road-side infrastructure towards sensors mounted on
aerial vehicles (see e.g. (Krajewski et al., 2018). Whereas the
advantage of aerial sensors is that they provide mostly occlu-
sion free trajectories with low or no perspective distortion, such
approaches cannot be permanently operated. Thus, the frame-
work presented in this paper relies on object detection in (mono)
images from surveillance cameras. Such cameras are widely
available; due to their long-term operation, they are also able
to track and observe seasonal changes in the environment. The
use of mono-cameras, however, has to take distortions due to
deviation of the objects from an assumed plane into account.

After video streams have been captured, the moving objects
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(traffic participants) have to be interpreted in the images. With
increasing computational power in the last years also the per-
formance of object detection in terms of classification accuracy
and run-time increased.

Deep Learning approaches for detecting object bounding boxes
in images like SSD (Liu et al., 2016), Faster R-CNN (Ren et
al., 2015) and YOLO (Redmon et al., 2016) outperform classic
approaches like optical flow, background subtraction or a slid-
ing window feature classifier. In this work we chose YOLO as
object detector since our goal is to create a real time process-
ing pipeline and YOLO is currently the fastest detector while
still providing a high detection accuracy. YOLO handles the
object detection as a regression problem to spatially separated
bounding boxes with associated class probabilities. The predic-
tion happens in a single evaluation for a given input image. To
connect the detections of each video frame to a trajectory, filters
like a Kalman filter (Kalman, 1960) or a particle filter (Smith,
2013) can be used.

There are also networks, like Mask R-CNN (He et al., 2017),
for not only detecting bounding boxes of an object, but already
segmenting the image. While increasing the object detection
accuracy in comparison to bounding box detectors they have
a higher run-time. Furthermore, beside the separation of de-
tection and tracking also neural networks exists which directly
tracking generic objects based on pretrained features like Re3
(Gordon et al., 2018).

There are many approaches which try to analyze behaviour from
given trajectories. An example is the inference of intesion of
traffic participants (Varytimidis et al., 2018); another is the pre-
diction of future movements taking the other traffic participants
into account - which is accomplished using an LSTM-neural
network (Cheng & Sester, 2018). The underlying idea of the
approach in this paper is to define an unsafe situation as one,
which is different from the normal situation, i.e. can be consid-
ered as an anomaly. To this end, a Hidden Markov Approach to
describe components of anomalous behaviour can be applied
(Huang et al., 2014); this model is able to detect traffic sit-
uations such as route repetitions or U-turns. In the domain
of trajectory analysis several methods have been proposed to
group trajectories in order to find mean values (e.g. (Ester et al.,
1996, Kuntzsch et al., 2016, Ahmed et al., 2015)), and then de-
termine deviations thereof as anomalies. A survey on anomaly
detection in trajectories is given by (Kumaran et al., 2019).

3. METHOD

For the surveillance camera pipeline we decided to use detec-
tion based tracking with a filter over direct tracking networks
such as Re3. The reason is, we assume a higher trajectory pre-
cision as well as a faster run-time due to the fact, that we can
add knowledge by modelling the general movement behaviour
of the road users with a filter and do not need a high frame rate
because of the filter prediction steps. In addition this setup is
more flexible and different parts can be optimized later on.

In general the surveillance camera pipeline works as follows
(see Figure 1): for each frame of the specified input video stream
an object detection, using YOLO, will be performed, which re-
turns a list of bounding boxes for all found objects (specified
road user types) in the scene. For each found road user and
their determined bounding boxes the center ground point will
be estimated. Using a precomputed homography matrix for the
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Figure 1. Surveillance camera pipeline structure

concrete scene this center ground point in the camera coordi-
nates is projected to a global coordinate system. A extended
Kalman filter is used to merge the detected road user positions.
In this architecture, the detector and trajectory calculation are
separated, while still running in real time. The detector reviews
raw video frames and outputs bounding boxes with classify-
ing annotations. While the detector only looks at each frame
once, the trajectory calculation uses information over a speci-
fied amount of frames to smooth out variance in the detection
and do a plausibility check to prevent false tracking and reject
false detections. In the end the output trajectories can be further
post processed and analyzed.

4. EXPERIMENT

The trajectory analysis was performed on trajectories gathered
from the introduced surveillance camera pipeline, which was
applied to a video sequence of a webcam live stream of the
Main Street in Canmore, Alberta, Canada, hosted on YouTube
(Alberta, 2019), for a timespan of five hours on the 26.01.2019
from 08:00 am to 01:00 pm. A sample image from the scene of
the selected surveillance camera can be seen in Figure 2. The
chosen video stream is available 24 hours a day, 7 days a week,
which makes it interesting for long therm analyzes. It also al-
lows to make investigations as to the quality of the trajectory
tracking depending on the daytime. The video quality with a
resolution of 1280 x 720 pixel and 30 frames per second is de-
cent.

Since the surveillance camera pipeline should run with any in-
put video stream, we assume that the video source can not be
calibrated and thus the camera parameters are not known. Be-
cause of this the pipeline needs a precomputed homography ma-
trix for each different scene. If the video stream is recorded in a
controlled environment the camera could be properly calibrated
and reference points in the camera image determined precisely.

The homography matrix can be computed by manually deter-
mining corresponding point pairs in the camera image and a
georeferenced orthophoto. For the chosen webcam live stream
of the Main Street in Canmore, Alberta, the city itself provides
an free available orthophoto with a pixel resolution of 7 cm (Al-
berta, 2017). The scene contains good to map structures such
as zebra crossing, other road markings, quadratic trash bins and
trees. In this scene we selected 25 point pairs, which can be
seen in Figures 2 and 3. The residuals in the ground control
points have a mean value of 49,5 cm. Thus, this is the posi-
tional accuracy, which can be optimally achieved.

The road users are characterized by bounding boxes parallel to
the image coordinate system. As only mono images are ana-
lyzed, no depth information is available. Therefore it is diffi-
cult to identify a suitable reference point of the objects. As a
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Figure 3. Homography points of the aerial image

simplification, the bounding boxes bottom center is used. This
ensures that the point lies on the assumed road plane. Later,
an analysis of the displacements induced by these assumptions
is given. The homography is applied to each estimated center
ground point of the detected road users for each frame.

The road users bounding boxes for each frame are detected by
YOLO with the provided pretrained network weights and con-
figurations by the YOLO authors (Redmon et al., 2018). The
given network configuration of YOLO is able to detect 80 dif-
ferent classes. Since this work deals with the tracking of road
users the detection results are filtered and only detections of the
classes person, bicycle, motorbike, car, truck, bus are used.

The projected road user locations are aggregated to trajectories
by use of an extended Kalman filter with the assumption of con-
stant acceleration and yaw rate as well as the use of the bicycle
model (see (Wang & Qi, 2001)). To eliminate situations where
the detection failed for a longer period and the filter was not
able to connect the detections properly all trajectories smaller
than 15 meters were removed to have meaningful trajectories.

Subsequently, the trajectories were clustered with help of DB-

SCAN (Ester et al., 1996), in order to find suitable paths that
road users usually take.

5. RESULTS & DISCUSSION

With the previously described method we were able to achieve
the results, which can be seen in the following figures. First,

some individual trajectories of vehicles and pedestrians are shown.

Figure 4 visualized the tracks of cars turning left. It can be seen,

that the assumption of the reference point being the bounding
boxes lower center lead to systematic displacements of the tra-
jectory towards the observing camera. These displacements are
in the range of one to three meters, depending on the dimension
and the orientation of the object.

Figure 5 shows that individual pedestrians can be tracked over
large extents; it also shows the inaccuracies which are induced
by assuming that the lowest point of the bounding box is always
situated on the ground. This assumption seemingly violated,
when people are walking and thus the lowest point is sometimes
erroneously assigned to the lifted foot.

Figure 6. Aggregated vehicle trajectories

By looking at the trajectory visualization of the vehicles (see
Figure 6), it can be seen, that the crossing with its lanes as well
as the turn maneuvers can be recognized. On the left hand side
the trajectories suddenly stop and moving diagonally upwards.
This pattern is caused by vehicles driving out of the camera
view but are still detected while partially visible. On the right
hand side trajectories leave the road to the bottom or join from
the top. This vehicles join the lane form or leave the lane for a
parking lot.

By looking at the trajectory visualization of the pedestrians (see
Figure 7) it can be seen that the sidewalks and zebra crossing
can be recognized. Furthermore some people do not follow the
rules and illegally cross the road. This is the reason why some
trajectories of pedestrians are on places of the road where they
should not be.
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Figure 7. Aggregated pedestrian trajectories

It can be observed, that the vehicle trajectories are displaced and
are shifted depending on the location in respect to the camera,
whereas the trajectories of the pedestrians are generally more
accurate. This result can be explained by the choice of the cen-
ter ground point. Persons in comparison to cars have a relatively
small and quadratic stand space. That is why the center ground
point for persons can be set as the bounding box bottoms cen-
ter independently from the orientation of a person in respect to
the camera (see Figure 8). This is not true for vehicles. De-
pending on the orientation of a vehicle in respect to the camera
the bounding box bottoms center reflects different points of the
vehicle (see Figure 9).

Figure 9. Vehicles center ground points

The reason for the this is view angle of the camera in respect to
the scenes ground plane. General speaking this angle can be any
from 0°, parallel to the ground (side view), to 90°, orthogonal
to the ground (top view). The smaller the angle the bigger the
problem of determining the right center ground point.

To elaborate the approximate impact of the chosen center ground
point for vehicles the following task was performed (see Fig-
ure 10): the blue car in the middle of the presented intersec-
tions aerial image was chosen as sample vehicle. For this car
a bounding box with a width of 175 cm and length of 495 cm
was manually determined and projected into the camera view.
In the camera view the center ground point of the the projected
car was detected as before as the bounding boxes center bot-
tom. This selected detection center ground point in the camera
image was than projected back into the georeferenced aerial im-
age and compared with the original (ground truth) center point
of the blue cars bounding box. This difference was calculated
for each rotation of the blue car between 0°and 360°in 5°steps
around the cars center on the three marked positions. For the
left position the minimal error was found to be 85 cm at 55°,
the maximum error 271 cm at 350°and the average error 214
cm. For the mid position the minimal error was found to be 88
cm, the maximum error 280 cm and the average error 220 cm.
For the right position the minimal error was found to be 165
cm, the maximum error 340 cm and the average error 289 cm.
That shows, that the inaccuracy of the vehicles center ground
point increases the more far away a vehicle is from the camera.

Figure 10. Error estimation

If the video stream would be recorded from out the air, for ex-
ample by a drone, to a have a bird eye view like in Figure 3,
determining the right center ground point would be much eas-
ier in comparison to a side view of a scene as in our image. In
this case the center of a detected road users bounding box could
be chosen as the center ground point.

As described above for pedestrians the center ground point can
be chosen as the detected bounding boxes bottom center but
their trajectories are affected by another problem. A known
issue by YOLO is that small objects appearing in groups can
not be detected accurately. In the chosen test video sequence
this phenomenon was observed with pedestrians. It happened
that groups of pedestrians were sometimes detected as a sin-
gle pedestrian, sometimes each pedestrian was detected cor-
rectly separately. This behaviour changed for consecutive video
frames (see Figure 11). For small groups of pedestrians up to
three persons this is not a problem because due to a high frame
rate there exist enough detections for each single pedestrian.
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For larger groups the trajectory of a single pedestrian can be
split or even not existing.

Figure 11. Pedestrian group detection

Another problem which decreases the trajectory accuracy is the
changing size of the detection bounding boxes for an object,
which results in jumping center ground points for an object.
This effect is handled by the extended Kalman filter, which
smooths the trajectories.

While the detection of road users using YOLO with the pro-
vided pretrained network weights by the YOLOs authors works
most of the time reliably and accurately, sometimes the network
fails in cases of occlusions. An example is shown in Figure 12,
where vehicles are occluded by the house, a traffic light and a
lantern.

Figure 13. Vehicle trajectory clusters

To analyze the trajectories, they were clustered with help of
DBSCAN (epsilon=7, min_points=4, Frchet distance). In Fig-
ure 13 it can be seen, that each travel direction as well as the
turn maneuvers are separated nicely into different clusters. Be-
cause of above discussed inaccuracies of the trajectories as well

as trajectory separation resulting from failed detections e.g. due
to occlusions, it happens, that one class is represented by mul-
tiple clusters and thus have to be merged in a subsequent step.

We also performed a small analysis on how the light condi-
tions impact the detection and in consequence the trajectory ac-
curacy. Therefor three different video sequences representing
different light conditions were chosen. To represent the light
condition as numeric value, the video frames of the chosen se-
quences were converted to gray scale images and the mean gray
value was determined. As accuracy metric we chose the number
of correct detections in respect to the number of total frames for
a vehicle between the outer borders of the zebra crossing. Ta-
ble 1 shows the average over ten cars per lane going straight.
Since the scene has several light sources like shop windows,
street lamps and traffic lights, which can be reflected by vehi-
cles, the vehicles were divided into two groups. Light-colored
vehicles including white and silver cars and dark-colored ve-
hicles including black and dark blue cars. Beside the decreas-
ing detection rate with darker light conditions, also the detected
bounding box size varies more. It is interesting to note that even
at dusk still a high detection rate can be achieved.

light conditions vehicle color

(mean gray scale) | light-colored | dark-colored
daylight (98.36) 100 % 100 %

dusk (48.00) 91.40% 88.33%
darkness (32.33) | 43.12% 13.87%

Table 1. Vehicle detection accuracy under different light
conditions

6. CONCLUSION & OUTLOOK

We showed that with the above described method it is possible
to extract road user trajectories from a single surveillance video
stream in real time with at least 30 frames per second. It was
shown that the detection of road users was reliable - even in sit-
uations with poor light conditions. Due to discussed challenges
the trajectory accuracy is in the range of meters.

For now the pipeline is suitable to extract meta information like
from where to where how many cars are going, how the traffic
flow changes over time and the detection of significant trajec-
tory changes like u-turns and leaving the lane for a parking lot.
For a more detailed trajectory analysis to investigate the driving
behaviour the trajectory accuracy needs to be increased.

To increase the detection accuracy and also estimate the cen-
ter ground point better, several improvements are planned: the
next step is to try to segment the detected road users precisely,
e.g. with the help of Mask R-CNN. In this way, the orientation
of the vehicles can be determined and thus the center point can
be better estimated. Another promising idea to achieve this is
to try to learn the orientation or the displacement from the true
centerpoint in a deep learning framework. To this end, a bench-
mark dataset with labelled ground truth trajectories is needed.
This benchmark data will also allow to quantitatively evaluate
the trajectory accuracy.

Once the surveillance camera pipeline is improved, it would
be interesting to see how the pipeline performs against deep
learning networks like Re3. Further investigations will focus
on how the camera resolution as well as the recorded frames

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLII-2-W13-1573-2019 | © Authors 2019. CC BY 4.0 License.

1577



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019
ISPRS Geospatial Week 2019, 10-14 June 2019, Enschede, The Netherlands

per second affect the trajectory accuracy and how to find and
trade-off between run-time and trajectory accuracy.

Up to now, the critical situations have been analyzed only by
visual inspection. The next major step is to devise automatic
analysis methods to identify those situations automatically. In
a first step we will use clustering of the majority of the trajecto-
ries and identifying the outliers as critical situations. As in our
approach we have the trajectories of all traffic participants (and
even the video streams), we are then able to inspect these situa-
tions in the original data and try to infer the underlying reasons.
This could, e.g. be another traffic participant, forcing a car to
stop; or it could also be due to weather conditions, or the time
of the day — all of this information is available in the original
data and thus is accessible for automatic analysis.
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