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Abstract 

Keywords: heavy metal sorption, scaling, field-scale variability 

Taken two agricultural lands as the study areas (loess, Haplic Luvisols; loamy to sandy soil, 

Eutric Cambisols), which are representative of the soils of northern Germany, this dissertation 

studies the upscaling of the adsorptive binding of heavy metals in soils and their variability by 

calculating the scale factors. The adsorptive binding of heavy metals in soils is mostly 

quantified by sorption isotherms with large variability at the field scale. The aim of this work 

is to search the correlation of sorption isotherms by means of scale factors between different 

heavy metals and further with physico-chemical soil properties, so that only a few 

measurements are necessary to make sufficient statements on heavy metal’s binding and 

mobility at field-scale. At both study sites, upscaling can capture the linear parts of sorption’s 

variability well. Scenario study discussed satisfied simulations of heavy metals transport 

process, where the scale factors are treated as the measure of variability. However, in the 

statistical and geostatistical studies, no significant correlations were found between the scale 

factors of different heavy metals and with physicochemical soil properties. Depending on the 

location and soil horizon, the correlation of scale factors between different heavy metals varied 

so different and not transferrable. In addition, the reference isotherm calculated directly from 

measurements did not match the sorption isotherm from a composite sample, which indicates 

that scaling is favorable to homogenous sites. Thus, the important finding in this dissertation 

can be summarized that the application of scale factors for heavy metal sorption isotherms, such 

as statistical or geostatistical evaluation, is limited only to specific case studies or a scenario 

modeling. 
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Kurzfassung 

Schlüsselwörter: Schwermetallsorption, Skalierung, feldskalige Variabilität 

Wurden zwei Ackerlande (Löss, Parabraunerde; Geschiebedecksand, Braunerde) als die 

Untersuchungsstandorte genommen, die für die Böden des Norddeutschlands repräsentativ sind, 

diese Dissertation studiert Upscaling der adsorptiven Bindung der Schwermetalle in Böden und 

deren Variabilität durch der Berechnung von Skalierungsfaktoren. Die adsorptive Bindung der 

Schwermetalle in Böden wird meist mit Sorptionsisothermen quantifiziert und die weisen 

feldskalige große Variabilität auf. Ziel dieser Arbeit ist es, die Korrelation der 

Sorptionsisothermen mittels Skalierungsfaktoren zwischen verschiedener Schwermetalle und 

weiterhin mit physikochemischen Bodeneigenschaften zu suchen, damit nur wenige 

Messungen erforderlich sind, um feldskalige Aussagen zur Schwermetallbindung und Mobilität 

machen zu können. An beiden Untersuchungsstandorten, Upscaling können der linear 

Variabilitätsanteil der Sorption gut erfassen. Szenarium Studie befasst sich mit guten 

Simulationen des Schwermetalle Transportprozess, wobei die Skalierungsfaktoren als der Maß 

der Variabilität sind. Allerdings, in den statistischen und geostatistischen Studien waren keine 

signifikanten Korrelationen zwischen den Skalierungsfaktoren sowohl verschiedener 

Schwermetalle als auch mit physikochemischen Bodeneigenschaften gefunden. Je nach 

Standort und Bodenhorizont variiert die Korrelation der Skalierungsfaktoren zwischen 

verschiedenen Schwermetallen so unterschiedlich und nicht übertragbar. Auch die 

Referenzisotherme aus direkte Messungen passen nicht mit der von einer Mischprobe 

resultierte Sorptionsisotherm, dass Skalierung geeignet für die homogenen Orte ist. Somit lasst 

sich der wichtige Befund in dieser Dissertation zusammenfassen, dass die Anwendung von 

Skalierungsfaktoren für Schwermetallsorptionsisothermen wie beispielsweise auf statistische 

oder geostatistische Auswertung nur für konkrete Fallstudien oder für eine Modellierung der 

Szenarien eingeschränkt ist. 
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1.1 Purpose and meaning of this study 

 

Soils are the most alive parts on the surface of the Earth and the soil science or pedologie is the 

study of soil as a natural resource by exploring the function, development as well as their 

distribution (Scheffer and Schachtschabel, 2010). Various kinds of pedological problems, e.g. 

soil processes with cycles of water, carbon, and nutrients and soil/environmental contamination, 

must be considered and evaluated at higher scale hierarchies of catena, soil region, landscape 

and so on (Pachepsky and Hill, 2017). The retardation of reactive substances in soil is one of 

these problems, despite investigative effort and deeper understanding of process knowledge last 

decades. On the one hand, the soil scientists usually have data collected at measurement or 

small scale. On the other hand, the farmers, who fertilize the farmland, or the policy makers, 

who take decisions of threshold values, need to know the results of environmental diagnostics, 

monitoring, and predictions at much larger scales. And yet, understanding of reactive 

substance’s behavior in soil at the scale of measurement do not always lead to a better 

description of processes at the scale of application (Deurer and Böttcher, 2007). Scaling, as the 

generally used scientific term, is the transfer of information between hierarchy levels or scales 

and is treated as a great challenge to connect the behavior and characterization between small 

scale and field scale and to evaluate their validation and efficiency by the corresponding models 

(Blöschl and Sivapalan, 1995). It is widely recognized that the scaling is not easy and the 

reasons that scaling usually fails are many, e.g. unknowable conceptual model errors, 

discrepancy in the scale of model occuring over a multitude of spatial and temporal scales, 

uncertainties related to model choice and omnipresent chemical and physical heterogeneities 

(Miller et al., 2010; Vereecken et al., 2016).  

The purpose of this study is to investigate the field-scale variability of reactive substances 

retardation in soil on sorption isotherms and a variety of physico- chemical soil properties by 
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applying Miller’s scaling technique to overcome problems of heterogeneity. In this dissertation, 

two study sites are selected, targeting soil samples along a transect retrieved from Haplic 

Luvisols near Lathwehren and Eutric Cambisols at Vinnhorst in the region of Hannover, 

Germany (Fig. 1.1). The primary aim is to quantify the relationship between the scaled sorption 

isotherms of heavy metals and the attendant physico- chemical soil properties by the means of 

statistical and geostatistical methodes. In addition, a numerical modeling of the heavy metal 

transport in unsaturated soils with upscaling the sorption process was simulated. In the 

following part of this chapter, the basic mechanism of heavy metals in soil, the physico- 

chemical soil properties impacting sorption and the history of Miller-Miller scaling theory were 

briefly reviewed. Three scientific questions and associated objectives were subsequently listed. 

Finally jet importantly, the outline of this dissertation was highlighted. 

 

Figure 1. 1 Overview soil map with different soil types and showing the localities of the two 

study areas (source: http://www.bgr.bund.de). A: the sampling site in Lathwehren. B: the 

sampling site in Vinnhorst  
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1.2 Research progress in Germany and abroad 

 

1.2.1 Heavy metals in soils 

 

The term “heavy metal” refers to the group of metals and metalloids of relatively high atomic 

mass (>5 g/cm3) (Alloway, 2012). In soil chemistry, heavy metals are grouped into trace 

element, where differ from other ‘major’ element constituting over 99% of the total element in 

world soil, including oxygen, silicon, aluminium, iron, calcium, sodium, potassium, magnesium, 

phosphorus, and so on (Sposito, 2008). Although trace elements are minor components of the 

solid phase of the earth’s crust, heavy metals and metalloids play an crucial role with biological 

effects. In trace amounts, most of these elements, like copper, zinc and cobalt, are beneficial to 

biosphere, the natural environment of living organisms. However, when their concentrations in 

the environment or in organisms are too high (extending the threshold value), they become 

detrimental. Even at very low ambient concentrations, some elements unknown with any 

essential biochemical functions, like mercury and lead, have the potential to injure the living 

organisms(Violante et al., 2012). 

Anthropic impact on the biosphere is a critically important factor, which influence the 

environment very broad and complex; and somw times irreversible (Kabata-Pendias, 2011). 

Anthropogenic sources are including irrigation water, atmospheric deposition, land application 

of agricultural materials, sewage sludge, as well as industrial wastes (Naidu et al, 1997). 

Relating to the heavy metals, atmospheric deposition is the most extensive form of 

contamination (Alloway, 2012). The air pollution has arisen from almost every combustion 

process and in many industrial sources in the form of dust and gaseous emissions (Bradl, 2005). 

For example in Germany, the emission of copper and zinc in 2015 increased by approximately 

30.7% and 20.9%, respectively, compared to 1990 (UBA, 2017). The Protocol on Heavy Metals, 
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an extending protocol to the Convention on Long-Range Transboundary Air Pollution, was 

approved in Denmark by the United Nations Economic Commission for Europe in 1998 to 

gradually reduce cadmium, lead and mercury emissions (Sands and Peel, 2012). 

The atmospheric deposited heavy metals and accompanying metalloids on the Earth's surface 

(mostly the bare soils) can be retarded and involved in a series of complex physical, chemical 

and biological interactions, including sorption–desorption reactions, precipitation and 

dissolution, oxidation–reduction, and solution and surface phase complexation (Violante et al., 

2007). The most significant process of heavy metal retardation in soil is the strong adsorption 

by the organic, and inorganic, colloidal constituents of soil, which controls the mobility and 

leaching danger in soils (Travis and Etnier, 1981).  

Soil scientists use different models to quantify heavy metals and metalloid ion adsorption by 

soil components, which are divided into two most common model groups, namely empirical 

adsorption models and chemical surface complexation models. A discussion on chemical 

surface complexation models is beyond the scope of this chapter, but can be found in the paper 

by Goldberg and Criscenti (2007). The empirical adsorption models has long history in soil 

chemisty, where as showed in their names, the description of experimental adsorption is 

realized through an isotherm. The sorption isotherm is a relationship bewteen the concentration 

of a solute on the surface of an adsorbent and the concentration of this solute in the liquid phase, 

where the temperature maintains (Scheffer and Schachtschabel, 2010). Linear sorption isotherm 

is the simplest form and widely used at a lower concentration. As nonlinear isotherm, Freudlich 

and Langmuir sorption isotherms are mostly discussed in soil science (Selim, 2015). Althought 

the non-linear function is more appropriate for describing the heavy metal’s sorption in soil, the 

quantification of their field-scale variations becomes difficult. A thorough discussion to solving 

the functional relations by scaling methodes is given in Chapter 3. 
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1.2.2 Impact factor of sorption: physico- chemical soil properties 

 

As stated in the last Section 1.2.1 the heavy metals and metalloids in soils are involved in a 

series of complex physical, chemical and biological processes, which in turn are related with 

several physico- chemical soil properties. A systematic discussion for understanding the fate 

on their relationship with soil properties was proposed by Buchter et al. in 1989, where they 

compared the correlation between Freundlich parameters Kd and n of 15 elements, also 

including heavy metals, and soil properties by 11 American soils (Buchter et al., 1989). They 

found that the most important soil property affecting sorption is pH; and cation exchange 

capacity influences the Kd value, when the initial speciation of elements is cation. 

Concurrently in Europe, some Dutch soil scientists investigated the sorption behavior with soil 

properties by modeling the transport of reactive solute in spatially variable soil systems, where 

they derived a sorption equilibrium model of cadmium that Kd was tightly correlated with pH 

and organic matter content (Van der Zee and Van Riemsdijk, 1987; Boekhold and Van der Zee, 

1992a). Boekhold and Van der Zee (1992b) named this relation as a “scaled sorption model”. 

Actually, this modification of sorption equilibrium model is in the same spirit as pedotransfer 

functions, which use statistical regression equations to express relationships between soil 

properties, and have been developed mainly in soil hydrology to predict soil water retention 

and hydraulic conductivity curves (Wösten et al., 2001). 

Thereafter, the prediction of solute adsorption parameters from basic soil properties by the 

means of pedotransfer functions has gained more attention in Germany. Springob and Böttcher 

(1998) parameterized the Freundlich coefficient of cadmium sorption in a sandy soil with three 

soil properties, namely organic carbon content, clay content and pH. Streck and Richter (1997) 

took the same strategy as Boekhold and Van der Zee (1992b) to model the cadmium and zinc 

displacement in a sandy soil at the field scale. Horn et al. (2004) also developed a pedotransfer 
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function of cadmium sorption by using even more soil properties and found high goodness-of-

fit for the approaches.  

In the 21st century, the increasing applications of fertilizers, and agricultural and industrial 

wastes to soils is also taken very seriously by environmental scientists. Sauvé et al. (2000) 

compiled data from more than 70 studies collected from the literature and summarized that the 

best correlated physico- chemical soil properties are pH and organic matter content. Carrillo‐

González et al. (2006) reviewed the impact factors including soil pH, chemical speciation, soil 

organic matter, fertilizers, redox potential, clay content and soil structure. Loganathan et al. 

(2012) complemented that cadmium sorption in soils is influenced as well by the kinetics of 

sorption. 

 

1.2.3 Miller-Miller scaling theory 

 

In 1956 the theory of similitude and the attendant technique named “scaling” was firstly 

proposed by two brothers Edward Miller and Robert Miller in soil physics (Miller and Miller, 

1956). The concept of scaling theory or similitude analysis has long been used in applied 

physics to analyze the relationships between physical functions with the minimal number of 

variables, by casting the variables into dimensionless form. At that time, this concept seemed 

to be obvious and logical, since the soil scientists could hardly generalize quantitative physical 

theories owning to the extreme variability of our soils. The Millers tried to make it more 

accessible to soil science and defined the appropriate criteria in soil hydrology research with 

two geometrically similar media that differs only by a characteristic length. Figure 1.2 

illustrates such “similar media” that can be scaled with mutually exchangeable characteristic 

length (e.g., λ1 and λ2). A detailed scaling method based on the Miller-Miller similar media 

theory is given in Chapter 3. 
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Figure 1. 2 Schema of two “similar media” in a geometrically “similar” partical systems. λ1 

and λ2 are the characteristic lengths. Modified after Böttcher (1997).  

 

Indeed, no plausible methode has been existed to explore a geometric similarity microscopically 

in 1950s and such “detailed similarity throughout the microscopic geometries of two media” 

by Millers’ statement “has zero probability”. Hence, the researchers among the first studied soil 

properties into the physical behavior of soil-water systems with coarse materials in the range of 

sands. For example, Klute and Wilkinson (1958 and Wilkinson and Klute, 1959) practiced 

firstly by soil-water retention curves coalesced into a single-scale mean function with graded 

sand and Elrick et al. (1959) tested capillary flow by evaluate the scaling in similar sands. 

As the result had no guarantee for maintaining similarity in media (eg. in pore space) and was 

limited by the sandy soil, the attention of soil scientists was turned into the infilteration by the 

classic work of Philip (1955, 1957) at the same period. Until 1970s the Miller-Miller similar 

media theory was picked up afresh as a promising approach for the field studies of soil-water 
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behavior against natural heterogeneity in field soils. A series of studies took the idea from Miller 

and Miller’s original concept using regression techniques rather than dimensional analysis to 

obtain the so called scale factors for soil water properties (Reichardt et al., 1975; Warrick et al., 

1977; Simmons et al., 1979).  

The scale factors calculated from the scaling procedure could reduce the hydraulic properties 

of various sampling locations to an average relationship; at the same time maintain the 

variability for every single scale factor. Comparing to the original concept two further 

assumptions was made, where 1) the using of saturation degrees instead of volumetric water 

content didn’t need to assume similar media to exhibit identical porosities and 2) the regression 

by the minimizing the sum of square to one avioded a search of microscopic physical length. 

This regression-based scaling method was named by Tillotson and Nielsen (1984) as 

“functional normalization”. 

Subsequently, Miller’s scaling gained its popularity in soil hydrologie and was widely used as 

a convenient method to identify the spatial variability of soil hydraulic properties (Jury et al., 

1987; Vogel et al., 1991; Ahuja and Williams, 1991; Kosugi and Hopmans, 1998; Ursino et al., 

2000; Das et al., 2005; Vogel et al., 2010; Schlüter et al., 2012; Sadeghi et al., 2016). 

Integration of Miller’s scaling at solving other soil physical problems was motivated. Spaans 

and Baker (1996) attempted to measure soil freezing characteristic and simulate the transport 

of water, heat, and solutes numerically in a two-dimensional Miller-Miller similar media. Selker 

and Schroth (1998) used the sorptivity by contact angle to examine the validity of scaling of 

macroscopic dimensions. Schwen et al. (2015) investigated the spatial and temporal variability 

of soil gas diffusivity by the means of scaling.  
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1.3 Tasks of this study and dissertation outline 

 

1.3.1 Research questions and objectives 

 

Understanding the retardation of reactive substances in soil is a crucial step for modeling the 

fate of many environmental chemicals. This process can be strongly influenced by the 

variability in the biogeochemical conditions over the spatial domain. The study how to quantify 

this spatial consideration is still infancy due to the lack of appropriate methods.  First, direct 

determining sorption in situ is impossible. Second, the adsorption experiments, which can be 

performed in either a closed system (batch reactor) or an open system (flow-through column), 

are both expensive and time consuming (Sposito, 2008). Other modern methods, i.e. 

spectroscopic and microscopic tools, did provide a new way to interpret the sorption processes 

and mechanisms on the solid structure microscopically. However, soils are such complicated 

mixtures of mineral and organic compounds that the adsorption experiments determining 

sorption isotherm will be used for a long time (Limousin et al., 2007). Some soil scientists 

develope statistical methods to indirectly estimate isotherm parameters of heavy metals, e.g. 

artificial neural networks (Anagu et al., 2009), tree regression analyses (Vega et al. 2010) and 

bayesian approach (Anagu et al., 2012). These methods are sophisticated and practical, however, 

a vast amount of sorption data is still needed, which are mainly derived from adsorption 

experiments. 

For the first time, Böttcher (1997) employed Miller-Miller scaling theory to scale cadmium 

sorption isotherms in soils. It was demonstrated that the scale factors calculating from the 

scaling procedure could reduce the sorption isotherms to an average relationship, while the 

variabilities are also maintained for every single scale factor. In a subsequent study (Böttcher, 

1998), a significant correlation between the scale factors of sorption isotherms of cadmium and 
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zinc, measured by adsorption from single-metal solutions, was found. However, because these 

works were limited to a sandy soil and two heavy metals, further experimental investigation is 

needed. 

The first objective of this dissertation was composed of two correlations, where the one was to 

test the relationship of the scale factors of sorption isotherms between the different, mostly 

competitively sorbed heavy metals (cadmium, copper, lead, and zinc) and another one was the 

comparison of the relationship between the calculated scale factors from the sorption isotherms 

of the heavy metals and the corresponding physical (clay content), chemical (pH, CEC, and 

oxides) and biological (organic carbon) soil properties.  

The second objective was to confirm, if the average relationship of isotherms can be represented 

with one single measured isotherm in a composite sample from the whole investigation area. 

As a possible result, a sufficiently certain quantification of the field-scale variation of heavy 

metal retention and mobility in soil may be obtainable from a combination of only a few of the 

expensive and time consuming measurements of heavy metal sorption, extensive measurements 

of soil properties, and calculation of scale factors of sorption isotherms from soil properties 

using multiple regression. 

The third objective was to model different scenarios of heavy metal transport in unsaturated 

soil. Spatial variability of sorption at every sampling point was represented using a scale factor, 

which was either directly calculated (using a scaling procedure) or indirectly estimated (using 

regression models with another heavy metal or from soil properties). The performance of the 

two scaling procedures in simulating spatially variable heavy metal transport should be 

compared to simulations with original sorption data, where the results would extend the use of 

scale factors from statistical description of spatially variable sorption isotherms (direct scaling 

procedure) to broadened application in prediction of reactive transport processes in soil by the 

indirect scaling procedure. 
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1.3.2 Outline of the dissertation 

 

This dissertation is divided into six chapters, which includes the Introduction (Chapter 1) and 

Final discussion (Chapter 6). The main part constitutes a compilation of three manuscripts 

which have been published in or are preparing for submission to international scientific peer-

reviewed journals. Repetitions are inevitable in some places (e.g. methods) of each manuscript. 

The three manuscripts are assigned into four chapters (Chapter 2, 3, 4 and 5). The brief 

overview of each study is listed as below. 

In Chapter 2, the measurement and sampling are briefly discussed. The sampling strategy was 

to collect samples along a transect, which is able to describe the entire field-scale variability of 

sampling sites, and makes different methods for evaluation of spatial variability (geostatistics, 

spectral variance analysis) applicable.  

Chapter 3 consists of one manuscript that scaling was applied to simplify the description of the 

statistical variations in the sorption properties at the field scale. a statistical analysis of the 

correlation between the scale factors of different heavy metals, and between scale factors of 

heavy metals and basic soil properties and the uncertainty of scaling, which occurs during the 

quantification of the variability of sorption isotherms from measurements, scaling procedures 

and site-specific variations is presented.  

Chapter 4 investigates the field-scale variability of heavy metal sorption in soil by the means 

of scaling and explored the hierarchical structure and nonstationarity of scaled sorption 

behaviour in space with other physico-chemical properties by multivariate statistics and 

geostatistics. The spatial structural relationships between scale factors of heavy metal sorption 

and soil properties were analysed with a linear model of coregionalization and principal 

component analysis according to the potential correlations at different scales. In one study 
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region, nonstationary in the mean was observed and the data were transformed by residual 

maximum likelihood. 

Chapter 5 simulates the heavy metal transport with HYDRUS model using a unique reference 

sorption isotherm (derived using the scale procedure or mixed soil samples), where the spatial 

variability of sorption was accounted by direct calculation of scale factors for sorptions or 

indirect calculation of scale factors from physicochemical soil properties. And for comparison, 

variability of sorption was also simulated using the original measured Freundlich parameters. 
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2.1 Survey of study area 

 

2.1.1 Sampling site and strategy of sampling 

 

In this study, two sampling sites (permanent agricultural land) in the region of Hannover, 

Germany, were selected: one with loess-derived Haplic Luvisols, located near Lathwehren (LA), 

and another with Eutric Cambisols from loamy to sandy deposits, located near Vinnhorst (VI). 

The sampling strategy was to collect samples along a diagonal line (transect) of the total area 

(approximately 1 hectare). This method is considered because transect sampling is able to 

describe the entire field-scale variability of sampling sites (Cassel et al., 2000), and makes 

different methods for evaluation of spatial variability (geostatistics, spectral variance analysis) 

applicable (Nielsen and Wendroth, 2003, Pennock et al., 2008). Each sampling site was divided 

into two horizons (topsoil: 0 - 30 cm, subsoil: 30 - 60 cm). For each horizon, 50 samples were 

taken along a transect at 5-m intervals; thus, in total, 200 soil samples were collected from the 

four horizons. Each sample consisted of four auger subsamples taken in the close vicinity 

around the particular location. The four subsamples were mixed and bulked. All soil samples 

were air dried and sieved to remove particles larger than 2 mm. The material < 2 mm in grain 

size was used for the analyses. In addition, for each horizon, we took 5 g of material from each 

of the 50 samples and homogenized these into a single, composite sample. 

 

2.1.2 Laboratory measurement 
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The 204 prepared (200 natural samples and four composite samples) soil samples were analyzed 

in the laboratory of the Soil Science Institute of Hanover. Several basic soil physico-chemical 

properties were measured (Table 2.1). 

 

Table 2. 1 Methods for measuring physico-chemical soil properties.  (Source: Utermann et al., 

2005) 

Soil property [Unit] Method 

Texture [%] Pipette method after Koehn (<63 µm) 

Dry sieving (>63 µm) 

DIN* 19683-2 

pH (CaCl2) [-] Potentiometric by use of a glass electrode in 0.001 

M CaCl2 

DIN ISO^ 10390:1997 

Total carbon [%] C-N-S elementary analysis 

DIN ISO 10694 

Total carbonate [%] Gas volumetric 

DIN ISO 10693 (1997) 

Total organic carbon (OC) [%] Difference between total carbon and total 

carbonate 

Oxalate extractable oxide by Fe, Mn 

and Al  

(Feox, Mnox, Alox) [mg kg-1] 

Extraction with oxalic acid ammonium oxalate 

DIN 19684-6 

Measure with flame-AAS 

Effective cation exchange capacity 

(CECeff) [mmolc kg-1] 

Percolation with 0.1 M BaCl2 

Modified by DIN 19684-8 

Measurement of Ca, Mg, K, Na, Fe, Mn and Al 

with ICP-OES, determination of H+ ion 

concentrations from pH value 

* German Institute for Standardization 

^ International Organization for Standardization 



 

Measurement and sampling 

25 

 

For determination of the sorption isotherms, 7 g of each sample was added to a Ca(NO3)2 

electrolyte solution with different concentrations according to different standards (Heidkamp, 

2005). Cd was then added as Cd(NO3)2*4H2O at a Cd concentration of 0.5 to 20 mg/l, Cu as 

Cu(NO3)2*3H2O at a Cu concentration of 1 to 40 mg/l, Pb as Pb(NO3)2 at a Pb concentration of 

2 to 100 mg/l and Zn as Zn(NO3)2*6H2O at a Zn concentration of 2 to 80 mg/l. The soil-solution 

ratio was 1:5. The soil suspension was rotationally shaken for 24 h at 20°C. After centrifugation 

(15 min at 3600 g), the residual concentration of heavy metal in the supernatant was measured 

after each other by inductively coupled plasma optical emission spectrometry (ICP-OES) and, 

if necessary, by inductively coupled plasma mass spectrometry (ICP-MS) after dilution. The 

initial content of the adsorbed heavy metals of each sample was derived via extraction with a 

solution of Na2-EDTA (soil-solution ratio was 1:10). 

 

2.2 Varity of sorption isotherm and soil parameters 

 

2.2.1 Choosing models 

 

The adsorbed amount, S, was calculated from the difference between the initial added 

concentration, Ci, and residual concentration, C, in the supernatant with simultaneous 

consideration of the native adsorbed amount, S0, and the term m refers to the soil:solution ratio: 

𝑆 = 𝑚(𝐶𝑖 − 𝐶) + 𝑆0. (2.1) 

The adsorbed term S in Equation (2.1) and the residual concentration C usually have a nonlinear 

relationship, which was described by the Freundlich equation: 

𝑆 = 𝐾𝐶𝑛, (2.2) 
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where K is the Freundlich coefficient and n is the Freundlich exponent. 

The Freundlich equation can be transformed to a linear form: 

log 𝑆 = log𝐾 + 𝑛𝑙𝑜𝑔𝐶. (2.3) 

Hence, 𝑙𝑜𝑔 𝐾 is the intercept, and n is the slope when Equation (2.3) is graphically expressed. 

A disadvantage of the linear form is the insensitivity (Goldberg, 2005). Thus, the fitting of the 

sorption isotherm was performed with a quality control, which was applied by using the 

methods from Utermann et al., (2005). 

 

2.2.2 Characterization of the soil properties and the sorption isotherm 

 

The essential requirement for the comparison of the correlation by means of statistics is the 

distribution of the sorption isotherms and the sorption-relevant soil properties within the sample 

collection. Table 2.2 lists the basic statistical information of the soil properties, including pH, 

effective cation-exchange capacity (CEC), and texture, which contains only the means and 

coefficients of variation (mean divided by standard deviation). The raw data provides an 

overview of the four soil horizons. In Lathwehren, the soil pH was near neutral in the topsoil 

and slightly alkaline in the subsoil. For Vinnhorst, the pH was slightly acidic and decreases 

from the topsoil to subsoil. The texture at each site did not change between topsoil and subsoil. 

Clay is considered to be the most influential factor for sorption. Clay represented approximately 

12% of the soil at LA and approximately 17% at Vinnhorst. The sand content was small for 

Lathwehren but dominated the texture at Vinnhorst. The organic carbon content was 

considerably higher for Vinnhorst and decreased from the topsoil to the subsoil. In general, the 

variability of the soil properties at Vinnhorst was much larger than at LA, especially for the 

Vinnhorst subsoil.
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Table 2. 2 Summary statistics of soil properties. A: At Lathwehren. B: At Vinnhorst.

 

 A pH CECeff OC Carbonate sand clay silt Feox Alox Mnox 

- mmolckg-1 -------------------mass%-------------------- --------- gkg-1-------- 

Mean 

Topsoil 6.9 101.3 1.3 0.0391 3.8 11.1 85 2.6 0.6 0.3 

Subsoil 7.2 73.7 0.3 0.0395 3.3 12 84.9 2.6 0.6 0.2 

CV 

[%] 

Topsoil 2.2 9.8 36.7 113.1 11.5 8.7 1.2 3.7 3.7 10.9 

Subsoil 1.9 16.5 40.2 127.2 10.0 12.9 1.7 5.1 6.3 16.4 

B 

Mean 

Topsoil 5.9 145. 6 3.5 0 48.7 17.2 34.1 4.5 1.3 0.2 

Subsoil 5.3 197.1 0.6 0 44.7 17.6 37.7 5.8 0.4 0.2 

CV 

[%] 

Topsoil 7.5 18.4 20.5 0 18.5 23.3 15.1 22.2 26 30.7 

Subsoil 18.9 12.9 45.9 0 36.7 38 29.2 69.3 46.7 132.8 
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The physical soil properties are represented by the texture data. In the scaling theory, the 

fundamental point of sorption similarity was also based on the geometric similarity of soil 

particles. We assumed that the sorption isotherm must be correlated with the microscopic 

structure of the soil. Clay has often been found to have a great affinity for dissolved heavy metal 

ions (e.g., Springob and Böttcher, 1998b, Vega et al., 2010). Figure 2.1 shows a texture triangle 

with all the soil sampling points of the four sampled horizons. It provides not only the texture 

information for soil classification but also the variability of the sites. As shown in Figure 2.1, 

 

 

Figure 2. 1 Texture triangle with texture data of the soils at the sampling sites Lathwehren and 

Vinnhorst according to the world reference base (IUSS Working Group WRB, 2014). 
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the main texture of both horizons at Lathwehren was silt with only slight variation. In contrast, 

the texture of the Vinnhorst site was not as homogeneous and included a broad range from loam 

to sandy loam. In particular, the subsoil horizon extended across at least three texture classes. 

According to the sampling numbers 1 and 50, which were marked in Figure 2.1, the data showed 

that although the texture was highly variable, it could still be treated as spatially continuous. 

The parameters K and n are representative values of the sorption isotherm, and their statistical 

means and coefficients of variation are shown in Table 2.3. All data sets could be parameterized 

by the Freundlich Equation, indicating that sorption is the predominant retardation process at 

the given concentration level. The parameter K varied much stronger than n, which has been 

confirmed by many other studies as well (e.g., Springob and Böttcher, 1998a; Deurer and 

Böttcher, 2007; Altfelder et al., 2007). Considering the CVs of n in the Vinnhorst subsoil in 

Table 3B, the variation of n was still relatively strong. 

 

2.2.3 Relations between Freundlich parameters 

 

The most common methods of correlation analysis are Pearson’s correlation and Spearman’s 

rank correlation. In a study by Deurer and Böttcher (2007), the Spearman’s method was 

performed, but this method might be inappropriate for our objective because the actual values 

are replaced by their ranks and it would not exhibit the real but the distributional relationships 

(Douaik et al., 2011). Therefore, Pearson’s correlation was used in this study. According to the 

classical statistical theory, the data needs to satisfy five conditions (Warner, 2008). First, each 

variable must be independent. Second, the variables should be quantitative and normally 

distributed. Third, between the two variables, the linear relationship must be followed, and the  
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Table 2. 3 Summary statistics of sorption isotherm parameters K and n. A: At Lathwehren. B: 

At Vinnhorst. 

*The unit of K is µg1-nLn and the unit of n is unit less 

 

bivariate normal distribution is also required as the fourth condition. The last condition is that 

the two variables should have roughly equal or homogeneous variance.  

When we compared the coefficients of variation of these two parameters for all heavy metals 

and all sites, the result exhibited a linear relationship with rather weak correlation (regression 

all data in Figure 2.2, r = 0.44). Four of the data points were located far from the regression line, 

outside the 95% confidence band (Figure 2.2). On trial, we assumed these data to be outliers, 

and calculated a second regression (regression without outliers in Figure 2.2, r = 0.97). The 

regression line is more or less the same, and the close correlation indicates that the variability 

of n was mostly not independent of the variability of K. This finding could improve studies of 

pedotransfer functions of heavy metal sorption in soil, where n is usually neglected while 

A 

Cd Cu Pb Zn 

K* n K n K n K n 

Mean 

Topsoil 1407.4 0.81 250.3 1.34 74815 0.66 7497.7 0.51 

Subsoil 2271.2 0.8 148.2 1.62 87415 0.66 13509 0.49 

CV [%] 

Topsoil 34 6.6 38.4 8.3 29.2 21 24.2 5.1 

Subsoil 32.7 5.9 59.2 10.2 28.9 18 17.3 6.6 

B         

Mean 

Topsoil 967.3 0.8 558.2 1.08 22549 0.74 1995.6 0.65 

Subsoil 719.3 0.95 1082.8 0.95 48817 0.68 3031.9 0.7 

CV [%] 

Topsoil 44.8 10.9 32.9 7 58 9.1 71.8 11.9 

Subsoil 134.3 8.8 96 40.2 109.3 17.7 134.3 21.7 
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indirectly deriving K from soil properties (Streck and Richter, 1997). Buchter et al. (1989), who 

did not directly compare the CVs of K and n, concluded from a comprehensive data set of 

sorption that K and n are both correlated with pH, which might support our findings from other 

perspectives. However, the four outliers indicate that some uncertainty with the interpretation 

of the variability of Freundlich K and n remains. 

 

Figure 2. 2 Relation between Freundlich parameters K and n (expressed by the coefficients of 

variation, CV). 
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Abstract 

 

The ability of soils to sorb heavy metals is quantified by sorption isotherms. The field-scale 

variability of heavy metal sorption isotherms across fields of apparently “homogeneous” soil is 

often very large and makes the upscaling of point measurements to larger scales problematic. 

This may be overcome by scaling of sorption isotherms, which is a method that potentially 

reduces the wide spread of the isotherms into a reference or average isotherm, respectively, but 

preserves the variation through calculated scale factors. At two study sites near Hannover, 

Germany (loess soil at Lathwehren, loamy to sandy soil at Vinnhorst), we investigated the field-

scale variability of the sorption isotherms of cadmium (Cd), copper (Cu), lead (Pb) and zinc 

(Zn). For each site, 50 samples were taken along a 250 m transect at two depths. Further, for 

each site and depth a composite sample was mixed from aliquots of the 50 transect samples. 

Sorption isotherms of single heavy metals were measured, along with a range of soil properties, 

including pH, CEC, OC, and texture. The isotherms were successfully parameterized by the 

Freundlich equation and were spatially very variable. Calculation of scale factors for the 

sorption isotherms was successful, as scaling reduction of variance was high (from 64% to 99%). 

We then tested if correlations between scale factors of different heavy metal sorption isotherms, 

and also to soil properties existed. Such correlation were expected, because heavy metals (e.g. 

Cd and Zn) are competitively adsorbed, and the respective soil properties directly relate to ion 

sorption in soil. Significant correlations between scale factors of heavy metal sorption isotherms 

were only found at one site and depth (in the loamy to sandy subsoil). Thus, these relationships 

were site- and depth specific and are not generalizable. In addition, significant correlations 

between scale factors of heavy metal sorption isotherms and soil properties occurred only 

sporadically, and were not transferrable. One possible reason for this might be that the data 

were transformed (difference transformation) prior to correlation analysis to obtain normality. 
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A further objective was to prove, whether the average isotherms can be represented by a single 

measured isotherms of the composite samples from the area. This was found to hold at the loess 

site, but not at the loamy to sandy site. This indicates that scaling is favorable to sites not too 

much differing in soil texture. Although correlation analysis revealed only sporadic and not 

transferrable correlations, a multiple linear regression equation for the Lathwehren subsoil was 

found to predict Cu sorption scale factors from organic carbon content and cation exchange 

capacity. From our investigation we conclude that scaling is a useful tool to quantify and 

express field-scale variability of heavy metal sorption isotherms in soils. However, a prediction 

of scale factors from simple soil properties was only partly successful and needs further research 

efforts. 

 

 

3.1.1 Introduction 

 

Heavy metals can be found in almost every combustion process and in many industrial sources 

in the form of dust and gaseous emissions (Bradl, 2005). The Convention on Long-Range 

Transboundary Air Pollution (CLRTAP), held in 1979 by the United Nations Economic 

Commission for Europe (UNECE), aimed to gradually reduce and prevent air pollution, 

including heavy metals (Sands and Peel, 2012). Recently, certain data from the Federal 

Environmental Agency of Germany (one of the UNECE member countries) has shown that the 

amounts of cadmium, lead and mercury from air emissions, which were targeted by the 

CLRTAP Protocol, significantly decreased within the last two decades, whereas certain other 

heavy metals increased. For example, the emission of copper and zinc in 2011 increased by 

approximately 25.4% and 17.9%, respectively, compared to 1990 (UBA, 2013). The heavy 

metals from non-point source pollution (air emissions, fertilizer, waste disposal, etc.) are 
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deposited on the Earth's surface (mostly the bare soils) across a large area (Violante et al., 2007) 

and retained in the soil as a “chemical time bomb” (Stigliani et al., 1991). These metals have 

the potential to harm environment and human health (Selim and Sparks, 2001; Alloway, 2012). 

During the heavy metal retardation process in the soil, a series of physical, chemical and 

biological processes are involved (Violante et al., 2007). The evaluation of the existence and 

the behavior of this kind of heavy metal in soils within a large area is, however, an unsolved 

problem. 

The main problem arises from the heterogeneity of soil (Heuvelink and Webster, 2001). The 

most significant process in heavy metal retardation in soil is the adsorption of these reactive 

substances. In other words, adsorptive bonding primarily controls the mobility and leaching 

danger in soils (Travis and Etnier, 1981). Literature studies have shown that the sorption of 

heavy metals varies strongly in soils, because of variation i.a. in soil pH, clay content, oxide 

content, and soil organic carbon content (e.g., Boekhold and van der Zee, 1992; Streck, 1993; 

Springob and Böttcher, 1998a, Altfelder et al., 2007). Equilibrium models and kinetic models 

are the traditional ways to describe the sorption behavior in soils (e.g., Bruemmer et al., 1986; 

Dube et al., 2001), and simple adsorption isotherm equations are often used to model heavy 

metal adsorption in soils at low concentrations (Sposito, 2008). The classical equilibrium 

modeling is described by the Freundlich equation or the Langmuir equation, and the modeling 

is able to obtain the needed sorption information with a high degree of accuracy (Buchter et al., 

1989). However, the estimation of the sorption property is time consuming and expensive. 

Additionally, the non-linear function that describes the sorption also makes the quantification 

of field-scale variation difficult. Few studies have examined the relationship between measured 

soil properties and the sorption isotherms because there is no means to compare the single-

valued property and the functional property directly. Consequently, the understanding of field-

scale variation of heavy metal sorption is still limited. 
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A means of converting the non-linear into a linear relationship without changing the inherent 

variability is the so-called “scaling” method. Scaling has a long history and exists in various 

disciplines of natural science. It addresses the transformation of information across different 

spatial or temporal scales (Roth, 2008). One confirmed scaling theory was introduced by Miller 

and Miller (1956) in soil physics and represents one of the milestones in the area of soil water 

research (Raats and van Genuchten, 2006). Under the assumption of geometric similarity of the 

soil matrix, the soil water properties, such as pressure head (h) and hydraulic conductivity (K), 

are related to a corresponding characteristic length (r*) by mathematical expression ℎ ℎ∗⁄ =

𝑟∗ 𝑟⁄  and 𝐾 𝐾∗ = (𝑟 𝑟∗⁄ )2⁄ . The most attractive feature of scaling is the ability to describe the 

probability density distribution and the spatial structures of correlation using the scale factor α 

(= 𝑟 𝑟∗⁄ ) (Vereecken et al., 2007). Although scaling in soil physics research varies in technique 

(Tillotson and Nielsen, 1984), it has been confirmed as a convenient way to quantify spatially 

variable soil water characteristics (Roth, 1995; Wendroth et al., 1999; Deurer et al., 2001). Even 

more scaling can be used as an efficient tool for numerical research, which has been integrated 

into certain simulation programs of soil water flow and transport, such as HYDRUS (Simunek 

et al., 2006).  

Böttcher (1997) employed Millers’ scaling theory for the first time to scale Cd sorption 

isotherms. He demonstrated that the scale factors, which were calculated from the scaling 

procedure, could reduce the sorption isotherms to an average relationship, while also 

maintaining the variability for every single scale factor. In a subsequent study, a significant 

correlation between the scale factors of sorption isotherms of cadmium and zinc, measured by 

adsorption from single-metal solutions, was found (Böttcher, 1998). This correlation very 

probably results from the competitive sorption of these metal ions (e.g. Zemanová et al., 2014). 

I.e. both metals adsorb to the same positions on soil particles, and thus, have the same 

adsorption variability. However, because these works were limited to a sandy soil and two 

heavy metals, further experimental investigation is needed to prove whether the relation 
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between the scale factors is equal or biased systematically, and whether the finding of tightly 

related scale factors is valid for other heavy metals and other soils. 

In this study, we investigated the field-scale variability of heavy metal sorption isotherms of 

Cd, Cu, Pb, and Zn in soils from two study sites (same extents, different variations), each with 

two soil horizons. Scaling was applied to simplify the description of the statistical variations in 

the sorption properties at the field scale. The first objective was to test the relationship of the 

scale factors of sorption isotherms between the different, mostly competitively sorbed heavy 

metals. Because Tillotson and Nielsen (1984) stated that scale factors “make it possible to 

examine the relationship between soil functions and easily measured, single valued soil 

properties”, the second objective was the comparison of the relationship between the calculated 

scale factors from the sorption isotherms of the heavy metals and the corresponding physical 

(clay content), chemical (pH, CEC, and oxides) and biological (organic carbon) soil properties. 

The third objective was to confirm, if the above-mentioned average relationship of isotherms 

can be represented with one single measured isotherm in a composite sample from the whole 

investigation area. Additionally, the accompanied uncertainty is evaluated from measurements, 

scaling procedures and site-specific variations. Finally, prediction of scale factors of sorption 

isotherms from soil properties using multiple linear regressions will be tested. As a possible 

result, a sufficiently certain quantification of the field-scale variation of heavy metal retention 

and mobility in soil may be obtainable from a combination of only a few of the expensive and 

time consuming measurements of heavy metal sorption, extensive measurements of soil 

properties, and calculation of scale factors of sorption isotherms from soil properties using 

multiple regression. 
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3.1.2 Material and Methods 

 

3.1.2.1 Evaluation design 

 

The evaluation design was organized as follows (Figure 3.1). In the first step, study sites for 

evaluating the field-scale sorption of heavy metals in soil were chosen, and sampling 

representing the field variability was performed. Second, laboratory measurements, including 

analyses of basic soil physico-chemical properties and sorption isotherms, were taken to ensure 

enough data for the following statistical analysis. Then, the scaling procedure was applied to 

both the basic properties and the sorption functions. Furthermore, three criteria from different  

 

Figure 3. 1 Overview of the evaluation of field scale variability of heavy metal sorption 

isotherms in soil using scaling and statistical procedures. 
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viewpoints (sample size, averaging and reduction by scaling) were considered to validate the 

intensity of the soil survey and the efficiency of the scaling method. Last, the correlations and, 

if possible, regression analyses of the scale factors were examined.  

 

3.1.2.2 Scaling of the sorption isotherm 

 

Similar to other soil science or earth science data, the sorption properties of soils should also 

obey the central limit theorem as a continuous random variable, and the data can be statistically 

described by a probability density function (Caers, 2011): 

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓𝑥(𝑥)
𝑏

𝑎
𝑑𝑥. (3.1) 

However, in reality, the data were collected discretely from sampling points. For instance, the 

soil chemical property pH can be determined for R soil samples: 

𝑝𝐻 = (𝑝𝐻1 𝑝𝐻2 … 𝑝𝐻𝑅). (3.2) 

With these data, a mean and a variance can be calculated to describe the distribution and 

variability of a given soil property. In statistics, the mean characterizes the central tendency. 

The variance describes the dispersion of a probability density function. Unfortunately, as shown 

in Section 2.2.1, the Freundlich sorption isotherms are quantified with two dependent 

parameters, which make the calculation of the mean and variance difficult. Therefore, the 

scaling method of Böttcher (1997) is adopted. Using these R samples as an example, R sorption 

isotherms can be measured and described by the Freundlich equation (Equation 2.2). At a 

certain absorbed amount S1, the R residual concentrations C can be calculated from the R 

Freundlich equations and listed as 

𝐶1 = (𝐶1,1 𝐶1,2 … 𝐶1,𝑅). (3.3) 
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At a higher absorbed amount S2, other R concentrations can be calculated and listed as 

𝐶2 = (𝐶2,1 𝐶2,2 … 𝐶2,𝑅). (3.4) 

Thus, for r (=1, 2 … R) sorption isotherms, a matrix can display the entire information of the 

sorption isotherms, if the number of j (=1, 2 … J) absorbed amounts Sj is large enough: 

𝑪 =

[
 
 
 
𝐶1,1 𝐶1,2

𝐶2,1 𝐶2,2

⋯
⋯

𝐶1,𝑅

𝐶2,𝑅

⋮ ⋱ ⋮
𝐶𝐽,1 𝐶𝐽,2 ⋯ 𝐶𝐽,𝑅 ]

 
 
 
. (3.5) 

The scale relationship for the residual concentration C in soil solution is 

𝑀𝑗,𝑟 = 𝛼𝑗,𝑟
2 𝐶𝑗,𝑟 , (3.6) 

where M is the “scale mean” named by Simmons et al. (1979) and α is the scale factor, which 

makes a relationship between the mean and a single isotherm. The reason that the scale factor 

needs to be squared is given elsewhere (Böttcher, 1997, see scaling rule of sorption isotherms). 

Thus, Equation (3.5) can be reformed as 

𝑪 =

[
 
 
 
 
 
 
𝑀1,1

𝛼1,1
2

𝑀1,2

𝛼1,2
2

𝑀2,1

𝛼2,1
2

𝑀2,2

𝛼2,2
2

⋯
⋯

𝑀1,𝑅

𝛼1,𝑅
2

𝑀2,𝑅

𝛼2,𝑅
2

⋮ ⋱ ⋮
𝑀𝐽,1

𝛼𝐽,1
2

𝑀𝐽,2

𝛼𝐽,2
2 ⋯

𝑀𝐽,𝑅

𝛼𝐽,𝑅
2 ]

 
 
 
 
 
 

. (3.7) 

The principle of scaling is valid for a collection of R soil samples when the sorption similarity 

of Böttcher (1997) exists and the scale factors αr satisfy the scaling relationships (3.6) with the 

following constraint: 

1

𝑅
∑ 𝜶𝒓

𝑅
𝑟=1 = 1. (3.8) 

If the scale factors satisfy the normalization condition (3.8), then the scale means are given by 
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1

√𝑀𝑟
=

1

𝑅
∑

1

√𝐶𝑟

𝑅
𝑟=1 . (3.9) 

After rearrangement, Equation (3.9) becomes 

𝑀𝑟 = 𝑅2 [∑ (√𝐶𝑟)
−1

𝑅
𝑟=1 ]

−2

. (3.10) 

Hence, a reference isotherm can be computed from j points of the scale means. The scale factors 

αr are unknown, but a criterion must hold that each sorption isotherm has only one scale factor 

to the reference isotherm: 

{

𝛼1,1 = 𝛼2,1 = ⋯ = 𝛼𝐽,1 = 𝜶𝟏

𝛼1,2 = 𝛼2,2 = ⋯ = 𝛼𝐽,2 = 𝜶𝟐

⋮
𝛼1,𝑅 = 𝛼2,𝑅 = ⋯ = 𝛼𝐽,𝑅 = 𝜶𝑹

. (3.11) 

For instance, the first rows of matrices (3.5) and (3.7) can be written as  

[
 
 
 
𝐶1,1

𝐶2,1

⋮
𝐶𝐽,1]

 
 
 
=

[
 
 
 
 
 
𝑀1,1

𝜶𝟏
2

𝑀2,1

𝜶𝟏
2

⋮
𝑀𝐽,1

𝜶𝟏
2 ]
 
 
 
 
 

. (3.12) 

To facilitate the calculation, a transformation to natural logarithms can be made: 

[
 
 
 
Ln𝐶1,1

ln 𝐶2,1

⋮
ln 𝐶𝐽,1 ]

 
 
 
=

[
 
 
 
ln𝑀1,1 − 2 ln𝜶𝟏

ln𝑀2,1 − 2 ln𝜶𝟏

⋮
ln𝑀𝐽,1 − 2 ln𝜶𝟏]

 
 
 

. (3.13) 

Hence,  

∑ ln𝐶𝑗,1
𝐽
𝑗=1 = ∑ ln𝑀𝑗,1

𝐽
𝑗=1 − 2𝐽 ln𝜶𝟏 , (3.14) 

and 

𝜶𝟏 = exp[(2𝐽)−1 ∑ (ln𝑀𝑗,1 − ln𝐶𝑗,1)
J
j=1 ]. (3.15) 
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Using the same algorithm, α2 … αR can be calculated. Thus, the whole set of αr is derived. This 

algorithm is only valid for the sorption processes that can be described with sorption isotherms, 

and this algorithm was used in this study. In other cases, in which the sorption isotherms could 

not be quantified with an empirical equation (Sposito, 2008), we suggest the use of the least 

square method of Warrick et al. (1990) (see approach 2 in Böttcher, 1997). 

 

3.1.2.3 Scaling of soil properties 

 

The soil properties also needed to be scaled to make the comparison of relationships meaningful. 

Similar to the calculation of the scale means from the sorption isotherms, the following 

relationship was applied to scale soil properties: 

𝑆𝑃𝑚 = 𝛼𝑟
2𝑆𝑃𝑟 , (3.16) 

where SPm is the scale mean of a soil property, SPr is the measured value of this soil property 

at sampling point r, and αr is the corresponding scale factor. The reason for the squared scale 

factor in Equation (3.16) is, that the respective soil properties form particle surface area in soil 

(OC, clay, oxides), or they are directly related to surface area (CEC, pH). And, as outlined in 

Böttcher (1997), phenomena related to surface area have squared scale factors. 

Because certain soil properties, such as pH and CEC, are single values without functional 

dependences, the scale mean and scale factors can be simply derived from 

𝑆𝑃𝑚 = 𝑅2 [∑ (√𝑆𝑃𝑟)
−1

𝑟
1 ]

−2

, (3.17) 

and 

𝛼𝑟
′ = √

𝑆𝑃𝑚

𝑆𝑃𝑟
, (3.18) 
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where 𝛼𝑟
′  is the non-normalized factor and should be converted under the normalization 

condition 

𝛼𝑟 = 𝑅𝛼𝑟
′ (∑ 𝛼𝑟

′𝑅
𝑟 )−1. (3.19) 

 

3.1.2.4 Uncertainty analysis 

 

When the scaling procedure is performed for such a nonlinear relationship, information must 

be lost because of the scaling. One disadvantage of scaling was determined by Oliveira et al. 

(2006); the scale factor could lead to underestimation of the true variability in the heterogeneous 

unsaturated flow field. Thus, more questions arise and can be generalized into the concept of 

“uncertainty”. 

 

3.1.2.4.1 Reduction by scaling 

 

Böttcher (1997) has stated that the sorption similarity likely does not exist in natural soils. 

Therefore, the scaling is not able to exactly reconstruct the variability of the sorption isotherm. 

It is necessary to formulate an expression that can be used to rate the efficiency of the scaling 

in a single value. This difference, which comes from the sum of the squares between individual 

data points and the reference isotherms, was defined as the “reduction by scaling” (RS) using 

the following equation: 

𝑅𝑆 =
𝑆𝑆𝑏𝑒𝑓𝑜𝑟𝑒−𝑆𝑆𝑎𝑓𝑡𝑒𝑟

𝑆𝑆𝑎𝑓𝑡𝑒𝑟
, (3.20) 

where SS refers to the sum of squares of natural logarithm deviations from the mean isotherm. 
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3.1.2.4.2 The problem of averaging  

 

Scaling can be considered to be an averaging method from the small scale to the large scale, 

which has been widely discussed as “upscaling” the soil water problem. However, as stated in 

Zhu and Mohanty (2003), the different averaging methods may have different degrees of 

appropriateness in describing a heterogeneous situation. In addition to scale means, a series of 

averaging procedures for soil properties (arithmetic, geometric and harmonic mean) were 

applied to test the scaling results under the influence of different means. 

The arithmetic mean is 

𝑆𝑃𝐴𝑚 =
1

𝑅
∑ 𝑆𝑃𝑟

𝑅
𝑟=1 . (3.21) 

The geometric mean is 

𝑆𝑃𝐺𝑚 = √∏𝑆𝑃𝑟
𝑅

. (3.22) 

The harmonic mean is 

𝑆𝑃𝐻𝑚 =
𝑅

1

𝑆𝑃1
+

1

𝑆𝑃2
+⋯+

1

𝑆𝑃𝑅

. (3.23) 

The corresponding scale factors can be calculated using Equations (3.18) and (3.19). 

 

3.1.2.4.3 Sample size 

 

When the distribution of a population is unknown, the sample size is crucial to deriving an 

accurate spatial description. If the sampling strategy is insufficient from the beginning, it will 

be difficult to obtain the true population depending on the distribution of sampling unless the 
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sample size is increased. A useful criterion was summarized by Mulla and McBratney (1999) 

and further discussed by Webster and Lark (2013), who stated that the desired sampling number 

N is derived from 

𝑁 =
(𝑡2𝑠2)

𝑑2
, (3.24) 

where t is the tabulated value of Student’s t-distribution (for instance, 1.96 within a 95% two-

sided confidence interval), s is a preliminary estimate of the standard deviation and d is the 

deviation desired between the mean and the population. N was determined to judge the efficient 

size of samples for future sampling campaigns.  

 

3.1.2.5 Statistical analysis 

 

The data analyses were performed using SPSS 21 software in four steps:  

1. The distributions of soil properties and sorption isotherms were described with classical 

statistics (arithmetic mean and coefficient of variation, CV) (was done in Chapter 2). 

2. Normality tests were applied (Kolmogorov-Smirnov test). When the variables did not have 

normality, logarithm transformations or difference transformations of time series analysis 

were performed. 

3. The correlations of scale factors between different heavy metal sorption isotherms were 

determined. The correlations of scale factors between sorption isotherms and soil properties 

were determined. 

4. A multiple linear regression for each heavy metal was applied using the determined 

relationships between sorption isotherms and physico-chemical soil properties. 
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3.1.3 Results and Discussion 

 

3.1.3.1 Scaling results 

 

In Figure 3.2A, the 50 measured sorption data points for cadmium in the Lathwehren topsoil, 

for instance, were plotted together. After scaling, the points were close to the reference isotherm 

(Figure 3.2B), and the variability was preserved in the individual scale factors.  

 

Figure 3. 2 Cadmium sorption isotherms for the 50 soil samples under study in the Lathwehren 

topsoil. A: Measured data before scaling. B: Data after scaling. The line shows the calculated 

reference isotherm. 

 

Due to the definition of scaling, the calculated mean of a set of scale factors is always equal to 

one. Only the coefficients of variation are listed in Table 3.1. It is already known that the scale 

factors for Vinnhorst should have a larger span than those for Lathwehren, based on Tables 2.2 

and 2.3. Three further statements can be made. 

1. The scale factors of the sorption isotherm vary stronger than the scale factors of the soil 
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properties. 

2. A similar order of magnitude of coefficients of variation (CV) between the different 

heavy metals (except copper) was observed in each horizon, which raises the question 

that the variability of sorption between heavy metals may be correlated.  

3. The coefficients of variation of the soil properties’ scale factors are similar to half of the 

CVs of soil properties. The cause of this is the squared relationship in Equation (3.6).  

 

Table 3. 1 Coefficients of variations (CV) of the scale factors. A: At Lathwehren. B: At 

Vinnhorst. 

 

CV [%] α(Cd) α(Cu) α(Pb) α(Zn) 

A Topsoil 12.7 5.0 18.4 14.4 

Subsoil 14.4 10.3 20.0 14.2 

B Topsoil 19.1 7.7 36.1 37.5 

Subsoil 91.1 62.7 94.1 99.2 

 

 

CV [%] α(H+) α(CECeff) α(OC) α(clay) α(Feox) α(Alox) α(Mnox) 

A Topsoil 17.4 4.8 9.6 4.3 1.8 1.9 5.7 

Subsoil 15.0 8.2 12.5 7.0 2.6 3.2 8.3 

B Topsoil 51.2 9.6 9.5 12.9 12.0 13.5 13.9 

Subsoil 99.5 6.3 28.0 30.0 45.3 31.9 95.8 
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3.1.3.2 Uncertainty analysis 

 

3.1.3.2.1 Reduction by scaling 

 

After scaling, the reduction of SS is rather enormous, as shown in Table 3.2. An explanation 

how these reductions influence the correlation analysis in Section 3.1.3.6 can be found in Table 

3.2. For instance, the reductions of the four heavy metals from the subsoil at Vinnhorst have 

the highest values (more than 88%) among the four horizons. This high reduction might be the 

reason why the scale factors of the heavy metals led to the high correlation with each other. 

Additionally, the finding in Section 3.1.3.1, which indicates that the scale factors between 

different heavy metals have the same order of magnitude, could also be attributed to the high 

correlation. However, we also noticed that the sum of squares after scaling in the Vinnhorst 

subsoil is even higher than the SS before scaling in other soil horizons, which indicates that 

some variability is not covered by the scale factors. This variability portion not covered by 

scaling depends on the variability of Freundlich n in relation to the variability of Freundlich K, 

as can be seen by the significant (P = 95%) correlation (r = 0.75) depicted in Figure 3.3. The 

reduction of SS by scaling decreases with increasing relative variability of n. The regression is 

confirmed by the two independent data points in Figure 3.3 (data of Böttcher, 1997, and Deurer 

and Böttcher, 2007) that were not included in the regression analysis. I.e., the relative variability 

of n, calculated by the ratio of CV% of n to CV% of K, is a suitable indicator of scaling 

uncertainty in terms of reduction of SS. 
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Figure 3. 3 Dependence of scaling reduction of variance on the relative variability of 

Freundlich parameter n (expressed by the ration of coefficients of variation (CV): CV n/CV K). 

 

3.1.3.2.2 Different averaging procedures 

 

Following the idea of comparing the reference isotherm with composite soil samples, the 

averaging procedure for soil properties was also investigated using different mean values. This 

analysis was performed with the methods introduced in Section 3.1.2.4.2. The different 

averaging methods could indeed generate different scale factors but do not affect the results of 

correlations in Section 3.1.3.5 and 3.1.3.6 (figures not shown). After normalization by Equation 

(3.19), the scale factors of different averaging procedures became identical.  
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Table 3. 2 Scaling reduction of sorption isotherms. SS: Sum of squares of natural logarithm deviations from the mean isotherm. RS: Scaling reduction 

of variance. A: At Lathwehren. B: At Vinnhorst. 

A  SSbefore SSafter RS [%] B  SSbefore SSafter RS [%] 

Topsoil 

Cd 20 3 85 

Topsoil 

Cd 55 14 73 

Cu 4 1 72 Cu 8 1 88 

Pb 80 29 64 Pb 158 7 96 

Zn 27 3 88 Zn 180 21 89 

Subsoil 

Cd 32 3 92 

Subsoil 

Cd 1458 10 99 

Cu 14 1 89 Cu 725 85 88 

Pb 85 22 74 Pb 2043 31 99 

Zn 34 8 75 Zn 2048 130 94 
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3.1.3.2.3 Sample size 

 

As an example of sample size calculations, the mean of the scale factors of cadmium in the 

Vinnhorst subsoil is 1, and the standard deviation is 0.9 (Table 3.1). If the deviation, d, in 

Equation (3.24) is desired not to exceed 0.1, i.e., 10% of the mean, one would have to collect 

312 samples. For d ≤ 0.2, i.e., 20% of the mean, one would have to collect 78 samples. These 

results are obviously greater than the original 50 samples. From the statistical perspective, 

Jaccard and Becker (2002) also suggested the collection of more than 100 samples to avoid 

situations where some extreme outliers cause a large negative effect on the assumptions of 

normality or linearity. Thus, future sampling campaigns for evaluation of sorption variability 

should consider 80 to 100 samples per site. 

 

3.1.3.3 Composite soil sample 

 

As demonstrated in Böttcher (1997), the scaling can reduce the variability into an averaged 

relationship. At the design step of this investigation, we were aware that in addition to the scale 

factors, the reference isotherm is also important. The scale factors are useful for prediction or 

monitoring purposes only if it is associated with a reference isotherm. The mixing of soil 

samples may be a practical way to derive the reference isotherm. The sorption isotherms of the 

composite soil samples (topsoil and subsoil at Lathwehren and Vinnhorst) were compared with 

the reference or average isotherms, respectively, calculated from the scaling procedure. The 

results showed that the isotherm from the composite samples is located in a narrow range of the 

reference isotherm with respect to the whole field-scale variation at the Lathwehren site (texture: 

silt with only slight variation, Figure 2.1). For instance, in Figure 3.4A, the reference isotherm 
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was close to the isotherm derived from the composite cadmium soil samples. However, a large 

deviation appeared at the Vinnhorst site (texture: broad range from loam to sandy loam, Figure 

2.1), especially at higher concentrations (Figure 3.4B). This indicates that scaling is favorable 

to sites not too much differing in soil texture. 

 

Figure 3. 4 Comparison of reference isotherm and the isotherm derived from the composite 

soil sample based on the sorption data. Solid line: reference isotherm; dashed line: isotherm 

derived from the composite sample. A: Cadmium in the Lathwehren topsoil, B: Cadmium in 

the Vinnhorst topsoil. Note the different scales of the X axes. 

 

3.1.3.4 Site specific distribution  

 

A precondition for calculation of Pearson’s correlation coefficients is that the scale factors of 

isotherms and soil properties should obey a normal distribution. For example, the scale factors 

of Pb sorption isotherms in the topsoil and subsoil of the Lathwehren site are normally 

distributed, which can be determined either readily from the histogram (Figure 3.5, A and B) 

or calculated by the Kolmogorov-Smirnov (KS) test. The asymptotic significances of the KS 

test were 0.55 for topsoil and 0.25 for subsoil. However, the scale factors of both the topsoil 
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and subsoil at Vinnhorst are neither normally nor lognormally distributed (Figure 3.5, C and 

D). They show two central tendencies in the histogram, which means there are two modes at 

the Vinnhorst sampling transect. Nevertheless, similar to the texture of this site shown in 

Section 3.1, the scale factors of the Pb sorption isotherms were spatially continuous and varied 

with a tendency (Figure 3.5, G). To eliminate the influence of this spatial tendency, a first-order 

differencing transformation based on a time series analysis was performed as follows: 

∆𝛽 = 𝛽𝑚 − 𝛽𝑚−1, (3.25) 

where the factor ∆𝛽 is the difference between two adjacent data points 𝛽 of m soil samplings. 

After the transformation, the distribution of α(Pb) was reinstituted as normality (Figure 3.5, E 

and F), and the asymptotic significance of the KS test reached 0.33 for topsoil and 0.06 for 

subsoil. 

 

3.1.3.5 Correlation at Lathwehren 

 

The scale factors between Cd and Pb and between Cd and Zn are relatively weakly correlated 

(Table 3.3A). Almost every heavy metal was correlated with the scale factor of soil pH (H+ in 

Table 3.3). After removing an outlier, an even more meaningful result is that the coefficient of 

correlation between Cd and H+ in the subsoil increased to r = 0.811. Thus, this correlation could 

be solid evidence indicating that the sorption is closely correlated to the soil chemical conditions. 

Another correlation was also found; Cu exhibited a correlation with effective CEC and organic 

carbon in both horizons. This was also found by Zhou et al. (2003), who explained the 

predominant interaction of soil organic matter with Cu at pH conditions above 6.8. 
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Figure 3. 5 Histograms of the scale factors in Lathwehren and Vinnhorst. Bell-shaped curve: 

normal distribution curve. A: α(Pb) for the Lathwehren topsoil, B: α(Pb) for the Lathwehren 

subsoil, C: α(Pb) for the Vinnhorst topsoil, D: α(Pb) for the Vinnhorst subsoil, E: transformed 

α(Pb) for the Vinnhorst topsoil, F: transformed α(Pb) for the Vinnhorst topsoil. G: scale factors 

of the Pb sorption isotherms along the Vinnhorst transect. 
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3.1.3.6 Correlation at Vinnhorst 

 

As determined in Section 3.1.3.4, the scale factors at Vinnhorst were neither normally nor 

lognormally distributed. After differencing transformation, the data of topsoil at Vinnhorst were 

finally normally distributed. Among the heavy metals, only copper had a weak relationship with 

lead and zinc (Table 3.4A). The soil chemical property H+ correlated with both cadmium and 

zinc. For other soil properties, Mn oxides had common relationships with three heavy metals; 

these relationships were not observed at Lathwehren. The scale factors in the subsoil of 

Vinnhorst varied much more than in any other soil horizon, which has already been shown in 

Table 3.1. The bimodal distribution was also more pronounced than in the topsoil. After 

transformation, certain soil property variables still could not be changed into a normal 

distribution. Thus, we decided to divide this horizon into two groups. The first group were 

observations from 0 to 110 m along the transect (see Figure 3.5, G). The second group were 

observations from 110 to 250 m distance. The scale factors of the heavy metals were normally 

distributed in both parts, but certain soil property scale factors still did not satisfy the conditions 

of normal distribution. The difference transformation was used once again to fix this problem. 

Finally, all scale factors were normally distributed, and the correlations are shown in Tables 

3.4B and 3.4C. Mn oxide was correlated with most heavy metals. At the distance from 110 to 

250 m, organic carbonate was also correlated with the heavy metals; this correlation was not 

observed in the first group. Strong correlations were found between every heavy metal scale 

factor. Because the same situation was not found in the topsoil, a partial correlation was 

performed to examine whether these correlations arise from site-specific influences or if they 

are indeed correlated. After examination, only the correlations between Pb and Cu and between 

Cd and Zn in the first 110 m and between Cd and Pb in the rest 140 m were significant at α=0.01. 
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We are compelled to note that an easily neglected problem was revealed by the testing for 

normal distributions. The KS test assumes the data are normally distributed as hypothesis H0. 

Using the mean and variance, a normal distribution function is constructed and is calculated 

from the samples themselves. The significance between a sample value and the corresponding 

value calculated from the new normal distribution function is then used to test whether the 

hypothesis H0 should be rejected or not. It can be strongly affected by the sample size and 

outliers. For instance, the non-transformed subsoil data from 110 to 250 m have a normal 

distribution in the KS test. In the correlation analysis, all scale factors were unexpectedly 

correlated. These findings could lead us to a wrong conclusion. Because the mean and variance 

come from the samples themselves, it is necessary to respect the effect of the degrees of freedom. 

The Lilliefors test, which is adopted in the KS test, and the Shapiro-Wilk (SW) test can be used 

when a sample size is < 50 (Vereecken and Herbst, 2004). The non-transformed data of samples 

23-50 then demonstrated that they could not pass the Lilliefors or SW test. 

 

3.1.3.7 Prediction from easily measured soil properties  

 

The correlation analysis and the uncertainty analysis demonstrated considerable difficulty in 

capturing the field-scale variability of sorption with suitable accuracy. One possible reason for 

this might be the unavoidable data transformation (differencing). Certain valuable results were 

found after the regression analysis for the Lathwehren site. For instance, the regression of 

copper sorption in the Lathwehren subsoil was obtained from the correlation result in Section 

3.1.3.5. A relationship between the scale factor of the Cu sorption isotherm, the OC and the 

CEC can be derived using the following equation: 

𝛼𝐶𝑢 = 1.027 + 0.62𝛼𝑂𝐶 − 0.651𝛼𝐶𝐸𝐶 . (3.26) 
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Table 3. 3 Pearson’s correlation coefficients between scale factors of heavy metal sorption isotherms and soil properties. A: Lathwehren topsoil. B: 

Lathwehren subsoil. 

A α(Cu) α(Pb) α(Zn) α(H+) α(CECeff) α(OC) α(Feox) α(Mnox) α(Alox) α(clay) 

α(Cd)  0.332* 0.499** 0.667**   -0.359* -0.298*   

α(Cu)    0.428** -0.424** 0.431**     

α(Pb)       -0.438** -0.461**   

α(Zn)    0.675**       

B           

α(Cd)  0.306* 0.354* 0.655**     0.348* 0.279* 

α(Cu)  0.373**  0.468** -0.400** 0.543** 0.474**  -0.376**  

α(Pb)   0.297* 0.434**  0.548**     

α(Zn)    0.516**       

⁎⁎: significant at P=0.01; ⁎: significant at P=0.05 (double sites) 

 



 

Scaling of Sorption Isotherm and Soil Properties 

62 

 

Table 3. 4 Pearson’s correlation coefficients between scale factors (after difference transformation) of heavy metal sorption isotherms and soil 

properties. A: At the Vinnhorst topsoil. B: At the Vinnhorst subsoil, sample numbers 1-22. C: At the Vinnhorst subsoil, sample numbers 23-50. 

A α(Cu) α(Pb) α(Zn) α(H+) α(CECeff) α(OC) α(Feox) α(Mnox) α(Alox) α(clay) 

α(Cd)    0.384** -0.313*   -0.422**   

α(Cu)  0.457** 0.337*     -0.370**   

α(Pb)    0.428**    -0.421*   

α(Zn)           

B           

α(Cd) 0.609** 0.584** 0.564** 0.465*    -0.619**   

α(Cu)  0.897** 0.674**     -0.641**   

α(Pb)   0.615**    -0.483* -0.728** 0.513*  

α(Zn)    0.455*    -0.468*   

C           

α(Cd) 0.796** 0.901** 0.847**   -0.592**  -0.425*   

α(Cu)  0.838** 0.625**   -0.599**  -0.439*   

α(Pb)   0.801**   -0.386*  -0.440*   

α(Zn)     -0.574** -0.513** -0.386* -0.444*  -0.410* 

^ Data of Mn oxides are not transformed.  

⁎⁎: significant at P=0.01; ⁎: significant at P=0.05 (double sites) 
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OC and CEC are two independent variables at this specific site, and they were detected by the 

principal component analysis and had no relationship in the correlation matrix. The 

determination coefficient R2 is 0.52, which means that more than 52% of the variation in 

copper’s scale factors is predictable using Equation (3.26). Furthermore, the isotherm from the 

composite samples is very close to the reference isotherm, as explained in Section 3.1.3.3. 

Based on these two conditions, a prediction of the field-scale variability of copper sorption can 

be made. A scatter plot of the predicted and the measured concentrations in the Lathwehren 

subsoil is shown in Figure 3.6. Certain comparable results demonstrated that by using the 

multiple regressions, the variation proportion of the Cd sorption parameter K, which could be 

explained by the basic soil properties, represents 44% of the total variation (Deurer and Böttcher, 

2007) and only one-sixth in the study of Altfelder et al. (2007). However, in another study of 

the spatial variability of atrazine sorption parameters and other soil properties in a podzoluvisol, 

Jacques et al. (1999) concluded that these regressions have no meaning due to the low 

correlation coefficients.  

 

Figure 3. 6 Comparison between measured and predicted dissolved Copper concentrations in 

the Lathwehren subsoil. 
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3.1.4 Conclusions 

 

This investigation showed that the variability of sorption isotherm parameters K and n was 

linearly related. The five conditions of Pearson’s correlation test are strict for the collected data; 

thus, the evaluation has a certain subjective component. In one horizon at one study site, we did 

find a correlation of scale factors between the sorption of different heavy metals, which means 

that the first objective was satisfied under certain site specific conditions. We also found that 

the sorption of heavy metals in soil varied more strongly than all of the other measured soil 

properties. The variations in sorption were difficult to capture via the measured soil properties, 

which means that the second objective was not established. However, the regression analysis 

showed that the combination of the composite soil sample and the variation in measured soil 

properties could still describe the field-scale distribution of heavy metal sorption in soils. Hence, 

we conclude that scaling is a useful tool to quantify the variation of sorption isotherms at the 

field scale. Furthermore, the calculation of scale factors provides opportunities for spatial data 

analysis, which could be used to detect the spatial correlation structure of scale factors, and 

allows to use point measurements for geostatistical modeling (e.g. kriging, Nielsen and 

Wendroth, 2003). Especially the prediction of scale factors from simple soil properties needs 

improvement and thus, further research efforts. 
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Abstract 

 

Taking two agricultural areas of Hannover, Germany, as case studies, we investigated the field-

scale variability of heavy metal sorption in soil by the means of scaling and explored the 

hierarchical structure and nonstationarity of scaled sorption behaviour in space with other 

physico-chemical properties by multivariate statistics and geostatistics. The spatial structural 

relationships between scale factors of heavy metal sorption and soil properties were analysed 

with a linear model of coregionalization and principal component analysis according to the 

potential correlations at different scales. In one study region, nonstationary in the mean was 

observed and the data were transformed by residual maximum likelihood. Respecting particular 

correlation structures, all of these methods were applied to isolate and to display different 

sources of variation from small to large scale. In the first case study, the variogram of heavy 

metal sorption was fitted by three spatial structures, i.e. one nugget and two spherical scales. 

Unfortunately, the correlation between heavy metals was unusual at large scale and thus only 

two spatial structures remained. Nonetheless, the circles of correlation revealed a much stronger 

relationship between cadmium and zinc than ordinary correlation. Further study showed that 

the scaled soil physico-chemical properties were not correlated with heavy metal species at each 

nested scale. In the second case study in presence of nonstationary, the sorption of lead in soil 

was correlated to that of cadmium at the spatial-variation scale. The results indicate that the 

scaling can represent the spatial structures of soil sorption and relevant physico-chemical 

properties and multivariate geostatistical analysis is a meaningful way to reflect the principal 

features at different scales.  
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4.1.1 Introduction 

 

Evaluation of the field-scale variability of heavy metal sorption in soils involves 

characterization of solute adsorption and transport properties in field soil. This has long been 

considered as a key problem in soil physics research (Vereecken et al., 2016), because the soil 

properties controlling the transport and retention of water and reactive chemicals remain 

difficult to be measured and the measurements are time consuming (Degryse et al., 2009).  

Furthermore, it is widely acknowledged that the architecture of soils varies in space 

considerably from the microscopic pore scale all the way up to the landscape/catchment scale 

(Pachepsky and Hill, 2017). More efforts are needed to develop scaling relations for a statistical 

characterization and averaging across soil structure, for instance, representative elementary 

volume in soil hydrology, to interpret hydraulic properties at larger scales (Jury et al., 2011). 

An averaging means to define “effective” properties that represent the functional relationships 

between volume-averaged quantities, which are model and scale dependent (Durner and Lipsius, 

2005). Soil science is currently limited by lack of understanding the importance of effective 

properties in a variety of heterogeneous soils. More and more sophisticated models have been 

used in the determination of transport and retention properties at all scales (Steefel et al., 2015). 

However, before a suitable model is selected, a thorough understanding and characterization of 

soil structure and sorptional functioning and to relate structure and function in a model are still 

important steps. Therefore, quantitative description of physical, chemical, and biogeological 

interactions in soil at multiple scales represents a great challenge, particularly in terms of 

dealing with soil heterogeneity and model uncertainties. 

The research into field-scale variability of reactive chemicals sorption in soils has been less 

intensive than studies of soil hydraulic properties. However, this field has received increasing 

amounts of interest in recent years not only in agricultural soil science but also in soil and 
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environmental science (Jacques et al., 1999; Steefel et al., 2005; Carrillo-Gonzalez et al., 2006; 

Miller et al., 2010). The reactive chemicals usually include nutrients, pesticides, and heavy 

metals (Minasny and Perfect, 2004). Pesticides and heavy metals are today taken very seriously 

as contaminants from agricultural, industrial, and other sources (Šimůnek et al., 2013). In 

addition, their sorption by soil components have been described with various empirical 

equilibrium models (distribution coefficients, and Freundlich and Langmuir adsorption 

isotherms) and chemical surface complexation models (Travis and Etnier, 1981; Goldberg et 

al., 2007). For pesticide adsorption, the linear adsorption isotherm (distribution coefficient) is 

frequently applied because of its easy integration into various models (Wauchope et al., 2002). 

However, it has been generally found that increased metal concentration increases sorption of 

heavy metal in soil, but the rate of increase decreases (Loganathan et al., 2012). Consequently, 

non-linear isotherms such as Freundlich adsorption isotherm, as saturated sorption at greater 

loadings are most appropriate and the sorption is always related to soil properties. Therefore, 

soil scientists traditionally use pedotransfer functions to estimate sorption from soil properties 

for which data are more readily available (van der Zee and van Riemsdijk, 1987; Springob and 

Böttcher, 1998; Horn et al., 2004; Minasny and Perfect, 2004). 

Böttcher (1997) created a new avenue for delineating heavy metal adsorption in field soil that 

employs the Millers’ scaling (1956) theory (see Pachepsky and Hill, 2017 for an extensive 

review). Regarding the assumption of geometric similarity of sorption results from microscopic 

particle systems, the soil sorption isotherm properties, namely adsorbed amount (S) and soil 

residual concentration (C), for i similar soils are related through a corresponding scale factor 

(αi) by scaling rule for sorption isotherms of solutes in soils and thus, concentrations Ci can be 

transformed to a mean concentration Cm, by this single scale factor: 𝐶𝑚 = 𝛼𝑖
2𝐶𝑖  (Böttcher, 

1997). Xiao et al. (2015) demonstrated that the scaling procedure could reduce the sorption 

isotherms to a scale-representative average or “effective” relationship at the field or 
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management scale, meanwhile calculated scale factors could maintain the spatial variability of 

each sorption isotherm at the small scale or measurement points. 

In our previous study (Xiao et al., 2015), Pearson product-moment correlations, or simply 

ordinary correlations between scale factors of heavy metals and soil properties were discussed. 

We found that the sorption of heavy metals varied much more strongly than other measured 

soil properties, hence, use of the measured soil properties to predict sorption parameters was 

difficult. As stated by Wendroth et al. (2012), an individual stage of a process is relevant to the 

previous stage in a deterministic or a probabilistic way. Thus, a spatial soil process is the change 

of a variable or a state function consisting of multiple underlying effects or factors across a 

spatial domain. The relationships between soil properties may also vary in accordance with 

their spatial separation. Understanding these relationships is important in predicting sorption 

parameters from soil physico-chemical properties. Factorial kriging analysis was developed to 

solve such problems by combination of multivariate statistics and geostatistics (Goovaerts, 

1992; Wackernagel, 2003). It is based on the theory of coregionalization and principal 

component analysis. Webster et al. (1994) were among the first to test factorial kriging analysis 

by revealing the spatial correlation of trace metals in the soil of the Swiss Jura. Castrignanò et 

al. (2000) investigated the spatial relationships among some soil physico-chemical properties 

of a field in central Italy. Nanos and Martin (2012) attempted to identify the source of heavy 

metal in soil in a Spanish river basin. However, this approach has not, in the soil science 

literature, been applied to characterize the relationships among soil sorption and other basic soil 

properties. 

The aim of the present study was to reveal the spatial structural relationship between the 

calculated scale factors from the sorption isotherms of heavy metals (cadmium, copper, lead 

and zinc) and the corresponding soil properties (pH, organic carbon, oxalate extractable oxides 

and soil texture). The first objective was to explore the nested spatial structure of scale factors 
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of sorption isotherms. A linear model of coregionalization was then applied, owing to the 

potential existence of common spatial structures at different scales. The second objective was 

to confirm, whether the ordinary correlation is enhanced by a scale-dependent analysis of the 

correlation structure among variables, where the principal components between scaled heavy 

metal sorption and physico-chemical soil properties were systematically checked. In addition, 

the residual maximum likelihood estimator was discussed for the variables with covariance 

structures that were not necessarily stationary. This motivated the last objective of this study, 

to assess the spatial structure of heavy metal sorption in soils after detrending and to identify 

their relations among heavy metals and soil properties at different scales of the whole area. 

 

 

4.1.2 Material and Methods 

 

4.1.2.1 Multivariate geostatistical analysis 

 

Geostatistics has been introduced in soil science for almost 40 years, following initial work by 

Burgess and Webster (1980). Geostatistics has proven popular for solving problems in soil 

science areas such as determination of soil physical and chemical properties, experimental 

design and sampling methods including soil mapping, and soil quality management. 

Accordingly, soil scientists have benefited from these methods, especially after the explosive 

growth of powerful software in recent years. Several textbooks on geostatistics including soil 

science content are available (e.g. Goovaerts, 1997; Webster and Oliver, 2007; Chilès and 

Delfiner, 2012). 
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As long as one soil sample is taken, a number of soil parameters can be measured either in the 

field or in the laboratory. Sometimes all of these soil parameters need to be analysed together 

when geostatistical methods are used in determination of the spatial structure. Multivariate 

geostatistical analysis always starts from assuming i regionalized variables, known as random 

functions Zi(x). All these variables are defined over a domain D of ℝn: 

{𝑍𝑖(𝑥) ∶ 𝑥 ∈ 𝐷 ⊂ ℝ𝑛}. (4.1) 

We say multi random functions are joint second-order stationary, when they satisfy the 

following two conditions. The first is characterized by their means: 

E[𝑍𝑖(𝑥)] = 𝑚𝑖. (4.2) 

The second is the existence of covariance. In multivariate cases (e.g. for variables i and j), the 

direct and cross-covariances C(h) of i and j are expressed in matrix form: 

C(h) = Cov[𝑍𝑖(𝑥), 𝑍𝑗(𝑥 + ℎ)] = 𝐸[{𝑍𝑖(𝑥) − 𝑚𝑖}{𝑍𝑗(𝑥 + ℎ) − 𝑚𝑗}], (4.3) 

where h, known as the lag, is the spacing between measurement points x and x + h. When h=0, 

C(h) becomes the classical variance-covariance matrix V, that is 

C(0) = E[{𝑍𝑖(𝑥) − 𝑚𝑖}
2] = 𝑉. (4.4)

In a weaker condition, namely joint intrinsic hypothesis for these i random functions, their direct 

and cross-variograms matrix Γ(h) could also be derived in the form of 

𝚪(𝐡) =
𝟏

𝟐
𝐂𝐨𝐯[{𝒁𝒊(𝒙 + 𝒉) − 𝒁𝒊(𝒙)}{𝒁𝒋(𝒙 + 𝒉) − 𝒁𝒋(𝒙)}]. (𝟒. 𝟓) 

where C(h) andΓ(h) are functions of the lag and the lag only. The relationship between the 

cross-variogram and the cross-covariance, when it exists, is as follows: 

𝚪(𝐡) = 𝐂(𝟎) −
𝟏

𝟐
[𝑪(𝒉) + 𝑪(−𝒉)]. (𝟒. 𝟔) 
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Goovaerts (1992) and Wackernagel (2003) both assumed that the correlation between Z(x) and 

Z(x+h) disappears if the lag h goes to infinity, i.e. C(h) and C(-h) become to zero. From 

Equations (4.4) and (4.6), the following relation between the variogram and the variance-

covariance is derived: 

Γ(h) → 𝑉          𝑓𝑜𝑟 |ℎ| → ∞. (4.7) 

This is the important foundation for the theories given in Sections 2.2, 2.3, and 2.4. A soil 

process can operate and interact in terms of a mixed effort from different soil properties 

(Webster and Oliver, 2007). Each soil property has its own spatial structure (Cambardella et al., 

1994). This means that the spatial variation of this process could simultaneously occur on scales 

by different orders of magnitude. This so-called nested or hierarchical spatial structure can be 

observed through the nested variogram function, i.e. a special form of Γ(h) (Goovaerts, 1999). 

Then the classical variance-covariance matrix V could be replaced by this nested form of Γ(h), 

since the mixture of different correlation structures is now separately analysed. 

 

4.1.2.2 Coregionalization matrix and linear model of coregionalization 

 

In a geostatistical framework, a regionalized process could be thought of as being the sum of 

several independent subprocesses simultaneously occurring at different characteristic scales. At 

each scale, a random function exists with its own covariance function or variogram. These 

functions build up this process together linearly (Goovaerts, 1992): 

𝛾(ℎ) = 𝛾0(ℎ) + 𝛾1(ℎ) + ⋯+ 𝛾𝑆(ℎ), (4.8) 

where γ(h) is the variogram and formed as a combination of two or more, here S, individual 

variograms. 
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If an assumption is made that those processes are uncorrelated then Equation (4.8) could be 

represented by the sum of S normalized variograms: 

𝛾(ℎ) = ∑ 𝑏𝑘𝑔𝑘(ℎ)

𝑆

𝑘=0

, (4.9) 

where gk(h) is the kth normalized variogram function and bk is a coefficient that measures the 

relative contribution of the variance of gk(h) to the sum.  

The equations described above represent the univariate circumstance of the nested variogram 

model known as linear model of regionalization. It can be expanded to multivariate form by 

using matrix notation, after which Equation (4.9) becomes 

Γ(ℎ) = ∑ 𝐵𝑘𝑔𝑘(ℎ)

𝑆

𝑘=0

. (4.10) 

whereΓ(h) is the i × i variogram matrix for these i random functions and Bk is a positive semi-

definite matrix of coefficients bk known as a coregionalization matrix. This is the form of linear 

model of coregionalization. Through Equation (4.7) and (4.10), the classic variance-covariance 

matrix V is turned into several coregionalized variograms at different characteristic scales. 

Experimentally the variogram functions are nested, and based on the principle of parsimony 

and potential instability, S should not be more than 3 (Goovaerts, 1992). 

 

4.1.2.3 Analysis of correlation structure 

 

The statistical correlation function is a special expression of covariance between two variables, 

Zi(x) and Zj(x) (Wassermann, 2004). Normalizing the covariance function yields the classic 

correlation function: 
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𝜌𝑖𝑗 =
𝐶𝑜𝑣[𝑍𝑖(𝑥), 𝑍𝑗(𝑥)]

√𝑉𝑎𝑟[𝑍𝑖(𝑥)] ∙ 𝑉𝑎𝑟[𝑍𝑗(𝑥)]

=
𝜎𝑖𝑗

𝜎𝑖 ∙ 𝜎𝑗
, (4.11)

 

where ρij is the coefficient of correlation. However, this correlation dose not account for the 

spatial aspect that may exist between observations. The coefficient of codispersion was 

introduced by Matheron (1965) as an interpretive tool to analyse the spatial correlation between 

the variations of Zi(x) and those of Zj(x): 

𝜌𝑖𝑗(ℎ) =
𝐶𝑜𝑣[𝑍𝑖(𝑥) − 𝑍𝑖(𝑥 + ℎ), 𝑍𝑗(𝑥) − 𝑍𝑗(𝑥 + ℎ)]

√𝑉𝑎𝑟[𝑍𝑖(𝑥) − 𝑍𝑖(𝑥 + ℎ)] ∙ 𝑉𝑎𝑟[𝑍𝑗(𝑥) − 𝑍𝑗(𝑥 + ℎ)]

=
𝛾𝑖𝑗(ℎ)

√𝛾𝑖𝑖(ℎ) ∙ 𝛾𝑗𝑗(ℎ)
. (4.12)

 

For the data sets with a spatially hierarchical structure, a structural correlation coefficient could 

be derived: 

𝜌𝑖𝑗
𝑘 =

𝐶𝑜𝑣[𝑍𝑖
𝑘(𝑥) − 𝑍𝑖

𝑘(𝑥 + ℎ), 𝑍𝑗
𝑘(𝑥) − 𝑍𝑗

𝑘(𝑥 + ℎ)]

√𝑉𝑎𝑟[𝑍𝑖
𝑘(𝑥) − 𝑍𝑖

𝑘(𝑥 + ℎ)] ∙ 𝑉𝑎𝑟[𝑍𝑗
𝑘(𝑥) − 𝑍𝑗

𝑘(𝑥 + ℎ)]

 

=
𝛾𝑖𝑗

𝑘(ℎ)

√𝛾𝑖𝑖
𝑘(ℎ) ∙ 𝛾𝑗𝑗

𝑘 (ℎ)

=
𝑏𝑖𝑗

𝑘

√𝑏𝑖𝑖
𝑘 ∙ 𝑏𝑗𝑗

𝑘

. (4.13)
 

This coefficient of structural correlation reflecting the relationship between the two variables 

no longer depends on the lag h, instead, at the different hierarchical structures. In this way, the 

most effective correlation coefficient could be found, which is hidden in the classical correlation 

coefficient and is more pedologically plausible. 

 

4.1.2.4 Principal component of coregionalization matrices 
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The idea of combining multivariate statistics, here specifically principal component analysis, 

to analyse linear model of coregionalization was proposed by Matheron (1982) and was 

introduced by Goovaerts (1992) into soil science. This approach is known as factorial kriging 

analysis. This analysis can be used for kriging or cokriging of a particular component on the 

basis of random functions, or for analysis of a multi-dimensional spatial vector in the same 

spirit as principal component analysis (Chilès and Delfiner, 2012). 

Principal component analysis is a linear factor analysis method based on the mathematical 

concept of eigenvalues and eigenvectors and is widely used because of its simple algebra and 

straightforward interpretation. The variance-covariance structure of a set of variables can be 

explained through a few linear combinations of these variables to reach the goals of data 

reduction and interpretation. More detailed theory can be found in Johnson and Wichern (2007) 

and Wackernagel (2003).  

A linear model of coregionalization is thought to be associated with an orthogonal 

decomposition of the form: 

𝑍𝑖(𝑥) = 𝑚𝑖(𝑥) + ∑ ∑ 𝐴𝑘(𝑖, 𝑣)𝑌𝑣
𝑘(𝑥)

𝑝

𝑣=1

𝑆

𝑘=0

. (4.14) 

Here, Yv
k(x) are uncorrelated random functions, with zero mean and a variogram, which is 

proportional to the same normalized variogram gk(h) with a factor Ak. The expression of this 

variogram of any pair of variable i and j is 

𝛾𝑖𝑗(ℎ) = ∑ ∑ 𝐴𝑘(𝑖, 𝑣)

𝑝

𝑣=1

𝐴𝑘(𝑗, 𝑣)𝑔𝑘(ℎ)

𝑆

𝑘=0

, (4.15) 

and combining Equations (4.10) and (4.15) yields: 

𝐵𝑘 = ∑ 𝐴𝑘(𝑖, 𝑣)𝐴𝑘(𝑗, 𝑣)

𝑝

𝑣=1

= 𝐴𝑘(𝐴𝑘)𝑇 . (4.16) 
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The only preliminary requirement of this equation is that Bk must be positive definite, which 

makes Ak infinite solutions. A natural determination of the matrices Ak could be conducted with 

principal component analysis, following which a new orthonormal coordinate system 

diagonalizing B is defined as (Chilès and Delfiner, 2012): 

𝐵 = ∑ 𝜆𝑣𝑢𝑣𝑢𝑣
𝑇

𝑃

𝑣=1

,          𝐼 = ∑ 𝑢𝑣𝑢𝑣
𝑇

𝑃

𝑣=1

,        𝑢𝑖
𝑇𝐵𝑢𝑣 = 𝜆𝑣𝛿𝑖𝑣, (4.17) 

where λp are the eigenvalues of the covariance matrix B, up are the associated eigenvectors and 

ui are the principal axes when ui
Tuv=δiv. 

Webster et al. (1994) formulated a coefficient of correlation between a component and a 

variable, which is known as a “loading” in the principal component framework: 

𝜌 =
𝐴𝑖

𝑘

𝑉𝑎𝑟[𝑍𝑖
𝑘(𝑥)]

=
√𝜆𝑣𝑢𝑖𝑣

𝜎𝑖
. (4.18) 

This correlation can be used to produce a plot known as a “circle of correlations”. The circle of 

correlations suggest that the loadings will be positioned on a circle, when the data are 

represented by only two components and the loading’s sum of squares is equal to one. Usually 

the variables are positioned inside the circle on the surface by two axes made from the first two 

principal components. Thus, the closer variables are to the centre of the plot, the less relevant 

they are to the first two components. The novelty of using principal component analysis after 

estimation of linear model of coregionalization is to enable an analysis of the correlation 

structure between variables for each nested scale rather than the raw observations. In particular, 

analysis can be conducted for each coregionalization matrix Bk instead of the covariance matrix 

V across the scales. 

 

4.1.2.5 Stationary versus trend 
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A natural resource is unlikely to be always stationary in the mean, especially soils, which are 

known for their high heterogeneity. In geostatistics, this non-stationarity is called “external drift” 

or “trend in space”, to which different kriging methods e.g. universal kriging or kriging with an 

external drift are applied. Kriging methods are actually all forms of the empirical best linear 

unbiased predictor based on the linear mixed model (Lark., 2012). Cressie (1993) suggested 

that regionalized variables of Equation (4.1) may be modelled as a collection of random 

variables, generated by the random process: 

𝑍(𝑥) = ∑𝛽𝑙

𝑞

𝑙=1

𝑧(𝑥) + 휀(𝑥), (4.19) 

where z(x) is a collection of q nonrandom explanatory variables, β represents the coefficients 

marked as fixed effects, and ε is an error process. This general linear model could be written in 

matrix and vector notation as: 

𝑧 = 𝑋𝛽 + 휀, (4.20) 

and to solve it the likelihood function of the data from n observations 

𝑊 ≡ [𝑍(1) − 𝑍(2), 𝑍(2) − 𝑍(3), … , 𝑍(𝑛 − 1) − 𝑍(𝑛)]𝑇 (4.21) 

should be maximised. Equivalently, the negative log-form should be minimised, which may be 

written as (Lark and Cullis, 2004): 

𝐿𝑊(𝛽, 𝜃) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +
1

2
log|𝛽| +

1

2
(𝑊 − 𝐴𝑇𝑋𝛽)𝑇(𝐴𝑇∑(𝜃)𝐴)−1(𝑊 − 𝐴𝑇𝑋𝛽), (4.22) 

where A is an element matrix. Residual maximum likelihood, normally known as “detrending” 

for processing a time series, is adopted to estimate θ from minimizing Equation (4.22). This 

estimator is accessed by implementing maximum likelihood to error contrasts in place of the 
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data themselves. Lark et al. (2006) expanded Equation (4.20) as a linear mixed model with 

geostatistical meaning: 

𝑧 = 𝑋𝜏 + 𝑍𝑢 + 휀, (4.23) 

where Xτ refers to a fixed effect, e.g. unknown mean or coefficients of a trend in the 

geostatistical context, Zu is a random effect representing the spatially dependent random 

variation, and ε is independent random error as nugget variation in geostatistics. The relation 

between the target variable and the relevant variables and the variogram of the residuals could 

be estimated simultaneously based on this regression by residual maximum likelihood. 

 

4.1.2.6 Data basis and analysis 

 

Soil samples were taken from agricultural areas of Hannover, Germany (Lathwehren and 

Vinnhorst). A total of 100 topsoil samples were taken along a 250-m transect at 5 m intervals 

(50 samples from each site) and were subsequently air dried. The sorption isotherms of heavy 

metals including cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) and a range of soil 

physical (clay content), chemical (pH and oxides), and biological (organic carbon) properties 

were then measured. The scale factors of sorption isotherms (αiso) and the scale factors of soil 

properties (αsp) were calculated. The sampling and analytical procedures are described in detail 

by Xiao et al. (2015). In this study, αiso and αsp were evaluated by geostatistical means. The key 

contrast between the two sampling sites from the spatial statistics aspect was the pronounced 

nonstationarity in the mean observed at Vinnhorst. Therefore, we decided to treat these two 

sites as two case studies. 

In Case Study 1 (Lathwehren), the data were decomposed at three characteristic spatial scales 

with the linear model of coregionalization. Three characteristic scales were experimentally 
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defined based on the hierarchical variogram models as nugget scale, small scale with short 

range a1, and large scale with long range a2. Their coregionalized model could be written in the 

form 

𝛾(ℎ) = 𝑏0 𝛾𝑛𝑢𝑔𝑔𝑒𝑡(ℎ) + 𝑏1𝛾𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙1(ℎ, 𝑎1) + 𝑏2𝛾𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙2(ℎ, 𝑎2), (4.24) 

where γnugget and γspherical are authorized spatial models, which refers to the pure nugget and 

spherical model, respectively. The variograms of these two models are  

𝛾𝑛𝑢𝑔𝑔𝑒𝑡 = {
0                   𝑓𝑜𝑟 ℎ = 0
𝐶0                  𝑓𝑜𝑟 ℎ > 0 

(4.25) 

and 

𝛾𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 = {
𝑐 {

3ℎ

2𝑎
−

1

2
(
ℎ

𝑎
)
3

}                  𝑓𝑜𝑟 ℎ ≤ 𝑎 

𝑐                                            𝑓𝑜𝑟 ℎ > 𝑎

.          (4.26) 

In Case Study 2 (Vinnhorst), the data were also decomposed by the residual maximum 

likelihood. After detrending, three spatial structures were dissociated into nugget, trend, and 

spatial variance. The data analyses were performed using R with specialised packages. Among 

existing packages, we used RGeostats (Renard et al. 2018) for the calculation of variograms 

and fitting variograms to linear coregionalization models. GeoR (Ribeiro and Diggle 2001) was 

used to apply the residual maximum likelihood. Principal component analysis, which needs no 

specific package, was carried out after estimation of spatial structure to plot the circle of 

correlations. 
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4.1.3 Results and Discussion 

 

4.1.3.1 Case Study 1 (Lathwehren dataset) 

 

4.1.3.1.1 Variogram and fitting with authorised model 

 

Semivariances were calculated from the scale factors of sorption isotherms and the scale factors 

of soil properties for a given distance (5 m in this study). Figure 4.1 is an example of the 

experimental variogram, in which the points are the calculated semivariances of αiso of Cd along 

the transect. The dashed line represents the total variance (here 0.016 for Cd). It was found that 

these experimental points were not monotonically increased with increasing lag distance. The 

semivariance decreased at about 30 or 35 m after its initial increment and increased again at 80 

m. An assumption could be made that a hierarchical structure might exist. The experimental 

variogram was later fitted with a nested model as the sum of a nugget effect and two spherical 

schemes with ranges of 35.1 and 115 m. The spatial structure’s proportion of total variance was 

marked by different colours in Figure 4.1. The data show that the spatial structure represented 

28% of total variance at nugget scale (illustrated by red colour in Figure 4.1), 64% at small 

scale (green), and 8% at large scale (blue). Note that the variation represented by spatial 

structure at small scale was eight times the variation at large scale. Moreover, almost one-third 

of the variance is included in the nugget effect, which means sorption of Cd in soil might not 

be as continuous as suggested in our previous study (Xiao et al., 2015). 
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Figure 4. 1 Auto-variogram of sorption isotherms (αiso) of cadmium in a 250-m transect (50 

samples) in Case Study 1 (Lathwehren). The solid line is fitted model with three spatial 

structures (nugget, small-scale variance at range 35.1 m, and large-scale variance at range 115 

m). The dashed line is the sill. 

 

4.1.3.1.2 Auto- and cross-variograms 

 

The other three heavy metals show similar auto-variograms of scale factors of sorption 

isotherms to that of Cd, except Pb (Figure 4.2), in which Zn and Cu stop increasing at small 

scale (about 30 m) and then increase again at large scale. This similarity suggests that all heavy 

metals were coregionalized to some degree. The dashed lines representing the total variance of 

each variogram show that Cu had the smallest variation (0.0025), Pb had the largest (0.04), and 

that of Zn (0.021) was similar to the total variance of Cd (0.016). Unlike those of Cd and Cu, 

the auto-variograms of Zn and Pb resemble one another as the nugget scale contains a large 
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proportion of total variance. In contrast to auto-variograms, cross-variograms (Figure 4.3) 

between heavy metals showed much smaller sample covariances and the discontinuity between 

experimental points was more apparent. 

 

 

 

 

 

Figure 4. 2 Auto-variograms of sorption 

isotherms (αiso) of copper (Cu), lead (Pb), and 

zinc (Zn). The solid lines are fitted models 

with three spatial structures. The dashed lines 

in black are sills. 

 

4.1.3.1.3 Linear models of coregionalization 

 

Linear models of coregionalization were also superimposed on the experimental points in 

Figures 4.2 and 4.3. The short range of small-scale variation after the running of the automatic 

fitting program was 24.9 m and the long range of large scale was 63.4 m. They were both 

smaller than the single fitted variogram of Cd, for which the ranges were 35.1 and 115 m, 

respectively. Furthermore, the long-range structures of both auto- and cross-variograms in 

Figures 4.2 and 4.3 are not as recognisable as in Figure 4.1. Criteria were selected to judge the  
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Figure 4. 3 Cross-variograms of sorption isotherms  (αiso) between cadmium (Cd), zinc (Zn), 

copper (Cu), and lead (Pb). The solid lines are fitted models of linear coregionalisation with 

three spatial structures (nugget, small scale variance at range 24.6 m, large scale variance at 

range 62.4 m). The black dashed lines represent sills. The red dashed lines represent the hulls 

of perfect correlation for the cross-variograms. 

 

goodness of the fit of a variogram model to an experimental variogram. The red dashed curves 

on the upper and lower sites of the cross-variograms in Figure 4.3 represent the perfect positive 

and negative correlation, known as the “hull of perfect correlation” (Wackernagel, 2003). It is 

defined by the square root of the first fitted sills of the corresponding auto-variograms, where 

the sills bij of the cross-variogram are replaced by: 

hull[𝛾𝑖𝑗(ℎ)] = ± ∑ √𝑏𝑖𝑖
𝑘𝑏𝑗𝑗

𝑘 𝑔𝑘(ℎ)

𝑆

𝑘=1

. (4.27) 
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The hull was originally designed to illustrate an improved variogram fitting with a visually high 

goodness of fit based on proximity of the line of the model to the experimental points. In this 

study, the proximity of the cross-variogram to the hull could be used to reveal some 

relationships. The two dashed curves are close, indicating significant cross-correlation. In 

contrast, the correlation is weak when the cross-variogram lies far from the bounds. As shown 

in Figure 4.3, only the cross-variogram between Cd and Zn had a relatively small hull. This is 

supported by the Pearson’s relationship (Table 4.1A), for which that the correlation coefficient 

between scale factors of Cd and Zn was 0.5. 

 

4.1.3.1.4 Spatial structural correlation 

 

The ordinary product-moment correlations of scale factors of sorption isotherms between heavy 

metals and their correlations with the scale factors of soil properties are presented in Table 4.1A. 

As mentioned above in Section 4.1.3.1.3, the scale factors of sorption isotherms between Cd 

and Zn were weakly correlated. For such variety of soil properties, only the scaled soil pH had 

a weak correlation with Cd and Zn. After estimation of linear coregionalized models, the 

ordinary product-moment relations between the whole multivariate properties can be 

represented by their nugget and structural correlations (Table 4.2). The correlation at the small 

and large scales were both enhanced comparing to the Pearson's correlation coefficients. 

However, the correlations at the large scale seemed unusual, as all heavy metals were perfectly 

positively or negatively correlated. 
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Table 4. 1 Correlation coefficients of scale factors between heavy metal sorption isotherms and soil properties. A: At Case Study 1 (Lathwehren). B: 

At Case Study 2 (Vinnhorst). 

A α(Cu) α(Pb) α(Zn) α(H+) α(OC) α(Feox) α(Mnox) α(Alox)  α(clay) 

α(Cd) 0.06 0.33 0.5 0.67 -0.33 -0.36 -0.3 -0.05 -.0.8 

α(Cu) 1 -0.51 0.19 0.43 0.43 0.27 0.07 0.06 -0.05 

α(Pb) -0.51 1 0.01 0.12 0.01 -0.44 -0.46 -0.09 0.28 

α(Zn) 0.19 0.01 1 0.68 0.07 -0.06 -0.19 -0.27 -0.07 

B                   

α(Cd) 0.13 0.09 -0.08 0.38 0.08 -0.1 -0.42 0.09 -0.13 

α(Cu) 1 0.46 0.34 0.27 -0.02 -0.11 -0.37 -0.22 -0.16 

α(Pb) 0.46 1 0.02 0.43 0.05 -0.28 -0.42 0.03 -0.03 

α(Zn) 0.34 0.02 1 0.15 0.19 -0.05 -0.13 -0.01 0.05 
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Table 4. 2 Correlation coefficients of Case Study 1  (Lathwehren) between scale factors of heavy metal sorptions at A: nugget scale, B: small scale 

and C: large scale. 

A α(Cd) α(Cu) α(Pb) α(Zn) 

α(Cd) 1       

α(Cu) -0.63 1   

α(Pb) -0.35 -0.21 1   

α(Zn) 0.11 0.47 -0.34 1 

B         

α(Cd) 1       

α(Cu) 0.64 1   

α(Pb) 0.99 0.5 1   

α(Zn) 0.9 0.24 0.96 1 

C         

α(Cd) 1       

α(Cu) -1 1   

α(Pb) 1 -1 1   

α(Zn) -1 1 -1 1 
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4.1.3.1.5 Circle of correlation 

 

We next interpret the spatial structural correlation using principal component analysis. The 

application of correlation circle could give a direct impression of how the interrelations among 

different variables change at different spatial scales. Figure 4.4A shows the circle of correlation 

based on the original data of scale factors of heavy metals. Cu was clearly irrelevant to the first 

two principal components because of its small total variance (as mentioned in Section 4.1.3.1.2).  

 

Figure 4. 4 Circles of correlation of Case Study 1  (Lathwehren) between scale factors of 

cadmium (Cd), zinc (Zn), copper (Cu), and lead (Pb), where data are from A: the general dataset, 

B: nugget scale, C: small scale with short range (24.6 m), D: large scale with long range (62.4 

m), E: nugget scale after reducing one spatial structure, and F: small scale with a 23.6 m range 

after reducing one spatial structure. X axis: first principal component (PC1); Y axis: second 

principal component (PC2). 
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Pb was distinct from the others in the lower left quadrant and most relevant to the first principal 

component negatively. Cd and Zn were both in the upper left quadrant and together linked to 

the second principal component. At the nugget scale (Figure 4.4B), Pb and Zn were closely 

related to the first and the second principal components, respectively. Cd and Cu were 

irrelevantto the first two principal components. A distinct result at the small scale (Figure 4.4C) 

was that Cd, Zn, and Pb were significantly associated with the first principal component, which 

contrasts with Figure 4.4A. This clustering highlights the advantage of principal component 

analysis, as a large proportion of the spatial variances was captured at this scale. This analysis 

showed Cu to be distinct from the other three heavy metals. At the large scale (Figure 4.4D), 

the four heavy metals tended to be simultaneously correlated with first and second principal 

components but no association between the heavy metals was observed. 

 

4.1.3.1.6 Single spherical model 

 

Webster et al. (1994) suggested exploring the data pattern further by computing the leading 

principal components and plotting their variograms. As four variables are considered in the 

current study, two principal components should be sufficient to represent the principal features 

(Figure 4.5A). Figure 4.5B shows their histograms. The calculated components were then 

geostatistically analysed. The first and second principal components, however, showed no 

spatial structures (Figure 4.5C). This might explain the unusual relationship between 

coregionalized heavy metals at the large scale, since the variogram functions had become 

instable (Goovaerts, 1992).  

As no spatial structures were evident in the principal components, we decided to reduce one 

spherical model on the linear model of coregionalization from the scale factors of sorption  
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Figure 4. 5 Calculated first and 

second principal components  (PC1 

and PC2, respectively) of scale factors 

for four heavy metals (cadmium, zinc, 

copper, and lead) after principal 

component analysis. A: Spatial 

distribution along the 250-m transect, 

B: Histogram, and C: Variogram. 

 

 

isotherms. After the reduction, their structural correlation coefficients (Table 4.3) were also 

determined. Significant correlations were observed at the small scale (Table 4.3B). The 

coefficient between Cd and Zn was enhanced from r = 0.5 to 0.8. Pb exhibited a significant 

correlation with both Cd and Zn at the small scale, where r = 0.94 and 0.95, respectively. The 

new circles of correlation at the nugget scale (Figure 4.4E) and the small scale (Figure 4.4F) 

were graphically similar as the coregionalized model with three spatial structures (Figure 4.4B–

D), except for the up–down reversal in the position of the second principal component at the 

nugget scale. The reason that the reduction had no great impact on the results might be related 

to the relatively small variance represented at large scale (only 8% in Figure 4.1). We also 

noticed the same clustering between Cd, Zn, and Pb in Figure 4.4F as in Figure 4.4C. However, 

the auto-variogram of Pb indicates not a fairly good agreement at the small scale between the 
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experimental points and the modelled ones (Figure 4.2). Nevertheless, the increased correlation 

of αiso between Cd and Zn at the small scale, where the first principal component accounts for

 more than 87% of the total variance (Table 4.4), could be solid evidence indicating that the 

scale factors of sorption isotherms between Cd and Zn are spatially correlated. 

 

Table 4. 3 A: nugget and B: structural correlation coefficients of Case Study 1  (Lathwehren) 

after reducing one spatial structure between scale factors of heavy metals. 

A α(Cd) α(Cu) α(Pb) α(Zn) 

α(Cd) 1    

α(Cu) -0.77 1   

α(Pb) -0.45 -0.16 1  

α(Zn) 0.06 0.42 -0.36 1 

B     

α(Cd) 1    

α(Cu) 0.48 1   

α(Pb) 0.94 0.46 1  

α(Zn) 0.8 0.24 0.95 1 

 

4.1.3.1.7 Spatial scale correlation between heavy metals and soil properties 

 

As shown in Figure 4.1 and 4.3, the double-spherical coregionalisation model changed with the 

increasing number of variables. In order to eliminate the impact of internal coregionalisation,  
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Table 4. 4 Eigenvalues of correlation matrix at small scale of Case Study 1  (Lathwehren) after 

reducing one spatial structure. 

Order Eigenvalue Proportion Cumulative proportion 

1 0.0284 87.28% 87.28% 

2 0.0028 8.84% 96.12% 

3 0.0012 3.88% 100% 

4 0 0% 100% 

 

the αiso of the four heavy metals were then separately coregionalised with scaled physical-

chemical soil properties, αsp. The correlation circles are presented in Figure 4.6. The different 

background colours represent different data sources, which are original data (grey), data from 

nugget scale (red), data from small scale (green), and data from large scale (blue). In Figure 

4.6A, Cd is located on the rightmost side of the abscissa axis, whereas other soil properties are 

distributed around the middle. Therefore, the variation of Cd, which is captured by the first 

principal component, had no common feature with other scaled soil properties. The same 

situation is shown in the circles of correlation at the nugget and small scales. In the long-range 

scale, the correlations appear as random scatter of the points. Increasing the number of variables 

also increased the spherical ranges, where the range of small scale became 57.5 m and the range 

of large scale was likewise increased from 62.4 to 86.25 m. The variation of Zn and Pb was the 

same as that of Cd either before or after decomposition (Figure 4.6B and 4.6D), and only one 

spherical structure was fitted by Pb. The first two principal components were not related to Cu 

in the original data (Figure 4.6C), while Cu had a relatively small total variance and a large 

correlation coefficient with the third principal component (data not shown). A significant 

correlation between Cu and clay content was found at the nugget scale (Figure 4.6C). However, 

as indicated in Figure 4.2, the variance of Cu at nugget scale represented a relatively small 
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Figure 4. 6 Circles of correlation of Case Study 1  (Lathwehren) between the sorption property 

of heavy metals in soil and other relevant soil physico-chemical properties, where heavy metal 

is A: cadmium (Cd), B: zinc (Zn), C: copper (Cu), and D: lead (Pb). The plots with different 

background colours are based on different data, where grey represents data from the original 

sampling site, red represents data calculated at nugget scale, green represents data calculated at 

the small spatial scale, and blue represents data calculated at the large spatial scale. Note that 

the large-scale variance of Pb was reduced by fitting the variograms. X axis: first principal 

component (PC1); Y axis: second principal component (PC2). 
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proportion of total variance, which means that no effective relationship between the calculated 

scale factors from the sorption isotherms of the heavy metals and the corresponding soil 

properties was found. 

 

4.1.3.2 Case study 2 (Vinnhorst dataset) 

 

4.1.3.2.1 Results of decomposition 

 

The soil of this case study was highly variable, as their texture crossed a broad range and 

showed a tendency from loam to sandy loam (Xiao et al., 2015). The calculated correlation 

coefficients of αiso between heavy metals themselves and αsp of soil properties were also poorer 

than those in Case Study 1 (Table 4.1B). To eliminate the influence of this spatial tendency, a 

first-order differencing transformation based on a time series analysis in the previous study was 

performed. However, the correlation and uncertainty analysis demonstrated considerable 

difficulty in capturing the field-scale variability of sorption with suitable accuracy due to the 

unavoidable data transformation. In this study, a deterministic trend with spatially correlated 

random residuals from the trend instead of differencing was estimated by modelling the process. 

Among the different estimators, that of Oliver and Webster (2015) produced the optimal 

residual maximum likelihood for estimating the trend and the variogram parameters. After 

decomposition by the likelihood procedure, the original data were completely assigned into 

three parts, namely nugget effect, spatial variation, and horizontal trend (Figure 4.7). The trend 

parts were clearly different for the four heavy metals, where the downward tendency was much 

stronger for Zn and Pb than for Cd and Cu. It should be noted that the nugget parts of Zn and 

Pb were assigned with very small values (nearly zero) after fitting the program (data not shown). 
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Figure 4. 7 General 

posting of scale factors of 

heavy metals between 

cadmium (Cd), zinc (Zn), 

copper (Cu), and lead (Pb) 

and their decompositions, 

namely nugget, spatial, 

and trend after residual 

maximum likelihood for a 

250-m transect (50 

samples) of the 

agricultural soils in Case 

Study 2 (Vinnhorst). 

 

 

 

4.1.3.2.2 Circle of correlation 

 

The results of principal component analysis performed on the αiso data between heavy metals 

are given in Figure 4.8. Clearly, the correlation structure changed with original data and 

decomposed parts. Figure 4.8A shows the relationship of αiso between the four heavy metals 

and the first two principal components based on the original data. Zn and Pb were mostly 

negatively related with the first principal component. Zn and Cd were the main contributors to 
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the second principal component. At the nugget scale (Figure 4.8B), Zn and Pb were irrelevant 

to the first two principal components since they had only small values after calculation. Cd 

varied very differently to Cu, causing the first two principal components to actually be Cd and 

Cu themselves. At the spatial variation scale (Figure 4.8C), the position of the four heavy metals 

changed slightly compared with the original data (Figure 4.8A). Nonetheless, the result shows 

an association between Cd and Pb at this scale, which could not be recognised from the data 

before decomposition. At the trend scale (Figure 4.8D), Zn and Pb sharing the first principal 

component, owing to their relatively large horizontal trend. The trend of Cd varied very 

differently to the other three heavy metals and therefore it contributed to another principal 

component. Spatial-scale correlation between αiso of heavy metals and αsp of soil properties was 

also carried out and no relationship was observed (data not presented). 

 

Figure 4. 8 Circles of 

correlation of Case Study 

2  (Vinnhorst) between 

scale factors of cadmium 

(Cd), zinc (Zn), copper 

(Cu), and lead (Pb), 

where data are from A: 

the general dataset, B: 

calculated at nugget scale, 

C: calculated at spatial 

scale, and D: calculated at 

large scale treated as 

trend. 
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4.1.3.3 Discussion 

 

The measurement of heavy metal sorption in soil is time consuming and much more difficult 

than measurement of other soil properties. The prediction of heavy metal sorption via 

pedotransfer function from the easily measurable soil properties is very common in soil science 

(Springob and Böttcher, 1998; Holm et al. 2003; Horn et al., 2006; Altfelder et al. 2007). 

However, there is a clear disadvantage of these studies by quantification of the functional 

behaviour of a system, in which linear relationship between sorption isotherm parameters K and 

n was proven (Xiao et al., 2015) and prediction based only on the variability of one key 

parameter may be incorrect and misleading (Böttcher, 1997). Therefore, determination of the 

scale factors of heavy metal sorption isotherms across a field could be a better alternative, which 

involves characterization of the spatial variability of heavy metal sorption behaviour in soil by 

functional normalization as only one single parameter.  (Böttcher, 1997; Deurer and Böttcher, 

2007; Xiao et al., 2015).  

In Case Study 1, we found the spatial dependence of αiso of all heavy metals except Pb along 

the transect, which indicates that some variability could not be covered by the scale factors. In 

our previous study (Xiao et al., 2015), we used reduction by scaling to quantify the efficiency 

of the scaling method. The smallest scaling reduction of sorption isotherms of Pb (64%) might 

explain why no spatial structure was found. Moreover, the variogram of native adsorbed Pb 

amount along the transect, S0, revealed the same pure nugget structure (data not shown). The 

same spatial structures were also found by Streck and Richter (1997), who calculated the 

variograms of EDTA-extractable heavy metal contents in soil, where a spherical model of Cd 

with a range of 37 m and a nested model of Zn with ranges of 28 and 70 m, respectively, were 

fitted. Romano (2004) demonstrated a relatively good efficiency of a pedotransfer function in 
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detecting the spatial dependency of a soil water retention variable, which also supports the 

potential usefulness of employing scaling to spatially quantify the sorption isotherms. 

At the same time, we were aware that the semivariance of αiso reached the upper bounds, where 

the total variance was already at small scale. Therefore, the instability observed at the large 

scale is reasonable and might be improved by the nested sampling strategy at the design step of 

the investigation. From the geostatistical perspective, Webster and Oliver (2007) also suggested 

nested survey and analysis as a first step in the description of variation in a previously little- 

known area with modest sampling effort. Moreover, the study of spatial multivariate correlation 

is not limited to three spatial structures; Wackernagel (1988) fitted 120 variograms from15 

geochemical variables by using only two structures (one nugget and one spherical model). 

From the circles of correlations between αiso of heavy metals themselves and αsp of soil 

properties, our results demonstrate that the spatial variation, i.e. the coefficients of variation, 

between coregionalized variables should be at least in the same order of magnitude (in Figure 

4.9), otherwise even the scale-dependent analysis of the correlation structure among variables 

fails. In soil water research, Jury (1986) demonstrated that the rate parameters (e.g. hydraulic 

conductivity, sorption isotherm) are more spatially variable than the capacity parameters (e.g. 

bulk density, clay content) and require more intensive sampling density to determine an average 

or representative value. 

 

Figure 4. 9 Coefficients of variations (CV) of the scale factors in Case Study 1 (Lathwehren). 
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In the Case Study 2, residual maximum likelihood estimator was determined to separate the 

nonstationary in the mean. The detrending of scale factors for the sorption isotherms was 

successful, especially for Zn and Pb. We found a significant relationship between αiso of Cd and 

Pb at the spatial variation scale, which was site- and scale-specific and was not generalisable. 

Moreover, we also noticed that either the linear mixed model or linear coregionalized model do 

not always meaningfully correspond to physical variables, since all these methods are purely 

mathematically calculated linear combinations of variables. How to make the analysis 

pedologically plausible remains an open question, since the complex variables arise from many 

processes and not all of these processes are well understood. 

 

 

4.1.4 Conclusions 

 

The spatial relationships between soil sorption properties among different heavy metals and soil 

physico-chemical properties by the means of scale factors were investigated using multivariate 

geostatistical analysis. The first objective was met by fitting the variograms of scale factors 

with one nugget scale and one small spherical scale. In Case Study 1, we found a principal 

component of small spatial scale, which was closely associated with the spatial correlation of 

sorption of two heavy metals. In contrast, we found no substantial spatial correlation between 

the sorption of heavy metals and other measured soil properties, indicating that the second 

objective was satisfied partially. There should be more pedological consideration when 

applying the detrending of residual maximum likelihood to make the data sufficiently reliable. 

Evidently, the demonstration of spatial correlation requires data in which the coefficients of 

variation do not differ too much. As a result, we conclude that further efforts are needed to 

theoretically develop the scaling relations of heavy metal sorption in soil, since the prediction 
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of the behaviour of a particular natural phenomenon is never simple. The decomposition of 

spatial structures from soil sorption and relevant physico-chemical properties based on 

combining multivariate statistics and geostatistics is a powerful tool to reflect the principal 

features at different spatial scales. Once the scale-dependent correlation structure is determined, 

a geostatistical interpolation e.g. cokriging could be applied to reduce required number of 

samples and measurements or as guidance for a new sampling exercise in a cognate landscape. 
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Abstract 

 

Heavy metals are toxic soil pollutants, which are retarded in soils by sorption at the solid phase. 

At a small scale (of a soil sample) the sorption process can be observed and quantified using 

sorption isotherms. However, most environmental problems have to be treated and solved at 

large scales (e.g., a field scale). At the field scale, heavy metal sorption isotherms are commonly 

highly variable in space. This spatial variability makes a representative quantification of the 

sorption process (e.g., for the soil protection or for the management of soil functions) and its 

consideration in reactive transport modelling (e.g., for groundwater protection) difficult. Many 

transport simulation studies therefore treat soils as homogeneous to avoid the need for complex 

datasets and calculations. In this study we used a recently developed method of scale sorption 

factors to quantify the spatial variability of heavy metal sorption in soils at the field scale. This 

method reduces the variability of sorption isotherms into a single average relation, while 

preserving their variation through the scale factors. We investigated the spatial variability of 

heavy metal sorption isotherms for an agricultural field on a Luvisol developed over a loess 

material near Hannover, Germany. Fifty samples were taken from A and B horizons along a 

250-m transect. Sorption isotherms for heavy metals and soil properties, such as pH, CEC, and 

texture, were measured and scale factors were calculated. The heavy metal transport was 

simulated with the HYDRUS model using a unique reference sorption isotherm (derived using 

the scale procedure or mixed soil samples). Spatial variability of sorption at every sampling 

point was further represented using a scale factor, which was either directly calculated (using a 

scaling procedure) or indirectly estimated (using regression models with another heavy metal 

or from soil properties). And for comparison variability of sorption was also simulated using 

the original measured Freundlich parameters. 
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The results show that scale factors are well applicable to predict spatially variable retardation 

and transport of heavy metals in soil, although a certain reduction of variability is to be expected. 

In case of extreme situations transport simulations with scale factors are not well suited to 

describe the depth distribution of heavy metal concentrations, especially when using indirectly 

calculated scale factors. 

 

 

5.1.1 Introduction 

 

Both agricultural (He et al., 2005; Nicholson, 2003) and environmental (Bradl, 2005) sciences 

treat heavy metals as an important environmental factor because of their negative impact on the 

ecosystem. Soils are contaminated by heavy metals either gradually due to their long-term 

depositions or suddenly due to various industrial leaks or intentional applications of various 

compounds (e.g., sewage sludge, manure). The fate and transport of heavy metals in soils 

depend mainly on their reactive properties, with sorption reactions being the most important 

ones (Alloway, 1995). The soil can then act as a storage container for these contaminants. A lot 

of studies reported spatial distributions of heavy metals in the subsurface (Yang, 1989; 

Camobreco, 1996; Ingwersen et al., 2006). However, much attention has been paid to transport 

processes in one-dimensional soil columns, without extending the transport into two or three 

dimensions. Soil spatial heterogeneity, which makes the sorption highly variable, is the main 

reason for the lack of extending transport studies into higher dimensions. 

Sorption processes cause the retardation of heavy metals in soils (Sparks, 2003). Hence, the 

quantification of sorption isotherms and their spatial variability is a prerequisite to quantify the 

spatial variability of heavy metal transport in in soils. To simulate heavy metal displacement at 
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the field scale Streck et al. (1997) used a parallel soil column approach. Altfelder et al. (2007) 

have studied the combination of uncertainty and variability to predict field-scale heavy metal 

transport. The authors have quantified sorption isotherms through pedotransfer functions (PTF). 

Deurer and Boettcher (2007) have compared PTF and a scaling method for sorption isotherms 

(Böttcher, 1997) to upscale the small scale transport variability and concluded that mean 

sorption behaviour derived through scaling resulted in smaller uncertainty of heavy metal 

transport prognoses. 

Scaling was used first in soil hydrology to quantify the variation of water retention (Miller and 

Miller, 1956, Russo and Bresler, 1980; Raats et al., 2006). Following the basic ideas and rules 

of scaling (Tillotson and Nielsen, 1984) Böttcher (1997) has developed a method to calculate 

scale factors for spatially variable sorption isotherms, and successfully applied this method to 

Cd sorption in sandy soil. Furthermore, Böttcher (1997) showed that the scale factors for 

sorption isotherms were correlated with some soil physicochemical properties. Therefore, 

indirect calculation of scale factors for sorption from physicochemical soil properties (indirect 

scaling procedure) seems possible. If so, scale factors may be derived by direct or indirect 

procedures. This would extend the use of scale factors from statistical description of spatially 

variable sorption isotherms (direct scaling procedure) to broadened application in prediction of 

reactive transport processes in soil by the indirect scaling procedure. 

In this study, scenarios of heavy metal (Cadmium, Zinc and Copper) transport in unsaturated 

soil using the direct and indirect scaling procedure were simulated with HYDRUS 2D. The 

main objective was to prove the performance of the two scaling procedures in simulating 

spatially variable heavy metal transport compared to simulations with original sorption data. 
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5.1.2 Material and Methods 

 

5.1.2.1 Soil samples 

 

The soil samples (undisturbed and disturbed) were taken from an agricultural field on a Luvisol 

developed in loess material near Hannover, Germany. Each 50 samples were taken along a 250 

m transect at every five meter from 0 to 30 cm (topsoil) and 30 to 60 cm (subsoil). For each 

horizon one mixed sample was made from the 50 soil samples to measure a mean sorption 

isotherm that is needed as reference in the indirect scaling procedure (see 5.1.2.4). 

 

5.1.2.2 Laboratory analyses 

 

The undisturbed soil samples were used to measure the bulk density and water content. The 

disturbed soil samples were air dried and sieved. Then the samples were used to measure the 

relevant soil physicochemical properties (Table 5.1). 

Sorption isotherms were measured in batch experiment. Heavy metal solutions (concentration 

ranges from 0 to 20 mg/L Cadmium, 75 mg/L Zinc and 40 mg/L Copper) were added to the soil 

water suspensions. Ca(NO3)2 electrolyte solution was also added to maintain the natural ionic 

strength. After 24h shaking end over the suspensions were centrifuged for 15 minutes. Then 

heavy metal concentrations were measured in the supernatant by ICP-OES. 

 

 



 

Simulation 

118 

 

Table 5. 1 Methods for measuring physico-chemical soil properties. (Source: Utermann et al., 

2005) 

Soil property [Unit] Method 

Texture [%] Pipette method after Koehn (<63 µm) 

Dry sieving (>63 µm) 

DIN* 19683-2 

pH (CaCl2) [-] Potentiometric by use of a glass electrode in 0.001 

M CaCl2 

DIN ISO^ 10390:1997 

Total carbon [%] C-N-S elementary analysis 

DIN ISO 10694 

Total carbonate [%] Gas volumetric 

DIN ISO 10693 (1997) 

Total organic carbon (OC) [%] Difference between total carbon and total 

carbonate 

Oxalate extractable oxide by Fe, Mn 

and Al  

(Feox, Mnox, Alox) [mg kg-1] 

Extraction with oxalic acid ammonium oxalate 

DIN 19684-6 

Measure with flame-AAS 

Effective cation exchange capacity 

(CECeff) [mmolc kg-1] 

Percolation with 0.1 M BaCl2 

Modified by DIN 19684-8 

Measurement of Ca, Mg, K, Na, Fe, Mn and Al 

with ICP-OES, determination of H+ ion 

concentrations from pH value 

* German Institute for Standardization 

^ International Organization for Standardization 
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5.1.2.3 Parameterization of heavy metal sorption isotherm 

 

From measured sorption data sorption isotherms were calculated, and the Freundlich equation 

(Bradl, 2005) was used to describe the isotherms.  

S = K × 𝐶𝑛 (5.1) 

 

In the Freundlich equation, S is the sorbed fraction [µg/kg], C is the solution concentration 

[µg/L], and K and n are parameters, adjusted by fitting the equation to the measured data. 

 

5.1.2.4 Scaling of sorption isotherms 

 

The scaling rule for direct scaling of sorption isotherms derived by Böttcher (1997) is: 

𝐶∗ = 𝛼2𝐶𝑖 (5.2) 

where C* is the scaled concentration, Ci is a measured concentration, and α is the scale factor. 

 

5.1.2.5 Direct Scaling Procedure 

 

In the direct scaling procedure, firstly mean concentrations describing the reference isotherm 

are derived as scale means (Böttcher, 1997) from 

𝑀𝑟,𝑗 = 𝑅2 [∑(√𝐶𝑟,𝑗)
−1𝑅

𝑟=1

]

−2

(5.3) 
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Secondly, scale factors are calculated under the constraint 

∑𝛼𝑟𝑅
−1 = 1

𝑅

𝑟=1

(5.4) 

by minimization of the sum of squares (in logarithmic space) 

𝑆𝑆 = ∑∑(𝑙𝑛𝑀𝑟,𝑗 − 2𝑙𝑛𝛼𝑟 − 𝑙𝑛𝐶𝑟,𝑗)
2

𝐽

𝑗=1

𝑅

𝑟=1

(5.5) 

to obtain α as: 

𝛼 = 𝑒𝑥𝑝[(2𝐽𝑟)
−1 ∑ (𝑙𝑛 𝑀𝑟,𝑗 − 𝑙𝑛 𝐶𝑟,𝑗)

𝐽𝑟
𝑗=1 ] (5.6) 

In the equations r is the number of soil samples (R = maxima) and j is the number of data points 

on the respective sorption isotherm (J = maxima). C represents the individual measured 

concentration and M is the scale mean concentration. 

The ratio (SSbefore-SSafter)/SSbefore is used to quantify the scaling efficiency. More details are 

given in Böttcher (1997). 

 

5.1.2.6 Indirect Scaling Procedure 

 

Not only scale factors for sorption isotherms but also scale factors for soil properties were 

calculated based on principles outlined in Tillotson and Nielsen (1984). And using correlations 

between heahy metal sorption and soil properties an indirect scaling procedure was developed. 

The concept of indirect scaling is based on the assumption, that the measured sorption isotherm 

of mixed samples is comparable with the mean sorption isotherm derived from direct scaling 

procedure, and scale factors can be calculated from scale factors of sorption relevant soil 

properties using multiple linear regression: 
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𝛼𝑖𝑛 = 𝛼∗ + 𝑎𝛼𝑝𝐻 + 𝑏𝛼𝑐𝑙𝑎𝑦 + 𝑐𝛼𝑂𝐶 + ⋯ (5.7) 

where αin is scale factor of indirect scaling and α* is intrinsic scale factor, αpH, αclay and αOC are 

calculated scale factors of soil properties, and a, b and c are fitting parameters of linear 

regression. 

 

5.1.2.7 Simulation of heavy metal transport with HYDRUS 

 

In unsaturated soil the water flow is usually vertical. Hence, the simultaneous heavy metal 

transport is also vertical and can be described by the widely used convection-dispersion 

equation (CDE) under steady flow conditions (Radcliffe and Šimůnek, 2010). 

As the sampling was along a transect at every 5 m, the geometry in HYDRUS was set as a 

rectangle, which has a length of 250 m and a depth of 0.6 m. The rectangles were divided into 

50 columns each with topsoil and subsoil horizon. Each column has a single set of water flow 

and solute transport parameters. The infiltration rate was 250 mm per year (Deurer and Böttcher, 

2007). The input concentrations were set to 100 μg/L for Cd, 8000 μg/L for Zn and 2000 μg/L 

for Cu. The simulations time was set to 500 years for Cd and Zn, and 100 years for Cu.  

Three scenarios were set up. Scenario I was simulated using the original measured sorption 

parameters. In scenario II the reference isotherms (Table 3) for the soil horizons were used, and 

the scale factors from the direct scaling procedure were applied to calculate the sorption 

isotherms for the soil columns. In the scenario III the sorption isotherms for the columns were 

calculated from the isotherm of the mixed soil sample and the scale factors from the indirect 

scaling procedure. 
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5.1.3 Results and Discussion 

 

5.1.3.1 Sorption isotherm parameters and physico-chemical soil properties 

 

Table 5.2 lists the mean and the coefficient of variation (CV) of the measured soil properties 

and the Freundlich parameters. Differences between soil properties in topsoil and subsoil are 

low. pH values are high, causing strong heavy metal sorption in topsoil and subsoil. The 

sorption parameter K of Cd and Zn in subsoil is much higher than in topsoil, possibly because 

of higher pH in subsoil, though n is more or less the same. K and n of Cu behave different, 

which may be attributed to the higher OC content in the topsoil. Most CVs in Tab. 5.2 are low, 

except CV of CECeff and K. This finding hints at correlation between CEC and K as already 

published by others (e.g. Buchter et al., 1989, Springob and Böttcher, 1998). 

 

5.1.3.2 Reference isotherm and scale factors 

 

A summary of sorption isotherm parameters, scale factors from direct and indirect scaling 

procedure, and their statistics is presented in Table 5.3. Because the mean of scale factors is 

always 1 (compare to eq. 5.4), the range of scale factors with coefficient of variation is given. 

CVs of scale factors α appear to be lower than CVs of K in table 5.2 and higher than CVs of n 

in consideration of residual sum of squares. As shown in table 5.3 the scaling efficiencies 

(derived for direct scaling) are mostly high. This confirms earlier findings of Böttcher (1997) 

and Deurer and Böttcher (2007) who showed for sandy soils that successful scaling of sorption 

isotherms is possible.  
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The values of Adj. R2 for indirect scale factors are low indicating only weak correlation between 

measured soil properties and scale factors. The reason could be various, inter alia, such as 

relative small sample size and low CVs of soil properties. The reference sorption isotherms of 

direct scaling procedure fit quiet well with sorption isotherms of indirect scaling procedure 

(measured from mixed soil samples). This demonstrates that scale means are meaningful 

estimators to upscale soil sorption properties from point measurements to the field scale. 

 

5.1.3.3 Evaluation of heavy metal transport 

 

The simulated heavy metal concentrations are shown in Figure 5.1. The spatial variation of 

concentration depth distributions along the transect between the different simulation scenarios 

is basically the same for each heavy metal. However, the extend of transport variability is in 

the order Scenario I > II > III. These results indicate that application of scale factors for sorption 

isotherms, especially indirect scale factors, cause a certain reduction of the variability of heavy 

metal retardation in soil, while the typical transport behaviour of the metals is maintained. 

Unlike Cd and Cu, Zn shows an almost very good match between model results simulated with 

the original topsoil sorption data or scale factors, respectively, regardless of the scaling 

procedure. This is very probably due to two reasons. First, Zn topsoil has a scaling efficiency 

of 88% (Table 5.3), which is higher than for Cd (85%) and Cu (78%). Second, Zn topsoil has 

low CVs of sorption isotherm parameters K (CV=24%) and n (CV=5%). Compared to Cd and 

Cu these values are closer to the CVs of α and αin (Table 5.3). Also Nanos and Martín (2012) 

found that Zn concentrations in soil are spatially not as variable as Cd and Cu concentrations. 

On the other hand the simulation scenarios for the spatially highly variable heavy metal Cu 

demonstrate a disadvantage of sorption scale factors. Only at column 13 (from the left of the  
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Table 5. 2 Summary statistics of soil properties and isotherm parameters. 

 pH CECeff OC sand clay silt Feox Alox Mnox K 

n 

(Cd) 

K 

n 

(Zn) 

K 

n 

(Cu) 

- 
𝑚𝑚𝑜𝑙

𝑘𝑔
 % % % % 

𝑚𝑔

𝑘𝑔
 

𝑚𝑔

𝑘𝑔
 

𝑚𝑔

𝑘𝑔
 []^ [] [] 

Mean 

Topsoil 6.9 96.8 1.18 3.8 11 85 2617 581 356 
1407 

0.81 

7498 

0.51 

247 

1.34 

Subsoil 7.2 72.9 0.31 3.3 12 85 2621 603 228 
2271 

0.80 

13509 

0.49 

123 

1.66 

 % % % % % % % % % % % % 

CV* 

Topsoil 2 40 10 9 1 12 4 4 10 
34 

7 

24 

5 

34 

6 

Subsoil 2 42 17 13 2 10 5 6 17 
33 

6 

17 

7 

49 

9 
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Table 5. 3 Scale factors and reference isotherms from direct and indirect scaling procedure, and statistical parameters. 

Heavy 

metal 

Horizon Sample 

size 

Direct scaling procedure Indirect scaling procedure 

α 
Range [-] 

CV [%] 

R-SI* SE^ α𝑖𝑛 
Range [-] 

CV [%] 

Adj. R2 SImixed
# 

% 

Cd topsoil 50 0.67 

13 

S=1394C0.80 85 0.51 

10 

0.513 S=1398C0.83 

subsoil 50 0.87 

16 

S=2248C0.79 92 0.42 

13 

0.503 S=2229C0.77 

Zn topsoil 50 0.71 

14 

S=7482C0.51 88 0.55 

11 

0.505 S=8709C0.49 

subsoil 50 0.81 

14 

S=13638C0.49 75 0.29 

7 

0.248 S=15612C0.44 

Cu topsoil 50 0.23 

5 

S=245C1.33 78 0.13 

3 

0.443 S=275C1.30 

subsoil 50 0.39 

10 

S=118C1.64 89 0.32 

8 

0.612 S=161C1.59 

* Reference sorption isotherm 

^ Scaling efficiency 

# Sorption isotherm derived from mixed sample
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transect, Fig. 5.1) the maximum Cu concentration has already been transported to a depth >60 

cm if simulated with the original sorption data (Scenario I). If simulated with direct scale factors 

(Scenario II) or indirect scale factors (Scenario III), respectively, only a slightly deeper or rather 

similar depth transport of Cu in column 13 is visible, compared to the columns in the 

surrounding (Fig. 5.1). 

 

Figure 5. 1 The simulation scenarios of heavy metal transport with I: original sorption 

procedure, II: direct scaling procedure, III: indirect scaling procedure. 
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The reason for this behaviour may be explained by comparing Freundlich parameters K and 

scale factors. The original Freundlich K at column 13 is 98.7 µg1-nLn/kg. Obviously, Cu 

retardation at this point (column 13) is extremely week. In the contrast, the mean K of directly 

calculated reference isotherm and K of mixed sample are 244.8 µg1-nLn/kg and 274.8 µg1-nLn/kg, 

respectively. I.e., the ratios are 0.4 and 0.36, respectively. But the corresponding squared scale 

factors α2 (eq. 5.2) are 0.82 and 0.91. Thus, by scale factors a much stronger retardation of Cu 

is simulated at column 13. This shows that scale factors, and especially scale factors of the 

applied indirect scaling procedure (uncertain as indicated by low Adj. R2, Tab. 5.3), are not well 

suited to describe extreme situations at single points in space. 

Summarized, the simulated scenarios show that scale factors are applicable to predict spatially 

variable retardation and transport of heavy metals in soil, although a certain reduction of 

variability is to be expected. In case of extreme situations transport simulations with scale 

factors are not well suited to describe the depth distribution of heavy metal concentrations. 

 

5.1.4 Conclusions 

 

We demonstrated that the calculation of scale factors is a convenient and effective method (due 

to high scaling efficiency) to derive the mean sorption isotherm at field scale. We conclude that 

scale factors have the potential to describe the spatial variability of heavy metal transport well, 

if the variability of sorption isotherms is not too high, as it is e.g. in case of Zn. In extreme 

situations (very week heavy metal sorption) at single points scale factors may be not sufficiently 

effective to simulate sorption or retardation, respectively. In such a case especially the indirect 

scaling procedure fails because of the high uncertainty of the multiple regression. But also in 

general the applied indirect scaling procedure tends to level out the variability of heavy metal 

transport, and thus cannot be recommended as an effective tool for heavy metal transport 
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prediction. Further studies should concentrate on developing an improved indirect scaling 

procedure, possibly including other sorption relevant soil properties as e.g. specific soil surface 

area. 
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The aim of this dissertation is to quantify the relationship between the sorption isotherms of 

heavy metals themselves and the attendant physico- chemical soil properties by condensation 

their field scale variability into scale factors. Accordingly, functional normalization under 

Böttcher’s scaling rule has been applied to the measured soil sorption isotherms (cadmium, 

copper, lead and zinc) and other soil properties, targeting a representative simplification of soil 

information from loess soil at Lathwehren site near the city of Hannover, Germany and loamy 

to sandy soil at Vinnhorst site in Hannover, respectively (Chapter 2 and 3). Field-scale 

variability of heavy metal sorption isotherms was explored by Pearson product-moment 

correlation with soil properties, where scaling was used to simplify the description of the 

statistical variations in the sorption properties at the field scale (Chapter 3). Using the 

multivariate geostatistical analysis and residual maximum likelihood, furthermore, the spatial 

structural correlation among heavy metals sorption and soil properties have been systematically 

examined (Chapter 4). Coupled with HYDRUS 2D, scenarios of heavy metal (cadmium, zinc 

and copper) transport in unsaturated soil using the direct and indirect scaling procedure have 

been illustrated (Chapter 5), and some suggestions of scaling theory were given. 

The most attractive feature of scaling is the ability, which potentially reduces the wide spread 

of the sorption isotherms into an average isotherm, but preserves the variation through 

calculated scale factors. For that reason, two study sites (Lathwehren with loess soil, Vinnhorst 

with loamy to sandy soil) were chosen near the city of Hannover, Germany. Along a 250 m 

transect, 50 samples were taken at two depths for each site. Sorption isotherms of cadmium, 

copper, zinc and lead were measured, along with a range of soil properties, including pH, cation 

exchange capacity, organic carbon content, and texture. The isotherms were profitably 

parameterized by the Freundlich equation and were showed a large spatial variability.  

Calculation of scale factors was primarily carried out for all the following studies. The 

correlations were tested between scale factors of different heavy metal sorption isotherms, and 
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also to soil properties. Site- and depth specific relationships between scale factors of heavy 

metal sorption isotherms were found. Moreover, significant correlations between scale factors 

of heavy metal sorption isotherms and soil properties occurred only sporadically. Based on 

these sporadic and not transferrable correlations, e.g. with organic carbon content and cation 

exchange capacity, a moderate prediction of the field-scale variability of copper sorption was 

made after the regression analysis for the Lathwehren subsoil. Last but not least, proving 

whether the average isotherms can be represented by a single measured isotherm of the 

composite samples from the area was also an objective. This was found to hold at the loess soil, 

but not at the loamy to sandy soil, which indicates that scaling is favorable to homogeneous 

sites.  

These results brought up the new question, whether the relationship between heavy metals’ 

sorption and soil properties in a field scale could be improved. The spatial structural 

relationships of scale factors for the sorption isotherms between different heavy metal species 

and scale factors of soil properties were then analyzed by linear model of coregionalization and 

principal component analysis according to the potential correlations at different scales. By the 

loess site, the variogram of heavy metal’s sorption was fitted by three spatial structures, i.e. one 

nugget and two spherical scales. Unfortunately, the correlation between heavy metals was 

unusual at large scale and then only two spatial structures were left. Despite it, the circles of 

correlation revealed distinguishing results from ordinary relationships, where we found a 

principal component of small spatial scale that was associated tightly to the spatial correlation 

of two heavy metals' sorption. The scaled soil physico-chemical properties were, however, not 

correlated with scale factors of heavy metal sorption isotherms at each nested scale. At the site 

of Vinnhorst, presented nonstationary in the mean, the data were transformed by residual 

maximum likelihood and the sorption of lead in soil was found correlated to the one of cadmium 

at the spatial variation scale. 
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Further, an approach to simulate the heavy metal transport was done by using a unique reference 

sorption isotherm (derived using the scale procedure or a single measured isotherm of the 

composite samples). Spatial variability of sorption at every sampling point was in addition 

represented applying a scale factor, which was either directly calculated (using a scaling 

procedure) or indirectly estimated (using regression models with another heavy metal or from 

soil properties). For comparison, variability of sorption was also simulated using the original 

measured Freundlich parameters. The results showed that scale factors are well applicable to 

predict spatially variable retardation and transport of heavy metals in soil, although a certain 

reduction of variability is to be expected. In case of extreme situations, transport simulations 

with scale factors were not well suited to describe the depth distribution of heavy metal 

concentrations, especially when using indirectly calculated scale factors. 

In summary, it is worth to quantify and express field-scale variability of heavy metal sorption 

isotherms in soils by using scaling. However, the complexity of heavy metal’s sorption in soil 

makes the analysis at state of the art not be able to describe it completely. Low reduction of 

scaling, e.g. Pb at Lathwehren, and nonstationary in the mean at Vinnhorst made the fitting of 

variograms problematic. Besides, the sampling campaigns for evaluation of sorption variability 

should consider 80 to 100 samples per site, which are obviously greater than the original 50 

samples. All of these illustrated problems limited the application of scale factors for heavy 

metal sorption isotherms, which can only be performed at specific case studies or scenario 

modeling. The further work on scaling is to conduct a thorough improvement of the original 

theory of scaling by modifying its underlying assumptions,  the algebra of scaling methods, and 

the feasibility of using scaling to enrich and advance the study of heavy metal sorption at the 

field scale in the future. 
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