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Gutzwiller has developed a scheme for determining the energy levels of a finite quantum Toda lat-
tice. We present a numerical analysis using his method and calculate low-lying energy levels for
some small lattices. We check the completeness of his quantization conditions in the harmonic
(low-energy) and the semiclassical (high-energy) limits. Our main finding is that the Bethe-ansatz
spectrum equations, known to be exact for an infinite Toda lattice in the classical limit, are incorrect

for finite and quantum lattices.

I. INTRODUCTION

The Toda lattice is a nonrelativistic one-dimensional
gas of point particles of equal mass m interacting via an
exponential nearest-neighbor potential of strength ¥ and
range 1/v,

1 y(g, ,1—q;)
H=—3Sp}+ A 1
> ;p, V;e (1)

Note that the force only operates between nearest
neighbors, in contrast to forces between particles in stan-
dard one-dimensional-gas models. This is a lattice system
visualized in terms of balls with springs between them, al-
though the springs are nonphysical in that they exert a
rapidly weakening force as the particles separate. Toda'-2
constructed this Hamiltonian by requiring complete in-
tegrability of a nontrivial (classical) lattice system. It
turns out that the quantum system is also integrable,’
having phonon and soliton modes, and is close to a sine-
Gordon system with low but nonzero winding-number
density.*

In the present paper, we address the quantum proper-
ties of this system. Our study was motivated by the puz-
zling observation that, at least for a large Toda lattice in
the classical limit, the Bethe-ansatz method applied by
Sutherland® and Opper® describes the ground-state ener-
gy, low-energy-excitation spectrum, and thermodynamics
apparently precisely, even though the wave function
manifestly cannot be of the Bethe-ansatz form, since the
potential has a finite decay length. We wanted to find out
if the Bethe-ansatz spectrum equations are exact for all
Toda lattices. Our work is based largely on the work of
Gutzwiller,” who constructed (thereby extending his ear-
lier work on the two- and three-body closed Toda chain®)
explicit series representations of wave functions for up to
four particles that allow for straightforward generaliza-
tion to larger systems. However, he only provided plausi-
bility arguments for a set of quantization criteria, and did
not actually find the energy levels. We have succeeded in
numerically analyzing these small systems using
Gutzwiller’s techniques. We find his quantization criteria
do indeed give the correct spectrum in a regime that can
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be checked by other means—the low-energy quasiclassi-
cal limit, where the system becomes a harmonic chain.
Furthermore, over a wider energy range we find the
Gutzwiller energy levels to be very close to those given by
semiclassical quantization of the canonical dynamical
variables. This strongly suggests that Gutzwiller’s cri-
teria are correct. On the other hand, the Bethe-ansatz
does not give the energy levels nearly so accurately, and
in fact misses a large fraction of the total number of
states. This is to say, for a finite Toda lattice, the Bethe-
ansatz predictions of energy levels are definitely in-
correct. This should be contrasted with, for example, a
finite system of particles interacting via an inverse-square
potential, where again the wave function is not of Bethe-
ansatz form, but the Bethe-ansatz equations do give the
energy levels exactly. We should add, though, that in the
limit of a large system, the Bethe-ansatz results become
accurate. For example, in the classical limit the error in
the Bethe-ansatz prediction of the ground-state energy is
of order N3 per particle for a system of N particles.
Also, the omission of a fraction of the states does not
affect the classical thermodynamics, being equivalent to a
renormalization of #, and therefore disappearing in the
limit of #—0. Thus our results are fully consistent with
the previous work of Sutherland and Opper.>®

We now briefly survey the history of the Toda lattice to
place our work in context. The classical system was first
introduced by Toda and has the unusual property of be-
ing completely integrable both for the open (infinite line)
and closed (on a ring) systems. In fact, a simple argu-
ment due to Flaschka® gives N separately conserved
quantities for the N-particle open system. Flaschka’s ar-
gument is reviewed in the next section. The main point is
that if for the open system the initial state has the parti-
cles widely separated, with momenta A, ..., Ay then the
final state after all collisions has the same set of momen-
ta, and in fact this set {A;} are the eigenvalues of an iso-
spectral matrix whose elements (given explicitly below)
are functions of the momenta and positions of N parti-
cles. Thus throughout the motion there are N separately
conserved quantities given by 3;A7, n=1,...,N. In con-
trast, the periodic or closed system has, of course, no sim-
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ple final state, and proved more difficult to analyze. A
complete solution of the classical problem for the closed
system was presented by Kac and van Moerbeke,'® and
was actually based on an extension of Flaschka’s work.
They considered the open (N —1)-particle subsystem
given by removing one particle from the system, and rela-
belled the {A;} for this subset as u;,...,uy—;. Under
the full N-particle Hamiltonian the {u;} are no longer in-
variant, but exhibit relatively simple behavior—they are
a set of commuting variables (in the Poisson bracket
sense) and move in nonoverlapping closed paths. The
canonically conjugate variables are labelled v;. It is also
necessary to include the total system momentum and
center-of-mass position to get a complete set of dynami-
cal variables. Kac and van Moerbeke were able to in-
tegrate the equations of motion for the u; and thus solve
the classical Toda problem.

A first attempt to consider quantum effects in the Toda
lattice was made by Shirafuji.!! Starting from the well-
known one-soliton solution of the classical periodic Toda
chain, he obtained semiclassical corrections to the classi-
cal energy in the Wentzel-Kramers-Brillouin (WKB) ap-
proximation. However, it appears difficult to apply his
approach to excitations other than the single soliton, or
to get higher-order terms in #.

The first work on the quantum Toda lattice was the
Bethe-ansatz analysis by Sutherland.’ For a dilute open
lattice, the asymptotic wave function is correctly de-
scribed by the Bethe ansatz, because the many-particle
scattering matrix is factorizable so no diffraction occurs.
Of course, the true-system wave function will deviate
from the plane-wave Bethe-ansatz form when the parti-
cles are close enough for the interaction to be significant,
but this is a small fraction of phase space for the dilute
system. It should be noted that the momentum parame-
ters appearing in the Bethe wave function will be just the
set {A;} from Flaschka’s analysis. The surprising result
in Sutherland’s work was successful derivation of the
known classical results for the ground-state energy and
excitation spectrum of a large closed lattice. The Bethe
ansatz yields the correct result for this case even for den-
sities of order unity, that is, one particle per decay length
of the potential.!> In this case, the system spends most of
its time in a region of phase space where the Bethe-ansatz
wave function is manifestly wrong. Later, Opper® ap-
plied the standard Bethe-ansatz thermodynamic analysis
to demonstrate, equally surprisingly, that Sutherland’s
approach also gave the free energy of the closed classical
system correctly in the appropriate #—0 limit.

These results made it appear possible that, despite the
incorrectness of the wave function, the Bethe-ansatz
equations for the energy levels might be exactly correct
for the closed Toda lattice. Indeed, Sutherland had pre-
viously found this to be the case for an apparently very
similar system, that of particles on a line interacting via
an inverse-square potential.!> That system is integrable
both classically and quantum mechanically, the wave
functions do not have Bethe-ansatz form, yet for the
closed system the Bethe ansatz equations give the spec-
trum exactly for any total number of particles. In light of
this result, it seemed conceivable that the requirement of
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full integrability so severely constrained the dynamics of
a quantum system that even if the wave functions were
not quite of Bethe-ansatz form, the Bethe-ansatz energy
levels might still be exactly correct. However, there is an
important difference between Sutherland’s 1/r? system
and the periodic Toda chain3: The integrability of both
of them can be understood as a consequence of a hidden
underlying symmetry, generated by the finite-dimensional
Lie algebra SU(N) in the N-particle inverse-square sys-
tem (and the open Toda chain) and an infinite-
dimensional Kac-Moody algebra in the closed Toda
chain. While the Hamiltonian can be represented as the
projection of that of free motion in a higher-dimensional
curved space in the case of a finite-dimensional symmetry
(where the degrees of freedom are trivially separated),
this is not possible in the second. This may be the reason
for the fact mentioned above and discussed in detail
below: In contrast to the inverse-square systems, we find
that for a finite, closed Toda lattice the energy levels
given by the Bethe ansatz are definitely incorrect, al-
though they do approach the right ones asymptotically as
the size of the system increases.

The first, systematic, quantum-mechanical treatment of
the closed Toda system from first principles was the work
of Gutzwiller,””® on which the present paper is based.
Gutzwiller’s basic strategy was to try to mimic the suc-
cessful classical analysis of Kac and van Moerbeke. That
is to say, he cut open the N-body closed Toda chain by
removing one particle, and solved the open (N —1)-body
problem. Then, he incorporated the variables describing
the asymptotic momenta of the open(N — 1)-body system
into the dynamical description of the closed N-body
chain. In the classical analysis, these were the {u;},
which underwent periodic motion in the closed system.
For the quantum case, the wave function for the closed
system can be written as a sum over wave functions for
the open (N —1)-body system (with an extra plane-wave
factor for the Nth particle to give total momentum zero)
where the allowed sets of momenta are of the form
{p;+in;#i} with the p; real (analogous to u; above) and
the n; integers ranging from +o to —o. Thus, the
wave function is defined by the set of momenta {p;} and
the (N —1)-dimensional integer grid of coefficients of the
plane-wave terms. The Schrodinger operator is a
difference operator in one direction on this grid (note that

: 9,49, . .
the potential-energy term e increases n, by unity,
and decreases n; by unity when acting on the wave func-
tion). The other conserved quantities give difference
operators in other directions, and using them all one can
construct the table of coefficients. If we set as boundary
conditions on this process that the series must converge
on summing over negative values of the integers 7n;, then
in general the coefficients generated will not be such that
the contribution to the wave function from summing over
terms with positive n; converges. That is to say, for the
wave function to be well defined at each point in
configuration space, N —1 parameters must be fixed in
order to link up the convergent n; — — « sequences with
the convergent n;— + o0 sequences. It turns out that

J
this fixes the set of real momenta {p;} for given values of
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the energy and the other conserved quantities. Actual
numerical computation of {p;] may, however, be
difficult, especially near the classical limit. Once the ap-
propriate p; are inserted, the wave function is well
defined everywhere in configuration space. This does not
mean it is normalizable—in general, it will have ex-
ponentially increasing terms into the repulsive potentials.
To ensure normalizability, these terms must have zero
coefficients, and this requirement leads to the quantiza-
tion condition for the actual eigenstates of the system.
These are Gutzwiller’s quantization conditions men-
tioned earlier, and discussed in detail in Sec. III. Despite
their simple appearance, they are not trivial to derive,
and indeed the second one is rather conjectural. An im-
portant practical point in using these conditions is that
Gutzwiller’s function ¢(p) (see below) is rather flat for p
close to p j» SO precise evaluation of p ; is not essential to
finding the spectrum with good accuracy. At the end of
Sec. III, we discuss some technical points connected with
the symmetry of the ground state for the odd-particle-
number system.

It is interesting to note that the quantum analysis out-
lined above would not work for the inverse square system
mentioned earlier, because in that case all particles in-
teract, and removing one of them would not turn a closed
system into an open one. In fact, the closed r ~2 system
actually has a [sin(277)/L]™? potential, corresponding
to a sum of » ~? interactions at r,# +L,r +2L,.... These
repetitions do not, of course, occur in the Toda system
where the interaction is only between nearest neighbors.

In Sec. IV of this paper, we find the energy levels in the
semiclassical regime by semiclassical quantization of the
motion described by Kac and van Moerbeke!® in terms of
the canonical variables u; and v;. Our purpose is to veri-
fy that the energy levels found numerically using
Gutzwiller’s method are correct in this regime. We find
the u;,v; semiclassical quantization to be in excellent
agreement with the Gutzwiller results, and, as expected,
to have a much greater range of validity than the (low-
energy) harmonic chain approximation.

In Sec. V we review the Bethe-ansatz approach to the
Toda lattice in some detail, and present results on the er-
rors incurred in using Bethe-ansatz methods for finite lat-
tices.

Finally, we should mention that the quantum-inverse-
scattering method has been applied to the Toda lattice.
The operator commutation relations were written down
and discussed briefly by Gaudin,'* and a more detailed
development was presented by Sklyanin.!’ He gave an
elegant derivation of the difference form of Schrodinger’s
equation. However, we are not able to compare our re-
sults with his because he only analyzed the infinite chain,
where he rederived the Bethe-ansatz results. For the
finite chain, we have not succeeded in linking up his
wave-function ansatz worth our work.:

II. THE CLASSICAL TODA LATTICE

After rescaling of all positions by 1/ and momenta by
V'mV we can write the Hamiltonian in the following di-
mensionless form (energies are measured in units of ¥):
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(g. . .—q.)
H=13p2+3e 1 %", (1)
i i

As observed by Flaschka® the dynamical equations for
the periodic Toda Hamiltonian Eq. (1') can be written in
the form

CE — (L B—BL) @)

with £ and B being the following pair of Lax matrices
(for N >2):

b, a; 0 -+ ay
a; by a
o£= 0 a, b3 ,
ay 0 0 - by
(3)
0 a 0 -+ —ay
—a; 0 a,
B=|0 —a, O
ay o o0 --- 0

Here a,=exp[(qg,+,—¢,)/2] and b,=p,. From the
equation of motion (2) it is clear that the eigenvalues of £
or, alternatively, the roots A; <A, < - -+ <Ay of the poly-
nomial

N
D(M)=detlA—L]+2=[[(A—1,) (4a)

=

do not change in time, i.e., they are integrals of motion
that can be written as algebraic functions in {a,,b,}. To-
gether with the A; any combination of these quantities is
conserved: In the following we will use the coefficients of
D(A) is addition to (A;):

DM=AN—PAN 14 (P2/2—E)AN !
+ AN T BAN A (4b)
where

P=27\j=tr(.£)
J

and

E= %2)»? =Ltr(L?)
j

are the total momentum and energy, respectively. This
representation of the periodic Toda chain when applied
to the classical ground-state configuration
(g, =const,p, =0) gives

A;=—2cos[m(2j —1)/2N] (j=1,...,N)

or P=0,E=N, A=0, --- .

The dynamics of the open Toda chain can be treated in
a very similar way by eliminating the elements a,, from
the matrices .£L and B [this is equivalent to removing the
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term exp(q, —qy) from the Hamiltonian Eq. (1')]. How-
ever, in this case there exists a very simple physical inter-
pretation of the eigenvalues of .L: In the region of
configuration space where the exponential potential is
weak, namely exp(q; ., —¢;)<<1 for i =1,...,N —1, the
a, vanish and the eigenvalues of .L are just the asymptot-
ic momenta b, =p, of the particles.

This simple picture does not apply to the periodic
chain, but Kac and van Moerbeke!® used the (N —1)-
particle open chain obtained by eliminating the first par-
ticle from the N-particle periodic one to construct a new
set of canonically conjugate variables. After removing of
the first row and the first column of the matrix .£ they
considered the eigenvalues p,u,, . . .,y —; of the result-
ing matrix .L*. They were able to show that these eigen-
values are restricted each to one of the N —1 closed inter-
vals where the polynomial D(A) satisfies |[D(A)| > 2.

The Hamiltonian in these u, and N —1 conjugate vari-
ables v, (obeying canonical Poisson brackets with the u,,)
giving dynamical equations equivalent to (2) is given by

N-1
H({v,,u,})= 3 (2coshv,—uM)/m'(u;) , (5)

i=1

where

p)=-9- .
m'(p) i []'i[(,u ,u,)].

Furthermore, it can be shown that at any point in the
phase space of the {v,,u,} the relation

2 coshv; = |D(u;)| (6)

holds with D being the characteristic polynomial (4) of
the matrix .L.

Together with the total momentum 3 .p; and the
center-of-mass position the new variables {v,,u,} form
an alternative set of canonical variables for the descrip-
tion of the periodic Toda lattice.

III. QUANTIZATION OF THE PERIODIC TODA
LATTICE

Quantization of the Toda lattice is achieved by finding
simultaneous (normalizable) eigenfunctions to the opera-
tor equivalents of the classical conserved quantities
P,E, A,B,. .. [see Eq. (4b)]. Following the classical solu-
tion of the N-particle periodic Toda lattice by Kac and
van Moerbeke, Gutzwiller’ first solved the (N —1)-
particle open chain which gives a set of states defined by
their asymptotic behavior in the part of configuration
space where the particles are widely separated, i.e.,
explg; 1, —¢q;)<<lfori=2,...,N—1,

¢(q2’ < s qp;

(ki) = 2 )exp [iZkepgy | D
P J

k; being the wave number equivalents of the momenta ;i
in the classical limit. Using these as a basis he expanded
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the wave function for zero total momentum states in the
periodic N-body Toda lattice in a series:

—i(z.m)q
W(quqzy---’qN):EC({Kj]) JRE
(“jl
XPlgy, - - s ans i) . (8)
The operators P,E, A,B,... are polynomials of p; and
e /, where the action of the latter on this wave function

is a translation x; —«;+i [note that in our Hamiltonian
(1) all the p; and g; and consequently 7 or, in terms of
the physical parameters, y#/V mV are dimensionless).
Hence, the summation in (8) has to be performed over the
N —1 integers n; in k;=k;+in;. With this ansatz.the
Schrodinger equation separates mto a set of second-order
difference equations

r,(k+i)+D(#x)r,(k)+r,(k—i)=0, N,

9

n=2,..

where

IT (k,—x,.) Hr(x)

n>n'

C({x;}) e

and D (x) as given by Eq. (4). These equations have to be
considered as an eigenvalue equation for x. Having
found a set of {«;} the quantization of the periodic Toda
chain is obtained by requiring normalizability of the wave
function (8). The set of difference equations (9) has been
obtained by Sklyanin!® in a similar approach using the
framework of the quantum-inverse-scattering formalism.

It is worth noting that the ansatz (8) for the wave func-
tion is a generalization of the well-known result of Flo-
quet theory for ordinary differential equations: for N =2
the open (N —1)-particle subsystem describes a free par-
ticle with eigenfunctions being plane waves ¥(g,;k)
« exp(ikg,). The Schrodinger equation for the two-body
periodic Toda chain, after separation of the center-of-
mass motion, is the modified Mathieu equation!¢

2

i —(a —2b cosh2x)

= (10)

) [9(x)=0

with 2x =¢, —q,, a=—4E /#*, and b=—4/#* As can
be easily checked, these values of the parameters a and b
lie in the first unstable region of the Mathieu equation.
Hence, the Floquet ansatz for the solution of (10) coin-
cides with Gutzwiller’s ansatz (8) in the N =2 system:

V(g=q,— —e"“lzc e ", (11)

Just as in the solution of the Mathieu equation, the
values of the Floquet wave numbers k; are equal to the
zeros of the Hill-type determinant (apart from a factor of

#):
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D(p—i#) D(p—i#)
1 b
D(p) D(p)
Alp)= P 1 P
D(p+i#) !
1
D(p+2i#)

namely, A(p)=0 for p=7#k; [D(p) is the characteristic
polynomial of the classical Lax matrix as given by Egs.
(4), so for the two-particle case D(p)=p?—E]. This con-
dition guarantees that 3. ,r(k;+in) converges abso-
lutely for one of the solutions of Eq. (9).

It is obvious that A is a periodic function with period
i#i going to 1 for p—* o0 and having simple poles at the
zeros A; (modifi) of D(p) [Eq. (4a)]. Generalizing Hill’s
argument!’ for infinite determinants of this type,
Gutzwiller has shown that

7

(=1 (13)

N
A(p)=1+m 3 K;coth

j=1

with K; being real functions of # and the set of conserved
quantities {A;}.

In the semiclassical regime 7 <<1 the dependence of A
on p along the real axis becomes particularly simple: Be-
tween the poles A takes constant values A; (A=A, for
A;<p<A;y) while A=1 for p outside the interval
[A,Ay], since A equals one at infinity. This suggests that
the zero p; of A is located in a neighborhood of A; with
radius of order #. However, numerical calculations of A
show that this is not the case since A; o« exp(—2m8; /7) as
#—0. This functional dependence on 7 results in a finite
difference |p j—ljl in the classical limit. As an example
consider the two-particle system where p;=z=xp and

A= +V'E are related by

sinhZ%pZA(O)sinhz%\/E— . (14)

Hence, for #—0 we have p=V'E —8§ with §~0.14 for
the classical ground-state energy E =2. However, this is

the worst case. Both for larger energies in the two-
J

1
D(p+i#i)
_ 1 -
D(p+2i#) D(p+2i#)
r'(p)= 1
D(p+3i#h)

1

1
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1

D(p+3i#)

(12)

I

particle system, and in systems with N >>2, the zeros of
A are found to be very close to the A e This shows that,
despite the obvious similarity of the quantum approach
to Kac and van Moerbeke’s classical solution, the p ; are
not just the quantum analogs of the ;. First of all there
are, in general, N different real solutions p; of A(p)=0,
while we had only N —1 classical variables pu e Second,
the values of the quantum variables p; are well outside
the classical closed intervals to which the motion of y; is
confined (=0 for N =2, E =2).

The proximity of the zeros p; and the poles A; of A is
very important in the practical use of Gutzwiller’s
scheme for the quantization of the Toda lattive, especial-
ly in the limit #—0 where the rapid vanishing of A;
makes it very difficult to pinpoint zeros p; of A. Luckily,
the actual quantization conditions are expressed in terms
of a phase function ¢(p) evaluated at the p;, and ¢ is
slowly varying near each p;.

The next step in this scheme, following Gutzwiller, is
to calculate this phase factor ¢(p) connecting the two
bounded asymptotic expressions for the solution of Eq.
9):

ri()— T IAT D (1£i (k= Ay /7] ! (15)
k

as k—p/fiFioo (I is the usual I" function). This has to
be done for each of the zeros p; of A giving ¢, =d(p;)
with

L(1+i(p—A,)/#)
L(1—i(p—A,) /%)

2 2i9(p) = 1 pRip/t
k

x ) (16)
r'(p)
where r' and r" are semi-infinite-dimensional deter-

minants given by
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and r"(p)=[r'(p)]* for pER. To our knowledge, there
exists no analytic expression such as (13) for r'(p) but it is
easily seen that ¢(p) is well defined for arbitrary complex
p since the simple poles of r' at p,,=A,—in#,
n=1,2,3,... cancel against the singularities of the I'
functions at these points.

Numerical calculation of ¢ along the real axis reveals a
very simple behavior (Fig. 1): The phase is a monotoni-
cally increasing function of p which exhibits broad pla-
teaus around p=Kj for sufficiently small # (S—l‘a, note
that # is dimensionless in our units). The value of ¢ on
these plateaus is a function of # and the conserved quan-
tities (i.e., their eigenvalues) {A;}. Outside of the interval
[A,Ax] the semi-infinite determinants r'(p), r"(p) ap-

2rl | (a) . ]
i ]
o) of // ]
-2r ]
-2 0 2
2nf  (b) | ]

#p) of / ]
0

2x [
-2 2
27 (©
#(r) of f_f 1
-2 f_ 4
-2 0 2

FIG. 1. Gutzwiller’s phase function ¢ [Eq. (16)] vs p in the
first-excited state of the N =3 system [quantum numbers
(nyny)=(1,0)]. (a) i=1: E=6.7114, A=2.4113. (b) #=0.1:
E=3.348861, A4=0.179792. (c) #=0.01: E=3.0346688,
A=0.017 387 2. Dotted lines indicate the positions of the poles
A; of the Hill-type determinant A (12). The zeros p; of A—
where the quantization condition (18) has to be fulfilled— are
within the thickness of these lines (a); (b) and (c) the difference
lp; —A,| is larger but well within the width of the plateaus of ¢.
(Note the different scales on the p axis.)
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proach unity giving ¢— + o determined by the phase of
the I" functions in (16).

This simple functional dependence of ¢ on p makes the
quantization scheme numerically feasible: The existence
of plateaus in ¢ makes the quantization condition insensi-
tive to small variations of the quantum numbers p;.
Hence the precise determination of the zeros of A (which
was not tractible numerically in the semiclassical regime
as discussed above) is not necessary for the calculation of
the ¢;. The fact that ¢(p) is approximately constant in a
neighborhood of the pole A; of A that includes the zero
p; allows us to skip the first step of the quantization
scheme and set ¢;~@(A;) for values of # too small to
determine p;.

‘In the final step of Gutzwiller’s quantization scheme
for the periodic Toda chain the system parameters {2}
have to be varied to fulfill certain conditions for the
phases ¢;.

By using the solution of the (N —1)-particle open
chain with wave numbers corresponding to the zeros of
the Hill determinant A as a basis for the eigenvalue prob-
lem of the N-particle closed one, the vanishing of the
wave functions W({g;};{k;}) (8) is guaranteed whenever
one of the e“*'" % (j=2,...,N —1) becomes large. In
addition, overall normalizability of the wave functions re-
quires their boundedness for large > ?' or e” V. This
can be obtained by suitable combination of the ¥’s with
different assignments of the allowed «; to the g;. A tedi-
ous but straightforward calculation by Gutzwiller shows
that a necessary condition for the cancellation of the ex-
ponentially divergent parts in the asymptotics of WV is that
the phase factors (16) are equal, i.e.,

¢l=¢2= vt =¢N(m0d1T) . (18)

Since the p; are ordered p,<p,< *** <py, and ¢(p) is
monotonically increasing, this is equivalent to the condi-
tion ¢; ., —¢;=m(n;+1) with non-negative integers n;
(see Fig. 1).

Besides (18), there exists an identity which is fulfilled
trivially for N=2 and N =3 and which was assumed to
hold for N > 3 by Gutzwiller:

> ¢;=0(modm) . (19)
J

Together with Eq. (18) this restricts the allowed absolute
values of ¢; to (mv)/N with integer v (with the same
value of v for all j).

We now turn to the problem of ground-state symmetry
for an odd number of particles. In the quantization
scheme above, one assumes implicitly that there are ex-
actly N real zeros of the Hill-type determinant A (12).
However, as can be seen from the analytic expression (13)
for A, a necessary condition for this is that all the
coefficients K; are nonzero.

A special situation arises in systems with an odd num-
ber of particles when one considers symmetric states,
namely states with conserved quantities (P=NA is the
total momentum of the system):

}»k=2A—?\,N-k+1, k=1,2,...,N . (20)



11 806

In this case D(p)=—D(2A—p), and it is straightfor-
ward to check that the singular terms in the expansion of
A(p) for p~Ay4+1),2=A cancel exactly. This leads to
vanishing of the corresponding K, in the expression (13)
for A. Hence, there are only N —1 real values of p
fulfilling A(p)=0. This observation was first noted by
Gutzwiller for the N =3 system.? He concluded that
symmetric states do not exist in the three-particle period-
ic Toda lattice.

We want to reconsider this question of the existence of
symmetric states in the odd-N quantum periodic Toda
chain since it is of some importance in understanding the
whole quantization scheme. The naive guess for the
ground state would be symmetric. If the quantization
procedure rules out these states, then the ground state of
the odd-N quantum Toda chain must be degenerate, since
a change from {A;} to { —A;} does not change the energy
of the system. We argue here that this degeneracy does
not occur —we believe the true ground state is sym-
metric.

There exist two limiting cases where the existence of
symmetric states can be established.

(1) In the low-energy regime (E ~N for the N-particle
system) the exponential interaction in the Toda Hamil-
tonian (1) can be expanded about the classical ground-
state configuration g, =const giving the N-particle har-
monic chain to lowest order. In this limit the symmetric
states become the eigenstates of the harmonic chain in
which the modes with wave number k and 27— k contain
the same number of phonons. Since there is no obvious
breaking of symmetry by inclusion of anharmonic terms
this fact suggests that these states exist in the quantum
Toda chain, too.

(2) In the semiclassical regime #—0, and for large en-
ergies, the spectrum of the Toda chain can be obtained by
Bohr-Sommerfeld quantization (see below). This ap-
proach gives a classification of states in terms of quantum
numbers that are equivalent to the phonon numbers in
the harmonic chain. Again, no indication for a quantum
effect ruling out the existence of symmetric states can be
found.

Finally, the Gutzwiller scheme as described above can
be applied directly to the N =3 system. Our numerical
results show that the phase function ¢(p) has three pla-
teaus for p~A; independent of the symmetry of the Aj.
To allow for symmetric states, the quantization condition
(18) has to be used with ¢y =¢(py ), where

N N-—1
ji=1 j=1

for states where A(p)=0 has N-1 real solutions
{p1,p2> - - ->pny—1} only. [Note that this amounts to
(N —1)/2 independent quantization conditions only,
since ¢(p)= —¢(2A —p)(mod) because of the symmetry
of the A;. However, this is the number of independent
parameters in the set {A;} with (20).] Using (21), we find
the Gutzwiller scheme gives complete agreement with the
harmonic-chain results and the semiclassical results in
the appropriate limits.
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IV. BOHR-SOMMERFELD QUANTIZATION

In the semiclassical regime 7 <<1 and for high energies
E >>E, torus quantization is expected to give the spec-
trum of the Toda lattice. As has been discussed in Sec. II
the Toda-Hamiltonian can be written, after separation of
the center-of-mass motion, in terms of N —1 pairs of
canonically conjugate variables {u,,,v,} where u,,,v,,
are related by Eq. (6). The periodic solutions of the
dynamical equations for u,, were restricted to motion in
the mth of the bounded intervals in which the charac-
teristic polynomial D of the Lax matrix [as defined by
Egs. (4)] fulfilled D%*(u) > 4. In terms of the original vari-
ables {p,,q,], a small positive value of D*(u)—4 at the
mth extremum of D(u) versus u can be understood as the
excitation of a low-amplitude mth harmonic wave.? The
relation (6) between v,,, and u,, allows for the calculation
of the action of these periodic orbits in u-v space:

m=¢vmdp,m=2farccosh |D(2 ) du

uD' (1)
;f (D)7 M (22)

where the integration has to be performed over the mth
interval in which |D(x)|>2. Approximating |D(u)|

~D,, —B,,(1—pu,)? in this region one obtains
D, +2 |'?
J,, ~8 5 [K(k)—E(k)],
m
(23)
p=|2m =21
D, +2

where K and E are the complete elliptic integrals of first
and second kind, respectively. Semiclassical quantization
in terms of these action variables is obtained by choosing
values for the A; such that

I =27H(n,, + 1) (24)

with nonnegative integers n,, being the quantum num-
bers of the system. Because of the identification of a
periodic orbit in the pair of conjugate variables (u,,,v,,)
with the excitation of the mth harmonic wave in the
small-amplitude limit, these quantum numbers are the
equivalent of phonon numbers in the k =(27m )/N mode
of the harmonic chain and may be interpreted as the
numbers of anharmonic phonons (cnoidal waves in the
classical limit) in the periodic Toda chain.

The neglect of higher terms in D (x) for the derivation
of Eq. (23) for N > 2 limits its validity to systems near the
(classical) ground state, namely

2j+1
2N

Aj=—2cos7r

For N=2, where no additional approximation is neces-
sary to obtain (23) for the action J,,, numerical calcula-
tions show very good agreement between the spectrum
obtained within this approach and the exact one obtained
by using Gutzwiller’s quantization scheme. The Bohr-
Sommerfeld quantization condition (24) can be solved or-
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TABLE 1. Ground-state energy of the two-particle Toda lat-
tice as obtained from the Gutzwiller scheme (Ej)e, and in
Bohr-Sommerfeld quantization (E, )gs for different values of #.

# (EO )exact (EO )BS
1.00 3.059173 3.030343
0.50 2.515177 2.507 695
0.10 2.100 621 2.100311
0.05 2.050 156 2.050078
0.01 2.010006 2.010003

der by order in 7 giving for the ground-state energy
Ey~2+#+ L7 +0(#), (25)

where the first correction to the classical value of E is
the harmonic-chain result while the second one is due to
anharmonic terms in the Toda potential. Comparison
with the exact results obtained numerically within the
Gutzwiller scheme shows that this is about half of the to-
tal anharmonic corrections to the ground-state energy
(see Table I). For large energies the quantum fluctuations
around the classical trajectories are known to be negligi-
ble. Hence Eq. (24) determines the asymptotic depen-
dence of E, on the quantum number # in the two-particle
system:

V' E,—EoIn(E,—E,)«n (n>>1). (26)

As noted by Gutzwiller,® the eigenenergies in the
hyperbolic-cosine potential grow faster with n than those
of the harmonic oscillator (E, «n), but slower than those
of a particle in a box (V' E,, «<n).

V. BETHE ANSATZ FOR THE TODA CHAIN

As mentioned in the Introduction, the ground-state en-
ergy and the low-energy-excitation spectrum,’ as well as
the free energy® for the classical, infinite-N Toda chain,
can be obtained exactly by application of standard
Bethe-ansatz analysis. This is quite surprising since, as
discussed before, the exponential interaction in Eq. (1) is
finite everywhere in the configuration space of the period-
ic chain. Furthermore, the analysis of Gaudin!* shows
that, though the ladder operators for the algebraic Bethe
ansatz can be constructed formally, they cannot be inter-
preted as creation or annihilation operators for physical
excitations. Having verified the quantization conditions
of Gutzwiller in various known limits, we now want to
discuss their relation to the Bethe-ansatz approach.

The Bethe ansatz for the periodic Toda chain of length
L leads to the following set of nonlinear equations:

k,L=2xl,+ 3 8(k,—k,) 27)
n#*n'

for N wave numbers k, where the I, are a given set of
distinct integers (for odd N) or half odd integers (for even
N). The appearance of L is a peculiarity of the Bethe-
ansatz analysis. Equations (27) are obtained by imposing
periodic boundary conditions on the wave function. This
requires the introduction of absolute coordinates
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q;—>4q;+j(L /N) along the chain although, as should be
clear from the above analysis, the Toda potential always
leads to bound states— independent of the range of the
q;- However, the explicit L dependence of the Bethe-
ansatz equations cancels against that introduced by the
phase shift 8(k) when properly calculated from the
asymptotic behavior of the wave function for a single par-
ticle in an exp(—x + L /N) potential:'?

.| L _ . I'(1+ik)
8(k)=k N 21In# | +iln Ta=ik) ]
L -
=k— k) .
k N +6(k) (28)

With this expression Egs. (27) reads

0=2aI,+ 2™ + 3 Bk, —k,) , 29)

N n#n'

where periodic boundary conditions have been used again
to set K=3,k,=27wv/L with v=0,1,2,...,N—1. In
this formulation of the Bethe ansatz the independence of
L is guaranteed for the zero-total-momentum states.

There is an obvious formal similarity to the Gutzwiller
quantization condition (18). Generalizing Eq. (16) to sys-
tems with nonzero total momentum 3 ,A,, and taking
the logarithm, it can be written as

2av

0=2xI,+ N +38((p, — A, ) /B +2¢(p,) , (30)

where ¢, is the phase of the semiinfinite determinant (17).
The relative values of the integers I, can be given in
terms of the anharmonic phonon numbers #,, introduced
in the preceding section by I,, , ,—1I,,=n,, +1.

Hence, neglecting ¢, and taking p, =\, the Gutzwiller
phase condition is identical to the Bethe-ansatz equations
with one difference: To obtain the term 27v/N in (29) we
applied periodic boundary conditions on the Bethe-ansatz
wave function to get K=3 ,k, =27v/L. In Eq. (30) the
same term arises from condition (19), but is no longer re-
lated to the total momentum 3 ,A,. This means that the
total density of states as given by the Bethe ansatz is too
small by a factor of N (Fig. 2).

Note that this does not affect the classical thermo-
dynamics where the Bethe ansatz is known to give the ex-
act result for the free energy—the factor N in the density
of states can be obtained by a renormalization of
#i—#i/N, becoming meaningless in the classical limit.

In the remainder of this section we want to discuss the
approximations that have to be made to get the Bethe-
ansatz equations from Eq. (30). The replacement of p, by
A, (i.e., the identification of poles and zeros of the deter-
minant A) is justified in the semiclassical regime, as has
been discussed above. The error introduced by the other
assumption, namely that ¢, can be neglected, cannot be
estimated because of the unknown analytic behavior of
the semi-infinite determinants (17). For arbitrary p this
approximation is certainly not justified. Our numerical
analysis shows that both ¢, and the phase generated by
the sum involving the T" functions in § oscillate with am-
plitude roughly «#7!, and only their difference gives the



11 808
. -
3} o 4+ |
o a *
+ + 4 a
o ° L o
+ (w] + o
E lo o O o+
+ * o .
a
o o , ©
o S o v
2 . + .
1 1
0 5
PL/27h

FIG. 2. Spectrum of the N =2 periodic Toda chain of length
L =4 for #=0.1 (energy E vs total momentum P in dimension-
less units as defined in the text). Exact spectrum (0) and
Bethe-ansatz result (+). The exact states with corresponding
quantum numbers are the ones directly above the Bethe-ansatz
states.

monotonically increasing function exhibiting plateaus
near the poles of A. On the other hand, we find that in
systems with N >>2 ¢, vanishes at points very close to
these poles.

This cancellation of corrections to the crude approxi-
mations on the Gutzwiller phase, which cannot be ex-
plained without a better understanding of the analytic
properties of the phase ¢, [or of the semi-infinite deter-
minants r’, ¥, Eq. (17)], suggests that the Bethe-ansatz
equations (29) can indeed be used in the limit of large N
to calculate the spectrum of the zero-total-momentum
states in the periodic quantum Toda lattice where the ex-
act quantization conditions (18) are difficult to handle.
The relation between the energy and the set of wave num-
bers k,, however, is different from the one used in the
standard Bethe ansatz:

ﬁZ

5 S (k,*—K?/N|, (31

where K=3 k,=2mv/L. States with nonzero total
momentum P =#Q can be obtained by a uniform shift
{k,}—{k,+Q/N}. Periodic boundary conditions
quantize Q to values 27n /L with integer n [being in-
dependent of the integer v in (29)].

To get a quantitative estimate of the error made by
solving the Bethe-ansatz equations instead of the exact
Egs. (18) we shall first consider the classical ground state.
The classical ground-state energy of the N-particle sys-
tem is Ey=N in our units. Taking the classical limit
#—0 of the Bethe-ansatz equations (29) with p, =%k,
one obtains to leading order in # by application of
Stirling’s formula for the I" functions

0= (p, —p,)nl|p,—p,|—1) . (32)
n¥*n'

These equations can be solved analytically for N =2

MICHAEL FOWLER AND HOLGER FRAHM 39

1.0 - '*;:, -‘a -

0.0 - ‘v w® ® w© ® B\ 8

FIG. 3. Zero-momentum states of the N =3 periodic Toda
chain for 7=0.1, constant of motion 4 [see Eq. 4(b)] vs energy
E in dimensionless units as defined in text. Exact spectrum ()
and spectrum obtained by solution of the Bethe ansatz Egs. (29)
with (31) (+). The dotted line indicates the border to the classi-
cal forbidden region. (Only states with 4 >0 are shown, how-
ever, the spectrum is invariant under 4<>— 4.)

and N =3 by assuming p, ==p (0,%p) for the ground-
state configuration. For N =2 one obtains p =e /2 which
gives an energy

82

E,=13py="~186T. (33)
n

For N =3 we find p=e /(2%/%) which gives E;=e?/
(473)~2.932 for the energy. Both results are
significantly below the exact values for Ey. For N >3
(32) is a transcendental equation in the p, which can be
solved numerically. Doing so for N up to 100 we find
that the Bethe ansatz gives

(EN)BAzN(I—'aN) ’ ’ (34)
where ay~0.601/N3+0.127/N° asymptotically for
large N.

To check the accuracy of the energy of excited states as
given by the Bethe ansatz against the exact results one
has to consider finite #. For %=} we have used both
Gutzwiller’s quantization scheme and the Bethe-ansatz
equations with Eq. (31) to calculate the spectra for N =2
up to E ~ 125 (corresponding to # =300) and for N =3 up
to E ~5.3 [corresponding to (n,,n,)=(6,6), see Fig. 3].
The Bethe-ansatz results are getting closer to the exact
ones as each of the quantum numbers n ; gets large. Con-
sidering the energy E only, we find that the difference be-
tween the exact and the Bethe-ansatz results decreases
with increasing E. However, this decrease is very slow.
As far as we can tell from our results, the asymptotic er-
ror of the Bethe ansatz is greater than O(1/E), probably

containing a logarithmic E dependence.
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