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X-ray edge singularity in integrable lattice models of correlated electrons
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We study the singularities in x-ray absorption spectra of one-dimensional Hubbard andt-J models. We use
boundary conformal field theory and the Bethe ansatz solutions of these models with both periodic and open
boundary conditions to calculate the exponents describing the power-law decay near the edges of x-ray
absorption spectra in the case where the core-hole potential has bound states.@S0163-1829~97!04035-6#
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I. INTRODUCTION

X-ray absorption in a metal can be described by a sim
model put forward by Nozie`res and de Dominicis.1 An elec-
tron from a filled inner shell of one of the nuclei is raise
into the conduction band. This generates a local potentiaV
at the position of the nucleus that lost the core electr
which in turn acts on the~noninteracting! conduction-band
electrons and affects the x-ray absorption probability. T
situation is described by the Hamiltonian

H5(
kW

e~kW !c†~kW !c~kW !1bb†(
kW ,kW8

V~kW ,kW8!c†~kW !c~kW8!

1E0b†b, ~1.1!

where e(kW ) is the dispersion of the conduction-band ele
trons, b† and b @c(kW ) and c†(kW )# are annihilation and cre
ation operators for the core hole~for conduction-band elec
trons with wave vectorkW ), andE0 is the energy of the core
state. Asb†b commutes withH, the Hilbert space splits into
two sectors: in one the core level is filled (bb†50) and there
is no potential, whereas in the other one the core leve
empty (bb†51) andV acts on the conduction electrons. A
was shown in Ref. 1 the inner core disturbance acts a
transient one-body potential on the conduction electro
which means that one needs to study the response of
conduction-band electrons to the potentialV applied between
times t50 and t5t8. The x-ray absorption rate can be e
pressed by the golden rule as

I ~v!}(
n

z^nuc0
†~0!u0& z2d~v1EGS2En2E0!, ~1.2!

wherec0(t) annihilates a conduction-band electron at po
tion xW50 at time t, u0& is the ground state at timest,0
and Hu0&5EGSu0&. The right-hand side of Eq.~1.2! can
be expressed in terms of the spectral representation of
Fourier transform of the retarded correlation functi
^^b†(t)c0(t)c0

†(0)b(0)&&, so that

I ~v!}ImE
0

`

dt eivt^^b†~ t !c0~ t !c0
†~0!b~0!&&. ~1.3!
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Near the thresholdv0'E0 the intensity I (v) displays a
characteristic singularity of the form

I ~v!;
1

uv2v0ua
. ~1.4!

For the system~1.1! the critical exponenta has been deter
mined exactly and is expressed in terms of the phase shi
the Fermi surface.1,2 A very interesting case is the one whe
the local potentialV is sufficiently strong to bind a conduc
tion electron3 ~see also Refs. 4,5!. In this case the absorptio
spectrum~if a.0) features two thresholds with character
tic power-law decays ofI as a function ofv @see Fig. 1~a!#.
If a,0 there is no discontinuity andI (v) goes to zero in-
stead@see Fig. 1~b!#.

In the present work we wish to investigate the analogo
situation for integrable lattice models of strongly interacti
conduction electrons in one dimension.6,7 These models are
particular realizations ofLuttinger liquids and the x-ray
problem for such systems has been investigated by var
authors~a detailed pedagocial discussion can be found in
forthcoming book.8! The case of a core potential with n
backscattering was solved in Refs. 9 and the case of a
fectly reflecting potential was treated in Ref. 10. The gene
case was investigated by Affleck and Ludwig11 using bound-
ary conformal field theory~BCFT!.12 Recently, Affleck5 re-
considered the x-ray problem for a Fermi liquid~1.1! for the
case whereV has a bound state from the point of view
BCFT. This motivated the present work in which we stu
the x-ray problem in Hubbard andt-J chains for core-hole
potentials with bound states. Let us discuss the general s
for the case of the Hubbard model. At timest,0 we take the
system to be periodic

HA52(
j 51

L

(
s

~cj ,s
† cj 11,s1cj 11,s

† cj ,s!

14u(
j 51

L

nj↑nj↓1mN̂. ~1.5!

At time t50 we switch on the core potentialV1L acting on
sites 1 andL ~a similar situation has been studied in Ref. 1!.
In the general case this potential will include a backscat
6631 © 1997 The American Physical Society
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FIG. 1. X-ray absorption rate
as a function of frequency:~a!
a0.0, a1.0, ~b! a0,0, a1.0.
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ing term which will then drive the system to the open cha
fixed point,14 i.e., break the chain across the link 1L. We
model this situation by considering the Hamiltonian

HB52 (
j 51

L21

(
s

~cj ,s
† cj 11,s1cj 11,s

† cj ,s!14u(
j 51

L

nj↑nj↓

1mN̂1H11HL , ~1.6!

whereH1,L are one-body interactions acting on sites 1 andL,
respectively. At timet we switch off the core potential which
changes the Hamiltonian back toHA . Depending on the pre
cise form of the interactionsH1,L bound states can be forme
at the boundaries. As the elementary excitations in the H
bard model are not electrons like in the case of the Fe
liquid discussed above but~anti!holons and spinons one ha
to consider several possibilities: In addition to the case
which there are no bound states the core-hole potential
bind either a spinon, a~anti!holon, both a spinon and a~an-
ti!holon or, for an attractive boundary potential of the ord
of the Hubbard interaction 4u, a pair of electrons.

In order to extract the x-ray exponent we use BCFT a
the fact that the low-energy spectrum of both Hubbard ant-
J models can be described in terms of twoc51 conformal
field theories or equivalently a spin and charge separa
Luttinger liquid.15,16 Our discussion closely follows Ref. 11
We start by considering the Luttinger liquid defined on t
complex plane with coordinatez. Identifying the radial part
of z with the time variable the case of periodic bounda
conditions~A! is realized if we consider the complex plan
without boundaries. The change to open boundary condit
~B! corresponds to the introduction of a cut in the plane fr
z0 to z1. As explained above this change of boundary con
tions corresponds to switching on~and off! the core-hole
potential. Choosing 0,t05z0,t15z1 real and mapping the
plane to a cylinder via the conformal transformation
z5exp@2p(u1iv)/L# this cut gets mapped onto a seam in t
time direction of the cylinder~see Fig. 2!.

The Green’s function of an operatorO with dimensionx
on the complex plane without boundaries is given by

^AuO~t1!O†~t2!uA&5
1

~t12t2!2x
. ~1.7!

The Green’s function on the cylinder is obtained by the c
formal mapping. Foru22u1@L we obtain
b-
i

n
an

r

d

ed

ns

i-

-

^AuO~u1!O†~u2!uA&;S 2p

L D 2x

e2~2px/L !~u22u1!. ~1.8!

To study the edge singularity we chooseO† to be an operator
which changes the boundary conditions fromA to B. The
same correlation function can be evaluated alternatively
inserting a resolution of the identity in terms of the eige
statesuB;n& of the system with reflecting boundary cond
tions

^AuO~u1!O†~u2!uA&

5(
n

z^AuO~0!uB;n& z2e2~EB
n

2EA!~u22u1!.

~1.9!

The leading contribution to this sum comes from the grou
state or a low-lying excited state~this depends on the opera
tor O because the form factor must be nonvanishing! with a
boundary condition of typeB. Comparing the two expres
sions for the correlation functions on the cylinder allows o
to extract the scaling dimensions of the boundary chang
operatorO:

xn5
L

2p
~EB

n 2EA
0 !. ~1.10!

For boundary potentials that do not lead to bound states
identifies the exponentsx0 for the core-hole operator andx1

for the core-hole conduction-electron operator„EB
0,1 being

the ground state energies in theN-@(N11)-#particle sector
with B boundary conditions….11 Fourier transforming Eq.
~1.7! the edge exponent in Eq.~1.4! is identified as

a5122x1 . ~1.11!

In the presence of the various types of bound states
power-law behavior~1.4! of I (v) above the respective
thresholds can be determined by inserting the appropr
excited-state energy into Eq.~1.10!. Finally, let us note that
in the above discussion we have set the Fermi velocitie
one; the generalization to the two-component Luttinger l
uid with different Fermi velocities proceeds along the sa
lines as in the case of periodic boundary conditions.17,15 In
the remainder of the paper we follow the steps outlin
above to study the nature of the x-ray edge singularities
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FIG. 2. The mapping from the
cylinder to the plane.
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the t-J and Hubbard models for boundary termsH1,L chosen
in such a way that they preserve the integrability of the
systems.

II. THE T-J MODEL

In this section we determine the x-ray absorption ex
nents for at-J chain with the particular choice of core-ho
potential described above. We consider the followi
Hamiltonians:18

H52PS (
j 51

L21

(
s

cj ,s
† cj 11,s1cj 11,s

† cj ,sDP12(
j 51

L21

SW j•SW j 11

2
njnj 11

4
1 (

j 51

L21

nj1nj 112mN̂1Hab , ~2.1!

whereP projects out double occupancies,Sj
W are spin opera-

tors at sitej , nj5cj ,↑
† cj ,↑1cj ,↓

† cj ,↓ and nj
h512nj ,↑2nj ,↓ .

There are three different forms for the boundary partHab of
the Hamiltonian that are compatible with integrability:

Haa5h1n11hLnL , Hba5h1n11hLS SL
z2

nL
h

2 D ,

~2.2!

Hbb5hS S1
z2

n1
h

2
1SL

z2
nL

h

2 D .

These correspond to localized potential (a) and magnetic
(b) interactions of the conduction electrons with the dist
bance due to the core hole. Physically local magnetic fi
interactions are not very realistic; one would rather expe
Kondo-like interaction which we cannot consider in t
present framework of integrable lattice models. In what f
lows we therefore constrain our analysis to the model w
aa boundary conditions. We note that in the continuum lim
e

-

-
ld
a

-
h
t

Haa gives rise to forward scattering terms. We therefore
pect that the x-ray exponents will generally not be univer
despite the fact that our boundary is perfectly reflecting
the sense of Refs. 10,11. As we will see below this is inde
the case. However, the situation is somewhat more com
cated than this: unlike in the continuum limit10,11 we do not
impose Neumann boundary conditions~on the lattice wave
functions!. The boundary conditions should rather be thoug
of as being of mixed Dirichlet-Neumann type@e.g.,
cc(0)1]xc(0)50#. The parameterc enters the finite-size
spectrum in the same way as the forward scattering am
tude. Therefore in the continuum limit the forward scatteri
amplitude isnot simply given by the boundary chemical po
tential. As a result we recover the results of Refs. 10,11
for h1,L→0,1 but for some finite value that depends on t
band filling ~see below!.

In the following we start by considering boundary field
in the region 1<h<2. This is unphysical from the point o
view of the x-ray edge singularity where the potential due
the core hole should be attractive but permits a pedagog
discussion of the formalism we use to calculate the finite-s
energies necessary for extracting x-ray exponents.

A. Repulsive boundary fields: 1<h<2

In this region of boundary fields holon boundary bou
states at both boundaries are present in the ground sta
the t-J chain. Defining

Sj522
2

hj
, j 51,L, ~2.3!

the Bethe ansatz equations with respect to the reference
with all spins up read18
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„e1~la!…2L5 )
bÞa

Nh1N↓

e2~la2lb!e2~la1lb!

3 )
g51

Nh

e21~la2lg
~1!!e21~la1lg

~1!!,

15e2S1
~lg

~1!!e2SL
~lg

~1!! )
b51

Nh1N↓

e1~lg
~1!2lb!e1~lg

~1!1lb!,

~2.4!

where en(x)5$@x1( in/2)#/@x2( in/2)#%. The energy of a
state corresponding to a solution of Eq.~2.4! is

E5h11hL2 (
j 51

Nh1N↓ 1

1

4
1l j

2

1mNh . ~2.5!

We now observe that forh1.1 solutions of Eq.~2.4! exists
where~in the thermodynamic limit! two rootsl (1) take the
values 2( i /2)S1 and 2( i /2)SL , respectively. These root
correspond to boundary bound states. The situation is an
gous to theXXZ Heisenberg chain studied in Ref. 19. O
finds that the ground state is given by a distribution of ro
such that both these boundary roots are present. The l
rithmic form of the Bethe equations@for a solution of Eq.
~2.4! with only real roots apart from the boundary root#
reads

2p

L
I a

s 5S 21
1

L D u~la!2
1

L(
b

uS la2lb

2 D1uS la1lb

2 D
1

1

L (
g51

Nh

u~la2lg
~1!!1u~la1lg

~1!!1
k~la!

L
,

a51 . . .N↓1Nh21,

2p

L
I g

c5
1

L(
a

u~lg
~1!2la!1u~lg

~1!1la!1
v~lg

~1!!

L
,

g51•••Nh21, ~2.6!

whereN↓ is the number of electrons with spin down,Nh is
the number of holes, I a

s,c are integer numbers
u(x)52arctan(2x), and

k~ l !5uS l

11S1
D1uS l

12S1
D1uS l

11SL
D1uS l

12SL
D ,

v~ l !52uS l

S1
D2uS l

SL
D . ~2.7!

In addition to Eq.~2.6! we still have two equations determin
ing the precise values of the boundary roots. A detai
analysis of these equations yields that the corrections to
thermodynamic values in a finite system vanish expon
tially with the the system size. This means that for the p
poses of the present work we can neglect these correct
We should note here that solutions of Eq.~2.6! do not yield
a completeset of states. For vanishing boundary fields suc
basis can be constructed by means of thesl(1u2) symmetry
lo-

s
a-

d
he
-
-
ns.

a

of the Hamiltonian.18 For nonzero boundary fields this sym
metry is broken and we do not known how to compleme
the set of Bethe states given by solutions of Eq.~2.6!. How-
ever, for the present purposes this is not necessary: we
interested in the lowest energy state in a particular secto
quantum numbers and it can be shown that these states
always be obtained as solutions of Eq.~2.6! or the analogous
equations based on the Bethe ansatz reference state wi
spins down. We note that this ceases to be true for thet-J
chain withba or bb boundary terms.

The calculation of the finite-size spectrum proceeds alo
the lines of Refs. 18 and 20 so that we merely quote
result

E~n!5Le`1 f `1
pvc

L H 1

2

~DNc
02u0

c!2

j2
2

1

24
1N1

c J
1

pvs

L H S DNs
02

DNc
0

2
2u0

s1
u0

c

2 D 2

2
1

24
1N1

s J ,

~2.8!

wheree` is the ground state energy of the infinite system,vc
and vs are the Fermi velocities of holons and spinons,
spectively,j5j(Lc) is the dressed charge definedvia

j~l!511E
2Lc

Lc
dn G1~l2n!j~n!,

Gx~l!5
1

2pE2`

`

dve2 ivl
e2ux~v/2!u

2cosh
v

2

5
1

2p
ReH cS 31x

4
1 i

l

2D2cS 11x

4
1 i

l

2D J ,

~2.9!

wherec(x) is the digamma function. The integration boun
ary Lc is determined by the chemical potential~band filling!.
We note that as we approach half filling (m→2ln2)
Lc'A@2/3z(3)#(2ln22m).

The term proportional toN1
a 5(all pairsI p

a2I h
a is the con-

tribution of particle-hole excitations, whereI p,h
a are the inte-

gers corresponding to the roots of the particle and the h
The quantitiesDNc

0 and DNs
0 denote the deviations of th

total particle number and the number of down spins fro
their respective values for some reference state. This con
needs to be introduced because in order to extract the x
exponents we need to compare finite-size energies fordiffer-
ent boundary conditions. The state with respect to which
measure the deviations of particle numbers is chosen s
that for the ground stateDNa

02u0
a50 for a5c,s. This may

appear odd but turns out to be the most convenient choice
calculating the energy difference between states with o
and closed boundary conditions. The quantitiesu0

c,s are de-
fined as
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u0
a5

1

2E2La

La
dn ra

1~n!2
1

2
,

ra
1~l!5ga,0~l!1E

2Lc

Lc
dn@dasG0~l2n!

1dacG1~l2n!#rc
1~n!, a5c,s, ~2.10!

where

gs,0~l!5 (
j 51,L

GSj
~l!1Gu12Sj u211G1~l!,

gc,0~l!5 (
j 51,L

G11Sj
~l!1Gu12Sj u

2aSj
~l!2G0~l!.

~2.11!

Last but not least the surface energyf ` is found to be

f `5 f 01 f c~h1!1 f c~hL![ f 01 f bound, ~2.12!

where f 0 is the surface energy of the system in the abse
of the boundary bound states18 and f c(hj ) are the contribu-
tions of the holon boundary bound states. Note that th
contributions are of an order of one unless we fine tune
boundary fields. We find18

f 052
1

2E2Lc

Lc
dl «c~l!@aS1

~l!1aSL
~l!#

2
1

2
@«s~0!1m22h122hL#,

f c~h!5m2p@G32~2/h!~0!1G211~2/h!~0!#

1
1

2E2Lc

Lc
dn@G32~2/h!~n!1G211~2/h!~n!#«c~n!,

~2.13!

where ax(l)5(1/2p)$x/@l21(x2/4)#% and where the
dressed energies are given as solutions of

«s~l!522pG0~l!1E
2Lc

Lc
dn G0~l2n!«c~n!,

«c~l!5m22pG1~l!1E
2Lc

Lc
dn G1~l2n!«c~n!.

~2.14!

The bound state energyf c(h) as a function of boundary
chemical potential is shown for different band fillings in Fi
3. This characterizes the relevant part of the low-lying fini
size spectrum of the opent-J chain with boundary fields in
the sector, whereN↑>N↓ . In order to extract the x-ray ex
ponents we need to consider states withN↓>N↑ for the case
where the core-electron carries spin down. This can be ta
care of by changing the reference state of the Bethe ansa
the state with all spins down.18 The result is of the same form
as Eq.~2.8! but with redefinedDNs

0 .
e

se
e

-

en
to

We also need the finite-size ground state energy of tht-
J model with periodic boundary conditions. It is given by16

E~0!5Le`2
p

6L
~vc1vs!. ~2.15!

We now have the necessary machinery to determine x
exponents. One should keep in mind that we presently h
repulsiveboundary fields. For pedagogical reasons we no
theless will calculate x-ray exponents for this case:

Absolute Threshold: The lowest~in frequency! threshold
in the x-ray absorption intensity occurs at some freque
v0 and is associated with an intermediate state in which b
holon bound states are occupied. For the case where the
electron has spin up this corresponds toDNc

0523,
DNs

0521. Combining Eqs.~2.8!, ~2.15!, ~1.10!, and~1.11!,
we obtain

aabs5
1

2
2

@31u0
c#2

2j2
. ~2.16!

For the case where the core electron has spin down we n
to proceed as outlined above and use the Bethe ansatz
tion with a different reference state. The final result is t
same as Eq.~2.16! asHaa preserves the discrete spin revers
symmetry.

Intermediate Thresholds: The second and third threshold
occur when one of the holon bound states is occupied but
other one is not. Let us consider the case where the bo
state at 1 is occupied. The corresponding threshold in
x-ray absorption rate is atv02 f c(h1). As only one holon
bound state is occupied we now haveDNs

0521, DNc
0522

and the expressions for the quantitiesus,c in Eq. ~2.8! get
modified. They are now given by Eq.~2.10! but with differ-
ent driving terms,

u1
s5

u1
c

2
1

1

2
,

gc,1~l!5G11S1
~l!1G12S1

~l!2G0~l!2aS1
2aSL

.
~2.17!

The x-ray exponent associated with this threshold is

FIG. 3. Energy of holon bound states as a function of bound
chemical potential.
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a int5
1

2
2

@21u1
c#2

2j2
. ~2.18!

Band Threshold: The fourth and final threshold occurs
v02 f c(hL)2 f c(h1) when neither bound state is occupie
This corresponds to the case where the core electron is e
ted into the conduction band where it decomposes into
antiholon and a spinon. ThenDNc

0521, DNs
0521,

u3
c52u3

s , gc,3(l)52G0(l)2aS1
(l)2aSL

(l) and the asso-
ciated x-ray exponent is

aband5
1

2
2

~11u3
c!2

4j2
. ~2.19!

B. Attractive boundary fields: 0<h<1

This region of boundary fields corresponds to an attrac
core-hole potential because of the form of the third last te
in Eq. ~2.1!. Now no boundary bound states exist. The ana
sis of the finite-size spectrum follows the one above, the o
difference being the absence of purely imaginary roots. T
x-ray exponent is of the same form as Eq.~2.19! where we
should keep in mind thatS1,L are now negative. The result
for two different band fillings are plotted in Fig. 4~a! as
functions of the boundary chemical potentialh5h15hL .
Our result coincides with Refs. 10,11 if we make the iden
fication uc5(Vf /p)j2, whereVf is the forward scattering
amplitude of the core hole potential in the continuum lim
We see thatuc does not vanish forh1,L→0. As explained
above the continuumVf is not simply given by the boundar
chemical potential so that there is no contradiction. In F
4~b! we plot puc/j2 as a function ofh.

C. Attractive boundary fields: h<0

In this range of boundary chemical potential the analy
of the finite-size spectrum is less intuitive than above. T
Bethe equations~2.4! allow a variety of boundary string so
lutions like the ones encountered in the repulsive case. H
ever one finds that none of these complex roots is prese
the ground state. We interpret this as follows: in the grou
state antiholons and spinons are bound to the bounda
States where some of these bound states are unoccupie
characterized by imaginary roots of the Bethe equations
support of this interpretation we can compute the part
number at the boundary site. It is given by]E/]h, whereh is
the boundary field. We find that in the ground state there
strong enhancement of charge at the boundary site as c
pared to the bulk. The states involving imaginary roots of
Bethe equations exhibit a significant decrease in charg
the boundary as compared to the ground state, which is
sistent with our interpretation.

Absolute Threshold: In order to calculate the x-ray expo
nent for the lowest threshold we need the finite-size ene
of the ground state forh,0. As no complex roots of the
Bethe equations are present the analysis is straightforw
and very similar to the band threshold for 2.h.1. We find

aabs5
1

2
2

~11uc!2

2j2
, ~2.20!
.
it-
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where uc is given by Eq. ~2.10! with gc(l)52G0(l)
2aS1

(l)2aSL
(l).

In Fig. 5 the x-ray exponents of the absolute threshold
plotted as functions of the boundary chemical potential
two different band fillings. For simplicity we only conside
the caseh15hL5h.

Higher Thresholds: Let us consider the case in which tw
complex roots l (1) are present and take the valu
2( i /2)S1,L , respectively. The Bethe equations read

„e1~la!…2L )
j 51,L

e12Sj
~la!e11Sj

~la!

5 )
bÞa

Nh1N↓

e2~la2lb!e2~la1lb! )
g51

Nh22

e21~la2lg
~1!!

3e21~la1lg
~1!!,

15e2S1
~lg

~1!!e2SL
~lg

~1!! )
b51

Nh1N↓

e1~lg
~1!2lb!e1~lg

~1!1lb!.

~2.21!

Following through the same steps as before we find that
state has a gap of magnitudeD f 5 f c(S1)1 f c(SL), where

f c~S!5m2p@GS11~0!2GS21~0!#1
1

2E2Lc

Lc
dl «c~l!

3@GS11~l!2GS21~l!#. ~2.22!

We interpret this state as differing from the ground state
leaving boundary bound states of antiholons unoccup
Consequently we find a threshold in the x-ray absorpt
probability at a frequencyD f higher than the absolute
threshold with exponent

a int5
1

2
2

~31uc!2

2j2
, ~2.23!

where uc is given by Eq. ~2.10! with gc(l)52G0(l)
1( j 51,LGSj 11(l)2GSj 21(l)2aSj

(l).
Thresholds at lower frequencies occur if we have o

one imaginary rootl (1)52( i /2)S, whereS is eitherS1 or
SL . The corresponding states have a gap equal toD f 5 f c(S)
and give rise to exponents

a int8 5
3

4
2

~21uc!2

2j2
, ~2.24!

where uc is given by Eq. ~2.10! with gc(l)52G0(l)
1GS11(l)2GS21(l)2aS1

(l)2aSL
(l). A numerical solu-

tion of the relevant integral equations for a quarter-fill
band shows thata int is negative and therefore leads to
‘‘shoulder’’ in I (v) as in Fig. 1~b!. On the other hand, we
find thata int8 is positive and leads to a singularity.

The cases investigated above by no means exhaust th
of states with imaginary roots. For example, there is a s
with two imaginaryl (1)’s taking the values2( i /2)S1,L and
two imaginaryl ’s taking the values (i /2)(12S1,L), respec-
tively. This type of solution of the Bethe equation also giv
rise to three thresholds as imaginaryl ’s are only allowed if
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their respective ‘‘partner’’l (1) is present as well. The calcu
lation of the x-ray exponents is completely analogous to
case treated above so that we omit it.

III. THE HUBBARD MODEL

The one-dimensional Hubbard model with open bound
conditions of typeaa ~i.e., boundary chemical potentia
only!,

H52 (
j 51

L21

(
s

~cj ,s
† cj 11,s1cj 11,s

† cj ,s!

14u(
j 51

L

nj↑nj↓1mN̂2h1n12hLnL , ~3.1!

is soluble by means of the Bethe ansatz as shown in R
21,22@note that the boundary potentials are defined in a
ferent way than above: to identifyh1,L in Eq. ~3.1! with those
used for thet-J model one should replaceh1,L→12h1,L#.
Applying boundary magnetic fields instead also leaves
Hubbard model integrable23 but will not be considered here
The Bethe ansatz equations determining the spectrum of
~3.1! in the Ne-particle sector with magnetizatio

M5 1
2 Ne2N↓ read21,22

FIG. 4. X-ray exponents~a! and puc/j2 ~b! for the t-J model
with aa boundary conditions andh15hL5h,1.
e

y

fs.
f-

e

q.

e2ik j LBc
~1!~kj !Bc

~L !~kj !5 )
b51

N↓

e2u~sinkj2lb!

3e2u~sinkj1lb!, j 51, . . . ,Ne ,

Bs
~1!~la!Bs

~L !~la!)
j 51

Ne

e2u~la2sinkj !e2u~la1sinkj !

5 )
bÞa

N↓

e4u~la2lb!e4u~la1lb!, a51, . . . ,N↓ .

~3.2!

The quasimomentakj and the spin rapiditiesla parametrize
an eigenstate of Eq.~3.1! with energy

E5mNe22(
j 51

Ne

coskj . ~3.3!

For small values of the boundary fields the ground state c
figuration is given by distributions ofreal kj andla and

Bc
~x!~k!5S eik2hx

12hxe
ikD , Bs

~x!~l!51, ~3.4!

contain the phase shifts due to the boundaries~this case has
been discussed in Ref. 22!. For sufficiently large boundary
chemical potentialsh1,L , however, the Bethe ansatz equ
tions ~3.2! allow for various complex solutions correspon
ing to boundary bound states for antiholons, spinons,
pairs of electrons, respectively:24 First, for h1,L.1 one finds
bound states parametrized byk5 i lnh1,L with exponential ac-
curacy in the thermodynamic limitL→`. The quasimo-
menta parametrize the charge part of the states: hence
solution corresponds to a charge~or antiholon! bound to the
surface. Inserting this solution in the second set of Eqs.~3.2!

FIG. 5. X-ray exponents for the absolute threshold in thet-J
model withh15hL5h at almost half filling and quarter filling.
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leads to a boundary phase shift in addition to the prod
over the real quasimomentakj which modifiesBs (Bc re-
mains unchanged!:

Bs
~x!~l!5e2~u1Sx!~l!e2~u2Sx!~l!, ~3.5!

where we have introducedSx5(hx21/hx)/2.0, with x51
or L. Analyzing the resulting equations we find that a ne
type of solution arises atSx5u, i.e., hx5u1Au211: Be-
yond this point a complex solutionl5 i (Sx2u) for the spin
rapidities is allowed. We note that spinons are to be ide
fied with holes in the distribution of spin rapidities. Agai
occupation of this state modifies the boundary phase s
Bc,s :

Bc
~x!~k!5S eik2hx

12hxe
ikDe22Sx

~sinkj !e2~Sx22u!~sinkj !,

Bs
~x!~l!5e2~Sx23u!~l!e2~u2Sx!~l!. ~3.6!

Finally, boundary potentials withSx.2u can bind a~singlet!
pair of electrons to sitex. Such a state is parametrized by tw
complex quasimomenta sink0

(6)5l06iu and a single complex
spin rapidityl05 i (Sx2u) as before. The remaining real so
lutions of the Bethe ansatz equations are determined by
~3.2! with

Bc
~x!~k!5S eik2hx

12hxe
ikDe22Sx

~sinkj !e2~Sx22u!~sinkj !,

Bs
~x!~l!51. ~3.7!

Depending on the strength of the boundary potential
have to distinguish between the following cases in or
to describe the spectrum: in addition to the case discus
in Ref. 22, where the solution of the Bethe ansatz equat
is given in terms of realkj and la only, one can find
either ~i! an antiholon in a bound state~corresponding
to a complexk) and the spinon in the corresponding ba
~which implies the presence of a complexl for Sx.u),
~ii ! an antiholonand a spinon in bound states~parametrized
by a complexk for Sx.u), ~iii ! and finally, forSx.2u, a
pair of electrons bound by the potential. Each of these c
figurations gives rise to a continuous spectrum abov
threshold that depend on the occupation of the bound
states.

In the following, we shall discuss some of these cases
the symmetric choiceh15hL5h of the boundary potentials
The bound states discussed above will occur pairwise at
given thresholds~corresponding to sites 1 andL, respec-
tively!. As for the t-J model we shall consider the logarith
mic form of the Bethe ansatz equations~3.2! for low-lying
states above these thresholds:
ct

i-

ts

q.

e
r
ed
s

n-
a
ry

r

he

2pI j

L
52kj1

1

L (
b51

M H uS sinkj2lb

2u D1uS sinkj1lb

2u D J
1

1

L
k~kj !, j 51, . . . ,N,

2pJa

L
5

1

L(
j 51

N H uS la2sinkj

2u D1uS la1sinkj

2u D J
2

1

L (
bÞa

M H uS la2lb

4u D1uS la1lb

4u D J
1

1

L
v~la!, a51, . . . ,M . ~3.8!

Here the summations extend over the real rootskj andla .
The functionsk and v contain the phase shifts due to th
boundary fields and occupation of the boundary bound sta

A. Band threshold

The edge singularity with the highest threshold cor
sponds to excitation in states with no bound states occu
by the particles. This situation was studied in Ref. 22. Li
in the case of thet-J model this does in fact imply the oc
cupation of a holon bound state for repulsive boundary
tentialsh1,L,21: computation of the particle number on th
boundary site shows a depletion due to the presence of
holon.24 In the Bethe ansatz equations the only bound
phase shifts are those due to the boundary potentials, i.e.
~3.4!. The resultingk(k) in Eq. ~3.8! is given by

k~k!522i lnS eik2h

12heikD , ~3.9!

while v(l)50. The finite-size spectrum for the releva
boundary conditions is again given by Eqs.~2.8! and
~2.15!.25,22 The dressed chargej5j(Q) for the Hubbard
model is defined in terms of the solution of the integral eq
tion (Q varies between 0 andp as a function of the density
of electrons and the coupling constant!25,15

j~k!511E
2Q

Q

dk8cosk8K̄~sink2sink8!j~k8!,

K̄~x!5
1

2pE0

`

dv
e2uv

coshuv
cosvx. ~3.10!

Hereuc,s are relatedvia us5 1
2 uc with

uc5
1

2S E
2Q

Q

dk rc
~1!~k!21D ~3.11!

for our choice of the reference state. TheO(1/L) contribu-
tion rc

(1) to the density from the boundary fields is given
terms of the integral equation
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rc
~1!~k!5 ḡ c~k!1coskE

2Q

Q

dk8K̄~sink2sink8!rc
~1!~k8!.

~3.12!

For the case considered here the driving term in this equa
is found to be~after integrating out the spinon part of th
densities!

ḡ c~k!5 ḡ c
~0!~k!5

1

p

12h2

11h222hcosk
2

cosk

4ucoshS p

2u
sinkD .

~3.13!

An analytic solution of this integral equation is possible
certain limits only. It simplifies essentially in the strong co
pling limit where K̄(x)[ ln2/2pu. This allows us to give a
simpler expression foruc in terms of the driving term,

uc.
1

2F S 11
ln2

pu
sinQD E

2Q

Q

dk ḡc~k!21G for u→`.

~3.14!

Furthermore it is known thatQ5pnc andj51 in this limit.
With Eq. ~3.13!, we find

uc5
2

p
arctanS 11h

12h
tan

pnc

2 D2
1

2
~3.15!

for infinite coupling.26 In general, the integral equations ha
to be solved numerically to compute the x-ray edge ex
nents from Eq.~1.10! by comparing Eq.~2.8! to the finite-
size ground state energy of the Hubbard chain with perio
boundary conditions~2.15!. For absorption of the core elec
tron into the band we have to chooseDNc

051. The number
of down spins in the system changes byDNs

050 or 1 de-
pending on the spin of the core electron. Without magne
fields the Bethe ansatz states are the highest weight in
spin SU~2!, i.e., correspond to the first case. This results
the following expression for the exponent:

aband5
1

2
2

1

2j2 ~uc21!2. ~3.16!

From Eq. ~3.15! we find that there is a discontinuity o
aband(h) at h51: at this point the charge bound state fi
appears leading to a jump of the exponent from 3/8 to221/8
at u5` ~note that small negative exponents correspond
‘‘shoulder’’ rather than a singularity in the absorptio
profile,3 exponentsa,21 will hardly lead to an observabl
feature!. Large boundary potentialsh→6` lead to

uc→2(nc1 1
2 ) in the strong coupling limit giving

aband→2 1
2 (nc

213nc1 5
4 ), which is always negative. Nu-

merical solutions of the equations show a similar behav
for finite u ~see Fig. 6!.

Similarly, the singularity of the absorption intensity me
sured in a photoemission experiment is given by a power
with exponent obtained from Eq.~1.10! with DNcs

0 50:

aphoto5
3

4
2

1

2j2~uc!2, ~3.17!
on

-

ic

ic
he
n

t
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r

w

which exhibits a jump from 5/8 to23/8 at h51 and ap-
proaches5

8 2 1
2 nc(nc11) ath→` for infinite coupling. Note

that (1/2j2) varies as a function of the bulk densityne of
electrons and the interaction strength between 1/4 for no
teracting fermions and 1/2 in the infiniteu limit of the Hub-
bard model,15 while uc contains the dependence on th
strength of the boundary potentialsh1,L ~in addition tonc and
u).

For weak boundary fieldsh,1 these expressions coincid
with those found in the framework of a bosonized theory
spin carrying electrons11,10 provided that we identifyuc with
the forward scattering amplitude of the core hole poten
~see also the discussion at the beginning of Sec. II!.

B. Absolute threshold

Let us now consider x-ray processes which excite the s
tem into the sector withall bound states occupied, i.e., th
absolute threshold for absorption. Following the discuss
above one has to distinguish four cases: For sufficien
small boundary fields (h,1) there are no bound state
which is the situation considered in the previous section.

For boundary fields 1,h,u1Au211 a charge can be
bound to either boundary. This changes the boundary ph
shifts according to Eq.~3.5!. The computation of the finite-
size spectrum is complete analogeous to the case consid
above and results in Eq.~2.8!. The shifts of the numbers

DNcs
0 are now found to beus5 1

2 uc11 anduc again given
by Eq. ~3.11!. The different boundary phase shifts modi
the driving term in Eq.~3.12! to

ḡ c~k!5 ḡ c
~0!~k!1cosk fb~sink!, ~3.18!

with

f b~x!52a2~2u2S!~x!1
1

uH G11~S/u!S x

2uD2G32~S/u!S x

2uD J .

~3.19!

For the computation of the edge exponent from Eq.~2.8! we
have to chooseDNc

0521 ~the number of charges in th
band is increased by one due to the absorption of the c
electron, but at the same time two of the band electr
occupy the bound states in the final state!. With DNs

050 as
before one obtains

aabs5
1

2
2

1

2j2 ~uc11!2. ~3.20!

Increasing the boundary potentials such th
u1Au211,h,2u1A4u211, the Bethe ansatz state o
lowest energy contains both complexk andcomplexl lead-
ing to phase shifts~3.6!. As discussed above this correspon
to occupied charge bound states while the spinon bo
states are empty. Analyzing the Bethe ansatz equations

find us5 1
2 uc21. The functionrc

(1)(k) is determined by the
same set of equations~3.12!, ~3.18!, and~3.19! as above. The
state relevant for the edge exponent is now determined
the quantum numbersDNc

0521 and DNs
0522, which

gives again Eq.~3.20!.
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A final change in the configuration describing the absol
ground state occurs forh.2u1A4u211 (S.2u). The
presence of bound pairs of electrons leads to the phase s
~3.7! in the Bethe ansatz equations. The quantities determ

ing the edge exponents are nowus5 1
2 uc, whereuc has to be

computed from Eq.~3.12! with

ḡ c~k!5 ḡ c
~0!~k!12cosk$a2S~sink!2a2~S22u!~sink!%.

~3.21!

The quantum numbers of the final state areDNc
0523 and

DNs
0522, which gives

aabs5
1

2
2

1

2j2 ~uc13!2. ~3.22!

Again, the equations simplify significantly in the stron
coupling limit where one should rescaleS by u to see the
different regimes. Using Eq.~3.14! we can combine Eqs

~3.16!, ~3.20!, and~3.22! into aabs5
1
2 (12x2), where

x5
2

pH arctanS h2cospnc

sinpnc
D1arctanS h24u

2sinpnc
D J 2nc1

1

2
.

~3.23!

Hence we find the following expression for the edge ex
nent of the absolute threshold in the strong coupling limi

aabs→5
2 1

8 ~2nc15!~2nc11! for h!21

2 1
8 ~2nc11!~2nc23! for 1!h!4u

2 1
8 ~2nc23!~2nc27! for h@4u.

~3.24!

Since we consider the Hubbard model at less than
filling ~i.e., nc,1) this implies that a positive exponenta
leading to an edge singularity is possibleonly in the inter-
mediate regime. The corresponding numerical data for fi
u are presented in Fig. 7.

FIG. 6. X-ray edge exponents for band absorption~full line! and
photoemission~dashed line! in the Hubbard model as a function o
the boundary chemical potentialh for u51, ne50.5.
e

ifts
n-

-

lf

te

C. Intermediate thresholds

Finally, we consider some cases where the absorption
cites the system into a state in which some but not all bo
states are occupied. First, let the final state be character
by one antiholon andone spinon in a bound state whic
gives rise to a singularity at an energybetweenthe two
thresholds discussed above. Such a process is possibl
boundary potentialsh.u1Au211 ~or S.u) and corre-
sponds to a Bethe ansatz state witha singlecomplexk. Ana-
lyzing the Bethe ansatz equations we obtain the rela

us5 1
2 uc. In this caseuc has to be computed from Eqs.~3.11!

and ~3.12! with ḡ c(k) given by Eq.~3.18! with

f b~x!52a2S~x!1
1

u
G~S/u!11S x

2uD . ~3.25!

The finite-size spectrum is again of the form~2.8!; the quan-
tum numbers of the relevant final state areDNc

0505DNs
0 .

From Eq.~1.10!, we obtain

a int5
3

4
2

1

2j2~uc!2 ~3.26!

for the edge exponent determining the singularity at t
threshold. In the strong coupling limit we find thata int varies
between 5/8 for the empty band and23/8 as we approach
half filling. An edge singularity can be observed fo
nc,A3/22 1

2 '0.725.
A different intermediate thershold occurs ifonly an anti-

holon is in one of the bound states. This final state is alre
possible forh.1 and is parametrized by a single compl
root k5 i lnh for S,u and an additional complex spin rapid
ity l for S.u. Depending onh several cases have to b
distinguished resulting in a edge singularity with exponen

a int8 5
1

2
2

1

2j2~uc!2, ~3.27!

for S,3u ~for S.3u the exponent is always negative!. The
function f b(x) in Eq. ~3.18! is now simply one half of that in
Eq. ~3.19!. In the strong coupling limit the edge expone
a int8 can be expressed throughnc andh using Eq.~3.15!. In
this limit a singularity in the absorption spectrum~i.e., posi-
tive exponent! can be observed for sufficiently large boun
ary potentialsh*tan@(p/4)(2nc11)#.1 as long asnc, 1

2

but only close toh'4u above quarter filling.
Note that for sufficiently strong boundary potentials t

cases discussed here are only a small subset of the pos
thresholds. Furthermore, for sufficiently strongrepulsive
boundary potentials, i.e.,h,21, the spectrum allows for
holon bound states. Like in the case of thet-J model with
attractive boundary chemical potentials there exist soluti
to the Bethe equations with complex quasimome
k5p1 i lnuhu of Eq. ~3.2! that have a gap with respect to th
absolute ground state and lead to a higher threshold in
x-ray spectrum.

IV. CONCLUSIONS

In this work we have determined the x-ray edge exp
nents in a Luttinger liquid for the case where the local d
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turbance due to the core hole leads to bound states. We
specific realizations of Luttinger liquids on the lattic
namely, Hubbard andt-J models with integrable boundar
terms. The main difference to the Fermi liquid case~1.1!
solved in Refs. 3,5 is that due to spin and charge separa
we find a richer structure of thresholds in the x-ray abso
tion rate associated with bound states of spinons
~anti!holons. Using the boundary conformal field theory t
exact dependence of the edge exponents on band filling
interaction strength can be extracted from the finite-s

FIG. 7. Exponents at theabsolutethreshold for x-ray absorption
in the Hubbard model as a function of the boundary chemical
tential h for u51 and several densitiesnc .
e
e,

i-
ed

on
-
d

nd
e

spectra which are determined from the Bethe ansatz solu
For weak boundary fields our results coincide with tho

obtained in a field theoretical treatment by Prokof’ev10 and
Affleck and Ludwig11 if the boundary chemical potentials ar
fine tuned. For sufficiently strong boundary fields the mod
considered in this paper allow for various bound states, e
of which can lead—in principle—to a singularity in the a
sorption spectrum. Previous studies of these additional
gularities have not taken into account the interaction betw
the particles in the bound states and those remaining in
band.3,5 This results in a simple relation between the exp
nents at different edges with the phase shiftd(eF) at the
Fermi surface as the only free parameter. In the syste
considered here the occupation of the boundary bound s
modifies the potential acting on the particles remaining in
bands which in turn modifies the corresponding phase sh
Examining the edge exponents for the different thresho
we find that for generic values of boundary potentials a
filling factors many of them will in fact be negative, an
consequently will not lead to an observable singularity in
spectrum.
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