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This paper studies the predictability of metal futures returns. Additionally, we identify years of high 
predictability. Generally, we find a substantial degree of predictability both in- and out-of-sample. Gold returns 
seem to be best predictable out-of-sample. A timing strategy leads to utility gains of 2.18% p.a. In particular, 
the Aruoba–Diebold–Scotti (ADS) business conditions index incorporates relevant information for metal returns, 
and strongly predicts gold returns.
1. Introduction

Are returns predictable? This question has been analyzed at least 
since one century. Initial attempts to predict stock returns were already 
performed by Dow (1920). Numerous studies have tackled the question 
of return predictability and provided evidence either in favor or against 
predictability. Goyal and Welch (2008) argue that the historical mean 
is a tough benchmark to beat and that the so far observed predictabil-

ity is mainly driven by the period of the oil crises. In contrast, Campbell 
and Thompson (2008) provide evidence in favor of return predictabil-

ity when including two economically motivated restrictions. Cochrane 
(2008) shows that return predictability results from the time-variation 
of expected returns rather than dividend growth, and thus contradicts 
the random walk hypothesis. Overall, return predictability is challeng-

ing and the answer of it is still inconclusive.

We accept this challenge and analyze the predictability of metal 
futures returns. The importance of commodities has increased dramati-

cally since the beginning of the millennium. In December 2000, the re-

lease of the Commodity Futures Modernization Act (CFMA) took place, 
which is typically regarded as the beginning of the financialization of 
commodities. As a consequence, the trading of commodity futures has 
been facilitated and commodities have moved more into the focus of in-

stitutional investors for the purpose of diversification, asset allocation 
as well as risk management. From a practical standpoint, to have knowl-

edge about future price developments of commodities goes along with 
an improved investment performance. Investors may better select as-

sets for their asset allocations. Due to the performance of commodities, 
investors have detected commodities as a new investment class (e.g., 
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Bessembinder, 1992; Gorton and Rouwenhorst, 2006). Erb and Harvey 
(2006) show that commodity portfolios have similar average returns 
than stock and bond portfolios.

Commodities exhibit advantageous properties that improve the port-

folio performance. They are used for diversification due to a low cor-

relation with stocks and bonds, and due to a positive correlation with 
inflation and unexpected inflation, commodities serve as hedge against 
inflation (e.g., Gorton and Rouwenhorst, 2006, Symeonidis et al., 2012). 
Gorton and Rouwenhorst (2006) show that commodities perform well 
in the early stage of recessions, when stocks typically underperform. 
Belousova and Dorfleitner (2012) analyze the diversification benefits 
from the perspective of a euro investor and provide evidence that in-

dustrial metals lead to a reduction of risk, whereas precious metals to 
both a risk reduction as well as an improvement of return. Bessler and 
Wolff (2015) analyze numerous asset-allocation strategies and provide 
evidence that in particular metal commodities significantly improve 
the performance of traditional stock-bond-portfolios. Hammoudeh et al. 
(2011) and Zhang and Zhang (2016) refer to the necessity to adjust risk 
management metrics for precious metals, since the prices of precious 
metals are more volatile than their historical trend. Hammoudeh et al. 
(2013) argue that these adjustments increase the regulatory compliance 
by affecting the daily capital charges under the Basel Accord rule.

The main goal of this study is to provide evidence on return pre-

dictability of metal commodity futures. In doing so, we make two con-

tributions. First, we analyze not only the predictability in-sample, but 
also out-of-sample. Here, we use five distinct time series of metal futures 
and 12 variables that are supposed to predict stock returns. Moreover, 
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Table 1

Summary statistics metal futures excess returns. This table summarizes (annualized) key 
statistics for metal futures excess returns. “Mean”, “Std Dev”, “Skew”, and “Kurt” denote 
the mean, standard deviation, skewness, and kurtosis, respectively. The next three columns 
show the first-order autoregressive coefficient and the p-value of the Jarque-Bera and Aug-

mented Dicky Fuller test, respectively. “First Obs.” and “Nobs” denote the first observation 
of the time series and the number of observations. All data are sampled at the monthly fre-

quency.
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Copper 0.03 0.28 0.21 3.76 0.93 <0.01 <0.05 31.08.1988 342

Gold 0.04 0.14 0.30 2.94 0.90 <0.1 <0.05 31.08.1988 342

Palladium 0.08 0.41 -0.38 2.71 0.93 <0.05 0.26 28.02.1995 264

Platinum 0.02 0.21 -0.20 3.46 0.91 <0.1 <0.01 31.08.1988 342

Silver 0.04 0.24 0.68 3.75 0.89 <0.01 <0.01 31.08.1988 342
we focus on several sample periods and use different techniques to iden-

tify years of high predictability. We also use forecast combinations to 
improve the out-of-sample predictability. In addition, we do not only 
analyze the return predictability, but also the economic value that arises 
if an investor can utilize knowledge about future price movements.

Second, we introduce and analyze the ADS index, developed by 
Aruoba et al. (2009), to examine the potential effects on metal futures 
returns and on the behavior over business cycles. The ADS index claims 
to accurately measure business conditions in real-time. Through the use 
of information capturing potential co-movements of business cycles at 
different time frequencies, the ADS index complements the information 
content of less frequently published variables such as the industrial pro-

duction and the unemployment rate. Moreover, since the ADS index is 
reflecting information on business cycle states, it might affect the re-

turn predictability in both equity and commodity markets as a result 
of a sufficient market integration. As a consequence, the index should 
incorporate information that are relevant for metal commodities.

We find excessive evidence for predictability for the next year’s ex-

cess return across all metal commodities, both in- and out-of-sample. 
The best performing variable is the long-term government bond yield, 
indicated by an out-of-sample 𝑅2 of 37.90% in the case of gold. The 
mean forecast combination approach provides evidence for an im-

proved and especially stable out-of-sample predictability, in particular 
for gold and platinum, indicated by out-of-sample 𝑅2𝑠 up to 18.57%. 
Gold returns seem to be best predictable out-of-sample. A timing strat-

egy leads to utility gains of 2.18% p.a., when using aggregated infor-

mation in predicting gold returns.

The ADS index shows remarkable correlations with metal futures 
returns, particularly in recessions. We also find that the ADS index 
strongly predicts gold returns, indicated by an out-of-sample 𝑅2 of 
8.21%. Multiple predictive regressions confirm the strong predictive 
power of the ADS index.

Our study directly relates to the literature on stock return pre-

dictability. Initial studies used aggregated valuation ratios as the 
dividend–price ratio (e.g., Rozeff, 1984; Fama and French, 1988b), 
short-term interest rates (e.g., Campbell, 1987; Ang and Bekaert, 2007), 
and the consumption–wealth ratio (e.g., Lettau and Ludvigson, 2001). 
Campbell and Shiller (1988, 1998) introduced and comprehensively ex-

amined the earnings–price ratio, and provide evidence that this ratio 
especially predicts long-term stock returns. Goyal and Welch (2003, 
2008) analyze numerous financial and macroeconomic variables, re-

examine previous studies and identify the years of the oil crises as the 
main drivers for predictability. Campbell and Thompson (2008) show 
that there exists predictability when imposing two economically moti-

vated restrictions. Rapach et al. (2010) and Rapach and Zhou (2013)

document that combination forecasts might lead to out-of-sample im-

provements.

Our study also relates to the literature on commodities and com-

modity return predictability. Fama and French (1988a) analyze the 
2

behavior of metal spot and futures prices over business cycles and pro-

vide evidence that the prices are affected by the level of inventory and 
the business cycle stage. Numerous papers examine aggregated valu-

ation ratios known from the stock return predictability literature, e.g. 
Bessembinder (1992), Bailey and Chan (1993), and Bjornson and Carter 
(1997). De Roon et al. (2000) use hedging pressure as predictive vari-

able. Gargano and Timmermann (2014) use commodity spot indices 
to analyze the predictability of commodities over a longer time period. 
Nguyen et al. (2019) show that gold returns are predictable by the jump 
tail premium and variance risk premium. Jordan et al. (2018) analyze 
metal commodities in the G7 countries. Prokopczuk et al. (2018) exam-

ine the return predictability of commodities using spot prices of more 
than 140 years, and find evidence particularly for longer horizons.

The remainder of this paper is structured as follows. Section 2 de-

scribes the data, the computation of the variables, and the methodology. 
Section 3 provides the main empirical results. Section 4 shows the re-

sults related to the ADS index. Finally, Section 5 concludes.

2. Methodology

2.1. Data

We obtain our data from several sources. We use monthly settle-

ment prices of five continuously rolled metal futures retrieved from 
Datastream: high grade copper (NHGCS00), gold (NGCCS00), palladium 
(NPACS20), platinum (NPLCS00), and silver (NSLCS00). The commodi-

ties are traded on exchanges in the U.S. and are denominated in U.S. 
Dollar (USD). Table 1 provides an overview about the metal futures. 
Our sample period spans from August 1988 to December 2017.

2.2. Variables

Metal futures excess returns. To base our analysis on the most conser-

vative procedure, we compute the log-return on a fully collateralized 
futures contract (Gorton et al., 2013; Bakshi et al., 2017) as:

𝑟𝑡+1 = 𝑙𝑜𝑔

(
𝐹𝑡+1,𝑇

𝐹𝑡,𝑇

)
+ 𝑟𝑓𝑡, (1)

where 𝐹𝑡+1,𝑇 and 𝐹𝑡,𝑇 are the settlement prices on the continuous futures 
contract with maturity 𝑇 at the end of month 𝑡 + 1 and 𝑡, respectively. 
The interest rate on a fully collateralized position is denoted by 𝑟𝑓𝑡. The 
corresponding futures excess return, i.e. 𝑒𝑟𝑡+1, is then defined as:

𝑒𝑟𝑡+1 = 𝑟𝑡+1 − 𝑟𝑓𝑡. (2)

Predictors. To analyze the predictability of metal futures, we use 12 
variables that appear to have predictive power for stock returns. We 
motivate the predictive power of these variables by the fact that the 
state of the economy has an influence on (metal) commodity prices 
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due to short-term imbalances between demand and supply for those as 
well as due to different financing costs in the short-term (Gargano and 
Timmermann, 2014). Moreover, due to the integration of equity and 
commodity markets, both markets might be affected by similar risk fac-

tors, which, in turn, are affected by the state of the economy in both the 
short- and long-term. Bessembinder (1992) and Hollstein et al. (2019)

provide evidence for a good but not perfect integration of both markets.

Following Goyal and Welch (2008), we take the following stock 
predictive variables: the monthly dividend–payout ratio (𝑑𝑒) as the differ-

ence between the log of dividends and the log of earnings,1 the monthly 
default return spread (𝑑𝑓𝑟) as the difference between long-term corpo-

rate bond returns and long-term government bond returns, the monthly 
default yield spread (𝑑𝑓𝑦) as the difference between BAA- and AAA-

rated corporate bond yields, the monthly dividend yield (𝑑𝑦) as the 
difference between the log of dividends and the log of lagged prices, 
the monthly earnings–price ratio (𝑒𝑝) as the difference between the log 
of earnings and the log of prices, the monthly inflation rate (𝑖𝑛𝑓 𝑙) as the 
return on the U.S. consumer price index, the monthly long-term rate of 
returns on U.S. government bonds (𝑙𝑡𝑟), the monthly long-term U.S. gov-

ernment bond yields (𝑙𝑡𝑦), the monthly stock variance (𝑠𝑣𝑎𝑟) as the sum 
of squared daily returns on the S&P 500, and the monthly term spread 
(𝑡𝑚𝑠) as the difference between long-term U.S. government bond yields 
and the 3-month U.S. Treasury bill rate.2

Moreover, we follow Gargano and Timmermann (2014) and use as 
macroeconomic predictive variables the change in industrial production 
(Δ𝐼𝑛𝑑𝑝𝑟𝑜) as the log difference between monthly industrial production, 
and the unemployment rate (𝑢𝑛𝑟𝑎𝑡𝑒), from the Federal Reserve Bank of 
St. Louis (FRED).3 To gain insights about the behavior of metal com-

modities over business cycles, we use the ADS index from the Federal 
Reserve Bank of Philadelphia.

2.3. In- and out-of-sample return predictability

In-sample analysis. To evaluate the in-sample predictive power of a 
variable, we follow Rapach and Wohar (2006) and estimate the next 
year’s excess return as:

𝑒𝑟𝑡+12 = 𝛼 + 𝛽𝑋𝑡 + 𝜖𝑡+12, (3)

where 𝑒𝑟𝑡+12 is the 12-months’ ahead excess return from month 𝑡 to 
𝑡 + 12.4 𝛼, 𝛽, and 𝜖𝑡+12 are the intercept and the slope parameters, re-

spectively, and the error term over the next year. 𝑋𝑡 represents the 
predictor at month 𝑡.

In detail, to assess the in-sample predictability, we impose the null 
hypothesis of no predictability (𝐻0), i.e.,

𝑒𝑟𝑡+12 = 𝛼 + 𝜖𝑡+12, (4)

defining the restricted model, where 𝛽 = 0. Thus, under 𝐻0 the excess 
return cannot be predicted using 𝑋𝑡, and we would expect that the 
slope estimate is not significantly different from zero. In that case, the 
excess return follows a random walk process, and the best estimate of 
the future excess return is just its historical mean. Under the alternative 
hypothesis of predictability (𝐻1), defined as the unrestricted model in 

1 The dividends (earnings) are usually defined as the 12-months moving sums 
of dividends payed on the S&P 500 stock index.

2 We use the extended data set of Goyal and Welch (2008) that can be found 
at http://www .hec .unil .ch /agoyal/. Further variables known to predict stock 
returns are the dividend–price ratio and the 3-month U.S. Treasury bill rate. 
However, due to high correlations with 𝑑𝑦 (99%) and 𝑡𝑚𝑠 (−63%), respectively, 
we do not include these variables into our set of potential predictors.

3 The corresponding tickers are “INDPRO” for industrial production and “UN-

RATE” for the unemployment rate.
4 At each point in time 𝑡, we sum up the monthly excess returns from month 

𝑡 to 𝑡 + 12, thus, we end up with overlapping annual excess returns.
3

Equation (3), the excess return can be predicted using 𝑋𝑡. Thus, we 
would expect that 𝛽 is significantly different from zero.

To evaluate the significance of predictability, we use the bootstrap 
algorithm, proposed by Rapach and Wohar (2006), in order to obtain 
reliable statistical inferences.5 As a consequence, we avoid the well 
known statistical issues of a small sample bias (Stambaugh, 1999) and 
serial correlation in the error terms (Richardson and Stock, 1989).

Out-of-sample analysis. Our out-of-sample analysis is based on the 
methodology used by, e.g., Goyal and Welch (2003, 2008). To obtain 
the first out-of-sample forecast, we proceed as follows: First, we esti-

mate Equation (3) using an initial training window of 10 years.6 We 
then use the obtained estimated parameters and the most recent obser-

vation of the predictor, to calculate the corresponding forecast. Third, 
we repeat that procedure by rolling the window by one observation 
ahead and estimate the next year’s excess return.

To assess the out-of-sample predictability, we follow Campbell and 
Thompson (2008) and compute the out-of-sample 𝑅2, i.e.,

𝑅2
𝑜𝑜𝑠 = 1 −

𝑀𝑆𝐸𝑢

𝑀𝑆𝐸𝑟

, (5)

where 𝑀𝑆𝐸𝑢 and 𝑀𝑆𝐸𝑟 are the mean squared errors of the unre-

stricted and restricted model, respectively. The 𝑅2
𝑜𝑜𝑠 represents a rel-

ative measure of two competing nested models. Thus, by using that 
measure we ask the question: How large is the improvement of the pre-

dictive power using the variable 𝑋𝑡 in relation to the predictive power 
using the historical mean as naive benchmark? A variable is considered 
to have predictive power, if it is associated with a positive and signif-

icant 𝑅2
𝑜𝑜𝑠. Since that measure represents a point estimate, we have to 

carefully assess the degree of significant predictability.7 In doing so, we 
follow McCracken (2007) and compute the 𝑀𝑆𝐸 − 𝐹 statistic, i.e.,

𝑀𝑆𝐸 − 𝐹 = (𝑁 − 𝑘+ 1) ⋅
(𝑀𝑆𝐸𝑟 −𝑀𝑆𝐸𝑢

𝑀𝑆𝐸𝑢

)
, (6)

where 𝑁 is the number of out-of-sample forecasts. 𝑘 is the degree of 
overlap, thus, in our case 12. In accordance to the previous section, un-

der 𝐻0 the restricted model performs at most as well as the unrestricted 
model (𝑀𝑆𝐸𝑟 ≤𝑀𝑆𝐸𝑢).

To further analyze the predictive (in- and out-of-sample) perfor-

mance of the variable 𝑋𝑡 over time, we plot and analyze the cumulative 
differences in squared forecast errors (CDSFE). The in-sample perfor-

mance is the difference between the cumulative squared demeaned 
excess return from the restricted model and the cumulative squared 
regression residual from the unrestricted model, whereas the out-of-

sample performance is the difference between the cumulative squared 
forecast error from the restricted model and the cumulative squared 
forecast error of the unrestricted model.

Similar to the 𝑅2
𝑜𝑜𝑠, the CDSFE also go along with a relative inter-

pretation. Whenever the variable 𝑋𝑡 has superior (inferior) predictive 
power relative to the historical mean benchmark, we expect an increase 
(a decrease) in the CDSFE. Thus, an absolute increase (decrease) in the 
CDSFE is not interpretable. Moreover, the CDSFE allow an analysis of 
the time-varying predictability of variable 𝑋𝑡 to time periods of high 
and low predictability, respectively (Goyal and Welch, 2008).8

5 A detailed description of the procedure can be found in Section 2.4.
6 Here, we follow Çakmaklı and van Dijk (2016) and use a rolling training 

window of 10 years to capture the average length of a business cycle. Thus, we 
also take care about potential structural breaks in the time series.

7 For more detailed information, see Section 2.5.
8 The sign of the final value of the out-of-sample CDSFE is equal to the sign 

of the estimated 𝑅2
𝑜𝑜𝑠

. In our CDSFE plots, we standardize the in-sample CDSFE 
to zero at the date of the first out-of-sample forecast, by shifting the curve verti-

cally downwards. Due to the apparent sensitivity of the forecasting accuracy of 
the 𝑅2

𝑜𝑜𝑠
𝑠, it is necessary to additionally assess the degree of significance rather 

than relying on the absolute amount of the 𝑅2 𝑠 only.

𝑜𝑜𝑠

http://www.hec.unil.ch/agoyal/
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2.4. Bootstrap procedure

To implement the bootstrap algorithm, we follow Rapach and Wohar 
(2006). In doing so, we assume a data generating process under the null 
hypothesis of no predictability, i.e.:

𝑒𝑟𝑡 = 𝑎0 + 𝜖𝑟,𝑡, (7)

𝑋𝑡 = 𝑏0 + 𝑏1𝑋𝑡−1 + 𝜖𝑢,𝑡, (8)

where 𝑒𝑟𝑡 and 𝑋𝑡 are the excess return and the predictive variable at 
month 𝑡, respectively. 𝑎0, 𝑏0 and 𝑏1 are the intercept and slope parame-

ters, respectively. 𝜖𝑡 =
(
𝜖𝑟,𝑡, 𝜖𝑢,𝑡)′ is a vector of errors that are assumed to 

be independently and identically distributed. We assume that the pre-

dictive variable follows an AR(1) process (Goyal and Welch, 2008).

Next, we estimate Equations (7) and (8) via OLS and obtain the cor-

responding residuals, i.e., 𝜖𝑡 =
(
𝜖𝑟,𝑡, ̂𝜖𝑢,𝑡

)′
. Afterwards, we generate a se-

ries of pseudo errors {𝜖∗𝑡 }
𝑇+100
𝑡=1 , by drawing randomly with replacement 

𝑇 + 100 times from the OLS residuals. To retain the contemporaneous 
structure between the errors, we draw from the OLS residuals in tan-

dem.

To compute our pseudo sample of 𝑇 + 100 observations for 𝑒𝑟𝑡 and 
𝑋𝑡, i.e., {𝑒𝑟∗𝑡 , 𝑋∗

𝑡 }
𝑇+100
𝑡=1 , we proceed as follows. First, we define 𝑎̂0, 𝑏̂0, 

and 𝑏̂𝐴1 as the OLS estimates of the intercept and slope parameters 
in Equations (7) and (8), respectively, where the bias adjustments in 
Shaman and Stine (1988) are used. Second, we take the estimates and 
{𝜖∗𝑡 }

𝑇+100
𝑡=1 , and using Equations (7) and (8) to compute our pseudo sam-

ple. Here, we set the initial values in Equation (8) equal to zero. Third, 
we drop the first 100 observations of our pseudo sample to obtain the 
same size as our original sample.

Next, using our pseudo sample, we compute the (in-sample) 𝑡-
statistic of the unrestricted model, and the (out-of-sample) 𝑀𝑆𝐸 − 𝐹

statistic. We repeat the algorithm 1,000 times obtaining an empirical 
distribution of the respective statistic. Finally, to compute the p-values, 
we also calculate the in- and out-of-sample statistics using the original 
sample. The corresponding p-value is defined as the proportion of the 
respective bootstrapped statistic that is greater than the real statistic.

2.5. MSFE-adjusted test statistic

The 𝑅2
𝑜𝑜𝑠 is a point estimate, thus, the forecast accuracy is sensitive, 

among others, to the sample size (Zhu and Zhu, 2013). To test whether 
the unrestricted and the restricted models are statistically different, we 
can use the MSFE-adjusted test statistic, developed by Clark and West 
(2007). The statistic is an adjusted version of the Diebold and Mari-

ano (1995) and West (1996) statistic and examines the null hypothesis 
that 𝑅2

𝑜𝑜𝑠 ≤ 0. Thus, the statistic is applicable for nested models. The 
asymptotic distribution of the nested model forecasts can be well ap-

proximated by the standard normal distribution. Moreover, in finite 
samples the MSFE-adjusted test statistic also performs quite well (Ra-

pach and Zhou, 2013).

Following Rapach and Zhou (2013), we divide the number of total 
observations 𝑇 into an in-sample estimation period comprising the first 
𝑅 observations and an out-of-sample period comprising the last 𝑁 =
𝑇 − 𝑅 observations, where 𝑠 = 1, ..., 𝑁 . To compute the MSFE-adjusted 
test statistic, we first define:

𝑑𝑅+𝑠 = 𝜖2
𝑟,𝑅+𝑠 − [𝜖2

𝑢,𝑅+𝑠 − (𝑒𝑟𝑅+𝑠 − 𝑒𝑟𝑢,𝑅+𝑠)2], (9)

where, 𝜖2𝑟 and 𝜖2𝑢 are the squared out-of-sample errors from the re-

stricted and unrestricted model, respectively. 𝑒𝑟 is the average excess 
return, and 𝑒𝑟𝑢 the forecast of the excess return of the unrestricted 
model based on predictor 𝑋𝑡. Finally, we regress 𝑑𝑅+𝑠 on a unit vec-

tor of length 𝑁 without intercept. The MSFE-adjusted test statistic is 
then equal to the corresponding 𝑡-statistic, considered as one-sided test.
4

Table 2

Correlation matrix metal futures excess returns. This table reports the correla-

tions among all annual metal futures excess returns. All data are sampled at the 
monthly frequency.

Commodity Copper Gold Palladium Platinum Silver

Copper

Gold 0.47

Palladium 0.54 0.10

Platinum 0.70 0.54 0.59

Silver 0.55 0.75 0.43 0.61

3. Results

3.1. Summary statistics

Before discussing our main empirical results, it is instructive to look 
at some summary statistics and correlations. Table 1 provides summary 
statistics on the annual metal futures excess returns. We observe that the 
average return ranges between 2% for platinum and 8% for palladium, 
which is consistent with former studies of, e.g., Gorton et al. (2013). We 
also notice that gold exhibits the smallest standard deviation of 14%, 
whereas copper has a standard deviation of 28%.

Table 2 shows correlations between the metal futures excess re-

turns. We observe that gold and silver exhibit a high correlation of 
0.75, further, silver and platinum of 0.61, and gold and platinum of 
0.54, which is not surprising given that these commodities belong to 
the class of precious metals. Moreover, copper exhibits a high correla-

tion with platinum of 0.70. Tables 3 and 4 report summary statistics on 
and correlations between the predictive variables, which are consistent 
with, e.g., Goyal and Welch (2008).

3.2. Return predictability

We start by analyzing the performance of variables predicting the 
next year’s excess return on the basis of univariate regressions. Table 5

reports the in-sample and out-of-sample results.

In-sample results. We find an extensive degree of predictability across 
all metal commodities. In particular, 𝑑𝑒, 𝑑𝑓𝑦, and 𝑒𝑝 exhibit signifi-

cant predictive power across all metals, indicated by their significant 
𝑡-statistics, among others, of 4.46, 4.85, and −8.13 in the case of plat-

inum. It is also worth analyzing the predictive power of the individual 
variables. We observe highly significant in-sample 𝑅2𝑠 of 5.55%, 6.48%, 
and 16.33%, respectively.

Further variables showing substantial predictive power are, among 
others, Δ𝐼𝑛𝑑𝑝𝑟𝑜 in the case of gold (𝑅2 = 1.50%), 𝑑𝑦 in the case of pal-

ladium (𝑅2 = 5.63%), 𝑖𝑛𝑓 𝑙 in the case of platinum (𝑅2 = 3.05%), 𝑙𝑡𝑦 in 
the case of gold (𝑅2 = 2.86%), 𝑠𝑣𝑎𝑟 in the case of platinum (𝑅2 = 5.37%), 
𝑡𝑚𝑠 in the case of silver (𝑅2 = 5.60%), and 𝑢𝑛𝑟𝑎𝑡𝑒 in the case of silver 
(𝑅2 = 3.35%). We take note that 𝑑𝑓𝑟 and 𝑙𝑡𝑟 do not have significant 
power in predicting next year’s metal futures excess returns.

Out-of-sample results. Now, we translate our analysis to the out-of-

sample predictability and examine whether the strong in-sample pre-

dictability also holds out-of-sample. Table 5 shows a high degree of 
return predictability by the variables. This is true for all variables, 
except 𝑑𝑓𝑟 and 𝑙𝑡𝑟. Among many others, we find strong predictive 
power for 𝑡𝑚𝑠 in the case of copper (𝑅2

𝑜𝑜𝑠 = 5.06%), 𝑑𝑓𝑦 in the case 
of gold (𝑅2

𝑜𝑜𝑠 = 10.99%), 𝑒𝑝 in the case of platinum (𝑅2
𝑜𝑜𝑠 = 13.75%), 𝑑𝑦

in the case of palladium (𝑅2
𝑜𝑜𝑠 = 19.58%), and 𝑙𝑡𝑦 in the case of gold 

(𝑅2
𝑜𝑜𝑠 = 37.90%). These results are interesting, given that, e.g., Goyal 

and Welch (2008) argue that the historical mean is a tough benchmark 
to beat in the case of stock return predictability.

Overall, we find a substantial degree of predictability across all 
metal commodities for almost all variables. We do not only find evi-

dence for in-sample predictability, but also strong evidence for out-of-

sample predictability. The results are consistent with those in Fama and 
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Table 3

Summary statistics predictive variables. This table summarizes (non-annualized) key statistics about the 
predictive variables. “de” denotes the dividend–payout ratio, “ΔIndpro” the growth of industrial produc-

tion. “dfr” is the default return spread as the difference between long-term U.S. corporate bond returns 
and long-term U.S. government bond returns. “dfy” is the default yield spread as the difference between 
U.S. BAA- and AAA-rated corporate bond yields. “dy” the dividend yield, “ep” the earnings–price ratio, 
“infl” the inflation rate, “ltr” the long-term U.S. government bond returns, “lty” the long-term U.S. gov-

ernment bond yields, and “svar” the stock variance. “tms” is the term spread as the difference between 
the long-term yield on U.S. government bonds and the 3-month Treasury bill rate. “unrate” is the unem-

ployment rate. “Mean”, “Std Dev”, “Skew”, and “Kurt” denote the mean, standard deviation, skewness, 
and kurtosis, respectively. The next three columns show the first-order autoregressive coefficient and the 
p-value of the Jarque-Bera and Augmented Dicky Fuller test, respectively. “First Obs.” and “Nobs” de-

note the first observation of the time series and the number of observations. All data are sampled at the 
monthly frequency.
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de -0.8024 0.4042 2.7791 13.6839 0.9847 <0.01 <0.01 31.08.1988 353

ΔIndpro 0.0015 0.0063 -1.6432 12.3151 0.2256 <0.01 <0.01 31.08.1988 353

dfr 0.0000 0.0157 -0.4845 11.3621 0.0275 <0.01 <0.01 31.08.1988 353

dfy 0.0095 0.0039 3.2061 17.1986 0.9638 <0.01 <0.01 31.08.1988 353

dy -3.8813 0.2924 0.1077 2.4746 0.9857 <0.1 0.66 31.08.1988 353

ep -3.0854 0.3696 -1.9176 9.1496 0.9757 <0.01 <0.1 31.08.1988 353

infl 0.0021 0.0033 -0.9453 8.4420 0.4723 <0.01 <0.01 31.08.1988 353

ltr 0.0070 0.0285 0.0073 5.3642 0.0386 <0.01 <0.01 31.08.1988 353

lty 0.0534 0.0196 0.1278 2.1312 0.9887 <0.01 <0.01 31.08.1988 353

svar 0.0025 0.0045 7.3680 76.5853 0.7072 <0.01 <0.01 31.08.1988 353

tms 0.0234 0.0128 -0.1236 1.9339 0.9763 <0.01 0.48 31.08.1988 353

unrate 0.0596 0.0152 0.9967 3.1889 0.9969 <0.01 0.98 31.08.1988 353

Table 4

Correlation matrix predictive variables. This table reports the correlations among all predictive variables. “de” denotes the dividend–payout ratio, 
and “ΔIndpro” the growth of industrial production. “dfr” is the default return spread as the difference between long-term U.S. corporate bond returns 
and long-term U.S. government bond returns. “dfy” is the default yield spread as the difference between U.S. BAA- and AAA-rated corporate bond 
yields. “dy” is the dividend yield, “ep” the earnings–price ratio, “infl” the inflation rate, “ltr” the long-term U.S. government bond returns, “lty” the 
long-term U.S. government bond yields, and “svar” the stock variance. “tms” is the term spread as the difference between the long-term yield on 
U.S. government bonds and the 3-month Treasury bill rate. “unrate” is the unemployment rate. All data are sampled at the monthly frequency.

Predictor de ΔIndpro dfr dfy dy ep infl ltr lty svar tms unrate

de

ΔIndpro -0.24

dfr 0.15 0.05

dfy 0.61 -0.43 0.11

dy 0.47 -0.11 0.05 0.24

ep -0.72 0.18 -0.17 -0.46 0.27

infl -0.06 0.03 -0.02 -0.20 0.06 0.11

ltr -0.01 -0.04 -0.50 0.01 0.04 0.06 -0.20

lty 0.12 0.12 -0.03 -0.25 0.39 0.17 0.23 0.00

svar 0.30 -0.24 -0.24 0.59 -0.01 -0.29 -0.31 0.15 -0.10

tms 0.39 0.01 0.09 0.27 0.19 -0.28 -0.08 -0.11 -0.15 0.11

unrate 0.30 0.01 0.09 0.37 0.39 -0.03 -0.06 0.01 -0.18 0.08 0.69
French (1989) who argue that 𝑡𝑚𝑠, 𝑑𝑓𝑦, and 𝑑𝑦 are appropriate predic-

tors, because 𝑡𝑚𝑠 is related to short-term business cycles, whereas 𝑑𝑓𝑦
and 𝑑𝑦 to long-term business cycles.

3.3. Model selection approach

Next, we examine the return predictability based on a model se-

lection approach. In particular, we ask the question: Is it possible to 
improve the return predictability when aggregating the information of 
variables? The results are presented in Table 6. We do not only analyze 
the full sample, but also three further sub-samples. First, we analyze the 
post financialization time period, i.e., the time after December 2000.9

Second, we analyze expansions and recessions separately. According to 
Gorton and Rouwenhorst (2006) and Gorton et al. (2013), commodi-

9 Here, the release of the Commodity Futures Modernization Act (CFMA) took 
place.
5

ties behave differently over the business cycle, and commodity futures 
returns shall be better predictable during recessions.10

In-sample results. To select specific variables for predicting the next 
year’s futures excess return, we proceed as follows. First, we run a 
kitchen sink regression by including all variables. In doing so, we are 
able to identify the variables that have significant predictive power for 
future excess returns, at least at the 10% significance level. Afterwards, 
employed with the significant variables, we run a multiple predictive 
regression and extract the adjusted in-sample 𝑅2, i.e., 𝑅̄2. To determine 
the corresponding significance, we use an 𝐹 -test.

Table 6 shows a solid predictability across all metal futures over 
all time periods. Analyzing the full sample, we find 𝑅̄2𝑠 ranging from 
7.46% for silver to 19.51% for platinum. By analyzing the post finan-

10 Due to limited data availability, we cannot provide out-of-sample results for 
recessions.



B. Tharann Heliyon 5 (2019) e01843

Table 5

Return predictability: univariate regressions. This table reports the regression results of monthly excess returns [name in row] on a constant and the lagged predictive 
variable [name in column]. We predict the next year’s excess return. Statistical inferences are based on a bootstrapped distribution following Rapach and Wohar 
(2006). “de” denotes the dividend–payout ratio, “ΔIndpro” the growth of industrial production. “dfr” is the default return spread as the difference between long-

term U.S. corporate bond returns and long-term U.S. government bond returns. “dfy” is the default yield spread as the difference between U.S. BAA- and AAA-rated 
corporate bond yields. “dy” the dividend yield, “ep” the earnings–price ratio, “infl” the inflation rate, “ltr” the long-term U.S. government bond returns, “lty” the 
long-term U.S. government bond yields, and “svar” the stock variance. “tms” is the term spread as the difference between the long-term yield on U.S. government 
bonds and the 3-month Treasury bill rate. “unrate” is the unemployment rate. 𝑅2 and 𝑅2

𝑜𝑜𝑠
are the in-sample and out-of-sample 𝑅2 , respectively. We report the 

t-statistics in parentheses. ∗, ∗∗, ∗∗∗ indicate the significance at the 10%, 5%, and 1% significance levels, respectively. All data are sampled at the monthly frequency.

Commodity Statistic de ΔIndpro dfr dfy dy ep infl ltr lty svar tms unrate

Copper 𝑅2 6.23∗∗∗ 0.31 1.00∗ 9.21∗∗∗ 0.01 6.68∗∗∗ 1.49∗∗ 0.10 1.18∗ 3.06∗∗∗ 3.54∗∗∗ 0.86∗

𝑅2
𝑜𝑜𝑠

2.47∗∗∗ -1.87 -0.76 5.87∗∗∗ -7.68 0.86∗∗ 0.11 -1.78 10.99∗∗∗ -9.30 5.06∗∗∗ -6.62

𝑡-𝑠𝑡𝑎𝑡 (4.75) (-1.03) (1.85) (5.86) (0.21) (-4.93) (-2.26) (-0.59) (-2.01) (3.27) (3.53) (1.72)

Gold 𝑅2 3.07∗∗∗ 1.50∗∗ 0.12 9.59∗∗∗ 1.88∗∗∗ 8.42∗∗∗ 0.62 0.00 2.86∗∗∗ 4.71∗∗∗ 2.69∗∗∗ 1.20∗∗

𝑅2
𝑜𝑜𝑠

-2.26 0.88∗∗ -0.94 10.99∗∗∗ -3.97 0.79∗∗ -1.03 -1.12 37.90∗∗∗ -5.12 -2.09 -1.33

𝑡-𝑠𝑡𝑎𝑡 (3.28) (-2.27) (0.63) (6.00) (-2.55) (-5.58) (-1.45) (0.10) (-3.16) (4.09) (3.06) (2.03)

Palladium 𝑅2 5.92∗∗∗ 1.47∗∗ 0.65 2.47∗∗ 5.63∗∗∗ 2.44∗∗∗ 1.55∗∗ 0.20 0.00 0.66 0.03 2.51∗∗∗

𝑅2
𝑜𝑜𝑠

2.82∗∗∗ -14.89 -3.76 -9.61 19.58∗∗∗ -5.88 0.76∗ -3.47 -20.84 -22.74 -1.35 2.69∗∗∗

𝑡-𝑠𝑡𝑎𝑡 (4.05) (1.97) (1.31) (2.57) (3.94) (-2.55) (-2.03) (-0.72) (0.09) (1.32) (-0.29) (2.59)

Platinum 𝑅2 5.55∗∗∗ 0.02 0.22 6.48∗∗∗ 3.52∗∗∗ 16.33∗∗∗ 3.05∗∗∗ 0.08 0.04 5.37∗∗∗ 1.38∗∗ 0.01

𝑅2
𝑜𝑜𝑠

1.16∗∗ -2.83 -1.96 5.10∗∗∗ 1.15∗∗∗ 13.75∗∗∗ 1.16∗∗ -1.21 11.02∗∗∗ 0.34∗ -2.80 -6.35

𝑡-𝑠𝑡𝑎𝑡 (4.46) (0.28) (0.86) (4.85) (-3.52) (-8.13) (-3.26) (-0.51) (-0.36) (4.39) (2.17) (0.21)

Silver 𝑅2 3.17∗∗∗ 0.06 0.00 4.85∗∗∗ 0.16 4.98∗∗∗ 2.41∗∗∗ 0.47 0.71 3.53∗∗∗ 5.60∗∗∗ 3.35∗∗∗

𝑅2
𝑜𝑜𝑠

2.59∗∗∗ -0.81 -1.72 4.79∗∗∗ -1.22 -1.15 0.13 -1.15 14.29∗∗∗ -4.03 3.45∗∗∗ 3.19∗∗∗

𝑡-𝑠𝑡𝑎𝑡 (3.33) (-0.45) (-0.09) (4.16) (-0.73) (-4.21) (-2.89) (1.27) (-1.56) (3.52) (4.48) (3.43)

Table 6

Return predictability: model selection approach. This table reports the regression results of monthly excess 
returns [name in row] on a constant and the lagged predictive variable(s) based on a model selection approach. 
We predict the next year’s excess return. Statistical inferences are based on an F-test (in-sample), and on the 
MSFE-adjusted test statistic with robust Newey and West (1987) standard errors (12 lags) following Clark and 
West (2007) (out-of-sample). For the in-sample analysis, we run a multiple predictive regression containing 
all significant variables (at least at the 10% significance level) determined by a prior kitchen sink regression. 
For the out-of-sample analysis, we first run a kitchen sink regression to determine the significant variables 
(at least at the 10% significance level). Subsequently, we use a mean forecast combination approach using 
all significant variables. 𝑅̄2 and 𝑅2

𝑜𝑜𝑠
are the in-sample adjusted and out-of-sample 𝑅2 , respectively. ∗, ∗∗, ∗∗∗

indicate the significance at the 10%, 5%, and 1% significance levels, respectively. All data are sampled at the 
monthly frequency.

Commodity Statistic Full sample Post financialization Expansion Recession

Copper 𝑅̄2 11.05∗∗∗ 2.34∗∗ 42.30∗∗∗ 79.63∗∗∗

𝑅2
𝑜𝑜𝑠

3.13 -5.06 12.56

Gold 𝑅̄2 9.33∗∗∗ 28.31∗∗∗ 49.09∗∗∗ 44.96∗∗∗

𝑅2
𝑜𝑜𝑠

14.38∗∗ 18.57∗ 18.00∗∗

Palladium 𝑅̄2 17.52∗∗∗ 19.05∗∗∗ 28.79∗∗∗ 0.00∗∗∗

𝑅2
𝑜𝑜𝑠

14.26 -13.92 -12.20

Platinum 𝑅̄2 19.51∗∗∗ 26.46∗∗∗ 34.53∗∗∗ 64.62∗∗∗

𝑅2
𝑜𝑜𝑠

2.31∗ 3.30∗ 3.81

Silver 𝑅̄2 7.46∗∗∗ 12.49∗∗∗ 40.97∗∗∗ 40.47∗∗∗

𝑅2
𝑜𝑜𝑠

14.17 -1.06 14.77∗∗
cialization period, we notice an improvement in the predictability for 
all metals, except for copper. The 𝑅̄2𝑠 span from 12.49% for silver to 
28.31% for gold. When differentiating between expansions and reces-

sions, we observe a substantial improvement in return predictability, 
except for palladium in recessions. In particular, we find a superior per-

formance for copper and platinum in recessions, indicated by 𝑅̄2𝑠 of 
79.63% and 64.62%, respectively.

Out-of-sample results. Analogously to the in-sample analysis, we pro-

ceed out-of-sample similarly. In the first step, we run a kitchen sink 
regression to determine the variables that are significant at least the 
10% significance level. Afterwards, we use a mean forecast combination 
approach to determine the out-of-sample forecast and the correspond-

ing 𝑅2 .
𝑜𝑜𝑠

6

Following Rapach et al. (2010), forecast combinations might lead to 
an improvement of the out-of-sample predictability. On the one hand, 
forecast combinations aggregate information of multiple variables, and 
thus, providing more stable out-of-sample forecasts by reducing the 
forecast volatility. On the other hand, forecast combinations incorpo-

rate information about the state of the real economy. The authors argue 
that mean forecast combinations provide evidence for a superior perfor-

mance, despite its simplicity.11 In doing so, we compute the combined 
out-of-sample forecast as:

11 Further alternatives are the median and trimmed mean forecast combina-

tion approaches. We obtain similar results, when using these approaches rather 
than the mean forecast combination approach.
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Fig. 1. Return predictability (model selection approach). This figure plots the in- and out-of-sample performances predicting the next year’s excess return based on 
a model selection approach. For the in-sample analysis, we run a multiple predictive regression containing all significant variables (at least at the 10% significance 
level) determined by a prior kitchen sink regression. For the out-of-sample analysis, we first run a kitchen sink regression to determine the significant variables 
(at least at the 10% significance level). Subsequently, we use a mean forecast combination approach using all significant variables. On the ordinate, there are the 
cumulative differences in squared forecast errors (CDSFE). The in-sample performance is the difference between the cumulative squared demeaned excess return 
from the restricted model and the cumulative squared regression residual from the unrestricted model, whereas the out-of-sample performance is the difference 
between the cumulative squared forecast error from the restricted model and the cumulative squared forecast error of the unrestricted model. The grey bars indicate 
the U.S. recessions, published by the NBER. The sample period spans from August 1988 to December 2017. All data are sampled at the monthly frequency.
𝑒𝑟
𝑐,𝑜𝑜𝑠

𝑡+12 =
1
𝑀

𝑀∑
𝑚=1

𝑒𝑟
𝑚,𝑜𝑜𝑠

𝑡+12 , (10)

where 𝑒𝑟𝑐,𝑜𝑜𝑠
𝑡+12 is the combined out-of-sample forecast, and 𝑒𝑟𝑚,𝑜𝑜𝑠

𝑡+12 the 
individual out-of-sample forecast of the (at the at least 10% level sig-

nificant) predictor 𝑚, where 𝑚 = 1, ..., 𝑀 . To determine the significance 
of the 𝑅2

𝑜𝑜𝑠, we use the MSFE-adjusted test statistic of Clark and West 
(2007).12

In Table 6, we find a substantial improvement of the out-of-sample 
predictability, in particular for gold, indicated by 𝑅2

𝑜𝑜𝑠𝑠 of 14.38% and 
18.57% analyzing the full sample and the post financialization period, 
respectively. Moreover, platinum provides evidence for a strong return 
predictability, indicated by 𝑅2

𝑜𝑜𝑠𝑠 of 2.31% and 3.30%, respectively. In 
the case of silver, we observe a notable predictive power in expansions 
(𝑅2

𝑜𝑜𝑠 = 14.77%).

Overall, the model selection approaches provide evidence for an im-

proved performance predicting the next year’s futures excess return. 
The findings suggest that aggregated information might lead to a supe-

rior performance, especially in the case of gold and platinum.

12 Further information about the MSFE-adjusted test statistic can be found in 
Section 2.5.
7

CDSFE. Fig. 1 shows the in- and out-of-sample CDSFE plots for each 
metal commodity based on the model selection approaches. Here, the 
dashed (blue) curve represents the in-sample performance, whereas the 
solid (red) curve the out-of-sample one. For all metal commodities, 
we observe both an increasing in- and out-of-sample performance over 
time, indicating the superior performance of the unrestricted model rel-

ative to the historical mean as naive benchmark. We also notice that 
during recessions a decline is observable, however, short-lasting only.

Overall, the CDSFE plots provide evidence for return predictability 
over the entire time period, on average. In particular in the time periods 
between crises, we observe years of high and stable predictability. This 
finding is a result of the aggregation of the information incorporated 
in different variables, justifying the application of the mean forecast 
combination approach. Accordingly, our findings do not confirm the 
previous results of Goyal and Welch (2008) who argue that return pre-

dictability is mainly driven by crises.

3.4. Economic value analysis

Next, we examine whether return predictability also translates to 
economic gains. The results are presented in Table 7 for different sam-

ple periods. In doing so, we assume an investor with mean–variance 
preferences who decides to allocate a fraction 𝜔𝑡 of her wealth to the 



B. Tharann Heliyon 5 (2019) e01843
Table 7

Economic value. This table reports utility gains based on the mean forecast com-

bination approach, assuming that the combined forecast predicts excess returns. 
The historical mean return serves as naive benchmark. Δ𝐶𝐸𝑅 is the (annual-

ized) utility gain relative to a naive strategy that assumes that excess returns 
are unpredictable. All data are sampled at the monthly frequency.

Panel A: 𝛾 = 3

Commodity Statistic Full sample Post financial. Expansion Recession

Copper Δ𝐶𝐸𝑅 -0.04 0.48 1.99 –

Gold Δ𝐶𝐸𝑅 2.18 1.55 3.92 –

Palladium Δ𝐶𝐸𝑅 1.42 -0.36 0.09 –

Platinum Δ𝐶𝐸𝑅 1.00 0.09 1.75 –

Silver Δ𝐶𝐸𝑅 0.65 0.54 4.41 –

Panel B: 𝛾 = 6

Commodity Statistic Full sample Post financial. Expansion Recession

Copper Δ𝐶𝐸𝑅 -0.65 0.23 0.90 –

Gold Δ𝐶𝐸𝑅 1.93 2.98 1.99 –

Palladium Δ𝐶𝐸𝑅 0.62 -0.16 0.03 –

Platinum Δ𝐶𝐸𝑅 0.38 0.04 0.81 –

Silver Δ𝐶𝐸𝑅 -4.97 0.12 2.04 –

Panel C: 𝛾 = 9

Commodity Statistic Full sample Post financial. Expansion Recession

Copper Δ𝐶𝐸𝑅 -0.53 0.15 0.58 –

Gold Δ𝐶𝐸𝑅 0.78 2.29 1.26 –

Palladium Δ𝐶𝐸𝑅 0.39 -0.10 0.02 –

Platinum Δ𝐶𝐸𝑅 0.23 0.03 0.52 –

Silver Δ𝐶𝐸𝑅 -3.78 0.07 1.27 –

Panel D: 𝛾 = 12

Commodity Statistic Full sample Post financial. Expansion Recession

Copper Δ𝐶𝐸𝑅 -0.43 0.11 0.43 –

Gold Δ𝐶𝐸𝑅 0.04 1.64 0.92 –

Palladium Δ𝐶𝐸𝑅 0.29 -0.07 0.01 –

Platinum Δ𝐶𝐸𝑅 0.16 0.02 0.38 –

Silver Δ𝐶𝐸𝑅 -3.01 0.05 0.91 –

risky portfolio and the remainder, i.e. 1 − 𝜔𝑡, to the risk-free asset. The 
investor’s objective function reads as follows:

max
𝑤𝑡

𝐸𝑡

(
𝑅𝑝,𝑡+12 −

𝛾

2
𝜎2
𝑝,𝑡+12

)
, (11)

where 𝐸𝑡(⋅) is the expectation operator, 𝜎2
𝑝,𝑡+12 the conditional variance 

of the portfolio from 𝑡 to 𝑡 + 12, and 𝛾 is the coefficient of relative risk-

aversion. 𝑅𝑝,𝑡+12 is the next-period’s (simple) return on the investor’s 
portfolio. To address the fact that our analysis is based on log rather 
than simple returns, we use a second-order Taylor expansion to convert 
the returns.13 Thus, we can express the objective function as follows:

max
𝑤𝑡

𝐸𝑡

(
𝑟𝑝,𝑡+12 −

𝛾 − 1
2

𝜎2
𝑝,𝑡+12

)
, (12)

where 𝑟𝑝,𝑡+12 is the log-return on the portfolio, and 𝜎2
𝑡+12 is estimated 

using a five-year rolling window.

Optimizing Equation (12), we obtain the optimal weight invested in 
the risky asset (Jordan et al., 2014):

𝜔𝑡 =
𝐸𝑡(𝑒𝑟𝑡+12 +

1
2𝜎

2
𝑡+12)

𝛾𝐸𝑡(𝜎2𝑡+12)
=

𝐸𝑡(𝑒𝑟𝑡+12)
𝛾𝐸𝑡(𝜎2𝑡+12)

+ 1
2𝛾

. (13)

Equation (13) shows that the optimal weight depends on the ex-

pected futures excess returns, the coefficient of relative risk-aversion, 
and the expected variance.

13 The second-order Taylor expansion leads to the following relationship: 𝑟𝑡 ≈
𝑅𝑡 −

1
2
𝜎2
𝑡
, where 𝑟𝑡, 𝑅𝑡 , and 𝜎2

𝑡
are the log-return, simple return, and variance at 

time 𝑡, respectively. Accordingly, we use the log-return and variance to express 
the simple return.
8

Table 8

Economic value and transaction costs. This table reports utility gains based on 
the mean forecast combination approach, assuming that the combined fore-

cast predicts excess returns. We assume transaction costs of 50 basis points per 
transaction proportional to the asset’s traded size. The historical mean return 
serves as naive benchmark. Δ𝐶𝐸𝑅 is the (annualized) utility gain relative to a 
naive strategy that assumes that excess returns are unpredictable. All data are 
sampled at the monthly frequency.

Panel A: 𝛾 = 3

Commodity Statistic Full sample Post financial. Expansion Recession

Copper Δ𝐶𝐸𝑅 -0.08 0.48 2.00 –

Gold Δ𝐶𝐸𝑅 2.14 1.50 3.82 –

Palladium Δ𝐶𝐸𝑅 1.39 -0.37 0.09 –

Platinum Δ𝐶𝐸𝑅 0.97 0.09 1.69 –

Silver Δ𝐶𝐸𝑅 0.61 0.50 4.35 –

Panel B: 𝛾 = 6

Commodity Statistic Full sample Post financial. Expansion Recession

Copper Δ𝐶𝐸𝑅 -0.67 0.24 0.90 –

Gold Δ𝐶𝐸𝑅 1.90 2.94 1.93 –

Palladium Δ𝐶𝐸𝑅 0.61 -0.16 0.03 –

Platinum Δ𝐶𝐸𝑅 0.37 0.05 0.79 –

Silver Δ𝐶𝐸𝑅 -5.01 0.09 1.99 –

Panel C: 𝛾 = 9

Commodity Statistic Full sample Post financial. Expansion Recession

Copper Δ𝐶𝐸𝑅 -0.54 0.16 0.58 –

Gold Δ𝐶𝐸𝑅 0.74 2.27 1.22 –

Palladium Δ𝐶𝐸𝑅 0.39 -0.11 0.02 –

Platinum Δ𝐶𝐸𝑅 0.22 0.03 0.50 –

Silver Δ𝐶𝐸𝑅 -3.81 0.05 1.24 –

Panel D: 𝛾 = 12

Commodity Statistic Full sample Post financial. Expansion Recession

Copper Δ𝐶𝐸𝑅 -0.44 0.12 0.43 –

Gold Δ𝐶𝐸𝑅 0.02 1.61 0.89 –

Palladium Δ𝐶𝐸𝑅 0.28 -0.08 0.01 –

Platinum Δ𝐶𝐸𝑅 0.15 0.02 0.37 –

Silver Δ𝐶𝐸𝑅 -3.03 0.04 0.89 –

For each month in our out-of-sample analysis, we compute the 
weight 𝜔𝑡 and also the realized return of the portfolio. We impose the 
restriction that whenever the forecast of the market excess return in 
Equation (13) equals zero, we set the portfolio weight equal to 1∕(2𝛾). 
Further, following Campbell and Thompson (2008) and Jordan et al. 
(2017), we impose the restriction that 𝜔𝑡 has to be between 0 and 1.5.14

Finally, we compute the certainty equivalent return (𝐶𝐸𝑅) as:

𝐶𝐸𝑅 = 𝑅̄𝑝 −
𝛾

2
𝜎2𝑝 , (14)

where 𝑅̄𝑝 is the average return on the portfolio, and 𝜎2𝑝 is the variance of 
the portfolio returns. Further, we define the utility gain (Δ𝐶𝐸𝑅) as the 
difference between the 𝐶𝐸𝑅 of a strategy assuming that excess returns 
are predictable using 𝑋𝑡, and the 𝐶𝐸𝑅 of the benchmark strategy that 
assumes that returns are unpredictable.

Table 7 provides the results for different coefficients of relative risk-

aversion. Assuming 𝛾 = 3, we find positive utility gains for all metals 
ranging from 0.65% p.a. for silver to 2.18% p.a. for gold. Copper rep-

resents an exception by showing a slightly negative Δ𝐶𝐸𝑅 for the full 
sample. Examining the post financialization period, we find that all met-

als, except palladium, provide evidence for positive utility gains up to 
1.55% p.a. for gold. Moreover, in expansions, all metal commodities 
exhibit positive utility gains up to 4.41% p.a. for silver.

Table 8 reports the utility gains taking transaction costs into ac-

count. Here, we follow Balduzzi and Lynch (1999) and assume trans-

14 In doing so, we avoid short-selling and an extensive leverage of the risky 
asset.
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Fig. 2. Development of ADS index and metal futures excess returns. This figure plots the development of the ADS index and the development of the monthly metal 
futures excess returns over time. The grey bars indicate the U.S. recessions, published by the NBER. The sample period spans from August 1988 to December 2017. 
All data are sampled at the monthly frequency.
action costs of 50 basis points per transaction proportional to the as-

set’s traded size |𝜔𝑡+12 − 𝜔𝑡+ |, where 𝜔𝑡+ is the portfolio weight before 
re-balancing at 𝑡 + 12. We observe that our main results are almost un-

changed when taking transaction costs into account. E.g., an investor 
relaying on the aggregated information when predicting gold excess re-

turns, would earn an utility gain of now 2.14% p.a. (rather than 2.18% 
p.a.).

Overall, the results provide evidence that return predictability also 
translates to economic gains. When relying on the aggregated infor-

mation, investors might earn substantial utility gains. We notice that 
transaction costs do not systematically affect our results.

4. Results and discussion

In this section, we analyze the relationship between metal futures 
excess returns and the ADS index. In the first step, we introduce the 
ADS index, and in the second one we examine the informative value. 
Finally, we use multiple regressions to analyze the robustness of the 
predictive power of the ADS index.
9

4.1. ADS index

The ADS index is developed by Aruoba et al. (2009) and represents 
a measure of macroeconomic activity, and thus of business conditions 
in real-time. The importance to have aggregated business conditions 
in real-time arises from the fact that economic agents make decisions 
in real-time. This includes, among many others, policy makers, central 
banks, and investors.

Using a variety of information, the authors are able to track business 
conditions over time. In doing so, they use a dynamic factor model to 
deal with potential co-movements of business cycles with related vari-

ables. Moreover, they employ business conditions indicators, measured 
at low and high frequencies, to extract relevant information, e.g., about 
asset prices, the term premium, the payroll employment, initial jobless 
claims, and the GDP. The index is zero on average, thus, a positive (neg-

ative) value represents business conditions above (below) the average 
conditions.

4.2. Informative value of the ADS index for metal futures returns

Fig. 2 shows the monthly development of the ADS index and of the 
metal futures excess returns. We observe that particularly in crises, the 
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Fig. 3. Return predictability (ADS index). This figure plots the in- and out-of-sample performances predicting the next year’s excess return based on the ADS index. 
On the ordinate, there are the cumulative differences in squared forecast errors (CDSFE). The in-sample performance is the difference between the cumulative 
squared demeaned excess return from the restricted model and the cumulative squared regression residual from the unrestricted model, whereas the out-of-sample 
performance is the difference between the cumulative squared forecast error from the restricted model and the cumulative squared forecast error of the unrestricted 
model. The grey bars indicate the U.S. recessions, published by the NBER. The sample period spans from August 1988 to December 2017. All data are sampled at 
the monthly frequency.
metal excess returns move into the same direction as the ADS index. 
To deepen the analysis, Panel A of Table 9 reports the correlations be-

tween the ADS index and the metal excess returns over different sample 
periods.

In the case of copper, platinum, and silver we observe small negative 
correlations with the ADS index in the range of −0.01 and −0.06 over 
the full sample, the post financialization period, and in expansions. Gold 
exhibits a strong negative correlation of −0.28 (full sample), −0.13 (post 
financialization), and −0.41 in recessions. In contrast, palladium shows 
a slight positive correlation over the post financialization period (0.06), 
but strong positive correlations over the full sample (0.21) and in ex-

pansions (0.54). Interestingly, all metal commodities have in common 
a strong negative correlation with the ADS index in recessions ranging 
from −0.45 for gold and platinum, to −0.60 for palladium. Thus, the re-

sults show that the ADS index has most explanatory power for metal 
future excess returns during recessions.

Panel B of Table 9 reports the in-sample and out-of-sample results 
predicting the next year’s excess return based on the ADS index. In 
doing so, we use the same methodology as in our previous section, 
however, using the ADS index as predictive variable. In-sample, we 
observe significant 𝑅2𝑠 in the case of copper (𝑅2 = 0.89%), palladium 
(𝑅2 = 2.50%), and gold (𝑅2 = 7.69%). For platinum and silver, we find 
positive but insignificant 𝑅2𝑠. Thus, the ADS index seems to have 
in-sample predictive power for at least three of five metal commodi-

ties.
10
Table 9

Correlations and return predictability of ADS index. This table reports results 
related to the ADS index. Panel A shows the correlations between the ADS index 
and the annual metal futures excess returns over different time periods. Panel 
B shows the regression results of monthly excess returns [name in column] 
on a constant and the lagged ADS index. We predict the next year’s excess 
return. Statistical inferences are based on a bootstrapped distribution following 
Rapach and Wohar (2006). 𝑅2 and 𝑅2

𝑜𝑜𝑠
are the in-sample and out-of-sample 

𝑅2 , respectively. We report the t-statistics in parentheses. ∗, ∗∗, ∗∗∗ indicate the 
significance at the 10%, 5%, and 1% significance levels, respectively. All data 
are sampled at the monthly frequency.

Panel A: correlations

Time period Copper Gold Palladium Platinum Silver

Full sample -0.03 -0.28 0.21 0.02 -0.05

Post financial. -0.01 -0.13 0.06 -0.05 -0.02

Expansion -0.04 -0.41 0.54 -0.04 -0.06

Recession -0.53 -0.45 -0.60 -0.45 -0.57

Panel B: return predictability (full sample)

Statistic Copper Gold Palladium Platinum Silver

𝑅2 0.89∗ 7.69∗∗∗ 2.50∗∗ 0.06 0.72

𝑅2
𝑜𝑜𝑠

-5.26 8.21∗∗∗ -47.42 -3.68 -0.74

𝑡-𝑠𝑡𝑎𝑡 (-1.74) (-5.31) (2.59) (-0.47) (-1.57)

Analyzing the return predictability out-of-sample, we find that the 
ADS index has strong predictive power for gold excess returns, indicated 
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Table 10

Multiple regressions: stock variables, macroeconomic variables, and ADS index. This table reports the regression results of monthly excess returns [name in column] 
on a constant and the lagged predictive variables [name in rows]. We predict the next year’s excess return. Statistical inferences are based on a bootstrapped 
distribution following Rapach and Wohar (2006). “de” denotes the dividend–payout ratio, “ΔIndpro” the growth of industrial production. “dfr” is the default 
return spread as the difference between long-term U.S. corporate bond returns and long-term U.S. government bond returns. “dfy” is the default yield spread as 
the difference between U.S. BAA- and AAA-rated corporate bond yields. “dy” the dividend yield, “ep” the earnings–price ratio, “infl” the inflation rate, “ltr” the 
long-term U.S. government bond returns, “lty” the long-term U.S. government bond yields, and “svar” the stock variance. “tms” is the term spread as the difference 
between the long-term yield on U.S. government bonds and the 3-month Treasury bill rate. “unrate” is the unemployment rate. 𝑅2 and 𝑅2

𝑜𝑜𝑠
are the in-sample and 

out-of-sample 𝑅2 , respectively. We report the t-statistics in parentheses. ∗, ∗∗, ∗∗∗ indicate the significance at the 10%, 5%, and 1% significance levels, respectively. 
All data are sampled at the monthly frequency.

Panel A: with ADS index Panel B: without ADS index

Copper Gold Palladium Platinum Silver Copper Gold Palladium Platinum Silver

Constant -0.26 -0.70∗∗∗ 0.84 -1.61∗∗∗ -1.01∗∗∗ -0.26 -0.70∗∗∗ 0.73 -1.61∗∗∗ -1.01∗∗∗

(-0.69) (-3.90) (1.44) (-6.37) (-3.15) (-0.69) (-3.86) (1.17) (-6.23) (-3.15)

de 0.42 -0.02 -0.27 -0.17 -0.17 0.17 0.08 -1.23∗ -0.37 -0.25

(1.01) (-0.08) (-0.43) (-0.59) (-0.49) (0.42) (0.38) (-1.90) (-1.31) (-0.72)

ΔIndpro -3.44 2.51 -6.60 -1.56 -0.67 3.98 -0.26 13.78∗∗∗ 4.60∗∗ 1.66

(-0.98) (1.47) (-1.31) (-0.65) (-0.22) (1.47) (-0.20) (3.41) (2.47) (0.72)

dfr 0.94 0.06 -2.14 -1.07 -0.53 0.88 0.09 -2.58 -1.12 -0.55

(0.76) (0.10) (-1.29) (-1.26) (-0.50) (0.70) (0.14) (-1.45) (-1.29) (-0.52)

dfy 32.42∗∗∗ 7.84∗∗ 27.92∗∗ 26.60∗∗∗ 14.84∗∗ 22.17∗∗∗ 11.67∗∗∗ 2.14 18.09∗∗∗ 11.62∗

(4.11) (2.03) (2.41) (4.93) (2.17) (3.02) (3.26) (0.19) (3.57) (1.85)

dy -0.39 -0.12 0.79 -0.04 0.03 -0.17 -0.20 1.68∗∗∗ 0.14 0.10

(-0.96) (-0.60) (1.31) (-0.15) (0.10) (-0.41) (-1.02) (2.66) (0.51) (0.30)

ep 0.34 -0.03 -0.59 -0.30 -0.22 0.11 0.06 -1.52∗∗ -0.49∗ -0.29

(0.85) (-0.15) (-0.96) (-1.07) (-0.61) (0.27) (0.29) (-2.37) (-1.75) (-0.83)

infl -2.70 -0.28 -10.55 -7.26∗∗ -5.88 -4.56 0.42 -14.19∗ -8.81∗∗ -6.46

(-0.54) (-0.12) (-1.54) (-2.14) (-1.37) (-0.91) (0.17) (-1.95) (-2.56) (-1.51)

ltr 0.28 0.09 -1.47∗ -0.28 0.56 0.09 0.16 -1.65∗ -0.43 0.50

(0.46) (0.28) (-1.74) (-0.66) (1.04) (0.15) (0.51) (-1.83) (-1.01) (0.94)

lty -0.22 0.52 1.51 2.95∗∗∗ 1.55∗ -0.19 0.52 1.64 2.97∗∗∗ 1.56∗

(-0.20) (0.99) (0.78) (4.00) (1.66) (-0.18) (0.97) (0.80) (3.94) (1.66)

svar -0.15 -0.94 8.20 1.52 2.24 -2.08 -0.22 2.83 -0.09 1.63

(-0.03) (-0.40) (1.27) (0.47) (0.54) (-0.44) (-0.09) (0.41) (-0.03) (0.40)

tms 3.95∗∗ 1.04 -9.62∗∗∗ 0.63 3.02∗∗ 3.95∗∗ 1.03 -10.22∗∗∗ 0.63 3.02∗∗

(2.28) (1.22) (-3.91) (0.53) (2.01) (2.25) (1.21) (-3.89) (0.52) (2.01)

unrate -3.30∗∗ 0.65 4.88∗∗ 0.26 1.44 -2.86∗ 0.48 6.42∗∗∗ 0.63 1.58

(-2.03) (0.81) (2.24) (0.23) (1.02) (-1.74) (0.60) (2.77) (0.55) (1.12)

ADS index 0.13∗∗∗ -0.05∗∗ 0.38∗∗∗ 0.11∗∗∗ 0.04

(3.27) (-2.50) (6.10) (3.97) (1.18)

𝑅2 13.01∗∗∗ 14.55∗∗∗ 27.93∗∗∗ 26.01∗∗∗ 9.76∗∗∗ 10.43∗∗∗ 13.18∗∗∗ 17.47∗∗∗ 22.67∗∗∗ 9.65∗∗∗

𝑅2
𝑜𝑜𝑠

-18.38 39.17∗∗∗ -100.44 -8.50∗∗∗ 13.10∗∗∗ -24.13 37.91∗∗∗ -88.80 -15.89 9.21∗∗∗
by an 𝑅2
𝑜𝑜𝑠 of 8.21%. The results suggest that the ADS index is a reliable 

predictor, at least for gold excess returns.

Fig. 3 plots the in- and out-of-sample performances related to the 
ADS index. In particular in the case of gold, we observe a superior 
predictive power, indicated by increasing CDSFE curves. Moreover, in 
the case of copper, palladium, platinum, and silver we notice a sharp 
decline during the global financial crisis, indicating an inferior perfor-

mance of the unrestricted relative to the restricted model.

4.3. Multiple regressions

For robustness, to assess the predictive power of the ADS index in 
the case of multiple predictive regressions, we use Equation (3), how-

ever, we now define 𝑋𝑡 as the vector of predictors. In doing so, we are 
able to analyze whether the ADS index still has significant predictive 
power for future excess returns or whether other predictive variables 
are capturing its predictive power. Thus, we proceed as follows: we run 
the multiple regressions once with and once without the ADS index. 
First, we use stock and macroeconomic variables jointly. Afterwards, 
we consider both kinds of predictive variables separately.

Table 10 reports the results of multiple regressions using stock and 
macroeconomic variables jointly. Panel A presents the results when us-

ing the ADS index as an additional variable, whereas Panel B reports 
the results of the regressions without ADS index. The results confirm 
the strong predictive power of the ADS index. The 𝑅2𝑠 and the 𝑅2

𝑜𝑜𝑠𝑠 in 
Panel A are larger than in Panel B. The multiple regressions yield signif-

icant 𝑅2𝑠 for all metal futures ranging from 9.76% for silver to 27.93% 
11
for palladium. In the out-of-sample analysis, we detect significant pre-

dictive power for gold and silver excess returns, indicated by 𝑅2
𝑜𝑜𝑠𝑠 of 

39.17% and 13.10%. Moreover, the strong predictive power of the ADS 
index is also supported by its statistically significant 𝑡-statistics for all 
metals, except silver. Also 𝑑𝑓𝑦 reveals strong predictive power for fu-

ture excess returns, indicated by statistically significant 𝑡-statistics for 
all metals, which is supporting our previous findings of the univariate 
regressions (see Table 5).

The results in Table 11 confirm the findings, when using stock 
variables only. The 𝑅2𝑠 are statistically significant for all metals. The 
out-of-sample results show significant predictive power for gold, silver, 
and platinum excess returns, indicated by 𝑅2

𝑜𝑜𝑠𝑠 of 36.89%, 16.61%, 
and 4.15%. Table 12 provides somewhat weaker evidence, when using 
macroeconomic variables. Overall, the analysis reveals significant pre-

dictive power in-sample for gold, palladium, and silver excess returns, 
whereas out-of-sample for gold and silver excess returns.

In total, the multiple regressions provide evidence for a strong pre-

dictive power of the ADS index for future metal excess returns, both 
in-sample and out-of-sample. To emphasize is the predictive power in 
particular for gold and silver excess returns. The results support our 
main findings.

5. Conclusion

This paper performs a comprehensive study of metal futures excess 
return predictability using 12 variables that are supposed to predict 
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Table 11

Multiple regressions: stock variables and ADS index. This table reports the regression results of monthly excess returns [name in column] on a constant and the 
lagged predictive variables [name in rows]. We predict the next year’s excess return. Statistical inferences are based on a bootstrapped distribution following Rapach 
and Wohar (2006). “de” denotes the dividend–payout ratio. “dfr” is the default return spread as the difference between long-term U.S. corporate bond returns 
and long-term U.S. government bond returns. “dfy” is the default yield spread as the difference between U.S. BAA- and AAA-rated corporate bond yields. “dy” the 
dividend yield, “ep” the earnings–price ratio, “infl” the inflation rate, “ltr” the long-term U.S. government bond returns, “lty” the long-term U.S. government bond 
yields, and “svar” the stock variance. “tms” is the term spread as the difference between the long-term yield on U.S. government bonds and the 3-month Treasury 
bill rate. 𝑅2 and 𝑅2

𝑜𝑜𝑠
are the in-sample and out-of-sample 𝑅2 , respectively. We report the t-statistics in parentheses. ∗, ∗∗, ∗∗∗ indicate the significance at the 10%, 

5%, and 1% significance levels, respectively. All data are sampled at the monthly frequency.

Panel A: with ADS index Panel B: without ADS index

Copper Gold Palladium Platinum Silver Copper Gold Palladium Platinum Silver

Constant -0.65∗∗ -0.63∗∗∗ 1.43∗∗∗ -1.58∗∗∗ -0.84∗∗∗ -0.58∗ -0.65∗∗∗ 1.75∗∗∗ -1.51∗∗∗ -0.81∗∗∗

(-2.04) (-4.05) (2.77) (-7.32) (-3.07) (-1.81) (-4.17) (3.05) (-6.79) (-2.96)

de 0.38 0.03 -0.52 -0.21 -0.21 0.28 0.06 -1.13∗ -0.32 -0.26

(0.94) (0.17) (-0.84) (-0.75) (-0.60) (0.68) (0.32) (-1.68) (-1.11) (-0.73)

dfr 0.65 0.19 -2.22 -1.12 -0.49 0.97 0.10 -1.26 -0.78 -0.35

(0.53) (0.32) (-1.34) (-1.33) (-0.46) (0.78) (0.16) (-0.69) (-0.91) (-0.33)

dfy 28.46∗∗∗ 8.81∗∗ 33.60∗∗∗ 26.72∗∗∗ 16.33∗∗ 17.04∗∗ 12.20∗∗∗ -4.64 14.71∗∗∗ 11.27∗

(3.68) (2.33) (2.97) (5.09) (2.45) (2.48) (3.66) (-0.41) (3.09) (1.92)

dy -0.41 -0.16 1.11∗ 0.00 0.09 -0.32 -0.18 1.69∗∗∗ 0.09 0.13

(-1.02) (-0.81) (1.88) (-0.00) (0.26) (-0.79) (-0.95) (2.61) (0.34) (0.37)

ep 0.29 0.02 -0.80 -0.33 -0.24 0.20 0.05 -1.35∗∗ -0.43 -0.28

(0.72) (0.11) (-1.32) (-1.23) (-0.69) (0.49) (0.25) (-2.03) (-1.53) (-0.81)

infl -3.83 0.04 -9.32 -7.27∗∗ -5.50 -5.54 0.55 -13.63∗ -9.07∗∗∗ -6.26

(-0.77) (0.02) (-1.36) (-2.16) (-1.29) (-1.11) (0.23) (-1.80) (-2.62) (-1.47)

ltr 0.05 0.16 -1.28 -0.29 0.62 -0.02 0.18 -1.12 -0.36 0.60

(0.08) (0.53) (-1.52) (-0.69) (1.19) (-0.03) (0.60) (-1.20) (-0.84) (1.13)

lty 0.36 0.43 0.76 2.88∗∗∗ 1.27 0.39 0.42 1.34 2.91∗∗∗ 1.28

(0.35) (0.85) (0.40) (4.10) (1.42) (0.37) (0.83) (0.63) (4.00) (1.43)

svar -0.37 -0.63 6.73 1.27 2.02 -1.51 -0.29 2.35 0.07 1.52

(-0.08) (-0.27) (1.04) (0.40) (0.49) (-0.32) (-0.13) (0.33) (0.02) (0.37)

tms 1.57 1.54∗∗ -6.35∗∗∗ 0.77 4.01∗∗∗ 2.18∗ 1.36∗∗ -4.40∗∗ 1.41 4.28∗∗∗

(1.19) (2.40) (-3.29) (0.86) (3.53) (1.65) (2.14) (-2.08) (1.55) (3.80)

ADS index 0.10∗∗∗ -0.03∗ 0.35∗∗∗ 0.10∗∗∗ 0.04

(3.10) (-1.88) (7.63) (4.80) (1.59)

𝑅2 12.08∗∗∗ 14.27∗∗∗ 26.70∗∗∗ 26.36∗∗∗ 10.02∗∗∗ 9.79∗∗∗ 13.61∗∗∗ 10.06∗∗∗ 21.45∗∗∗ 9.60∗∗∗

𝑅2
𝑜𝑜𝑠

-5.69∗∗∗ 36.89∗∗∗ -78.20 4.15∗∗∗ 16.61∗∗∗ -7.34∗∗ 36.46∗∗∗ -81.30 2.40∗∗∗ 16.11∗∗∗

Table 12

Multiple regressions: macroeconomic variables and ADS index. This table reports the regression results of monthly excess returns [name in column] on a constant 
and the lagged predictive variables [name in rows]. We predict the next year’s excess return. Statistical inferences are based on a bootstrapped distribution following 
Rapach and Wohar (2006). “ΔIndpro” denotes the growth of industrial production. “unrate” is the unemployment rate. 𝑅2 and 𝑅2

𝑜𝑜𝑠
are the in-sample and out-of-

sample 𝑅2 , respectively. We report the t-statistics in parentheses. ∗, ∗∗, ∗∗∗ indicate the significance at the 10%, 5%, and 1% significance levels, respectively. All data 
are sampled at the monthly frequency.

Panel A: with ADS index Panel B: without ADS index

Copper Gold Palladium Platinum Silver Copper Gold Palladium Platinum Silver

Constant -0.07 -0.02 -0.16∗ 0.01 -0.14∗∗∗ -0.07 -0.02 -0.16∗ 0.01 -0.14∗∗∗

(-1.09) (-0.54) (-1.78) (0.24) (-2.57) (-1.09) (-0.57) (-1.72) (0.23) (-2.58)

ΔIndpro 0.45 3.37∗∗ -1.48 2.33 1.73 -2.61 -2.78∗∗ 7.34∗∗ 0.50 -1.09

(0.13) (1.99) (-0.27) (0.88) (0.58) (-1.07) (-2.33) (1.98) (0.27) (-0.53)

unrate 1.58 0.65 4.50∗∗∗ 0.04 2.77∗∗∗ 1.77∗ 1.04∗∗ 3.87∗∗∗ 0.16 2.94∗∗∗

(1.53) (1.33) (2.98) (0.05) (3.19) (1.74) (2.09) (2.59) (0.21) (3.44)

ADS index -0.04 -0.08∗∗∗ 0.11∗∗ -0.02 -0.03

(-1.18) (-4.99) (2.22) (-0.95) (-1.29)

𝑅2 0.73 8.65∗∗∗ 4.66∗∗∗ -0.59 3.05∗∗∗ 0.61 2.18∗∗∗ 3.22∗∗∗ -0.56 2.86∗∗∗

𝑅2
𝑜𝑜𝑠

-13.08 7.99∗∗∗ -44.19 -11.36 1.15∗∗∗ -8.13 -0.52∗∗ -12.33 -9.37 2.41∗∗∗
stock returns. We also focus on the identification of years of high and 
low predictability. We find a substantial degree of predictability both 
in- and out-of-sample. Mean forecast combinations provide evidence 
for an improved out-of-sample predictability. Gold returns appear to 
be best predictable. A timing strategy leads to utility gains of 2.18% 
p.a.

Moreover, we analyze the ADS index, which captures business con-

ditions in real-time, to examine the potential effects on metal returns 
and on the behavior over business cycles. We provide evidence that the 
ADS index incorporates relevant information for metal returns. It turns 
out to be a strong predictor for gold returns.
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