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We explicitly construct a supersymmetric so(n) spin-Calogero model with an arbitrary even number
N of supersymmetries. It features %N n(n + 1) rather than A'n fermionic coordinates and a very
simple structure of the supercharges and the Hamiltonian. The latter, together with additional conserved
currents, form an osp(N\|2) superalgebra. We provide a superspace description for the simplest case,
namely N =2 supersymmetry. The reduction to an A -extended supersymmetric goldfish model is also
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1. Introduction

In recent years notable progress was achieved in the super-
symmetrization of the bosonic matrix models [1-6]. It has been
known for a long time that matrix models are an efficient tool of
constructing conformally invariant systems (see e.g. [7] and refs.
therein) For example, the Calogero model as well as its differ-
ent extensions [8-12] are closely related to matrix models and
can be obtained from them by a reduction procedure. The super-
symmetrization of matrix models consists in replacing the bosonic
matrix entries by superfields [1-5]. While this approach has been
quite successful for A" < 4 extended supersymmetry, it seems to
be less efficient or even inapplicable for N > 4 supersymmetric
cases.! In contrast, the Hamiltonian approach has no serious re-
striction on the number of supersymmetries, due to the absence of
auxiliary components.

The key feature of a supersymmetric extension of one-dimen-
sional models within the Hamiltonian approach is the appear-
ance of additional fermionic matrix degrees of freedom accom-
panying the standard A 'n fermions customarily required for an
N -extended supersymmetric system with n bosonic coordinates.
Recently we implemented this feature to construct a supersym-
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1 An up to now unique example of a matrix system with A/ =8 supersymmetry
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metric extension of Hermitian matrix models which admits an
arbitrary number of supersymmetries [6]. We also provided a su-
persymmetrization of the reduction procedure which yields an
N -extended n-particle supersymmetric Calogero model. The ques-
tion we address in this paper is how to (if possible) repeat
this supersymmetrization procedure for the real symmetric matrix
model [8].

In the bosonic case, the free matrix model associated with real
symmetric matrices (see e.g. [11]) results in a spin generalization
of the n-particle Calogero-Moser model, which is also known as
the Euler-Calogero-Moser (ECM) model [8,9] and described by the
Hamiltonian

1 n 1 n eizl
Moy Ry Y &)
i=1 i#] (xi —x))

It depends on the coordinates x;(t) and momenta p;(t) of each
particle as well as on the internal degrees of freedom encoded in
the angular momenta ¢;; = —¢£j;. The coordinates and momenta
satisfy the standard Poisson brackets

{X,’,pj} = §ij, (1.2)

while the Poisson brackets of the angular momenta form the so(n)
algebra

1
{€j, tkm } = 5(3ikﬂjm + 8jmlik — Sjklim — SimLjk)- (1.3)
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The ECM model with the Hamiltonian (1.1) possesses conformal
invariance. Indeed, if we define the conserved currents of the di-
latation D and conformal boost K as

1 n 1 n n
D=-3 inp,» +tH and K= Zx,? —thipi +t2H,
i=1 i=1 i=1
(14)

then it is easy to demonstrate that they generate the one-
dimensional conformal algebra so(1, 2):

{H.K}=2D, {H,D}=H, {K,D}=-K. (1.5)

The equations of motion which follow from the Hamiltonian

(1.1),

_2 ik d
i Z‘(x,—xk)3 an

1 1
Zl] = Z Elkgkj ( 3 2) ) (1-6)
ot ®i—x)? (% —x))
consistently reduce to (see e.g. [13,11,12])
XiXj
X=2 1.7
i=2) - p— (1.7)
J#
upon setting
EU=—(X,'—X]‘) XiXj. (1.8)

This maximally superintegrable system is known as the goldfish
model [14,15].

In what follows we will construct an N -extended supersym-
metric generalization of the Hamiltonian (1.1) and demonstrate an
Osp(N|2) invariance of this A" =2M supersymmetric ECM model.
We also provide a superfield description for the simplest case of
N =2 supersymmetry. Finally, we will perform the supersymmet-
ric version of the reduction (1.8), ending up with an N -extended
supersymmetric goldfish model.

2. N -extended supersymmetric Euler-Calogero-Moser model
2.1. Extended super Poincaré algebra

The bosonic ECM model (1.1) can be obtained from a free
ensemble of real symmetric matrices. This feature is parallel to
the descendence of the su(n) spin-Calogero model [9] from the
Hermitian matrix model (for details see [7]), for which a super-
symmetrization has been constructed in [6]. In full analogy with
that case, to construct A/ supercharges Q¢ and Q) generating an
N = 2M superalgebra

{Q% Qp}=—2isfH and
{Q% Q%) ={Q4, Qp} =0 for a,b=1,2,...M, 2.1)
one has to introduce two types of fermions:

e N xn fermions y¢ and ¥, = (W)T with i =1, ...,n. These

fermions can be combined with the bosonic coordinates x;(t)
into A" =2M supermultiplets.

i
. %/\/’ x n(n — 1) additional fermions ,ol.“j = p;.'i and pjjq = (pg)
subject to pf = pijq =0 (no sum).

In total, we thus utilize %Nn(n + 1) fermions of type ¢ and p,
which we demand to obey the following Poisson brackets

(Wi ¥jv} =

{05 Prmb} =

—i5g5,'j and

- &;)(1

Using these fermions one can construct the composite objects

i
—isg(1 — 8km) (Sikdjm + Simdjk).  (2.2)
I = —1I1ji

—i[ (W = ¥9)Bija+ (Fia — V50)5

n
+ Z (ps</3]<ja - p;'lkpkia)]’ (2.3)
k=1
which satisfy the so(n) Poisson brackets (1.3),
1
{l-[ij7 Hkm} = E(Siknjm + 8jmIj — ajknim - (Siml'ljk), (24)

and which Poisson-commute with the fermions ¥ and p as fol-
lows,

{Mij, v} = (6 — ijk)p,'aj,
1
{Mij, pp} = —5(1 - 5km)[(3ik5jm + 8imd i) (¥ — ) (2.5)

+ (Snmajk + 5;(,15]'”1),0;]" - (S”m(sik + Slm(sim)p(}”]'

The key idea for constructing the supercharges Q% Q, gener-
ating (2.1) is to “prolong” ¢;; to £;; + IT;; in all expressions, leading
to

EU + HU IOU

Zp,w Z and
i#] M
n -
- B i + ;i) pii
%:zmm—z&L4iﬂ 26)
- — Xi — Xj
i=1 i#]
which, together with the Hamiltonian
(€3 + 10 )
—5 ety y G @

1;&] (Xi _xf)z

indeed obey the N = 2M super Poincaré algebra (2.1) and thus
describe an N = 2M supersymmetric extension of the n-particle
Euler-Calogero-Moser model. To confirm this fact it is most con-
venient to treat IT; as independent objects, which by them-
selves span the so(n) algebra (2.4) and Poisson-commute with the
fermions as in (2.5). Due to these properties, our construction is
valid for an arbitrary number of supersymmetries, in a full analogy
with the extended supersymmetric su(n)-spin Calogero model [6].

2.2. Superconformal invariance

The bosonic n-particle ECM model admits a dynamical con-
formal symmetry. Our A/ = 2M supersymmetric extension with
the supercharges (2.6) and Hamiltonian (2.7) possesses a dynami-
cal superconformal symmetry. Indeed, starting from the conserved
conformal boost current

1 - 2 - 2
K=5;xi —t;xipi-i-t H,

(2.8)
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the remaining conserved currents can easily be obtained by
successively Poisson-commuting the super Poincaré generators
with K. In this way one finds the full list of conserved currents:

1!
D= ) ZMP;’%—IH,
Z‘/’; WIb Zpupubv

l;éf
Zw o= ool
laéj
TabZZI/_fialDib+Zﬁua/5ijb,
i=1 ]
n
:le'lp,-a—tQa,
i=1
— n — —_—
sazzxiwia —tQgq. (2.9)

Together with the supercharges Q% Qg (2.6), the Hamiltonian
H (2.7) and the conformal boost current K (2.8) they form an
osp(N|2) superalgebra:

H,K}=2D, {H,D}=H,
1%, JSa} =1(85J% — 83J D),
J%. Tea} = —1(88Tpg — 831nc),
1, ch}—l(z?”] 0 =85 =82 1% +83)%),

D.Q%)=—5Q% [D.Q}=—50Qu

{K.D}=-K,

{J bs ICd} (Sblad Sglll(,')7

D5 = 25" {D.50) =550,
H,$%t=-Q% {H,Si}=-Qa,
K, Q1 }—5“ {K, Qa} = Sa,
Q) =is; Q% {J%. S} =is; S,
}=—i82Qp. {J%. Sc}=—i8¢ Sp.

--

= 65T~ 5T). [T 5°) =i(25S, — 855,

{
{
{
{
{
{
{
{1
{J%
{J%. Q¢

{1, Qc} = —i(82Q" —52Q7).  {I.5c} = ~i(67s" — 825°).
{Tap. Q€

(0°.Q

{

,Qp}=-2i64H, {S% Sp}=-2i5K,
Q. Sp}=2isyD+ J%, {S". Qp}=2i85D— J%,
{Q%.s"}=1" {Qu. S} =—Tw. (2.10)

A u(M) subalgebra is generated by ] and extended to an so(2M)
subalgebra by adding I%? and Tgp.

3. N =2 supersymmetric Euler-Calogero-Moser model in
superspace

With the Hamiltonian description of an A -extended supersym-
metric ECM model at hand, it is quite instructive to construct the
superfield description of the simplest case with A =2 supersym-
metry. Such a description may be useful for understanding the
general structure of the given supersymmetric construction, espe-
cially the role played by the additional p-type fermions and the
currents £;j.

To obtain a superspace representation of the N' =2 supersym-
metric Euler-Calogero-Moser model, defined with M =1 by the
supercharges Q, Q (2.6) and the Hamiltonian (2.7), one firstly has
to solve two tasks:

e assemble the physical components x;, ¥;, /i, pij and p;; into
appropriate A/ = 2 superfields,

e introduce auxiliary bosonic superfields v;, v; whose leading
components realize ¢;; via bilinear combinations.

Let us start with the first task. From the structure of the super-
charges Q,Q (2.6) it is clear that A/ =2 supersymmetry trans-
forms the coordinates x; into the fermions v, ¥;. Thus, one must
introduce n bosonic N = 2 superfields x; with the following com-
ponents,

—iDX,'|, 1/_f,' = —iBX,'L Al’ =

1 —
Xi=Xxil, ¥i= E[D,D]xd.

31)
Here, | denotes the § = 8 = 0 projection, while D and D are A =2

covariant derivatives obeying the relations

{D.D}=2i3; and {D,D}={D,D}=0. (32)

The fermions p;j, pjj are put into n(n — 1) fermionic superfields
Pij, Pij, symmetric and of zero diagonal in the indices i, j, i.e.
Pii=Pji. Pi;=PpPji,  P;=p;=0 (nosum). (33)
As N =2 superfields the p;; and p;; contain a lot of components.
However, their leading components p;; and p;; transform under
the NV =2 supersymmetry generated by Q and Q (2.6) as follows,

e n Xi — X
8 pwlé[ — pij - - P‘kp'l],
Q Pij Xi—Xj ij k;] (Xi — X0) (Xj—Xk) ik P jk
_ . 1/_/,'—1/7;'_ - Xj — Xj o ]
§7pii ~ i€ | ——L pji — ——PikPik |- (34
Q Pij |: Xi —X; Pij Z X — X0 (Xj _Xk) PikPjik |- (34)

k#i, j

To realize these transformations in superspace we are forced to
impose the following nonlinear chirality conditions,

n

¥i— 1/’] Xi — Xj :|
Dp;i =i S N B E— P
Pij |: Xi—Xj Pij k;j (X — ) (Xj _xk) PikP jk
‘/’l 7/’] . Xi — Xj - -
Dp;: = - ikP jk |- 35
pl] i [ x; —XJ Pij (Xl' —Xk) (XJ —Xk) plkp]k ( )

ki, j

These conditions leave in the superfields p;; and p;; only the com-

ponents

pij = pijl,  Bij=Dpijl,  pij=pijl, Bij=Dpjl. (3.6)
To get the correct Poisson brackets for y;, ¥; and pij» Pij (2.2)

after passing to the Hamiltonian formalism, the kinetic terms for

these fermionic components must read

. n
1 P 0
Liin=5 > (Yivi = ¥id) and
i=1
T~ i
Liin= 5 2 (B = pij iy)- (3.7)
ij
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Altogether, we arrive at the following superfield action for the
purely N =2 supersymmetric system with [;; =0,

1< — 1<
2 -
SO_/dtd 9|:——2 iE]DXi Dxi—i——z ]E], pijpij],

d’*6 =DD. (3.8)

Now we come to the second task: realize the ¢;; in terms of
auxiliary semi-dynamical variables. As so(n) generators the ¢;; pos-
sess the standard realization

A i, _ _

eij = i(vivj — vjv,-) (3.9)
in terms of 2n bosonic variables v;, v; subject to

{Vi,\_/j}=—i5,'j. (3.10)

To implement these new semi-dynamical variables v;, v; at the su-
perfield level, we have to introduce 2n bosonic superfields v;, v;.
Additional information about these superfields again comes from
the transformation of their first components under N =2 super-
symmetry. These transformations can be learned from the explicit
structure of the supercharges Q, Q (2.6), with the £ij being re-
placed by their realization &j (3.9):

PijVj /01] j
SgVvi~Ii€ and 6—v ~ie .
quiie Y 2 ey 2N
J# J#
This form of the transformations implies that, like p;; and p;;, also
the superfields v; and v; are subject to nonlinear chirality condi-
tions,

(3.11)

n - =
— Vs
and Dvj=iy Y
— Xi — Xj
J#i
These conditions leave in the superfields v; and v; only the com-
ponents

(3.12)

vi=vil, C=-iDvj, Vi=v|, Ci=—iDvjl. (313)
Finally, to have the brackets (3.10), the kinetic terms for v;, v; must

take the form
i . -
Liin = ) Z (V,'V,‘ - ViV,‘).

Therefore, the interaction part (I;; # 0) of the superfield action
reads

1 1
S1 =—§/dtd29 Z]:Vivi.
i=

Combining everything, we conclude that the superfield action
should have the form

(3.14)

(3.15)

S=S0+ 51

T — I - 1T
:fdtdze [—EZDX,- Dxi+izpijpij—52vwi],
i=1 i,j i=1
(3.16)

where the superfields p;j, 0;j, vi and v; are subject to the con-
straints (3.5) and (3.12), respectively.

Despite the extremely simple form of the superfield action
(3.16), its component version looks quite complicated due to the

nonlinear chirality constraints (3.5) and (3.12). We will write the
corresponding component Lagrangian as the sum of a kinetic term
Lyiin, auxiliary-field terms £A4,, £8 .8, and a “matter” term

ﬁmatter'

L= Liin+ LY+ LB+ LG + Limatter. (3.17)

The explicit form of these terms is

1 n o ] n L .
Liin = 5 > kiki+ 3 > (Wi — i)
i=1 i=1
i i v :
+3 Z (6 Pij — pij Pij) — 5 Z (Vivi — vivi),
i,j i=1
A —Aj
Eg‘ux 5 ZA Ai — Z ,01]/)111
J#
Low=x Z BijBij + - Z[ — BIJPIJ
1] 1 J#
s B::ivivi  Biiviv:
Vi ey BV M]
Xj — Xj Xj — Xj Xi — Xj
+i Z m [Bikpjkﬁij + Bikﬁjkpij],
£§ux——— ZC Ci ‘[Pijcjvi—ﬁijfjvi],
1961
1 Pij Pik -
L = S Ul VAT
matter = 3 i;k (xi — X)) (xi —xg)
- Z|: '2 pivivy — L‘Zj]z Ioijvj‘_/ij|
o (x; — xj) (i — X))
T~ Wi—¥pEi—¥)
—Z 3 Pij Pij
— (% — xj)
J#i
N 1 (xi — xj)?
ol (X — X) (X5 — X)) (X — X)) (Xj — X))

X Pikpjk/3i115j1

+ - -
Z (X Xk)(x] — Xk)

i,j#k
Xi — X; -
X [m (Vi — k) — (¥i — ¥j) ] Pik P jk Pij

+ - -
”Z;ék( Xi — Xk (X] — Xk)

<[ B2 5= 0 - (B 75) | w619

To go on-shell we eliminate the auxiliary fields Aj, Byj, Bij, Ci, C;
using their equations of motion,

n _
pl]Pu PijVj
Ai=2 G = —_—
: Z —X] ' ZX;’—X]‘
J# J#

PiiV
=y s

iz X
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B — 1vivj—vv; _i(ll_fi—l/_fj)pij
L) Xj — Xj Xi — Xj
- 1 Xj — Xg Xj — X
"FIZ ;Olk,o]k_ le<le< )
pon CXi — Xj \ Xk — Xk —
#i, J
B — iVi‘_/j—Vj‘_/i _i(llfi—llfj)ﬁij
T2 Xk Xj —Xj
n
. 1 Xi — Xj Xj — Xj _
—IZ ( l <,OJk,Ozk— / <)01'k,011<>- (3.19)
i XX\ XX Xp — Xi

After the substitution of the auxiliary components by the ex-
pressions (3.19), a straightforward but slightly tedious calculation
brings the Lagrangian (3.17) to the extremely simple form

lexl+ Z%lﬁz Vivi) + Z(ﬁijﬁij—pijﬁij)
ij

i _ (8 + )
IS iy -y Gt M
25 iz 2 (xi —xj)?

where TITj; is still defined as in (2.3) fora=1 and éi]- is expressed
in terms of semi-dynamical variables as in (3.9). Thus, the super-
field action (3.16), with the superfields pjj, 0ij, vi and v; nonlin-
early constrained by (3.5) and (3.12), indeed describes the N =2
supersymmetric Euler-Calogero-Moser model.

To conclude, let us make a few comments:

(3.20)

e The nonlinear chirality conditions (3.5) can be slightly simpli-
fied by passing to different superfields

P __bi
1 SU _ 1

X,‘—Xj7 _Xi—Xj

§ij= =

n n
DEij+iy Enkj =0, DEj+iy Enj=0
k=1 k=1
However, the Lagrangian, Hamiltonian and Poisson brackets
will look more complicated in terms of &;; and &;;, despite
the fact that the constraints for these new superfields do no
longer involve the superfields x;.

e The auxiliary superfields v;, v; cannot be redefined in a simi-
lar manner. Thus, the nonlinear chirality constraints (3.12) are
unavoidable.

e The superfield action (3.16) looks like a free action for all su-
perfields involved. However, all interactions are hidden inside
the nonlinear chirality constraints (3.5) and (3.12). This feature
makes our construction quite different from most N' =2 su-
persymmetric mechanics where the interactions are generated
via superpotentials. We are curious whether our mechanism to
turn on interactions may be applied elsewhere for construct-
ing new interacting superfield models.

4. Supersymmetric goldfish model

To construct an A = 2M supersymmetric extension of the
bosonic n-particle goldfish model (1.7) one has to impose a modi-
fied version of the constraints (1.8). It is not too hard to guess such
constraints to be

—Xj) /%iXj + TIjj ~ 0. (41)

One may check that these constraints weakly commute with the
Hamiltonian (2.7), with the supercharges (2.6) and with each other,
hence they are first class.

Eij =4+ (X,‘

To get the equations of motion, one has to evaluate the brackets
of all component fields involved with the Hamiltonian (2.7) and
then to impose the constraints (4.1). This results in the following
equations of motion:

n
. bipj
Xi=pi  pi=2) —2,

i XX
n
VPiD - JPiDj _
—22 l i Wiazzzx'_lxpija,
J#i Xj i
. V/PiDj
'01'?:_%(‘/’1’0_1//?)
VPiPk o  ~PiPk 4 «/plp
1 dij
+ Z |:xi — Xk p]k Xj — X Pik — xl lolk
ki, j
B JPiDj -
Pija = — o l (wla \/’ja)
i
v/ PiPk - «/p Dk «/ Pi Pk
+ Z |:X' —IXI ]<a+ ! plka _2611 le plka:| .
ki, j = ¢

(4.2)

The N-extended supersymmetry transformations, generated by
Poisson-commuting i(€,Q“ + €9Q,) with all components fields
and then by imposing the constraints (4.1), have the form

sxi =1 (Eyf +e“1/'f,-a),

" (eapl]—i—e Pl]a)

n a

Pii _
l]x, (évpf) + € Dijp) — € pi.
—Xj

_ . Di
51/fia:212)(‘ﬁx (6 ,0,]+E pl]b) — €aDi,
AT

3pjj=—€"/pipj+ € 8ijpi — i
n Ioa
—HZ L
‘Xz_ k
+IZ

ki M

— 28 Z

k#i

8Pija = —€a\/DiPj + €adijDi —

a a

a_
i J(z b, b=
rxj(ébpij-ff Pub)

€boh, + € Pikp)

b b~
Gbpjk +€ ,Ojkb)

(€pph, + €°pikn).

Xi

W I//](1(

i

n —
. Pjka (-~ p b=
+1§ Xi — Xk (Gbpik-l-é Plkb)

Ebplj +€ ,Oub)

n -
. Pika (- p b=
—Hzx—»—xk (Gbpjk+€ Pjkb)
ketj
n _
. Pik _ _
— 2i8;; Z X l:j(k (Eb,o5< + Eb,Oikb). (4.3)
kst
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One may verify that these transformations form the N =2 super-
algebra and leave the equations of motion (4.2) invariant.

After imposing the constraints (4.1), the Hamiltonian (2.7) and
the supercharges (2.6) acquire the form

Hyed = % (Z Pi)z and
1
(Q)seq = 2PV +5 > \/PiP; P,
i

i#]j
— _ 1 B
(Qa)redzzpilﬁia‘FEZ,/pin Pija- (4.4)
i i#]

It is clear that the correct equations of motion require a deforma-
tion of the basic Poisson brackets (1.2), (2.2), similarly to the purely
bosonic case [12]. We plan to analyze the corresponding deforma-
tion of the Poisson brackets elsewhere.

5. Conclusion

We proposed a novel N -extended supersymmetric so(n) spin-
Calogero model by a direct supersymmetrization of the bosonic
Euler-Calogero-Moser system [8]. The constructed model contains

e 11 bosonic coordinates x; which stem from the diagonal part of
a real symmetric matrix,

e the off-shell elements of this symmetric matrix, which enter
the supercharges and the Hamiltonian only through so(n) cur-
rents £;j,

e N'n fermions ¥{ and Viq, which combine with the x; to n
supermultiplets,

i
. %/\/ x n(n — 1) additional fermions pi"j = p;.'i and pjjq = (pg)
for i # j.

The supercharges Q% and Q, and the Hamiltonian form an
N -extended Poincaré superalgebra and have the standard struc-
ture up to cubic in the fermions. Additional conserved currents
enlarge this superalgebra to a dynamical osp(\/|2) superconformal
symmetry of the ECM model. Having performed the Hamiltonian
reduction of the ECM model, we obtained the M -supersymmetric
goldfish system for n particles.

The structure of the so(n) spin-Calogero supercharges (2.6) and
Hamiltonian (2.7) is quite similar to the supercharges and the
Hamiltonian of the extended supersymmetric su(n) spin-Calogero
model [6]. Indeed, the former can be obtained from the latter
by restricting the su(n) currents ¢;; to the so(n) subalgebra, im-
posing antisymmetry in their indices, and likewise restricting the
matrix fermions plf’j and pjjq to be symmetric in their indices.
Upon such a reduction, the composite object IT;; also becomes
antisymmetric in (i, j) and generates an so(n) algebra. The first-
class constraints ¢;; + ITj; ~ 0 present in the su(n) spin-Calogero
model [6] are then satisfied automatically, and the reduced super-
charges and Hamiltonian will coincide with the supercharges (2.6)
and Hamiltonian (2.7). However, the compatibility of this reduc-
tion with the extended supersymmetry is not a priori evident and
has to be checked explicitly.

The superfield description of our model in the simplest case of
N =2 supersymmetry features

e coordinates x; and fermions v, ¥ j forming standard uncon-
strained bosonic superfields of type (1,2, 1),

o fermionic symmetric matrices p;j;, 0;j (with vanishing diago-
nal), subject to nonlinear chirality constraints,

e 2n bosonic A/ = 2 semi-dynamical superfields v;, v; also obey-
ing some nonlinear chirality constraints.

The superspace action contains only the standard Kinetic terms for
all superfields. It is only the nonlinear constraints which result in
a rather complicated component action. However, after eliminating
the auxiliary components via their equations of motion, the action
acquires quite a simple form again, with an interaction quadratic
and quartic in the fermions.

The presented A/ = 2 supersymmetric case is not too illuminat-
ing, because it can also be constructed without matrix fermions
pij and p;j, in analogy with the A" =2 supersymmetric Calogero
model [16,17]. One may discard the terms quadratic in p;; and p;;
in the nonlinear chirality constraints (3.5). Thus, the generic super-
field structure of the N -extended ECM model becomes visible at
N =4 only. We are planning to address this elsewhere.
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