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ABSTRACT
We focus on the problem of interlinking Wikipedia tables with ne-

grained table relations: equivalent and subPartOf. Such relations

allow us to harness semantically related information by accessing

related tables or facts therein. Determining the type of a relation is

not trivial. Relations are dependent on the schemas, the cell-values,

and the semantic overlap of the cell values in tables.

We propose TableNet, an approach for interlinking tables with

subPartOf and equivalent relations. TableNet consists of two
main steps: (i) for any source table we provide an ecient algo-
rithm to nd candidate related tables with high coverage, and (ii) a

neural based approach that based on the table schemas and data,

determines with high accuracy the ne-grained relation.

Based on an extensive evaluation with more than 3.2M tables,

we show that TableNet retains more than 88% of relevant tables

pairs, and assigns table relations with an accuracy of 90%.
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1 INTRODUCTION
One of the most notable uses of Wikipedia is on knowledge base

construction like DBpedia [2] or YAGO [14], built almost exclu-

sively built with information coming from Wikipedia’s infoboxes.

Infoboxes have several advantages as they adhere to pre-dened

templates and contain factual information (e.g. bornIn facts). How-

ever, they are sparse and the information they cover is very narrow.

In most use cases of Wikipedia, availability of factual information

is a fundamental requirement.

Wikipedia tables on the other hand are in abundance, and are

rich in factual information for a wide range of topics. Wikipedia

contains more than 3.23M tables from more than 520k articles.

Thus far, their use has been limited, despite them covering a broad
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domain of information that can be used to answer complex queries,

e.g., “Award winning movies of horror Genre?” the answer can be

found from facts in multiple tables. However, question answering

systems [1] built upon knowledge base facts, in most cases will

provide incomplete answers or fail altogether. The sparsity or lack

of factual information from infoboxes can be easily remedied by

additionally considering facts from tables.

A rough estimate shows that from the 3.23M tables we can gen-

erate hundreds of millions of additional facts that can be converted

into knowledge base triples [10]. This amount in reality is much

higher, when tables are aligned. That is, currently, tables are seen in

isolation, and semantically related tables are not interlinked. Table

alignments allow us to access related tables as supersets or subsets
(i.e. subPartOf relations) or equivalent tables, which in turn we

can use to infer new knowledge and facts that can be used in QA

systems or other use cases.

Determining the ne-grained table relations is not a trivial task.

The relations are dependent on the semantics of the columns (e.g.

a column with values of type Country), the context in which the

column appears (e.g. “Name” is ambiguous and it can only be disam-

biguated through other columns in a table schema), cell values etc.

Furthermore, not all columns are important for determining the ta-

ble relation [13]. Finally, to establish relations amongst all relevant

table pairs, we need to ensure the eciency by avoiding exhaustive

computations between all table pairs that can be cumbersome given

the extent of tables in Wikipedia.

We propose TableNet, an approach with the goal of aligning ta-

bles with equivalent and subPartOf ne-grained relations. Our

goal is to ensure that for any table, we can nd with high cover-

age candidate tables for alignment, and accurately determine the

relation type for a given pair. We distinguish between two main

steps: (i) ecient and high coverage table candidate generation

for alignment, and (ii) relation type prediction by leveraging table

schemas and values therein. An extensive evaluation of TableNet
over the entire English Wikipedia with more than 3.2 million tables,

shows that we are able to retain table pairs with a high coverage of

88%, and predict the ne-grained relation with an accuracy of 90%.

2 RELATEDWORK
Google Fusion Tables [5, 6, 13, 15] are the most signicant eorts in

providing additional semantics over tables, and to the best of our

knowledge, only some of the works carried in this project are most

related to our work, against which we provide fair comparisons [13].
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Athlete:	Person	{F}

t2	schema:

Date:	Date	
Country:	Location
Athlete:	Person	{M,	age<20}

t4	schema:

Date:				Date	
Country:	Location	
Athlete:	Person	{M}

t3	schema:

Area/Nation:	Location	
Athlete:	Person	{M,	F}
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Table	Relations:

(t1,t4):	rel_1	=	genderRestriction(t1,t4)	
									rel_2	=	ageRestriction(t4,t1)				

(t1,t3):	rel_1	=	topMenRecords(t3,t1)	
									rel_2	=	genderRestriction(t1,t2)				

(t3,t4):	rel_1	=	ageRestriction(t4,t3)
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equivalent

(t2,t4):	rel_1	=	equivalentTopics(t2,t4)

Figure 1: Table alignment example with subPartOf (dashed
line), and equivalent relations (full line).

Carafella et al. [5] propose an approach for table extraction from

Web pages and also provide a ranking mechanism for table retrieval.

An additional aspect they consider is the schema auto-completion,

specically column recommendation for some input column to

generate a “complete” schema. Our goals are dierent, while, we

aim at providing more ne-grained representations of columns in a

table schema, our goal is to use this information for table alignment.

Das Sarma et al. [13] propose an approach for nding related

tables for two scenarios: (i) entity complement and (ii) schema com-
plement. For (i), the task is to align tables with similar table schemas,

however, with complementary instances. In (ii), the columns of a

target table are used to complement the schema of a source table,

with the precondition that the instances (from subject columns) are

the same in both tables.

Our work is related to the rst case. In the entity complement

case [13] the schema similarity between two tables is computed

in order to decide if a table can be considered for complement-

ing the instances in another table. The similarity of the schemas

is considered as a max-weight bipartite matching approach. The

edges are weighted and are established between the columns in the

disparate schemas. The weights correspond to the string similarity
between column names and jaccard similarity between the column

types (established from the values in a column through the WebIsA
database). Despite the fact that this approach is unsupervised, we

adapt it such that we nd the best threshold of the max-weight

matching, and consider tables to be either aligned or not-aligned.

3 PRELIMINARIES AND OVERVIEW
3.1 Terminology
We considerWikipedia articlesA = {a1, . . . ,an }; each article a is as-
sociated with a set ofWikipedia categoriesΨa = {ψ1, . . . ,ψn }. From
all the categories we induce the category graph Ψ, which consists

of parent and child relations between categoriesψi childOf ψp .
The parent/child relations allow us to establish a hierarchical graph

in Ψ. The level of a category is denoted by λψ .
Next, we dene the tables from an article a asTa = {t1, . . . , tn }. A

table t has a table schema consisting of columns C (t ) = {c1, . . . cn },
where each column consists of a textual description and the set of

all values ci = 〈desc, {v
1

i , . . . ,v
n
i }〉 assigned to the corresponding

column cells in the table rows ti (r ) = {r
1

i , . . . , r
n
i }. More specically,

the cell value is indicated by vki , where k is the row rk and i is the
column ci . Cell values can point to existing articles in Wikipedia,

that is vki = 〈ak 〉, which we will refer to as instance values, or
primitive values in cases of text, numbers, dates etc.

For the tablesT = {t1, . . . , tn } fromA, we dene two ne-grained
types of relations for a table pair 〈ti , tj 〉: (i) ti � tj where tj is
considered to be semantically a subPartOf of ti , and (ii) ti ≡ tj
where ti and tj are semantically equivalent. We indicate a relation

with r (ti , tj ) , ∅, and dene in the next section the table relations.

3.2 Table Alignment Task Denition
Table Alignment. Our task is to determine the ne-grained re-

lation for a table pair r (ti , tj ) from the articles 〈ai ,aj 〉. The relations
can be either subPartOf, equivalent or none (in case r (ti , tj ) = ∅).

Definition 1 (subPartOf). For r (ti , tj ) = {subPartOf} holds
if the schema C (ti ) can subsume either at the data value (i.e. cell-
value) or semantically the columns from C (tj ), i.e., C (ti ) ⊇ C (tj ).

Definition 2 (eqivalent). For a pair r (ti , tj ) = {equivalent}
holds if both table schemas have semantically similar column rep-
resentation, that is, C (ti ) ≈ C (tj ).

3.3 TableNet Overview
In TableNet, for any source articleai ∈ A, we rst generate candidate
pairs 〈ai ,aj 〉, such that the likelihood of the corresponding tables

to have a relation is high. We describe the two main steps: (1) article

candidate pair generation, and (2) table alignment.

4 ARTICLE CANDIDATE PAIR GENERATION

Table 1: Article candidate pair features.

feature description group

f1 tdf tdf similarity between abstracts

abstractf2 d2v doc2vec similarity between abstracts

f3 w2v avg.word2vec abstract vectors similarity

f4 sim (Ψai , Ψaj ) similarity in embedding space between

Ψa and Ψ
p
a categories for the article pair

Ψ & KBf5
⋂

a∈〈ai ,aj 〉
Ψa direct and parent categories overlap

f6 sim (ai , aj ) embedding similarity of the article pair

f7 type type overlap

f8 sim (ψi , ψj ) column title similarity (f l
8
) and column

distance (f d
8
) between the schemas in a

table pair

tables

f9
γ (ψi ) − γ (ψj )

 category representation similarity γ

In this step, we address the problem of determining article pairs,

whose tables will result in a relation. Here, we are interested in two

main properties: (1) minimize the amount of irrelevant article pairs,
whose tables do not have a relation, and (2) ltering out of article

pairs should not aect the coverage of relevant pairs (i.e. whose

tables in a table relation.

With these properties in mind, we dene features and use them

in two ways: (i) lter out irrelevant article pairs, and (ii) employ

the features in a supervised manner to further lter out such pairs.

4.1 Features
Table 1 shows all the features. We omit the description of features

that are obvious from the table.
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Article Abstract. Abstracts contain a summary of the most

important information of an article. This feature ensures topi-
cal/semantic similarities between a pair of articles, through con-

textual similarities like doc2vec [9], word based similarity in the

embedding space [11], or through tf-idf which captures the salience
of tokens.

Categories & Knowledge Bases. Wikipedia categories are in-

dicators that two articles are semantically similar. Categories are

associated manually to articles, and thus are prone to noise. We

circumvent this problem by computing graph embeddings based on

the category graph Ψ, and use node2vec embedding [7] to elevate

the category comparisons from the link based structure in Ψ into

the embedding space. The features represent the cosine similarity

in the embedding space for an article pair, specically between the

directly associated and parent categories, the articles themselves.

Tables. Article pair features capture only coarse grained similar-

ity. Thus, we compute light-weight features between the columns

of a table pair. The features correspond to the maximal similarity

w.r.t the average word embedding of the column descriptions, and

additionally we compute the positional index dierence between the

matching columns in the respective tables.

Column-Representation. For a column ci with instance-

values, we compute a representation based on the attributes as-

sociated with the instances {vi } in a target KB, e.g. v1i =“George
Lucas’ bornIn “Modesto, California, U.S.”. Since usually there are

multiple instances |vi | > 1 for ci , we nd the lowest common ances-
tor ψL category from {vi } in the category graph Ψ, which can be

seen as a the common type of instances in {vi }. The representations
allow us to compute the semantic similarity between columns.

The representation of ci is computed as in Equation 1. We weigh

the importance of attributes based on how discriminative they are

forψL , e.g. an attribute associated with articles directly belonging

to category ψL are exclusive for ψL , and thus are weighted high.

For an attribute p, the weight forψL is computed as following:

γ (p, ψL ) =
λψL

max λψ
∗

(
− log

|
⋃
o | : ∀〈a, p, o〉 ∧ a ∈ ψL
|o | : ∀〈a, p, o〉 ∧ a ∈ ψL

)
(1)

where, the rst part of the fraction weighs p by taking into account

the level of λψL and the deepest category where p is present in a

target KB. |
⋃
o | represents the number of distinct values assigned

to attribute p inψL , whereas |o | is the total number of assignments.

Through γ (ψL ) we capture the most important and descriptive
attributes for a column. For columns whose representations yield a

high cosine similarity is an indicator of high semantic similarity.

4.2 Filtering & Classication
We use the computed features in two ways: (i) lter out irrelevant

article pairs (i.e. unlikely to have a table relation), and (ii) train a

supervised model to classify article pairs as relevant or irrelevant.

Filtering. We consider a conjunction of ltering criteria based

on empirically evaluated thresholds for the individual features. Our

main goal is to retain a high coverage of relevant article pairs, and at
the same time lter out drastically irrelevant pairs. For thresholds we
consider the mean value of a particular feature. This is an indicator

that the pair is unlikely to yield any table relation based on a given

feature. Section 7 shows that we are able to drastically reduce the

number of pairs by simply applying such thresholds.

Classication. From the remaining pairs we train a classica-

tion model and classify pairs as either relevant or irrelevant. We

consider as positive instances all table pairs from the article pair

〈ai ,aj 〉 which have at least one table relation, i.e, r (ti , tj ) , none,
where ∃(ti ∈ ai ∧ tj ∈ aj ).

We use Random Forests (RF) [4] for classication, as they allow

to set minimal amount of samples that are allowed for a node in the

tree to be split. This directly impacts the accuracy of the classier,

however, it allows us to retain high coverage. Setting this number

high makes the leafs of the dierent trees to be impure containing

relevant and irrelevant article pairs. Our classier will classify such

impure leafs as relevant. Section 7 shows that we can maintain high

coverage of relevant pairs and at the same drastically reduce the

amount of irrelevant pairs.

5 TABLE ALIGNMENT
TableNet is a bidirectional recurrent neural network (RNN) with

LSTM cells, which classies a table pair r (ti , tj ) into one of the

relations equivalent, subPartOf, or none. For a model to accu-

rately align table, the order of columns in their schemas needs to be

taken into account. Additionally, the matching columns in the two

schemas need to fulll two main criteria: (i) the context in which

the columns occur needs to be semantically similar, and (ii) the

positions of the columns needs to be comparably similar [13].

5.1 Table Representation
How we represent columns is key towards an accurate alignment

model. A column in a table schema consists of the following infor-

mation ci = 〈desc, {v
1

i , . . .v
n
1
}〉 (see Section 3).

Column Description. The column description is a strong indi-

cator of the cell-values vi . We represent the description based on

GloVe pre-trained word embeddings [11]. In the case of multiple

tokens, we average the word embeddings. One disadvantage of this

representation is that the description can be ambiguous, e.g., “Title”
can refer to various dierent value types, e.g. Movies, Books etc.

Instance–Values. In case ci contains instance values, we repre-
sent ci through the average embeddings of the values vi based on

pre-computed graph embeddings. We use node2vec embeddings [7]

trained on theWikipedia anchor graph1. The combination of descrip-
tion and instance values improves the representation of a column

and reduces its ambiguity.

Column–Type. Representing the columns based solely on in-

stance values poses a risk of biasing the column representation

towards articles that are often linked together in the Wikipedia

anchor graph, and thus it may ignore the topic information that is

present in such articles based on their category associations.

For columns that contain instance values, we additionally repre-

sent it through its type or category. From the instances vi of ci , we
extract their LCA category from Ψ (a similar idea was employed

by Das Sarma et al. [13]). We represent the LCA category through

graph embeddings. In cases we have multiple LCA categories, then

we average their corresponding representations.

1
The anchor graph consists of nodes (Wikipedia articles and categories), while the

edges correspond to the anchor text and the category-article associations.
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5.2 Table Alignment Architecture
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Figure 2: TableNet uses BiLSTMs to encode the tables as a se-
quence of columns. The column-by-column captures align-
ments between columns.

TableNet adopts the model from [12], and for a table pair r (ti , tj )
it predicts the relation as equivalent, subPartOf, or none. The
alignment model is a bidirectional LSTM [8]. We compute a column-
by-column attention, which helps us generate soft-alignments be-

tween columns in the table schemas, and thus further improve

the alignment accuracy. Below we describe the encoding of table

columns, and the intuition behind the attention mechanism.

Table Encoding. Since we have two separate tables, a precon-
dition for accurate alignment is the encoding of the sequence of

columns. Our model provides a conditional encoding, in that it rst

reads the columns from C (ti ), then the cell state cd (the table sepa-

rator) is initialized with the last state of ti (in this case cin ) and is

used to conditionally encode the sequence of columns in C (tj ).
The advantage of the conditional encoding is that by encoding

table tj with initial cell state that corresponds to the last column cell

state of ti , we bias the model to learn encodings that are optimal

for the task of table alignment. That is instead of trying to encode

all columns, it will learn to encode the columns of tj such that it

can best predict the relation for the table pair. Since we have a

bidirectional LSTM, we encode in a similar fashion the table ti by
conditioning it on the last state of tj .

Aention Mechanism. For a table pair to be aligned with ei-

ther equivalent or subPartOf relation, we expect that the most

important columns in each of the tables to have their corresponding

matches. This is inline with the intuition that not all columns in a

table are equally important [13].

The classication of the table pair r (ti , tj ) through a standard

RNN model, is done by using the last cell state of the encoded table

pair. This additionally forces the model to consider columns as

being equally important. A common workaround is to use atten-

tion mechanism [3] or global attention, which is able to capture

the importance of certain sequences. However, global attention is

geared for language generation tasks, and as such is not suitable

for the classication of r (ti , tj ).
Column-by-Column Attention. In TableNet, we employ the

column-by-column attention mechanism, which works as follow-

ing. After having encoded the last column from ti , we process the
columns in tj individually and generate the attention weights w.r.t

the columns in ti . As a consequence, for each column in tj we gener-
ate soft alignments to highest matching columns in tj . After having
processed all the columns in tj and computing the corresponding

attention weights (the upper part in Figure 2), for classication of

the table pair r (ti , tj ) we will use a non-linear combination of the

weighted representation of the last column c
j
n in tj . We use softmax

classication function for determining the label for r (ti , tj ).

6 EXPERIMENTAL SETUP
Here we describe the experimental setup. The entire evaluation

setup and code of TableNet are available for download.
2

6.1 Wikpedida Tables Dataset
We extract tables from the HTML content of Wikipedia articles.

From the entire snapshot of Wikipedia, only 529,170 Wikipedia arti-

cles contain tables, resulting in a total of 3,238,201 tables. On average

there are 6 tables per articlewith an average of 6.6 columns, and
with an average of 10 rows per table.

Additionally, more than 20% of columns in total are instance-

values based (see Section 3), and additionally more than 85% of

tables contain such columns. This shows that in the vast majority

of cases, we can represent tables, specically the columns with

highly rich semantic representations.

6.2 Table Alignment Ground-Truth
Our ground-truth consists of a sample of 50 source Wikipedia

articles from which we construct article candidate pairs. Since

the naive approach would generate 26.5M pairs, we apply a set of

ltering keywords to lter out irrelevant pairs. We lter articles by

checking if a keyword appears anywhere in the article’s content
3
.

We manually inspect a random sample of pairs that are ltered

out, and assess if we remove pairs that should be considered rele-

vant, and consequentially rene the keywords. For article pairs that

remain after ltering, we check if they can be seen as false positives
and similarly rene our ltering keywords to remove such cases.

We iteratively apply the rene and ltering steps, until we are left

with an initial set of article pairs that we deploy for evaluation

through crowdsourcing.

For the 50 source articles, we are left with 3.7k pairs after three

rounds of ltering renements, which result in a set of 17k table

pairs that we evaluate by means of crowdsourcing.

6.2.1 Ground-Truth Statistics. From 17,047 table pairs, after la-
beling our ground-truth consists of 52% table pairs marked with

noalignment relation, 24% marked with as having equivalent
alignment, and the remaining 23% with subPartOf relation. The

47% portion of table pairs with a relation, result from 876 article
pairs. The average agreement rate amongst crowdworkers is 0.91.

6.3 Baselines and TableNet setup
We compare TableNet in twomain aspects: (i) eciency in candidate

pair generation, and (ii) table alignment.

6.3.1 Candidate Generation Baselines.
Greedy – G. For each article we consider all other articles as pairs.

This has maximal coverage, however, the amount of irrelevant pairs

is extremely high.

2
https://github.com/bfetahu/wiki_tables/

3
A detailed description on the ground-truth generation is provided in the paper URL.
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Direct Categories – C1. We consider as pairs articles that are

associated with the same directly connected categories. Due to the

noisy article-category associations, there is no guarantee that we

will have maximal coverage of relevant pairs.

Deepest Category – C2. We consider as pairs all those articles

that belong to the same deepest associated category in Ψ. Articles
are associated with multiple categories across dierent levels in Ψ.
Parent Categories – PC. To increase the coverage of relevant

pairs, we consider as pairs, articles that have the same parent cate-
gories based on the directly associated categories.

6.3.2 Table Alignment Baselines.
Google Fusion. The work in [13] nds related tables for a given

table by computing a set relatedness scores against all possible table

candidates. Two tables are related if their schemas are related based

on max-weight bipartite graph matching score (see Section 2 for a

detailed discussion). Google Fusion is unsupervised, thus, we use a

threshold τ (we ne tune τ s.t we nd the best F1 score) to classify

table pairs as either having a relation or not.

BiLSTM.We train a BiLSTMs as a baseline for table alignment

and use the dierent column representations from Section 5.

Setup: BiLSTM & TableNet. We use 100 dimensions for the

hidden layer for the LSTM cells, and train for 50 epochs. We split

the data with 60% for training, 10% for validation, and the remaining

30% for testing.

We represent columns based on the three representations (see

Section 5). The simplest representation is the column description,

TableNet
d
, and then incrementally add the more complex represen-

tations, TableNet
+v

and TableNet
+t
, respectively.

6.4 Evaluation Metrics
Candidate Generation. The aim is to minimize the amount of

irrelevant article pairs 〈ai ,aj 〉 = ∅, and at the same time retain

pairs whose tables have an alignment. We compute ∆ to measure

the amount of reduction we achieve w.r.t the greedy approach in

generating article pairs:

∆ = 1 −
〈ai ,aj 〉

k ∗ |A|
where ai , aj ∧ ai ,aj ∈ A (2)

where, k is the number of source articles.

Coverage we measure through micro and macro recall indicated
with Rµ and R, respectively. Rµ represents the recall in terms of

all table pairs from all the source articles, whereas macro recall

measures the average recall scores from all source articles.

Table Alignment.We measure the accuracy of the models for

determining the table relation based on standard evaluation metrics,

such as precision (P), recall (R), and F1 score (F1).

7 EVALUATION RESULTS
7.1 Candidate Generation Results
Table 2 shows the eciency and coverage results for the base-

line strategies. From the baselines we notice that the use of the

Wikipedia category graph Ψ reduces the amount of irrelevant pairs

drastically. In terms of recall, baseline PC maintains high recall

with R = 0.83, and at the same time reduces by ∆ = 87% the amount

of irrelevant pairs when compared to greedy approach. C2 achieve

the highest reduction rate ∆. Despite, the high reduction rates, we

still face the issue of either having a highly imbalanced ratio of

relevant and irrelevant pairs, or in some cases like C2 where the

reduction rate is the highest, the recall is low R = 0.49.

Table 2: Reduction rate for the baseline strategies.

|〈ai ,aj 〉| ∆ rel. pairs R

G 26,500,000 - 876 1.0

PC 3,486,031 0.87 724 0.83

C1 792,701 0.97 571 0.65

C2 6,738 0.99 440 0.50

TableNet: Filtering. The ltering step uses the features in Ta-

ble 1 to remove irrelevant article pairs. Figure 3 shows the impact

of the dierent features in reducing the amount of article pairs w.r.t

greedy approach. For instance, the f2 feature, which computes the

similarity of article abstracts based on their doc2vec representation,
provides a high reduction with ∆ = 0.91. This feature follows our

intuition on generating the article pairs for the ground-truth (see

Section 6), where the topic and other semantic similarities for an

article pair can be extracted from the article’s content.

Since dierent features capture dierent notions of similarity,

we apply them in conjunction, resulting in very high reduction rate

of article pairs with ∆ > 0.99, and at the same time retaining a

relatively high coverage with R = 0.68. The reduction compared to

the greedy approach is more than H255 times less pairs.

We believe that this high reduction rate and at the same time

the relatively high recall of relevant pairs, when compared to the

baseline approaches can be attributed to the fact that we consider

the similarities of articles, and their corresponding categories and

articles’ content in the embedding space. This allows us to capture

implicit semantics that cannot be captured through the simple link-

based structure in the category graph Ψ.
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Figure 3: Feature impact in terms of reducing the amount of
irrelevant pairs and the coverage of 〈ai ,aj 〉r pairs.

TableNet: Classication. Determining which article pairs,

specically, their tables will have a table relation is a dicult.

Despite the high reduction of irrelevant pairs from 26M pairs to

103k pairs, the amount of irrelevant pairs is still too high for any

supervised approach to be able to learn models that predict with

great accuracy the table relations. Thus, based on the congured RF

model for high coverage (see Section 6), we train it on the feature

set in Table 1 to further classify irrelevant pairs and lter them out.

Figure 4 shows the evaluation results for varying thresholds τ
for the RF model. The increase of τ is directly proportional with

the decrease in the amount of relevant pairs. This is intuitive as
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from the 103k pairs, only 876 pairs are actually relevant. Based

on the conguration of the RF (see Section 6), we retain relevant

pairs with high coverage. We choose τ = 0.5, as it shows the best

trade-o between the coverage of relevant pairs, and the amount

of irrelevant pairs that are passed onto the table alignment step.

We achieve a high reduction rate of ∆ = 0.982 leaving us with only

1.8k pairs, and with a recall of Rµ = 0.81.
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Figure 4: τ (x-axis) shows the scores for Rµ and P , and the
corresponding amount of relevant pairs we retain.

Dependent on the scenario, higher τ can be used to have a higher
ratio of relevant pairs, making the alignment task more ecient.

7.2 Table Alignment Results
Performance. Table 3 shows the table alignment evaluation

results. In the case of Google Fusion, we consider a table pair to be

aligned if their matching score is above some threshold that we

determine empirically for which we achieve the highest F1 score.

Google Fusion. This baseline has a reasonably high accuracy

in determining whether a r (ti , tj ) , ∅. Here we cannot distinguish
between the dierent classes as the approach is unsupervised. In

terms of recall it has the lowest score. This is due to the fact that

the matching is performed by considering only the column type
and the column titlesimilarity. Additionally, the bipartite matching

algorithm cannot retain the order of the columns, which is highly

important for determining the alignment relation.

BiLSTM. One key motivation in this work is the hypothesis that

through sequence based models, we can retain the order of columns

in their respective schemas, an important aspect in determining the

table alignment relation. The BiLSTM approach represent a very

competitive baseline. An additional advantage which addresses a

deciency in the standard supervised models, is that we jointly en-

code the dierent representations of a column for the classication

task. Representing the columns as a combination of their descrip-

tion through word embeddings, and the type and instance values

through graph embeddings, we can capture complex relationship

between the column description and the underlying cell-values.

For equivalent relations, BiLSTM
+d

achieves a very high F1

score with F1 = 0.887, which is close to the best result we achieve

with TableNet
+v

. For subPartOf relations, BiLSTM
+v

the repre-

sentation based on the column description and instance values

achieves the highest F1 scores. The introduction of the column

type in BiLSTM
+t

provides a further boost in the accuracy of de-

termining subPartOf relations. One conclusion we draw from the

comparison between the two relations and two models, is that for

subPartOf relations the column type provides additional power on
determining the table alignment relation, whereas for equivalent
it does not provide an additional advantage. These ndings are

inline with [13], where column type can provide important infor-

mation in nding related tables. Comparing BiLSTM against Google
Fusion we have a 64% improvement for equivalent relation.

TableNet. In our approach, we addressed several deciencies

from the related work. Through our column-by-column attention

mechanism, we can compute soft alignments between columns

in the respective table schemas and thus take into account the

position of the matching columns in the corresponding schemas.

Additionally, the column representations allow us to capture the

similarity between columns and the schema context in which they

appear, and additionally the representation context based on their

description, type and its instance values.

The evaluation results reect this intuition. Comparing our best

performing setup, TableNet
+t

achieves an overall F1 = 0.840 across

all three classes, which presents also the highest F1 score across

all competitors. We achieve a relative improvement of 64% when

comparing F1 scores for the equivalent class againstGoogle Fusion,
or 56% if we compare the average F1 score for both alignment

relations (equivalent and subPartOf). Furthermore, TableNet
+t

outperforms the BiLSTM approach on average F1 score across all

classes. For the individual classes, we note a variations amongst the

dierent congurations of TableNet that perform best (marked in

bold). This conrms the usefulness of the attention mechanism for

the alignment task, where we achieve an overall better performance

in terms of F1 score.

8 CONCLUSIONS AND FUTUREWORK
We presented TableNet, an approach for table alignment that en-

sures high coverage of retained table relations, and provides highly

accurate ne-grained table alignments.

We constructed an exhaustive ground truth for a random sample

of 50Wikipedia articles for which we labeled all possible table pairs,

providing a dataset against which we can measure the coverage

and accuracy of approaches in determining table relations for more

than 17k table pairs in our ground-truth.

In terms of eciency, we show that from a naive approach which

produces 26.5M pairs, we can guarantee a high coverage of retaining

relevant article pairs with more than 68%, while, at the same time

reducing the amount of irrelevant pairs by H255 times. In terms of

table alignment, we show that we can improve over strong baselines

and provide high improvement over strong baselines and other

competitors like Google Fusion.
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