
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=nurw20

Urban Water Journal

ISSN: 1573-062X (Print) 1744-9006 (Online) Journal homepage: https://www.tandfonline.com/loi/nurw20

swmmr - an R package to interface SWMM

Dominik Leutnant, Anneke Döring & Mathias Uhl

To cite this article: Dominik Leutnant, Anneke Döring & Mathias Uhl (2019): swmmr - an R
package to interface SWMM, Urban Water Journal, DOI: 10.1080/1573062X.2019.1611889

To link to this article: https://doi.org/10.1080/1573062X.2019.1611889

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 04 Jun 2019.

Submit your article to this journal

Article views: 230

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=nurw20
https://www.tandfonline.com/loi/nurw20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/1573062X.2019.1611889
https://doi.org/10.1080/1573062X.2019.1611889
https://www.tandfonline.com/action/authorSubmission?journalCode=nurw20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=nurw20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/1573062X.2019.1611889&domain=pdf&date_stamp=2019-06-04
http://crossmark.crossref.org/dialog/?doi=10.1080/1573062X.2019.1611889&domain=pdf&date_stamp=2019-06-04

TECHNICAL NOTE

swmmr - an R package to interface SWMM
Dominik Leutnant a, Anneke Döringb and Mathias Uhla

aMuenster University of Applied Sciences - Institute for Infrastructure, Water, Resources, Environment, Muenster, Germany; bLeibniz University
Hannover - Institute for Fluid Dynamics and Environmental Physics, Hannover, Germany

ABSTRACT
The stormwater management model SWMM of the US EPA is widely used to analyse, design or optimise
urban drainage systems. To perform advanced analysis and visualisations of model data this technical
note introduces the R package swmmr. It contains functions to read and write SWMM files, initiate
simulations from the R console and to convert SWMM model files to and from GIS data. Additionally,
model data can be transformed to produce high quality visualisations. In accordance with SWMM’s
open source policy the package can be obtained through github.com or the Comprehensive R Archive
Network (CRAN).

ARTICLE HISTORY
Received 18 January 2019
Accepted 22 April 2019

KEYWORDS
SWMM; R; urban drainage
modelling; model data
management

1. Introduction

Modelling urban drainage systems has become essential to
develop and assess resilient urban stormwater management
strategies. Analysing the impact of different climatic or demo-
graphic scenarios on urban water infrastructure or optimising
urban drainage networks are only some of the applications.
Various software products are available to model urban drai-
nage systems. Amongst others, the stormwater management
model SWMM (Rossman 2010) is widely used by researchers
and practitioners to simulate dynamic hydrology-hydraulic
water quality processes. Its source code is released under
public domain specification and online available from the US
EPA.1 Besides the availability of the open source engine of
SWMM, a pre-compiled software for Microsoft Windows oper-
ating systems is available. The software also provides
a graphical user interface (GUI) to design drainage networks
and to assign attributes to elements of the system. While the
open source software facilitates basic analysis and visualisa-
tions of model data, advanced features such as time series
data management, parameter uncertainty analysis or
extended statistics are reserved to commercialised versions
of SWMM, only.

In this respect, the free software environment for statistical
computing and graphics R (R Core Team 2017) is frequently used
by both scientists and engineers. It provides a huge variety of
add-on packages which also cover issues related to hydrology in
general and urban water modelling more specifically. For exam-
ple, hydrology specific packages support process-based model-
ling (e.g. reservoir – Turner and Galelli (2016)), spatial data
processing (e.g. Watersheds – Torres-Matallana (2016)), model
performance analysis (e.g. hydroGOF – Zambrano-Bigiarini
(2017)), or data exploration (e.g. wql – Jassby, Cloern, and
Stachalek (2017)). Moreover, packages epanet2toolkit (Arandia
and Eck 2018) and epanetReader (Eck 2016) interface R with
EPANET2 (Rossmann 2010), a widely used water distribution

systems model. A more comprehensive list is given in the
CRAN Task View ‘Hydrological Data and Modeling’.3

Further packages – not explicitly related to (urban) hydrol-
ogy – provide functions to perform model parameter optimi-
sation (e.g. DEoptim – Ardia et al. (2016)), visualise data (e.g.
dygraphs – Vanderkam et al. (2017); ggplot2 – Wickham
(2016)), or manage time series data (e.g. xts – Ryan and
Ulrich (2017)). Additionally, with the development of the
packages sp (Pebesma and Bivand 2005) and sf (simple fea-
tures) (Pebesma 2018), R’s spatial data processing capabilities
have been significantly advanced. Consequently, as modelling
in general involves both pre- and post-processing of different
types of data such as spatial or time series data, the availability
of these packages enables an efficient model data manage-
ment and allows various modelling tasks of diverging com-
plexity to be addressed.

To bridge the gap between urban drainage modelling and
advanced model analytics, we herein introduce the freely
available R package swmmr which provides functions to inter-
face SWMM. Core functions of the package comprise fast
reading and writing of SWMM files, conversion between GIS
data and the SWMM input file format as well as model data
transformation to produce expressive visualisation. This tech-
nical note describes design principles of the swmmr package
and exemplifies its usage. This includes a demonstration of
how to produce high quality figures of model results and
model structures enabled by further R packages.

2. What is the package useful for?

The main purpose of the swmmr package is to assist the
modeller during the modelling process. Typically, this includes
processing and visualisation of measurement and spatial data,
which the R ecosystem provides matured packages for.
However, its capabilities of interactively creating and modify-
ing spatial data are limited and should not yet be compared to

CONTACT Dominik Leutnant leutnant@fh-muenster.de

URBAN WATER JOURNAL
https://doi.org/10.1080/1573062X.2019.1611889

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-3293-2315
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/1573062X.2019.1611889&domain=pdf&date_stamp=2019-06-01

a specialised GIS software, though remarkable progress can be
observed (mapview – Appelhans et al. (2018); mapedit –
Appelhans and Russell (2017)). Thus, the package is especially
useful to modellers who use R for model data management
and/or need to perform advanced analysis, visualisation or
optimisation tasks of a given model or model results,
respectively.

3. Package design and core functions

At its core, the package relies on the tidy data concept
(Wickham 2014) which is expressed through a set of harmo-
nised packages sharing common data representation prin-
ciples (‘tidyverse’ – Wickham (2017)). Although most tasks
could have been addressed with base R,4 packages from the
‘tidyverse’ tend to simplify both the programming and the
data analysis. For example, swmmr uses tibbles (Müller and
Wickham 2017) instead of R’s built-in data.frame to repre-
sent SWMM sections because tibbles have a convenient
print method which only shows the first 10 rows of data,
and all the columns that fit on screen (Wickham and
Grolemund 2016). This becomes especially useful when
dealing with large SWMM data using functions such as
read_inp(), read_rpt() and read_lid_rpt()
(Table 1) as the console output remains readable in case
large data have been printed. Generally, these functions
take the path to a corresponding SWMM file (*.inp or *.rpt)
and parse its content to a named list of tibbles or
a single tibble, respectively. read_inp() creates an
object of class inp, whose list element names are identical
to the names of SWMM input sections available in lower
letters (e.g. options, subcatchments, etc). To print
a summary or to quickly visualise the model structure of
the inp object, two generic functions summary() and
autoplot() for inp objects are implemented.
read_rpt() creates a named list of class rpt containing
summary sections from the report file of SWMM (e.g. sub-
catchment_runoff_summary). While both of the aforemen-
tioned functions maintain the original SWMM file structure,

read_lid_rpt() interprets text files from specific LID
elements. A single tibble or index-based time series
data as xts object is returned accordingly. The latter option
is provided because xts objects, which are introduced with
the xts package and build upon R’s built-in matrix data
type, efficiently represent time series data and offer index-
focused data subsetting methods.

Reading simulation data from the binary .out file is sup-
ported by read_out(). Because .out files can become very
large, the function design aims for fast data processing and
embeds modern C++ code through Rcpp (Eddelbuettel and
Francois 2011). Output data per system element and model
variable is always represented as an xts object and conveni-
ently stored in a list environment.

The function write_inp() writes an inp object to disk,
which addresses cases where an inp object has been mod-
ified within R and changes need to be saved back to disk (e.g.
model parameter calibration). Thus, it takes an existing inp
object and creates a model file on disk which can be read and
run by the original SWMM executable. However, a SWMM
simulation run can also be initiated from the R console with
run_swmm(). It requires the path to an .inp file to be speci-
fied and calls the SWMM executable. The function conveni-
ently returns a 3-element list containing paths to the .inp, .rpt
and .out file.

Moreover, converting SWMM input sections with spatial
reference to sf objects is supported with *_to_sf() func-
tions. Based on the conversion of SWMM input sections to sf
objects, an inp object can be converted to the popular .shp
format with inp_to_files(). Additionally, .txt files con-
taining simulation settings, storage and pumping curves are
returned as well as files containing SWMM time series data.
As a counterpart the function shp_to_inp() converts
spatial data given in .shp files into an object of class inp.
Information on simulation settings, rainfall time series etc.
can be given in .txt files to complete the model data. While
the conversion to sf objects already enables common spa-
tial analysis of SWMM model data in R, this also allows using
the plotting interface of ggplot2 through geom_sf().

Table 1. Functions for the R environment provided by swmmr.

Name Inputs Description

model run
run_swmm() path to .inp (optional: .rpt and .out file) Initiate a SWMM run from the R console
reading files
read_inp() path to .inp file Reads a SWMM model as list of tibbles (i.e. inp object)
read_out() path to .out file Reads SWMM simulation results (time series) as list of xts objects
read_rpt() path to .rpt file Reads SWMM simulation results (summary) as list of tibbles
read_lid_rpt() path to LID report file Reads a SWMM LID Report File as tibble or xts object
writing files
write_inp() inp object (optionally modified) and filename Writes an inp file to disk which can be read and run by SWMM
simple feature conversion
*_to_sf() inp object Converts SWMM objects as tibble with simple feature geometries

(supported objects are junctions, links, orifices, outfalls, pumps,
raingages, storages, subcatchments, weirs)

inp_to_sf() inp object Converts an entire inp object as list of tibbles with simple feature
geometries

.shp file conversion
inp_to_files() inp object, model name and directory path Converts .inp to .shp and .txt files
shp_to_inp() s. package manual Converts .shp files as list of tibbles (i.e. inp object)
generic functions
summary() inp object Prints a summary of the SWMM model structure
autoplot() inp object Produces a default plot of a SWMM model structure using ggplot2

2 D. LEUTNANT ET AL.

4. Example usage

In this work, the basic usage of the package is demonstrated using the model ‘Example1’which is included in the SWMM software for
Microsoft Windows. The model file is usually located at ‘C:/Users/../Documents/EPA SWMM Projects/Examples/Example1.inp’.
Alternatively, it is also attached to the package (cf. Listing 1). In addition, the reader is referred to three package vignettes which
cover topics beyond the scope of this technical note. For example, instructions on how to auto-calibrate a SWMMmodel with swmmr
or how to convert GIS and SWMM model data with swmmr are given.

4.1. Setup and model execution

To install swmmr from CRAN and to add its namespace to R’s search list, the following commands need to be executed from the
R command line (Listing 1). In this example, the model file attached to the package is used and its path is assigned to the
variable inp_path. Subsequently, run_swmm() initiates a model run.

if (!require(“swmmr”)) install.packages(“swmmr”)
library(swmmr)
library(tidyverse)
inp_path <- system.file(“extdata”, “Example1.inp”, package = “swmmr”)
swmm_files <- run_swmm(inp = inp_path,

rpt = tempfile(),
out = tempfile())

Listing 1 Installation and model execution.

4.2. Analysis of model data

SWMM’s model files (.inp, .rpt and .out) can be accessed from the named list variable swmm_files. Since the results of both the
read_inp() and read_rpt() function comprises a list of named tibbles (Listings 2 and 3), elements can be accessed via
R’s common extracting mechanism.

inp_object <- read_inp(swmm_files$inp)
summary(inp_object)

#>

#> ** summary of swmm model structure **

#> infiltration : horton

#> flow_units : cfs

#> flow_routing : kinwave

#> start_date : 01/01/1998

#> end_date : 01/02/1998

#> raingages : 1

#> subcatchments : 8

#> aquifers : 0

#> snowpacks : 0

#> junctions : 13

#> outfalls : 1

#> dividers : 0

#> storages : 0

#> conduits : 13

#> pumps : 0

#> orifices : 0

#> weirs : 0

#> outlets : 0

#> controls : 0

#> pollutants : 2

#> landuses : 2

#> lid_controls : 0

#> treatment : 0

#> *************************************

inp_object$subcatchments

URBAN WATER JOURNAL 3

Listing 2 Reading and analysing model data.

rpt_object <- read_rpt(swmm_files$rpt)
summary(rpt_object)

Listing 3 Reading report of model results.

Time index-based model results from an .out file are imported as given in Listing 4. Here, model variables total
rainfall (in/hr or mm/hr, vIndex = 1) and total runoff (in flow units, vIndex = 4) from the system (iType = 3) are read.
A general dictionary covering the mapping between variable and index number is included in the package
documentation.

sim <- read_out(swmm_files$out, iType = 3, vIndex = c(1,4))
sim$system_variable %>%
do.call(merge, .) %>%
summary

Listing 4 Reading and statistical analysis of model results.

#> # A tibble: 8 x 9

#> Name ‘ Rain Gage‘ Outlet Area Perc_Imperv Width Perc_Slope CurbLen

#> <chr> <chr> <chr> <int> <int> <int> <dbl> <int>

#> 1 1 RG1 9 10 50 500 0.01 0

#> 2 2 RG1 10 10 50 500 0.01 0

#> 3 3 RG1 13 5 50 500 0.01 0

#> 4 4 RG1 22 5 50 500 0.01 0

#> 5 5 RG1 15 15 50 500 0.01 0

#> 6 6 RG1 23 12 10 500 0.01 0

#> 7 7 RG1 19 4 10 500 0.01 0

#> 8 8 RG1 18 10 10 500 0.01 0

#> # ... with 1 more variable: Snowpack <lgl>

#> Length Class Mode

#> analysis_options 2 tbl_df list

#> runoff_quantity_continuity 3 tbl_df list

#> runoff_quality_continuity 3 tbl_df list

#> flow_routing_continuity 3 tbl_df list

#> quality_routing_continuity 3 tbl_df list

#> highest_flow_instability_indexes 2 tbl_df list

#> routing_time_step_summary 2 tbl_df list

#> subcatchment_runoff_summary 9 tbl_df list

#> subcatchment_washoff_summary 3 tbl_df list

#> node_depth_summary 8 tbl_df list

#> node_inflow_summary 9 tbl_df list

#> node_flooding_summary 7 tbl_df list

#> outfall_loading_summary 7 tbl_df list

#> link_flow_summary 8 tbl_df list

#> conduit_surcharge_summary 6 tbl_df list

#> link_pollutant_load_summary 3 tbl_df list

#> analysis_info 1 tbl_df list

#> Index total_rainfall total_runoff

#> Min.:1998-01-01 01:00:00 Min.:0.00000 Min.:0.0000

#> 1st Qu.:1998-01-01 09:45:00 1st Qu.:0.00000 1st Qu.:0.0000

#> Median:1998-01-01 18:30:00 Median:0.00000 Median:0.0000

#> Mean:1998-01-01 18:30:00 Mean:0.07361 Mean:2.1592

#> 3rd Qu.:1998-01-02 03:15:00 3rd Qu.:0.00000 3rd Qu.:0.1033

#> Max.:1998-01-02 12:00:00 Max.:0.80000 Max.:24.2530

4 D. LEUTNANT ET AL.

4.3. Convert between GIS and SWMM model data

inp_to_files() utilises the conversion functions *_to_sf() for all SWMM sections containing spatial data (Table 1).
Sections without spatial information are returned and saved separately. Thus, sub-folders containing .shp, .txt and .dat files
are created in a specified directory (Listing 5). Information on supported SWMM sections for both inp_to_files() and
shp_to_inp() is given in the package manual.

out_dir <- tempdir()
inp_to_files(x = inp_object, name = “Example1”, path_out = out_dir)
c(“dat”, “shp”, “txt”) %>%

map(list.files(file.path(out_dir,.), pattern = .))
#> [[1]]
#> [1] “Example1_timeseries_TS1.dat”
#>
#> [[2]]
#> [1] “Example1_link.shp” “Example1_outfall.shp” “Example1_point.shp”
#> [4] “Example1_polygon.shp”
#>
#> [[3]]
#> [1] “Example1_options.txt”

Listing 5 Converting SWMM model data into shape files.

Column names of the .shp file attribute table correlate with the original SWMM encoding or its abbreviation to seven characters.
shp_to_inp() reads .shp and .txt files and converts them to an inp object (Listing 6). Missing values are completed with default
values or can be specified separately. The package vignette provides more information of the conversion details.
converted_inp <- shp_to_inp

(path_options = file.path(out_dir, “txt/Example1_options.txt”),
path_line = file.path(out_dir, “shp/Example1_link.shp”),
path_outfall = file.path(out_dir, “shp/Example1_outfall.shp”),
path_point = file.path(out_dir, “shp/Example1_point.shp”),
path_polygon = file.path(out_dir, “shp/Example1_polygon.shp”),
path_timeseries = file.path(out_dir,”dat/Example1_timeseries_TS1.dat”)

)
summary(converted_inp)

#>

#> ** summary of swmm model structure **

#> infiltration : horton

#> flow_units : cfs

#> flow_routing : kinwave

#> start_date : 01/01/1998

#> end_date : 01/02/1998

#> raingages : 1

#> subcatchments : 8

#> aquifers : 0

#> snowpacks : 0

#> junctions : 13

#> outfalls : 1

#> dividers : 0

#> storages : 0

#> conduits : 13

#> pumps : 0

#> orifices : 0

#> weirs : 0

#> outlets : 0

#> controls : 0

#> pollutants : 2

#> landuses : 2

#> lid_controls : 0

#> treatment : 0

#> *************************************

URBAN WATER JOURNAL 5

Listing 6 Converting shape files into SWMM model data.

5. Usage with other R packages

5.1. Visualisation with ggplot2 and mapview

Modelling involves visualisation of spatial and temporal data. With base (R Core Team 2017), lattice (Sarkar 2008) and ggplot2
(Wickham 2016), R currently offers three different plotting systems. Because of ggplot2’s flexibility and declarative way of
constructing graphics, a demonstration of how to create expressive and customisable figures of model data is given in Listings 7
and 8.

Listing 7 aims to visualise rainfall and simulated runoff data. Temporal data is read from an .out file, initially merged to one
single xts object with two columns (‘total_rainfall’ and ‘total_runoff’) and converted to tibble which can be processed by
ggplot2. Both variables are plotted as different geometric objects (geom_col(), geom_line()) and separated into facets.
The result is shown in Figure 1.

library(ggplot2) # ggplot2 ≥ 3.0.0 required
library(broom) # to convert an xts/zoo object to tibble
sim$system_variable %>%

do.call(merge, .) %>%
tidy(.) %>%
{

ggplot(mapping = aes(x = index, y = value)) +
geom_col(data = filter(., series == “total_rainfall”)) +
geom_line(data = filter(., series == “total_runoff”)) +
scale_x_datetime(date_breaks = “3 hour”, date_labels = “

facet_wrap(
series, ncol = 1, scales = “free_y”, strip.position = “left”,

labeller = as_labeller(c(
total_rainfall = “total rainfall (in/hr)”,
total_runoff = “total runoff (CFS)”

))
) +
theme_light() +
theme(
strip.placement = “outside”,
strip.text = element_text(colour = “black”),
strip.background = element_rect(fill = “white”),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()

) +
labs(

to
ta

l r
ai

nf
al

l (
in

/h
r)

to
ta

l r
un

of
f (

C
F

S
)

01:00 04:00 07:00 10:00 13:00 16:00 19:00 22:00 01:00 04:00 07:00 10:00 13:00

0.0

0.2

0.4

0.6

0.8

0

5

10

15

20

25

1998−01−01 01:00:00 − 1998−01−02 12:00:00

FIGURE 1. Example of ggplot2-based visualisation of simulation results.

6 D. LEUTNANT ET AL.

y = NULL, x = NULL,
subtitle = paste(range(.$index), collapse = “ - “)

)
}
Listing 7 Creation of ggplot2-based visualisation of simulation results.

Listing 8 is used to visualise the model structure with subcatchments, links, junctions and raingages. Initially, SWMM objects
to be plotted are converted as sf objects. Coordinates for labelling subcatchments and raingages are calculated afterwards. Since
ggplot2 provides the geometric object geom_sf()5, sf objects are directly passed to ggplot2 and interpreted accordingly.
Figure 2 illustrates the result.

initially, SWMM objects to be plotted are converted as sf objects
here: subcatchments, links, junctions, raingages
sub_sf <- subcatchments_to_sf(inp_object)
lin_sf <- links_to_sf(inp_object)
jun_sf <- junctions_to_sf(inp_object)
rg_sf <- raingages_to_sf(inp_object)

calculate coordinates for label position of subcatchments
here: centroid of subcatchment
coord_subc <- sub_sf %>%

sf::st_centroid() %>%
sf::st_coordinates() %>%
tibble::as_tibble()

update coordinates to label raingage label
coord_rg <- rg_sf %>%

sf::st_coordinates(.) + 500
tibble::as_tibble()

add coordinates to tibble containing sf geometries
sub_sf <- dplyr::bind_cols(sub_sf, coord_subc)
rg_sf <- dplyr::bind_cols(rg_sf, coord_rg)

create the plot

1 2

3
4

5

6

7

8

RG1

 0

 2000

 4000

 6000

 8000

10000

 0 2000 4000 6000 8000 10000

X

Y

980

990

1000

1010

1.00

1.25

1.50

1.75

2.00
Geom1

5.0

7.5

10.0

12.5

15.0
Area

Figure 2. Visualisation of SWMM Example1 model structure using the ggplot2 package.

URBAN WATER JOURNAL 7

ggplot() +
subcatchments and label
geom_sf(aes(fill = Area), data = sub_sf) +
geom_label(aes(X, Y, label = Name), sub_sf,

alpha = 0.5, size = 3) +
links
geom_sf(aes(colour = Geom1), lin_sf, size = 2) +
junctions
geom_sf(aes(size = Elevation), jun_sf, colour = “darkgrey”) +
raingage and label
geom_sf(data = rg_sf, shape = 10) +
geom_label(aes(X, Y, label = Name), rg_sf,
alpha = 0.5, size = 3) +
change scales and theme
scale_fill_viridis_c() + scale_colour_viridis_c(direction = -1) +
theme_linedraw() +
theme(panel.grid.major = element_line(colour = “white”))

Listing 8 Creation of ggplot2-based visualisation of model structure.

Since sf objects are supported by the mapview package, a SWMM model structure converted to simple feature geometries
can also be interactively visualised. Figure 3 shows a screenshot of a browser-based visualisation of the ‘Example1’ model,
obtained by executing Listing 9.

library(mapview)
inp_to_sf(inp_object) %>%

mapview()

Listing 9 Creation of mapview-based visualisation of model structure.

5.2. Model calibration using DEoptim

Calibration of model parameters is an essential part within the modelling chain to improve the model quality. During calibration,
model parameter values are systematically modified to optimise an objective function, which numerically expresses the
difference between observed and simulated data.

Because swmmr provides the functions write_inp() to save an inp object to disk and run_swmm() to potentially run the
written model file afterwards, it especially facilitates autocalibration of model parameters. swmmr, however, does not depend on

Figure 3. Interactive visualisation of SWMM Example 1 model structure using the mapview package.

8 D. LEUTNANT ET AL.

particular optimisation packages. The package vignette ‘How
to autocalibrate a SWMM model with swmmr’ exemplifies the
application of the DEoptim package (Ardia et al. 2016) for
single objective optimisation.

6. Conclusions

A brief introduction of the R package swmmr is given. swmmr
interfaces the stormwater management model SWMM with
R and bridges the gap between modelling and advanced model
analytics. It offers functions to represent SWMMmodels in R which
subsequently can be modified or visualised with modern technol-
ogies. Simulation results are efficiently read with help of Rcpp to
streamline further time series analysis. This facilitates efficient
model calibration and parameter uncertainty analysis. The pack-
age is freely available and is especially open to both the SWMM
and R community. The authors would like to promote the open
source project and welcome any contribution to the package
through the project page on GitHub.

Notes

1. https://www.epa.gov/water-research/storm-water-management-
model-swmm.

2. https://www.epa.gov/water-research/epanet.
3. https://cran.R-project.org/view=Hydrology.
4. ‘base R’ refers to a set of default packages which R is actually based

upon without any additional packages loaded.
5. Note that ggplot2 ≥ 3.0.0 is required.

Acknowledgements

This package has been mainly developed in the course of the project
STBMOD funded by the German Federal Ministry of Education and
Research (BMBF, FKZ 03FH033PX2). Its development was inspired by the
work of Peter Steinberg and significantly benefits from the Interface Guide
of SWMM (Rossman 2010). In the course of the review of this paper,
swmmr evolved from version 0.8.1 to 0.9.0. The latter version also contains
contributions by the user community, from which we especially would like
to thank Malte Henrichs and Hauke Sonnenberg.

Disclosure statement

No potential conflict of interest was reported by the authors.

Highlights

● An R package to read and write SWMM files is introduced
● SWMM’s .out files are read with high performance
● Functions to convert between GIS and SWMM files are provided
● Modern plotting systems are supported to visualise model data

Software availability

swmmr is available on the Comprehensive R Archive Network (CRAN) at
https://cran.r-project.org/package=swmmr and
GitHub at https://github.com/dleutnant/swmmr
License: GPL-3
System requirements: R (≥3.0.0)
Installation: install.packages(‘swmmr’) or
remotes::install_github(‘dleutnant/swmmr’)

ORCID

Dominik Leutnant http://orcid.org/0000-0003-3293-2315

References

Appelhans, T., F. Detsch, C. Reudenbach, and S. Woellauer. 2018. Mapview:
Interactive Viewing of Spatial Data in R. R package version 2.3.0. https://
CRAN.R-project.org/package=mapview

Appelhans, T., and K. Russell. 2017. Mapedit: Interactive Editing of Spatial
Data in R. R package version 0.3.2. https://CRAN.R-project.org/package=
mapedit

Arandia, E., and B. J. Eck. 2018. “An R Package for EPANET Simulations.”
Environmental Modelling & Software 107: 59–63. doi:10.1016/j.
envsoft.2018.05.016.

Ardia, D., K. M. Mullen, B. G. Peterson, and J. Ulrich. 2016. DEoptim:
Differential Evolution in R. Version 2.2-4. https://CRAN.R-project.org/
package=DEoptim

Eck, B. J. 2016. “An R Package for Reading EPANET Files.” Environmental
Modelling & Software 84: 149–154. Accessed 5 July 2017. http://linkin
ghub.elsevier.com/ retrieve/pii/S1364815216302870

Eddelbuettel, D., and R. Francois. 2011. “Rcpp: Seamless R and C++
Integration.” Journal of Statistical Software 40 (8): 1–18. doi:10.18637/
jss.v040.i08.

Jassby, A., J. Cloern, and J. Stachalek. 2017. wql: Exploring Water Quality
Monitoring Data. R package version 0.4-9. https://CRAN.R-project.org/
package=wql

Müller, K., and H. Wickham. 2017. Tibble: Simple Data Frames. R package
version 1.4.1. https://CRAN.R-project.org/package=tibble

Pebesma, E. 2018. sf: Simple Features for R. R package version 0.6-0. https://
CRAN.R-project.org/package=sf

Pebesma, E. J., and R. S. Bivand. 2005. “Classes and Methods for Spatial
Data in R.” R News 5 (2): 9–13. https://CRAN.R-project.org/doc/Rnews/

R Core Team. 2017. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/

Rossman, L. A. 2000. EPANET - User’s Manual Version 2.0. Technical Report.
Washington, DC: United States Environmental Protection Agency (US EPA).

Rossman, L. A. 2010. Storm Water Management Model - User’s Manual
Version 5.0. Technical Report. Cincinnati, OH: United States
Environmental Protection Agency (US EPA).

Ryan, J. A., and J. M. Ulrich. 2017. xts: EXtensible Time Series. R package
version 0.10-1. https://CRAN.R-project.org/package=xts

Sarkar, D. 2008. Lattice: Multivariate Data Visualization with R. New York:
Springer. ISBN 978-0-387-75968-5. http://lmdvr.r-forge.r-project.org

Torres-Matallana, J. 2016. Watersheds: Spatial Watershed Aggregation and
Spatial Drainage Network Analysis. R package version 1.1. https://CRAN.
R-project.org/package=Watersheds

Turner, S., and S. Galelli. 2016. “Water Supply Sensitivity to Climate
Change: An R Package for Implementing Reservoir Storage Analysis in
Global and Regional Impact Studies.” Environmental Modelling &
Software 76: 13–19. doi:10.1016/j.envsoft.2015.11.007.

Vanderkam, D., J. J. Allaire, J. Owen, D. Gromer, P. Shevtsov, and
B. Thieurmel. 2017. “Dygraphs: Interface to ’Dygraphs’ Interactive
Time Series Charting Library.” https://CRAN.R-project.org/package=
dygraphs

Wickham, H. 2014. “Tidy Data.” Journal of Statistical Software 59 (10).
Accessed 21 February 2018. http://www.jstatsoft.org/v59/i10/

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York. http://ggplot2.org

Wickham, H. 2017. Tidyverse: Easily Install and Load the ’Tidyverse’.
R package version 1.2.1. https://CRAN.R-project.org/package=tidyverse

Wickham, H., and G. Grolemund. 2016. R for Data Science: Import, Tidy,
Transform, Visualize, and Model Data. 1st ed. Sebastopol, CA: O’Reilly.
OCLC: ocn968213225.

Zambrano-Bigiarini, M. 2017. hydroGOF: Goodness-Of-Fit Functions for
Comparison of Simulated and Observed Hydrological Time Series.
R package version 0.3-10. https://CRAN.R-project.org/package=
hydroGOF

URBAN WATER JOURNAL 9

https://www.epa.gov/water-research/storm-water-management-model-swmm
https://www.epa.gov/water-research/storm-water-management-model-swmm
https://www.epa.gov/water-research/epanet
https://cran.R-project.org/view=Hydrology
https://cran.r-project.org/package=swmmr
https://github.com/dleutnant/swmmr
https://CRAN.R-project.org/package=mapview
https://CRAN.R-project.org/package=mapview
https://CRAN.R-project.org/package=mapedit
https://CRAN.R-project.org/package=mapedit
https://doi.org/10.1016/j.envsoft.2018.05.016
https://doi.org/10.1016/j.envsoft.2018.05.016
https://CRAN.R-project.org/package=DEoptim
https://CRAN.R-project.org/package=DEoptim
http://linkinghub.elsevier.com/%A0retrieve/pii/S1364815216302870
http://linkinghub.elsevier.com/%A0retrieve/pii/S1364815216302870
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://CRAN.R-project.org/package=wql
https://CRAN.R-project.org/package=wql
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/doc/Rnews/
https://www.R-project.org/
https://CRAN.R-project.org/package=xts
http://lmdvr.r-forge.r-project.org
https://CRAN.R-project.org/package=Watersheds
https://CRAN.R-project.org/package=Watersheds
https://doi.org/10.1016/j.envsoft.2015.11.007
https://CRAN.R-project.org/package=dygraphs
https://CRAN.R-project.org/package=dygraphs
http://www.jstatsoft.org/v59/i10/
http://ggplot2.org
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=hydroGOF
https://CRAN.R-project.org/package=hydroGOF

	Abstract
	1. Introduction
	2. What is the package useful for?
	3. Package design and core functions
	4. Example usage
	4.1. Setup and model execution
	4.2. Analysis of model data
	4.3. Convert between GIS and SWMM model data

	5. Usage with other Rpackages
	5.1. Visualisation with ggplot2 and mapview
	5.2. Model calibration using DEoptim

	6. Conclusions
	Notes
	Acknowledgements
	Disclosure statement
	Highlights
	Software availability
	ORCID
	References

