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In order to study the interplay between Kondo and Ruderman-Kittel-Kasuya-Yosida interaction, we calculate
the spin-spin correlation functions between two Kondo impurities coupled to different sites of a half-filled open
Hubbard chain. Using the density-matrix renormalization group (DMRG), we reexamine the exponents for the
power-law decay of the correlation function between the two impurity spins as a function of the antiferromagnetic
coupling J, the Hubbard interaction U, and the distance R between the impurities. The exponents for finite
systems obtained in this work deviate from previously published DMRG calculations. We furthermore show that
the long-distance behavior of the exponents is the same for impurities coupled to the bulk or to both ends of the
chain. We note that a universal exponent for the asymptotic behavior can not be extracted from these finite-size

systems with open boundary conditions.
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I. INTRODUCTION

The Kondo effect' is one of the oldest and most studied
correlation phenomena in condensed matter physics. It has
regained vital interest by single-impurity setups and mi-
croscopic measurements.”* One of the present main foci
is the extension of the Kondo cloud and its experimental
measurement.”™ The basic idea is that the conduction band
electrons will form a highly correlated quantum state with the
impurity spin and screen it.” This results in nonzero spin-spin
correlations between the impurity spin and the conduction
band electrons. The decay of these spin-spin correlations has
been the subject of many theoretical studies.!*!? In particular,
the corresponding envelope of these correlations was found to
cross over from a 1/R decay to a 1/R? decay at the Kondo
coherence length, where R denotes the distance between the
impurity and the conduction band site.'*

If a second impurity is added to the system, one will
have two competing interactions: the Kondo effect and the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.'>~!
The Kondo effect will screen the impurity spins individually,
leading to vanishing spin-spin correlations between the two
impurity spins. The RKKY interaction favors a magnetic
interaction between the impurity spins, i.e., one observes
strong correlations between the two impurity spins. The
interplay between these effects in the two-impurity problem
has attracted much attention.'3-26

In this work, we want to focus on the static spin-spin
correlations between two Kondo impurities. Another aspect,
which is usually neglected, is the presence of correlations in
the conduction band system. They can in principle further
modify exponents and also introduce additional functional
dependencies such as, for example, logarithmic corrections.
Therefore, we examine the system in the presence of a finite
U in the conduction chain. As an analytical treatment of
the two-impurity Kondo problem is not available, one has to
rely on numerical solutions. We will use the density-matrix
renormalization group?’*> (DMRG) to obtain the ground
state and to calculate the spin-spin correlation functions. In
particular, we are interested in the form and decay of these
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correlations. Hallberg and Egger? calculated exactly these
spin-spin correlations shortly after the development of the
density-matrix renormalization group. From their data, they
have argued that the correlations will show a power-law
behavior in the long-distance limit (S;S;;)g o< 1/ R? for two
Kondo impurities irrespective of the interaction U in the chain.
Based on refined numerics for larger systems, which are
accessible due to the great increase in computer power, we
reexamine these exponents. For U > 0, we show that even with
this increase in computational resources, one can not easily
identify a simple 1/R? power-law behavior for the spin-spin
correlations between two Kondo impurities. Only if we include
a U-dependent logarithmic correction, our data are compatible
with an exponent o = 2. This investigation shows that even
for system sizes accessible today, an unbiased estimation of
exponents for these long-range correlations is very difficult,
especially if one has to expect logarithmic corrections. It is then
important to understand how well such numerical calculations
can reveal exponents expected to rule the decay of correlation
functions for sufficiently large distances of the impurities.
The paper is organized as follows. After presenting the
model and a brief discussion of the method and its problems
in Sec. II, we present our results in Sec. III, starting with
impurities attached to the chain ends. The main results and
conclusions of the paper are summarized in Sec. IV.

II. MODEL AND METHOD

We study two spin—% Kondo impurities attached to a one-
dimensional Hubbard chain. Figure 1 shows the corresponding
setup. The Hamiltonian

H=H.+ Hy

can be divided into two parts. The first contribution
:_tZ(ClO'IJrlO' t+lala)+UanTnl¢

models the Hubbard conduction band with a Coulomb repul-
sion U > 0 at each site. Here, clm denotes the usual fermionic
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FIG. 1. Two spin-% impurities (filled circles), separated by the in-
terimpurity distance R = |m — n|, are attached to a one-dimensional
Hubbard chain of length L.

annihilation (creation) operator at site i and n; represents
the particle-number operator. Throughout our work, we adopt
open boundary conditions and the hopping parameter is set
to t = 1. For U = 0, the conduction band H, reduces to a
tight-binding model.

The coupling of the two Kondo spins to the conduction
electrons is modeled by the s-d exchange term

Hyg = —JiSt -8y — J11Si1 - S,

where Sy = (8¥,5”,5%) is the spin operator of the Kondo
impurity which is attached to site n(m) of the Hubbard chain.
The Operator Suumy = () )»Sn(m):Su(m)) 1S the spin operator at
the conduction band site. We restrict our study to the case of
antiferromagnetic coupling constants of equal strength J; =
J I = J < 0.

We use a standard density-matrix renormalization group
algorithm®*—*2 for open boundary conditions to carry out the
calculations. The setup with the two impurities attached to the
ends of the chain is computationally less demanding and hence
more accurate than the analysis of the bulk limit (R <« L/2).
Since it will turn out that the results in the long-distance or
strong-coupling limit are the same for these two setups, the
majority of our calculations is performed with the impurities
coupled to the ends. This is still very costly because for every
different interimpurity distance, a new DMRG setup as well as
anew DMRG ground-state calculation is needed. Furthermore,
extracting the true long-range behavior of correlation functions
within the DMRG is known to be difficult since all correlations
are either long ranged or purely exponentially decaying, and
even for power-law correlations this modeling only works for
not too long distances (cf. Ref. 30). In order to estimate the
minimal number of basis states m that has to be kept within
the DMRG, the upper panel of Fig. 2 shows the end-to-end
correlation function (s;s; ) for a half-filled Hubbard chain with
U = 1 and different values of m. At first sight, the DMRG data
for the correlation function itself look the same irrespective of
the number of kept states. However, a more thorough analysis
by means of double-logarithmic central differences [to be
introduced later, see Eq. (4)], shown in the lower panel of
Fig. 2, reveals that one needs to choose a very large number
of basis states m in order to obtain a reasonably converged
estimate of the long-distance decay respectively the associated
power law. Thus, our first conclusion is that the question
of convergence very subtly depends on the property one is
eventually interested in. From Fig. 2 we also conclude that
even a reliable extraction of the exponent is very difficult for
longer distances. Consequently, in our DMRG calculations, we
typically keep m = 1300 basis states for chains up to lengths
of L = 120.

At half-filling, we learned from exact diagonalization
results for small systems of even length L that the ground
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FIG. 2. (Color online) Upper panel: Comparison of DMRG data
for the end-to-end correlation function (sjs; ) of a half-filled Hubbard
chain with U =1 on a linear scale for different numbers m of kept
states. Lower panel: Double-logarithmic central differences giving
the exponent «(R) extracted from (sjsj) for U = 1 in the spirit of
Eq. (4).

state is nondegenerate for S5, = 0, if we attach one Kondo
impurity to an even site and the other one to an odd site. The
interimpurity distance is given by R = |m — n|. The DMRG
calculations are carried out in the two Abelian U(1) symmetry
sectors defined by the electron number N and the z component
of the total spin S, = S; + S}, + S-. Introducing full SU(2)
symmetry in the spin sector can reduce the computational
effort slightly, but will not alter our main observations.

III. CORRELATION FUNCTIONS

The main focus of our work is the analysis of the spatial
behavior of the spin-spin correlation functions (S;S;;)r
between the two attached Kondo spins at half-filling and zero
temperature. In particular, we want to determine whether for
infinitely large distances R a power law of the form

(S;S/1)r x R~¢ €))

with a constant exponent « # «(R) exists.

A. Impurities coupled to the ends

The impurities are attached to the first and the last sites
of a Hubbard chain of length L. The distance between the
impurities therefore is R = L — 1. The correlation function is
2k oscillatory, with kr given by the filling, e.g., kr = /2 for
half-filling. We will concentrate on odd distances R to avoid
these oscillations.

1. Noninteracting conduction chain U = ()

We start by reexamining the system with a noninteracting
conduction chain. For |J| — oo, the Kondo impurities form
a rigidly bound singlet with the spins at the conduction
band sites they are attached to, i.e., the first and the last
sites. In this case, the system decouples into three parts
(cf. Ref. 33): the two singlets and an effective chain of
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length L — 2 in-between. Thus, for strong couplings |J| > 1,
there is almost no hopping between sites 1 and 2 as well
as between L — 1 and L. These considerations form the
basis of a perturbative treatment which has originally been
proposed for a single Kondo impurity coupled to one end
of a noninteracting conduction band.'® In Appendix A, we
extend this result to the case of two impurities attached to the
ends. Our DMRG results can therefore be directly compared
with perturbation theory for strong couplings |J| > 1 and
U = 0. The spin-spin correlation functions at half-filling in
second-order perturbation theory are given by

(Slsll)g):[ﬁ]

20\% /t\*
=12 (3) (7) (F|s§si_,|F} (2)

24 20\ /i \'EE LT /L-1
BETAEE (3) (7) 2 2 [Sm(LH”l)
I=1 g=L/2+1

. 2 1) si L—1 . 2 3)
X Sin mn m| ——
ST\ o) Tt ) )

where | F') is the ground state of the noninteracting chain. This
means that for very strong coupling the correlation function
(S;S11)? is effectively given by (sisi_,) between the first
and the last sites of the tight-binding chain in-between the two
strongly bound Kondo singlets. Such a behavior can indeed be
observed in Fig. 3, where the DMRG data for the correlation
functions are plotted on a double-logarithmic scale and are
also compared to the perturbation theory for large values of
|J]. There is very good agreement for J = —60 with relative
deviations of less than 0.5%.

The results from Fig. 3 suggest a power-law behavior
for large couplings as given by Eq. (1). In order to extract
the exponent and to validate the existence of a power
law from our DMRG calculations, we have computed the
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FIG. 3. (Color online) DMRG data for (S;S;;)z on a double-
logarithmic scale for U = 0 and the impurities at the ends of the
chain, including a comparison with perturbation theory (triangles)
for J = —60.
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FIG. 4. (Color online) Double-logarithmic central differences
a(R) for U =0 and various values of J including the results of
the perturbation theory for |J| > 1.
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of the correlation functions for various couplings. They will
directly give the exponent « if a power law 1/R* is assumed
at a certain distance. This analysis is more accurate for the
evaluation of the distance dependence «( R) than fitting a power
law to the data of Fig. 3. In Fig. 4, the central differences
a(R) are shown for U = 0 and several values of J. For strong
coupling and large distances, a fast convergence @« — 2 can be
clearly observed. The asymptotic behavior is also in agreement
with our perturbative results whose derivative according to
Eq. (4) is also shown in Fig. 4. For small |J|, the accessible
distances are too small to find a 1/R? behavior. However, the
results are in agreement with such a behavior for R — oo.
As a curiosity, we remark that there appears to be a change
in behavior with decreasing |J|. For large |J|, the asymptotic
exponent is consistently approached from above, while for
smaller values of the coupling, the short-distance behavior is
weaker than the asymptotic 1/R?. We interpret this as a sign of
the crossover from Kondo screening at large | /|, i.e., outside
of the scales set by the Kondo correlation length one does not
have sizable influence by the spins any more, to the RKKY
dominated regime at small coupling, where the correlations
for small distances should rather reflect the tendency towards
antiferromagnetic order with a correspondingly slow decay.

2. Interacting conduction chain U # 0

We now switch on the interaction in the conduction chain.
For |J| — oo, the system decouples into three parts as in the
case of a noninteracting chain. Again, the impurity-impurity
correlation function in this limit is proportional to the end-to-
end correlation function between the two boundary sites of the
interacting Hubbard chain between the Kondo singlets. For the
spin-spin correlations of the Hubbard chain, we can consult
results from conformal field theory (CFT). For half-filling, a
charge gap opens for all U > 0 in the Hubbard chain, so that
the system is a Mott insulator. The spin sector on the other
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hand remains gapless. In the continuum limit, the Hamiltonian
of the Hubbard chain at half-filling separates into charge
and spinon parts, both perturbed by marginal current-current
interactions. From the spinon parts logarithmic corrections to
the spin-spin correlation functions are expected due to the
marginal irrelevant perturbation. However, on account of the
SU(2) symmetry, these logarithmic corrections should have no
U dependence. From the holon parts we expect exponentially
decaying correction terms e >R as two holons with mass M
are created. These terms are expected to decay much faster than
the logarithmic correction terms. In summary, from conformal
field theory for the continuum limit of the spin-spin correlation
functions of the Hubbard chain with U > 0, we still expect
a 1/R? decay with U-independent logarithmic corrections.
Howeyver, it should be noted that these considerations have
to be adapted to the special case of the end-to-end spin-spin
correlations of an open Hubbard chain.

Hallberg and Egger derived similar results from Luttinger
liquid theory as the spin sector remains gapless and can
therefore still be described by a Luttinger liquid with g = 0.%
With bosonization, they calculated the spin-spin correlations
for the finite continuous system. By evaluating them close
to the boundaries, they could show that for all values of g,
the exponent of the end-to-end spin-spin correlation function
asymptotically reaches @ — 2, at that time in agreement with
their DMRG data (m = 200). Note, however, that from Fig. 2
we know that a too small value for m can dramatically change
the observed long-range behavior.

Let us therefore reexamine the long-distance behavior
based on DMRG calculations with m large enough to have
a reasonably converged behavior at long distances. We start
by analyzing our numerical data for a pure power-law decay
given by Eq. (1). Figure 5 shows the spin-spin correlation
function (S;S;;)g on a double-logarithmic scale. Note that
this representation suggests a very clear power law. The
corresponding central differences extracted via Eq. (4), which
give the exponent «, are depicted in Fig. 6 for U = 1 and
4. The proportionality from Eq. (2) between (S;S;;)® and
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FIG. 5. (Color online) DMRG data for (S;S;;)z on a double-
logarithmic scale for several values of J at U = 1 as well as U = 4
and the impurities attached to the ends.
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FIG. 6. (Color online) Double-logarithmic central differences
a(R) for U = 1 as well as U = 4 and various values of J (J = —o0
denoting the perturbative results). The impurities are attached to the
ends of the chain.

the correlations (s3s; _,) in the conduction band has proven
to be valid for nonzero values of U as well. By calculating
(s5s7 _,) for the corresponding open Hubbard chain of length
L — 2 via the DMRG method, the asymptotic behavior of the
central differences can be determined by the same perturbative
approach. These data are labeled as / = —ooin Fig. 6. Overall,
the DMRG data for nonzero U suggest that the exponent «(R)
approaches an asymptotic behavior for large couplings and
distances, with the same difference between strong and weak
coupling J on how the asymptote is approached. The main
result of our DMRG calculations, however, is the observation
that the exponent assumes a value smaller than two. This result
is, however, in clear contradiction to the expectations from
CFT and bosonization.

In order to resolve this contradiction, we now take into
account the logarithmic correction appearing in the 2kp
contribution to the correlation function, which is predicted
by CFT as

(SS11) ¢ R™ [In(R)]*™" .

From this, an expression for the exponent «; of the logarithmic
correction is derived via differentiation. One obtains

<dln(S,S”)
o = ———=

In(R
dln R +“) n(R),

where we now use the exact result « = 2. The exponent «; as
a function of the distance R is depicted in Fig. 7. As expected,
a approaches zero rather rapidly for increasing distances and
U =0. In the limit U — oo, the Heisenberg model gives
ap — %, which fits into the picture of an increasing exponent
with U. For U > 0, «; seems to converge to a finite value
for increasing R (cf. Fig. 7). Note, however, that even for the
largest systems studied here, one still finds an increasing value
for «;. Furthermore, for fixed U > 0, «; seems to approach
the same asymptotic value irrespective of J (not shown here).
In this sense, our DMRG data are compatible with an exponent
o = 2 modified by a U-dependent logarithmic correction.
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FIG. 7. (Color online) Exponent «; of the logarithmic correction
as a function of the distance R for J = —oo and several values of U.

However, the dependence on U is not expected from conformal
field theory. This contradiction will be discussed further in
Sec. IV.

B. Impurities attached to the bulk

Next, we study the spatial dependence of (S;S;;) in the
bulk limit, i.e., R < L/2. For a noninteracting conduction
chain in the large-J limit, the system decomposes into five
parts: a left and right conduction chain, the two singlets,
and an effective chain between them. However, the spin-spin
correlation functions between the two attached spins in this
limit are again just proportional to the end-to-end spin-spin
correlations between the two boundary sites of the chain
in-between. The left and right chains show no dependence on
the correlation functions in that limit. This was already argued
by Hallberg and Egger.?’ Consequently, the same expectations
from conformal field theory and bosonization are valid as in
the case of the impurities coupled to ends of the chain.

Due to the oscillatory behavior of the correlation function, it
is justified to merely consider odd interimpurity distances R in
our DMRG calculations. Additionally, we choose even system
sizes L as this ensures a nondegenerate ground state. For R =
3,7, 11, ..., the impurities are attached symmetrically around
the center of the chain, whereas for R = 5,9, 13, .. ., they are
shifted out of this symmetric setup by one site. This provides us
with the L-independent values of (S;S;;)r (cf. Appendix B).
We worked with chains of length L = 120 to make sure that the
impurities are sufficiently far away from the ends to minimize
boundary effects.

Our DMRG results for the correlation functions between
two impurities attached to the bulk are shown on a double-
logarithmic scale in Fig. 8. The qualitative behavior of
(S;S;/)g is very similar to that observed for the impurities
attached to the ends (cf. Figs. 3 and 5). The upper panel of
Fig. 9 contains an analysis by means of double-logarithmic
differences for two impurities attached to the bulk of a
noninteracting conduction chain. As for the system with the
spins at the boundaries, both the large-J and large- R behavior
obey a power law with an exponent of « — 2 for U = 0.
Moreover, the results are still consistent with perturbation
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FIG. 8. (Color online) DMRG data for (S;S;;)z on a double-
logarithmic scale for several values of J at U =0 as wellas U =4
in the bulk limit.

theory. In the presence of correlations U # 0 in the bulk limit,
we still expect the same decomposition of the system into five
parts. Therefore, the asymptotic behavior for U = 4 in the
lower panel of Fig. 9 also turns out to be the same as for two
impurities coupled to the ends in Fig. 6. Consequently, if we
assume a pure power law, the bulk exponent assumes a value
which is smaller than two as well.

In Fig. 9, it also has to be noted that the asymptotics
are approached faster in the case of stronger correlations.?
This can be made plausible because the RKKY interaction,
which is mediated via the spin polarization of the conduction
band electrons by the magnetic moments of the impurities, is
suppressed in the presence of stronger correlations. Thus, the
crossover from RKKY to Kondo behavior occurs for smaller
distances and couplings.
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(J = —oo denoting the perturbative calculation).
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IV. SUMMARY AND DISCUSSION

Let us summarize our results for the long-distance behavior
of the correlation function between the two impurities. We
have numerically shown that the long-distance behavior for
the two impurities in the bulk is equivalent to the long-distance
behavior for two impurities coupled to the ends of the chain.
This allows us to focus on the setup of one impurity coupled
to either end of the chain, which is a computationally less
demanding system.

It turns out that for a fixed value of U the exponents of the
power-law decay will converge to the same value for different
J < 0. The larger |J|, the better the convergence, which can
be seen in Figs. 4 and 6. This has already been pointed out by
Hallberg and Egger.”’ The last open question is whether the
exponent depends on the interaction U in the Hubbard chain.
In order to answer this question, we can focus on the large-J
limit. We have shown that our perturbation calculation agrees
very well with our numerical data. For U = 0, we find a value
of o = 2 for the exponent which is in agreement with the result
for the correlations of the noninteracting chain. For U > 0, we
also find seemingly converged exponents, but with« < 2. This
is in contradiction to expectations from CFT and bosonization.
In order to resolve this contradiction, we have analyzed the
data for a 1/R? decay with logarithmic corrections. Taking
into account the logarithmic correction appearing in the 2kp
contribution to the correlation function, we can show that
our results are in agreement with a converged exponent
o« =2, which would be consistent with CFT/bosonization.
However, we obtain a U-dependent exponent o; = o¢;(U) for
the logarithmic correction, which again stands in contradiction
to the results from CFT.

The interpretation of this result is difficult. One has to
remember that the CFT predictions, in particular the logarith-
mic corrections, are based on the continuum limit and do not
include boundary effects. For the end-to-end spin correlations
a U-dependent logarithmic correction may thus develop for
finite systems if, due to the boundaries, a coupling between
spin and charge degrees of freedom occurs. As one possible
consequence, the U-dependent exponents of the logarithmic
corrections may survive in the thermodynamic limit. Since
the corrections are of logarithmic nature, we can infer that
one naturally needs to access system sizes that are several
orders larger. To our knowledge, such investigations have not
been performed yet, but would be interesting in view of the
results presented here. Alternatively, one may study a modified
Hamiltonian in which the coupling to the marginal perturbation
isreduced in order to suppress the logarithmic corrections. This
can be achieved, e.g., by adding an additional nearest-neighbor
Coulomb interaction V = —U/ [2 cos(2kr)] in the extended
Hubbard model.**

Furthermore, our observations urge us to be extremely
careful in extracting exponents from numerical data. The
double-logarithmic presentation of the correlation function
suggests a clean power law and the extracted exponents look
converged for the system sizes studied and suggest a value
of « < 2 for U > 0. However, we know that for much larger
systems, the true asymptotic value of o« = 2 with logarithmic
corrections will eventually be reached. A similar behavior has
also been observed for the boundary exponent of the spectral
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function in open Hubbard chains. Here, for certain interactions
in the studied systems of at most 500 sites, the power-law
behavior with respect to the expected exponents did not occur
at all.*>=37 In the light of these findings, it is clear why our stud-
ies based on very accurate DMRG simulations lead to these
strong deviations to the observation of the seemingly proper,
U-independent exponent « = 2 by Hallberg and Egger. As
their calculations were based on smaller distances with sig-
nificantly less states kept, we can understand this discrepancy
from the extreme sensitivity of the power-law exponents on the
numerical accuracy. In order to fully resolve the long-distance
behavior of correlations in the two-impurity Kondo-Hubbard
chain, one would have to analyze system sizes that are
much larger, rendering further calculations using the DMRG
impossible. In particular, the intrinsic exponential decay of
long-range correlations in the DMRG makes these calculations
of end-to-end correlation functions very expensive. Possible
other algorithms to overcome this problem are, for example,
MERA (Refs. 38—40) or other tensor networks, which are
known to be able to recover the right form of the correlations.
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APPENDIX A: PERTURBATION THEORY

Let us first consider the case of a single impurity coupled to
the first site of a noninteracting chain. In the strong-coupling
limit |J| > 1, there is hardly any hopping between the sites 1
and 2 due to the rigidly bound singlet between the impurity and
the spin at the first conduction band site. So, the corresponding
hopping term represents the perturbation. The calculations in
Ref. 10 reveal that the expectation value to second order in ¢
of a single impurity spin can be stated as

L@ 20 (1) : ;
(S;> = 9 (7) (FL—IH”Q,H/fz,T - wz,iwz,UFL—l),
(AD)

where |Fy_;) is the ground state of a noninteracting chain of

length L — 1 and 1//}2 are fermionic field operators at site i.
If one wants to introduce a second impurity at the other end
of the chain, there is a slight modification as the first and the
last conduction band sites will be quenched out. Thus, one
uses | F_5) instead of |Fy_;) and also obtains an expression
for (Sf,)(z), which is equivalent to Eq. (Al) withi = L — 1.
Combining these two expressions yields the impurity-impurity
correlation function

720z \@ 20 ? ! ! 25t
(sisi) 7 =4( 5 ) (5) Froabsisii1Fa) (A2)

in the strong-coupling limit as the two singlets are screened
from each other by the free chain of length L — 2 in-between.
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Here, s} = (wi N wi 1 ¥, )/2 denote the spin operators.
The correlations (s3s; _;) can be calculated analytically for a
noninteracting chain at half-filling and for Sg, = 0. Inserting
the explicit representation of the field operators

2
" _ : ()]
Vie =1 I+1 {kg } sin(k, j) ¢,

where k, = nw/(L+ 1)andn =1, ...,L, gives

(Frls3s;_ 1 FL)
L2 L

2 . (L—1
= —7 Z Z [sm ( nl)
(L+D I=1 g=L/2+1 L+1

. 2w . (L—1 . 2
X sin [ | sin g |sin| ——q | |-
L+1 L+1 L+1

Now, Eq. (3) directly follows upon exploiting this result,
Eq. (A2), and the rotational invariance of the system.

APPENDIX B: BULK SETUP

As described in Sec. III B, we regard odd distances R and
even chains of length L to ensure a nondegenerate ground state.
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FIG. 10. (Color online) Finite-size effects in the bulk limit (R <
L /2) for impurities attached symmetrically around the center of the
chain for U =4 and J = 2.

If one attaches the impurities symmetrically around the center
of the chain, the correlation function will have nearly the same
value for (R + 1)/2 even irrespective of L aslongas R < L/2
is fulfilled, while it will have a strong size dependence for
other odd values of R. This is shown for U =4 and J =
—2 in Fig. 10. By means of a finite-size scaling with respect
to 1/L, the extrapolated values for the other distances R =
5,9,13,... will obey the same behavior for L — oo as the
L-independent R’s.
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