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ABSTRACT: 

 

National mapping agencies (NMAs) have to acquire nation-wide Digital Terrain Models on a regular basis as part of their 

obligations to provide up-to-date data. Point clouds from Airborne Laser Scanning (ALS) are an important data source for this task; 

recently, NMAs also started deriving Dense Image Matching (DIM) point clouds from aerial images. As a result, NMAs have both 

point cloud data sources available, which they can exploit for their purposes. In this study, we investigate the potential of transfer 

learning from ALS to DIM data, so the time consuming step of data labelling can be reduced. Due to their specific individual 

measurement techniques, both point clouds have various distinct properties such as RGB or intensity values, which are often 

exploited for classification of either ALS or DIM point clouds. However, those features also hinder transfer learning between these 

two point cloud types, since they do not exist in the other point cloud type. As the mere 3D point is available in both point cloud 

types, we focus on transfer learning from an ALS to a DIM point cloud using exclusively the point coordinates. We are tackling the 

issue of different point densities by rasterizing the point cloud into a 2D grid and take important height features as input for 

classification. We train an encoder-decoder convolutional neural network with labelled ALS data as a baseline and then fine-tune 

this baseline with an increasing amount of labelled DIM data. We also train the same network exclusively on all available DIM data 

as reference to compare our results. We show that only 10% of labelled DIM data increase the classification results notably, which is 

especially relevant for practical applications. 

 

 

                                                                 
* Corresponding author 
 

1. INTRODUCTION 

 

For remote sensing products such as digital terrain models 

(DTMs), digital surface models (DSMs) or 3D-city models, 

classifying a point clouds is a crucial step in the processing 

chain. Classification is often achieved using supervised 

learning. To this end, training data with ground truth 

information has to be provided. NMAs often acquire ALS and 

DIM in regular update cycles, but due to limited capacities, 

training a classifier from scratch is often not feasible, as it 

requires a huge amount of training samples. A possible solution 

to this problem is transfer learning. The core idea of transfer 

learning is utilizing an already existing classification model by 

adapting the weights to new and unknown datasets.  

 

ALS as well as DIM are two typical methods to acquire point 

cloud data. In ALS, the runtime of a beam is used to measure 

the distance between a sensor and the earth’s surface. With the 

distance and the plane’s rotation and position, point coordinates 

are calculated. Point cloud densities of around 8-10 points/m² 

and more are common for nation-wide acquisitions (AHN3, 

2019). A semi-global matching algorithm serves to create DIM 

point clouds from aerial images. Every pixel in these aerial 

images creates a point in the point cloud resulting in a point 

density similar to the ground sample distance. Aerial images for 

NMA’s purpose often have a resolution of approximately 5 to 

20cm, which equals to 25 to 100 points/m². DIM point clouds 

are usually a secondary product conducted by orthophoto flight 

missions or by smaller sensors such as unmanned aerial vehicles 

(UAV). Recently, there are also developments to integrate 

image data while laser scanning (Toschi et al., 2018).  

 

As already pointed out by Mandlburger et al. (2017), ALS and 

DIM point clouds have several different characteristics. First, 

DIM point clouds have very smooth surfaces, so low vegetation 

often blends in ground and building edges are bevelled due to 

the smoothing constraint. Unless there are visible terrain points 

between trees on the images, there are hardly any ground points 

within forest regions in the DIM point clouds. In ALS, the laser 

beam penetrates vegetation and returns multiple signals back to 

the sensor leading to high volatile points in forest regions. 

Consequently, DIM only contains smooth tree canopies, while 

points in ALS reflected from the trees as well as the ground 

below. Second, regions with no texture or with shadows often 

have matching errors resulting in random heights in the DIM 

data. Finally, ALS and DIM have various distinct properties 

concerning the point density, where DIM exceeds ALS, the 

point accuracy, where ALS has a higher reliability and less 

occlusion than DIM, and radiometric information, where DIM 

returns RGB values, while ALS only returns the intensity. For 

classification, the latter are often used, which hinders transfer 

learning from one point cloud type to another, since those 

features are not available. All those different characteristics of 

both point clouds must be considered for transfer learning.  

 

Since acquiring newly labelled data is very expensive due to 

extensive manual work, this study focuses on the potential of 

CNNs to transfer learn from ALS to DIM point clouds. Due to 

their different characteristics, we can safely assume that a 

network trained on ALS data will have issues when being 

applied to DIM data and thus will not reach the quality of a 

network trained with DIM data. Consequently, a compromise 
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between the amount of new label data and loss in accuracy must 

be found. For this reason, we conduct the following 

experiments: we systematically increase the amount of newly 

added and labelled DIM data to see when this compromise is 

fulfilled. The scientific contributions of this paper can be 

summarized as follows: 

 

 We tackle the problem of different point densities by 

rasterizing the point cloud into a 2D grid. The input for the 

network is entirely based on geometrical features and thus 

avoids any source dependent features, which are not 

available for another point cloud type.  

 We train an encoder-decoder Convolutional Neural 

Network (CNN) exclusively on labelled ALS data as a 

baseline and fine-tune its weights in several setups using an 

increasing amount of labelled DIM data. We compare those 

setups with a network, which was trained from scratch using 

only DIM data. As for now, the network distinguishes 

ground, non-ground, building, water and an additional no 

data class for empty cells. 

 We compare and analyse all trained networks on a separate 

DIM test set and evaluate the benefits from introducing 

DIM data to the classification. In addition, we show and 

discuss remaining problems of the proposed methodology 

as well as possible solutions. 

 

In large, potentially nationwide applications, we typically have 

to deal with varying ground heights. This often causes 

misclassifications between flat ground and roofs, when they 

share the same global height. For this study, we reduce the 

ground influence by creating a normalised Digital Surface 

Model (DSM) by calculating the height above ground using an 

existing DTM. Such an additional data source is typically 

available for NMAs, e.g. the DTM from the previous update 

cycle. It has been shown that for this purpose a coarse DTM is 

also already sufficient as long as it removes the ground 

influence, so that building points are above ground points 

(Rizaldy et al., 2018; Gavaert et al., 2018). 

 

 

2. RELATED WORK 

 

Point cloud classification in respect to Deep Learning 

approaches can be distinguished into 3D-based and 2D-based 

methods.  

 

In 3D-based methods, the point cloud is processed as points, 

voxels or graphs. Qi et al. (2017a) proposed a method to 

process points directly using a Multilayer Perceptron 

architecture (MLP) to classify points within a 1m³ space using 

the point coordinates as well as colour information. 

Advancements in PointNet introduced deep hierarchical feature 

learning (Qi et al., 2017b), increased the spatial receptive field 

on input- and output-level for 3D outdoor scenes (Engelmann et 

al., 2017) or integrated a multi-scale classification 

(Yousefhussien et al., 2018). Nonetheless, Landrieu and 

Simonovsky (2017) condensed points with similar geometry 

into super points, which are the nodes for a graph convolution 

network. Likewise, Te et al. (2018) redefined convolution over 

graphs by applying a Chebyshev polynomial approximation and 

made their classification more robust by deploying a graph-

signal smoothness prior into their loss function. In contrast, 

Huang and You (2016) proposed a 3D CNN with a voxel grid 

and classified points according to their neighbouring voxels. 

Similarly, Tchapmi et al. (2017) voxelized a scene and obtained 

class score probabilities using a 3D CNN as well. In addition, 

they transferred those class scores back to the original point 

cloud by introducing a trilinear interpolation step and globally 

optimized their classification results by implementing a 

Conditional Random Field as Recurrent Neural Network.  

 

In 2D-based methods, the points are projected into a 2D image 

plane. Hu and Yuan (2016) rasterized point clouds into image 

space with normalized minimal, average and maximal point 

heights around each point as input for a CNN. They especially 

focused on ground and non-ground points for DTM generation. 

Similarly, Politz and Sester (2018) extended their idea, but used 

an encoder-decoder network to fasten up the classification 

process. Yang et al. (2017) and Xu and Yang (2018) applied a 

combination of intensity, eigenvalue-based features, normal 

vector based features and the height above ground as a three 

channel raster image for their classification. Zhao et al. (2018) 

interpolated height, intensity and roughness values for each 

point and its environment using natural neighbour interpolation 

and finally trained a multi-scale convolutional neural network 

for classification. Similarly, Rizaldy et al. (2018) converted an 

ALS point cloud into an image containing the height, return 

numbers, intensity and relative height above ground as features 

and classified those images in a multi-scale hierarchical 

network. Finally, Gevaert et al. (2018) selected rule-based 

ground and non-ground samples using a top hat filter from a 

point cloud and then applied a bicubic interpolation to 

approximate a DTM. They subtract the heights of the DTM 

from a DSM then and trained a fully convolutional neural 

network using those normalised heights as well as colour 

information for point cloud classification.  

 

 

3. METHODOLOGY 

 

In this section, we present the workflow to create height images, 

the encoder-decoder network and the segmentation setup. The 

workflow is shown in Figure 1.  

 

3.1 Height images 

3.1.1 Reducing ground influence: When dealing with 

uneven terrain in point clouds, it is beneficial to remove the 

influence of different terrain heights prior to processing. For 

that reason, we transform the point clouds into normalised 

digital surface models (nDSM). The Euclidean distance 

between each point and a DTM is calculated and this distance 

replaces the original height as normalised height. Using nDSM 

simplifies the segmentation task as points with the same class 

are sharing a similar height.  

 

3.1.2 Calculating height images: ALS and DIM point 

clouds are irregular, but encoder-decoder networks require 

regular data. In order to create regular input for the classifier 

and deal with different point densities at the same time, we 

create 2D height images from the point clouds. For that reason, 

the point cloud is rasterised into cells with a length of 1m. We 

chose such a coarse resolution to ensure that there is a sufficient 

amount of points within each raster cell (see section 4.1.).  
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Figure 1: Workflow of our method. The heights of ALS and DIM point clouds are normalised and height images are created. ALStrain, 

and DIMtrain are trained based exclusively on ALS or DIM point cloud as input data. TRANSx takes ALStrain as baseline and fine-

tunes the classification results using X% of DIM data. All setups are tested on a DIM test set.  

 

Additionally, the following features are calculated from all 

points within a raster cell:  

 

                            
 

                           
 

                          

(1) 

 

(2) 

 

(3) 

 

where       zi = normalised height of point i  

 n = amounts of points within a raster cell 

 

Finally, we crop the data into non-overlapping images, where 

every feature from equation (1 - 3) represents one channel of the 

final height image respectively. We set the image size to 100 x 

100 pixels in order to keep context information. In case of 

industrial building, this size will not ensure images with ground 

pixel, but due to the height reduction as described in 3.1.1., the 

height of the pixels will indicate the network, if the points are 

on or above ground level. 

 

3.1.3 Reference Data:  In order to obtain reference class 

labels, the point clouds are semi-automatically labelled into four 

classes: ground, non-ground, building and water. Depending on 

the normalised height values from 3.1.1, the point cloud is 

automatically labelled as non-ground, if the normalized point 

height is above a given threshold, and as ground class in any 

other case. We set the threshold to 0.3m for the ALS and DIM 

point cloud to get a common ‘ground’ for ALS and DIM, which 

also includes near-ground vegetation due to the properties of 

DIM of only containing the surface. Furthermore, we project 

manually labelled building and water shapes generated from 

orthophotos onto the point cloud plane. Whenever a point is 

within such a shape, it will receive the respective class label. If 

it is outside of any shape, their original ground or non-ground 

label remains.  

 

After rasterising the point cloud as described in 3.1.2, there are 

multiple points with different reference classes within a raster 

cell. As we are aiming at a strategy to classify DIM point clouds 

without learning the network from scratch and since DIM only 

contains surface points, we chose the highest point within each 

cell to determine the reference class for this respective cell. A 

less noisy alternative to the maximum height class would be 

picking the majority class within the cell. However, in 

vegetation areas, this would lead to random class decisions in 

the ALS point cloud, where also ground could be picked as a 

raster label, which would not be picked in a DIM point cloud at 

the same place. If there are no points within a cell, this cell will 

be given default height values and is assigned to a ‘no data’ 

class. The default values for zmin, zmean and zmax are set to -10.0 

m in order to simplify the classification of these pixels, since 

raster cells with real values will mostly avoid the negative 

range.  

 

3.2 Encoder-Decoder Network 

As encoder-decoder network for the segmentation, we use a 

similar network as proposed by Politz and Sester (2018). This 

network consists of an encoder part, which codes the height 

image data into latent variables, and a decoder part, which 

decodes those latent variables back to the original height size. 

At the end, the network transforms those decoded features into 

posteriori probabilities using a softmax classifier. The network 

includes convolutional blocks, which consist of convolutional 

layer, batch normalization (Ioffe and Szegedy, 2015) and a 

rectified linear unit (ReLU). In the encoder, a max-pooling layer 

follows two of those convolutional blocks and decreases the 

image size. In the decoder, the latent variables from the encoder 

are upsampled by a factor of two, concatenated with the encoder 

of similar size using skip connections (Mao et al., 2016) and 

finally convolved using two convolutional blocks. Skip 

connections throughout the network prevent vanishing gradients 

and support the network restoring the original object shape. In 

addition, there is a dropout layer (Srivastava et al., 2014) in the 

middle of the network to reduce overfitting. All convolutional 

layers have a kernel size of 3x3. The output layer has the same 

image resolution as the input with one channel for each possible 

class label. The final amount of training parameters are 

comparably low with only around 1.87 million, since the 

network does not contain any dense layers. For 

backpropagation, we use Adam (Kingma and Ba, 2015) as 

optimizer and the categorical cross entropy as loss function. An 

overview of the network structure is shown in Figure 2. 

 

3.3 Training Setup 

Since ALS and DIM have different characteristics, transfer 

learning from ALS to DIM point clouds will always be a 

compromise between the amount of available label data and loss 

in accuracy. For the training setup, we test how much the 
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classification results benefit given an increasing amount of 

labelled DIM data. First, we train the proposed encoder-decoder 

network exclusively with ALS data (ALStrain) as the baseline for 

our transfer learning approach. Second, we freeze the weights of 

the encoder part and fine-tune only the weights of the decoder 

by introducing an increasing amount of labelled DIM data to 

the network (TRANSx with X% of added DIM data). In this 

study, X is set to 10 to 50% of the labelled DIM data. Third, we 

train the network exclusively on labelled DIM data (DIMtrain), 

which represents the optimal configuration. Finally, we will 

evaluate all setups using DIM test data (DIMtest). 

 

In order to find the optimal hyperparameter values, we use a 5-

fold cross validation. The height images of a given point cloud 

are randomly split into non-overlapping training and test sets. 

The training set is further split into five sets, where four sets are 

for training and one set is for evaluation at a time. In order to 

increase the training’s examples, we randomly flip the height 

images horizontally and vertically while training. We choose 

the best hyperparameter set depending on the averaged 

validation results, train the networks again on all five training 

sets and evaluate the final network on DIMtest.  

 

 
Figure 2. Network structure of the proposed approach 

 

 

4. EXPERIMENTS 

 

4.1 Input data 

The state survey department of Mecklenburg-Vorpommern, 

Germany (Landesamt für innere Verwaltung Mecklenburg-

Vorpommern – LAiV-MV) provided ALS and DIM point cloud 

data used in this work. The data covers an area in southern 

Rostock, Germany. In two different flight missions, the point 

cloud data and the original image data for DIM were captured 

in 2016 and cover the same area of around 19km². The ALS 

point cloud has a point density of approximately 19 points/m2 

with a horizontal and vertical accuracy of 15 cm and 30 cm, 

respectively. The DIM point cloud has a point density of around 

96 points/m² with an accuracy of 20 cm horizontally and 30 cm 

vertically. Urban areas with residential and industrial buildings, 

garden plots with small cottages, huge agricultural areas, 

grassland, forests, a river and several small lakes characterise 

the region.  

 

The ALS and DIM point clouds are pre-processed as described 

in section 3.1 and each point cloud generates 1889 images in 

total. These images are then randomly split into 300 test images 

and 1589 training images, which are further split into five sets 

of around 318 images for training the 5-fold cross validation as 

stated in section 3.3. The images are split the same way for ALS 

and DIM, so the training, validation and test sets cover the same 

areas. For the transfer learning setups, X% of samples are 

randomly picked from the 1589 training images and then used 

for fine-tuning the already trained ALStrain. The final class 

distribution of all training and testing examples is shown in 

Table 1. Although the point clouds cover the same area, the 

different classes are highly unbalanced within a point cloud 

type, but also between both point cloud types. There are two 

principle differences in the ALS and DIM class distributions: 

the amount of water pixels for each point cloud type and the 

relation between ground and non-ground class in both point 

cloud types.  

 

When hitting water, the laser pulse in ALS only returns in nadir 

direction and is reflected away with increasing incidence angle, 

thus in general, only a few water points are present in ALS. In 

DIM data, water is present, however it is characterised by 

apparently random heights due to the low structure on the water 

surface. A height threshold is used to split the normalised point 

cloud into ground and non-ground. In order to generate a 

common ‘ground’ surface in both point clouds, we set the 

threshold to 0.3m in height. Except for regions with low texture 

and consequently high noise, the real ground surface of the 

DIM point cloud lies within this limit of 0.3m. In ALS on the 

other hand, the ground class will contain all ground points as 

well as near-ground shrub and grass. As a result and although 

they are covering the same area, the ALS point cloud will have 

fewer non-ground pixel and more ground pixel than the DIM 

data set (Table 1 ALStrain, DIMtrain).  

 

Point 

cloud 

No 

data 

Ground Building Water Non-

ground 

ALStrain 4.82 64.91 4.19 0.73 25.36 

DIMtrain 0.27 50.59 4.73 2.50 41.90 

TRANS10 0.27 48.26 4.28 2.91 44.28 

TRANS20 0.23 50.46 5.05 2.21 42.05 

TRANS30 0.23 49.91 5.20 2.73 41.94 

TRANS40 0.25 50.28 4.96 2.74 41.77 

TRANS50 0.27 50.16 4.79 2.79 41.98 

DIMtest 0.28 49.24 5.16 3.23 42.10 

Table 1. Class distribution in the height image data [%]. ALStrain 

and DIMtrain include the images for training and validation set 

and DIMtest includes images for testing. TRANSX with X 

between 10, …, 50 includes a percentage of DIM data randomly 

picked from DIMtrain for transfer learning. 

 

4.2 Hyperparameter of the network 

The proposed network from section 3.2 also requires setting 

several hyperparameters. The batch size describes the amount of 

samples in each training step. The optimizing function requires 

a given learning rate, which is necessary for gradient descent. 

The dropout rate decides how many neurons randomly drop out 

of the network for each sample. Picking a higher dropout rate 

supports the network against overfitting. Finally, an epoch 

parameter controls the maximal amount of epochs to train. We 

used Latin Hypercube Sampling (McKay et al., 1979) to choose 
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different hyperparameter combinations for cross validation, 

since it explores the complete feature space. After analysing the 

results from the 5-fold cross validation, we set the batch size to 

128, the learning rate to 0.0005, the dropout rate to 0.85 and the 

maximal amount of epochs to 100 for all training setups.  

 

4.2.1 Quantitative results: We evaluate our results using the 

overall accuracy as well as the F1-score (eq. 4 - 7): 

 

                            

                            

                            

                           

(4) 

(5) 

(6) 

(7) 

where        Tp = True positive 

  Fp = False positive 

  Fn = False negative  

  N = number of all pixel 

 

The F1-score and the overall accuracy for DIMtest in all seven 

setups is shown in Table 2 and 3, respectively. The overall F1-

score increases when introducing DIM data in the learning 

process: from 78.7% to 87.1% with 10% DIM data up to 90.2% 

when including 50% of DIM data. As expected, the best 

classification is only reached when the network is exclusively 

trained with DIM data (96.8%).  

 

In the following, the quality of the different experiments will be 

analysed in detail. It can be observed that the increase in the 

overall F1-score is different for each class and fluctuates due to 

inter class relationships. The water and building class benefit 

the most from incorporating DIM data. As water pixels hardly 

exist in the ALS training set (see Table 1), giving the network 

additional DIM data increases the F1-score of water quite 

notably from 1.6% in ALStrain to 65.1% in TRANS10. By 

increasing the amount of available DIM data, the F1-score 

fluctuates between 60% and 70% for all TRANS setups. 

However, these scores are still below the F1-score of DIMtrain of 

89.3%, where water is represented well during training. 

Whereas tree points in ALS are very volatile in structure, the 

points in tree canopy in DIM point clouds are rather stable. 

When testing ALStrain on DIMtest, the network often recognizes 

these smooth tree crowns as buildings (see Figure 3d, 3h) 

leading to a low precision of only 24.3% and a poor F1-score of 

only 38.3% (Table 2).  

 

Incorporating DIM data into the learning process increases the 

F1-score of the building class notably by 20% to 30%; however, 

it does not achieve the 86.5% of DIMtrain. In contrast, the F1-

score for the ground class decreases from 92.1% in ALStrain to 

85.5% in TRANS40 and then increases again to 98.6% in 

DIMtrain. The F1-scores for the non-ground class increases for 

TRANS10, but then slowly decreases when introducing more 

and more data for fine-tuning. Still, the F1-scores of all TRANS 

methods remain above the score for ALStrain. The overall F1-

score and accuracy in Table 3 is also affected and decreases 

with higher ratios of DIM data due to its correlation with the 

ground and non-ground class, which contribute around 91% of 

all pixels in DIMtest (see Table 1). Consequently, the overall 

accuracy decreases by 6% from TRANS10 to TRANS40.  

 

By comparing the confusion matrix of ALStrain and TRANS10, 

the consequences when introducing DIM data for transfer 

learning are shown in Table 4 and 5. Since ALStrain only 

contains 0.73% water pixels (Table 1), introducing DIM data 

especially boosts the accuracy of water from 2.38% in ALStrain 

to 49.61% in TRANS10 in the confusion matrix (Table 4, 5). 

However, there are still some misclassifications of water pixels 

left, which are classified as ground or non-ground instead. In 

addition, the accuracy of non-ground pixels increases from 

62.91% in ALStrain to 97.75% in TRANS10. Despite these 

improvements, TRANS10 falsely classifies buildings as non-

ground, which decreases the building accuracy by 40% notably. 

Still, the overall accuracy of TRANS10 increases due to the 

imbalance between building and non-ground class in the 

training sets.  

 

Point 

cloud 

No 

data 

Ground Building Water Non-

ground 

ALStrain 98.6 92.1 38.3 1.6 73.8 

TRANS10 64.6 91.2 60.7 65.1 87.3 

TRANS20 58.5 87.7 68.1 59.3 84.8 

TRANS30 65.8 85.9 71.4 63.7 83.9 

TRANS40 75.1 85.5 60.7 71.7 80.9 

TRANS50 82.6 96.1 58.9 66.3 89.0 

DIMtrain 99.3 98.6 86.5 89.3 96.6 

Table 2. Class-dependent F1- Score for DIMtest [%] 

 

Point 

cloud 

Overall 

accuracy 

Overall 

F1 

ALStrain 74.7 78.7 

TRANS10 87.3 87.1 

TRANS20 84.6 84.4 

TRANS30 83.6 83.5 

TRANS40 81.4 81.8 

TRANS50 90.0 90.2 

DIMtrain 96.8 96.8 

Table 3. Overall accuracy and overall F1-Score for DIMtest [%] 

 

 Predicted 

No 

data 

Ground Building Water Non-

ground 

R
ef

er
en

ce
 

No data 99.72 0.27 0.01 0.00 0.00 

Ground 0.00 87.69 0.00 10.71 1.61 

Building 0.00 0.01 91.23 0.00 8.76 

Water 0.21 38.02 0.47 2.38 58.92 

Non-

ground 

0.00 0.38 34.85 1.86 62.91 

Table 4. Confusion matrix of ALStrain [%] 

 

 Predicted 

No 

data 

Ground Building Water Non-

ground 

R
ef

er
en

ce
 

No data 47.78 34.67 0.00 6.03 11.52 

Ground 0.00 84.92 0.00 0.04 15.04 

Building 0.00 0.00 51.24 0.00 48.76 

Water 0.02 17.69 0.98 49.61 31.70 

Non-

ground 

0.00 0.04 2.07 0.14 97.75 

Table 5. Confusion matrix of TRANS10 [%] 
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Figure 3. Qualitative results of the trained network setups in comparison for DIM test data. The input height images are rendered as 

normalized RGB image. The printed classes are ground (dark blue), building (petrol), water (light green) and non-ground (yellow), 

respectively. 

 

4.2.2 Qualitative results: In order to compare our results 

qualitatively, we randomly picked eight samples from DIMtest 

and present their input, reference data as well as the predictions 

of all setups in Figure 3. Each column shows the results for one 

sample. The height images of DIMtest are the input of the trained 

networks and are plotted as RGB images, which are normalized 

to the interval [0, 1]. As reference, the class of the highest point 

within a raster cell is selected as described in section 3.1.3. The 

remaining rows show the predictions for all setups.  

 

In general, all predictions visually confirm the results in their 

respective F1-scores and the overall accuracy. In most cases, all 

setups classify ground and non-ground pixels correctly. 

However, if the ground surface is rather rough (g), the networks 

of ALStrain and TRANS10 to TRANS40 mistake ground for non-

ground. Since ALS data contains only a small amount of water 

pixels, the network ALStrain hardly classifies water in real water 

bodies (b), but on randomly located spots on ground level (a, g). 

This issue is fixed when introducing DIM data in all TRANS 

setups as well as in DIMtrain. Similarly, introducing DIM data 

into the training process improves another issue in ALStrain. In 
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both point clouds, zmin, zmean and zmax values are quite similar for 

ground and building points. The normalised height value 

separates building from ground points in this case. 

Nevertheless, these three values differ a lot for vegetation in 

ALS such as trees, since zmin still captures ground information, 

while zmax is based on points in the treetop or on branches. In 

DIM data however, the difference between all three values for 

vegetation is much smaller than in ALS data as it mainly 

represents the tree canopy. Consequently, ALStrain mistakes non-

ground for building whenever a tree has a smooth treetop (b, d, 

e, h).  

 

However, there are still some unsolved issues within the 

predictions. In contrast to the flat huge building in (c), which is 

classified correctly by all network setups, the underpass in (d) 

causes trouble for all setups. Due to its flat surface, it is often 

recognized as building class instead of the correct non-ground 

class (d). In addition, all transfer learning setups have problems 

classifying small buildings at all or the complete shape of 

normal size buildings.  

 

 

5. DISCUSSION 

 

In this section, we critically discuss our proposed method as 

well as possible improvements for future work.  

 

Testing a network, which was trained on ALS data, on DIM 

data achieved an F1-score of 92% for the ground, 74% for the 

non-ground, 38% for the building and only 2% for the water 

class (Table 3). Incorporating only 10% of newly labelled DIM 

data in the training process improved the classification results 

of non-ground, water and building class notably.  

 

As the water class was hardly represented in ALStrain with only 

0.7% in the class distribution (see Table 1), introducing more 

water pixels in TRANS10 reduced the misclassifications as 

ground and non-ground by more than 20% in the confusion 

matrix (Table 4 and 5). Similarly, ALStrain often classifies 

smooth tree canopy in DIMtest as building instead of non-

ground due to the different characteristics in both point cloud 

types (Figure 3). Introducing DIM data reduced this 

misclassification by 30% in TRANS10 (Table 4 and 5). 

Consequently, incorporating 10% of DIM data into the training 

already results in an increase of the overall F1-score from 79% 

to 87% (Table 3). However and as expected, none of the 

networks, which applied transfer learning, achieved 

classification results close to DIMtrain. There are several options 

to further improve our transfer learning approach.  

 

Possible solutions for the misclassifications, which origin in the 

different class distributions, are either balancing the class 

distribution in the input data or by weighting the classes 

differently in the loss function, e.g. using the focal loss (Lin et 

al., 2017). In addition, weighting the loss value depending on 

each class distribution also could resolve the need for the no 

data class. As no data pixels could receive a weight of zero, the 

neurons, which are dedicated to the no data class, could be 

utilized for other classes.  

 

The usage of minimal and maximal values may support 

classifying noise rather than real objects. This may not be an 

issue with a filtered point cloud, but can potentially cause some 

unexpected behavior of the network and its classification 

results. An alternative to the minimal and maximal value could 

be some other statistics for points below and above the mean 

height within a raster cell or by just taking e.g. the 10% highest 

and lowest point instead of the extreme values (Gevaert et al. 

2018). Decreasing the raster cell size will also reduce the 

amount of raster cells with mixed objects and thus improve the 

overall classification. In addition, the classification could be 

split into two parts: the first part uses a 2D raster to gather 

global information as described in this paper and the second 

part aggregates the points with this global information for a 

point based classification similar to the idea of Qi et al. (2017a). 

 

Finally, instead of requiring a DTM in order to achieve height 

above ground, we would like to find a replacement, which only 

requires the point cloud itself. This could be accomplished 

using a hierarchical classification, where the point cloud is first 

classified into ground and non-ground and then further 

specified into more classes similar to Rizaldy et al. (2018). In 

this case, the ground height could be integrated into the 

classification of non-ground points. Alternatively, the ground 

surface could be approximated using a local minimum within a 

certain radius or by some rules (Rizaldy et al., 2018; Gavaert et 

al., 2018). 

 

The results of this study can lead to adapted workflows in the 

NMAs to adjust the amount of training data for their 

classifications, as now the degradations in quality when using 

less information have been quantified. 

 

 

6. CONCLUSION 

In this work, we focused on transfer learning from ALS to DIM 

point cloud data. We restricted the approach to exclusively 

using the geometry of the points, since they are part of both 

point cloud types, and we projected the point clouds into a 2D 

grid to deal with different point densities. As input for an 

encoder-decoder CNN, we calculate the minimal, mean and 

maximal point height within a raster cell. Since labelling 

training data is expensive and time-consuming, we fine-tuned 

an encoder-decoder CNN, which was trained on ALS data, in 

different setups using an increasing amount of newly added and 

labelled data. These setups are compared to the initial ALS 

based network as well as to a network, which was trained only 

on DIM data. When tested on DIM data, our results show that 

the classification result improves notable for a transfer learned 

network compared to a model, which was only trained on ALS 

data. As expected, none of our transfer learned models could 

accomplish the classification quality from the network, which 

was completely trained on DIM point cloud data. However, we 

show that already 10% of labelled DIM data increase the 

classification results notably, which is especially relevant for 

practical applications.  
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