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Integrable Impurity in the Supersymmetric t-J Model
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An impurity coupling to both spin and charge degrees of freedom is added to a periodict-J chain such
that its interaction with the bulk can be varied continuously without losing integrability. Ground stat
properties, impurity contributions to the susceptibilities and low temperature specific heat are studied
well as transport properties. The impurity phase shifts are calculated to establish the existence of
impurity bound state in the holon sector. [S0031-9007(96)01892-3]
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Quantum fluctuations are known to play an import
role in the physics of low dimensional strongly correla
electron systems: the low temperature properties of s
systems in one spatial dimension have to be describe
terms of a Luttinger liquid rather than a Fermi liquid. Fro
an experimental point of view the transport properties
these systems in the presence of boundaries and p
tial scatterers are of particular interest. Recently sev
attempts have been made to describe such a situation
ing renormalization group techniques the transport pr
erties of a 1D interacting electron gas in the presenc
a potential barrier have been studied by Kane and Fi
[1]. Their surprising findings triggered further work usi
different techniques like boundary conformal field theo
[2] and an exact solution by means of a mapping to
boundary sine-Gordon model [3,4]. In particular, the l
temperature properties of magnetic (Kondo) impurities
a Luttinger liquid [5,6] have been investigated in great
tail. In the present work we will investigate the effects
a particular type of potential impurity in a Luttinger liqu
(where both spin and charge degrees of freedom are
less) by means of an exact solution through the quan
inverse scattering method (QISM) [7].

Attempts to study effects due to the presence of im
rities in many-body quantum systems in the framework
integrable models have a long successful history [8–
As far as lattice models are concerned the underlying p
ciple in these exact solutions is the fact that the QISM
lows for the introduction of certain “inhomogeneities” in
vertex models without spoiling integrability. Thelocal
vertices—so calledL operators—are objects dependi
on a complex valued spectral parameter acting on an
iliary matrix space in addition to the quantum space of
model. They are solutions of a Yang-Baxter equation w
anR matrix which itself acts on two copies of the matr
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space and depends on the difference of the correspon
spectral parameters only. This allows one to build famil
of vertex models with site-dependent shifts of the spec
parameters and even different quantum spaces on di
ent sites. The first fact has been widely used in solv
models for particles with an internal degree of freedom
means of the nested Bethe ansatz [13]. The second
proach has been first applied by Andrei and Johannes
to study the properties of anS 

1
2 Heisenberg chain with

an additional site carrying spinS [8] (see also [9]).
In this Letter we study the properties of the supersy

metric t-J model with one vertex replaced by anL op-
erator acting on a four-dimensional quantum space. T
preserves thegls2j1d supersymmetry of the model but a
the same time lifts the restriction of no double occupan
present in thet-J model at the impurity site. The ex
istence of a free parameter in the four-dimensional r
resentations of the superalgebra [14] allows one to t
the coupling of the impurity to the host chain. As w
be shown below, the present model allows one to st
some aspects of a more general situation than the o
mentioned above: the impurity introduced here couple
both spin and charge degrees of freedom of the bulk L
tinger liquid. The extension of our calculation to the ca
of many impurities is straightforward.

The solution of the model is completely analogous
that of the puret-J model [15]: The transfer matrix gen
erating the Hamiltonian and the other conserved qua
ties is the trace of a product of the localL operators
chosen asLtJ  sl 1 iPdysl 1 id for the regular sites
(P is a graded permutation operator acting on the t
sor product of the auxiliary and the quantum space)
L34 ~ l 2 is a

2 1 1d 1 iL̃ on the site associated wit
the impurity. Written as a matrix in the three-dimension
auxiliary spaceL̃ reads
L̃ 

0BBB@ X
##
2 1 X00

2 2X
#"
2 Q"

2X
"#
2 X

""
2 1 X00

2 Q#

Q
y
" Q

y
# a 1 X

""
2 1 X

##
2 1 2X00

2

1CCCA.
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a X2s2

2 with s  6,
where 1 (2) corresponds to" (#) and where the Hub
bard projection operators are given byXab  jal kbj with
a, b ", #, 2, 0. The Hamiltonian is then given by th
logarithmic derivative of the transfer matrix at spect
parameterl  0. In general, the form of this Hamil
tonian is rather complicated and will be given elsewh
[16]. In any case the precise form of the lattice (im
purity) interactions is not essential as far as low-ene
properties are concerned: in the continuum limit only
small number of terms with scaling dimensions sma
than two will survive (taking the continuum limit an
identifying the scaling dimensions of the composite o
erators at the impurity site is rather nontrivial thoug
Physically the model describes an impurity with four
lowed states (spin-upydown electrons, emptyydoubly oc-
cupied site) that couples to two neighboringt-J sites and
also modifies the interaction between thet-J sites (see
Fig. 1). In the limiting casesa ! 0s`d the Hamilton-
ian simplifies essentially: In the first case the impur
acts as an ordinaryt-J site in the ground state belo
half filling, for a ! ` the impurity site is doubly occu
pied and induces a twist in the boundary conditions of
host chain.

The eigenstates of the Hamiltonian forN" (N#) electrons
with spin " (#) are constructed by means of the nes
algebraic Bethe ansatz (NABA) leading to a system
algebraic equations for the spectral parameterslj (j 
1, . . . , Ne  N" 1 N#) andls1d

a (a  1, . . . , N#)0@lj 2
i
2

lj 1
i
2

1AL

0@lj 2
a11

2 i

lj 1
a11

2 i

1A 
N#Y

a1

lj 2 ls1d
a 2

i
2

lj 2 l
s1d
a 1

i
2

,

NeY
j1

ls1d
a 2 lj 1

i
2

l
s1d
a 2 lj 2

i
2

 2

N#Y
b1

ls1d
a 2 l

s1d
b 1 i

l
s1d
a 2 l

s1d
b 2 i

.

The corresponding eigenvalues of the Hamiltonian
the grand canonical ensemble areE  2mNe 2 sHy
2d sN" 2 N#d 1

PNe
j1 1ysl2

j 1
1
4 d.

The configuration of spectral parameters leading
the lowest energy state for given chemical poten
and magnetic field are found in complete analogy
the pure t-J chain: the ground state for finiteH is
described by two filled Fermi seas ofl-ls1d-“strings”
l6  ls1d 6

i
2 with real ls1d associated with the holo

excitations and real solutionslj describing spin degree

FIG. 1. Coupling of the impurity site (square) to thet-J bulk
sites (circles).
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of freedom. In the thermodynamic limit dressed energ
ec and es can be associated with the excitations of th
objects. They are given in terms of coupled integ
equations which are identical to those found for
chain without impurities [17]. In the resulting groun
state energy the impurity contribution can be identifi
from its L dependence which allows one to compu
the occupation, magnetization, and susceptibilities of
impurity site. Analytical results for these expectati
values are available only in limiting cases close to h
filling and for densities near or below the critical dens
nc related to the magnetic field byH  4 sin2spncy2d
where the ground state is ferromagnetic and only
lj are present [16]. For general values of band filli
and magnetic field the magnetization and particle num
on the impurity site can be determined by numerica
solving a set of two coupled integral equations (s
Fig. 2): For a ! 0 the impurity mimics the bulk
behavior as discussed above. For largea the impurity

FIG. 2. (a) Impurity magnetization as a function of magne
field for band filling ne  0.25 and several values ofa.
(b) Number of electrons located at the impurity as a funct
of the bulk electron density for fixed magnetic fieldH 
0.1 and several values ofa. The dotted line denotes th
critical electron densitync below which the ground state i
ferromagnetic.
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occupation number is close to 1 (2) forne , nc (. nc)
leading to an enhanced (reduced) magnetization at s
(large) electron densities. The magnetic susceptibility
the impurity near half filling is found to be,xbulkya.
We note that the magnetization curves for sufficien
largea intersect the ones for smalla.

In addition to the ground state properties the Be
ansatz allows one to study the finite temperature beha
of the system. The thermodynamic Bethe ansatz eq
tions for the system with impurity are the same as in
pure case [17]. Again the impurity contribution can
isolated in the free energy which can be evaluated exp
itly in the limit T ! ` and forH ¿ T using Takahashi’s
method [18]. In the high temperature limit we find

Fbulk  2LT ln

µ
1 1 emyT 2 cosh

H
2T

∂
,

Fimp  2
2a

a 1 2

2 T ln

µ
1 1 e2myT 1 2emyT cosh

H
2T

∂
,

giving the correct entropy in this limit. Note that th
parametera enters the leading term in this expansion in
trivial way only.

For low temperaturesT ø H we can determine the
phase diagram of the system. Most interesting is
behavior at half filling where the impurity contribution t
the specific heat is found to show a different temperat
dependence than the one from the bulk: for2m . H . 4
the system is ferromagnetic and the lowT free energy is
given by (we suppress the contribution from the grou
state energy)

Fbulk ø 2
L

2
p

p
T 3y2es42HdyT ,

Fimp ø 2TesHy22mdyT .

For smaller magnetic fields the thermodynamic equil
rium state is not ferromagnetically ordered, the bulk fr
energy isFbulk ø 2pLT2ys6ysd with the spinon veloc-
ity ys and the impurity contribution isFimp ø 2

2
a T3y2

up to factors that cannot be calculated in closed form
general. NearH  Hc this factor becomess

3
8

s4 2 Hd23y4 exp

∑
1
T

µ
Hy2 2 m 1

2
3p

s4 2 Hd3y2

∂∏
.

The effect of the impurities on the transport pro
erties of the system can be studied by calculat
the spin and charge stiffnesses from the finite s
corrections to the ground state energy of the mo
subject to twisted boundary conditions [19]. Follow
ing the analysis in [20] we introduce twist anglesfc

and fs affecting charge and spin degrees of freedo
respectively. The leading term in the resulting sh
of the ground state energy can then be written
5100
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DEsfc, fsd  L21faDabsadfb where charge (spin)
stiffness are defined asDsrd  sLy2d≠2

fDEsf, 0d  Dcc

[Dssd  sLy2d≠2
fDEsf, 22fd]. The analysis of the

finite size corrections to the ground state energy yields
result that for the case of a single impurity the stiffness
are not modified to leading order inL21. Hence, in
spite of the presence of the impurity we find an infini
dc conductivity. This is completely different from th
situation in the “weak-link”-type potential impurity
discussed in [1,4]: such a weak link drives the Lutting
liquid to a strong coupling fixed point characterized by
vanishing conductivity. We believe that the behavior
the system considered here is related to its integrabi
and the absence of backscattering at the impurity.

The transport properties of the system do change
one considers a finite densityni of impurity sites. In
this situation the band filling can take values larger th
1 as the impurity sites allow for double occupancie
Comparing the charge stiffness to that of the puret-J
case one observes a reduction for densities just above
critical one. For larger band fillings the presence of t
impurities leads to an enhancement of the stiffness (
Fig. 3). This is easily understood:Dsrd vanishes at half
filling in the t-J chain. The impurities do allow double
occupancies thereby enlarging the phase space for
electrons which leads to an increase in the stiffness.
large fillings the stiffness increases as a function ofa as
the average occupation number of the impurity sites
close to doubly occupied which makes the movement
electrons between thet-J sites easier. In particular, the
“absorption” of particles by the impurity sites fora  `

leads to plateaus in the stiffness forne , ni (where it
vanishes) and forni 1 s1 2 nidnc , ne , 2ni 1 s1 2

FIG. 3. Charge stiffness for a chain with 20% impurities as
function of the electron density atH  0.1 for several values of
a. The dashed line denotes the stiffness at the critical elect
densityncsad. (For comparison we have included the stiffne
for the puret-J chainD

srd
tJ .)
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nidnc. For other fillings the stiffness is simply give
by that of thet-J model (up to a rescaling). Similarl
the reduction of the spin stiffness due to the addition
impurities can be understood.

Finally, to study the effects of the impurity on th
excitations in the model we have computed the ph
shifts acquired by holons and spinons due to scatte
off the impurity in the case of a microscopic number
holes in the half filled ground state at vanishing magn
field. The basic ingredient for this calculation is t
quantization condition for factorized scattering of tw
particles with rapiditiesl1 andl2 on a ring of lengthN ,
namely, expfiNksl1dgSsl1 2 l2d expfcsl1dg  1 where
ksld is the physical momentum in the infinite period
system,Ssld is the bulk scattering matrix for scatterin
of particles 1 and 2, andcsl1d is the phase shif
acquired when scattering off the impurity (note th
this incorporates the fact that there is no backscatte
at the impurity). Using the known result forS [21]
one extracts the impurity phase shifts using the met
of [22,23]: both the spinon and holon impurity pha
shifts are proportional to exps2ikd, wherek denotes the
physical momentum of spinonsyholons in thet-J model
without impurity. This reflects the fact that the impurit
essentially decouples from the chain at half filling lead
to a chain ofN 2 1 sites. In addition, the holons pic
up a phase shifts2il 2 adys2il 1 iad due to the fact
that the impurity site is charged. The pole atl  iay2
corresponds to an impurity bound state fora , 2.

To summarize, we have studied the effects of
addition of integrable impurities to the supersymme
t-J model on certain zero and finite temperature proper
of the system. The properties of the impurity, whi
couples to both spin and charge degrees of freed
can be tuned by adjusting a continuous parametera.
Compared to the “weak-link” type impurities investigat
by Kane and Fisher [1] it appears to be very spe
in that its dc conductivity is unchanged by the additi
of a single impurity. We have argued that this is d
to the absence of backscattering terms on the leve
the dressed excitations (holons and spinons). Altho
the verification by explicit construction of the continuu
limit for this system appears difficult, one may specul
that similar to the case of a Kondo impurity in
Luttinger liquid [6] a backscattering term would drive th
system to a new fixed point. Hence the present mo
can be interpreted as an unstable fixed point from
renormalization group point of view (see also [24]).
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