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Abstract

This chapter provides a practical strategy to realize accurate and robust control for 6 DOFs
(degrees of freedom) parallel robots. The presented approach consists in two parts. The first
basic part is based on the the compensation of the desired dynamics in combination with con-
troller/observer for the single actuators. The passivity formalism offers an excellent frame-
work to design and to tune the closed-loop dynamics, such that the desired behavior is ob-
tained. The basic algorithm is proved to be locally robust towards uncertainties. The second
part of the control strategy consists in a sliding mode controller. To keep the practical and
computational efficient implementation, the proposed switching control considers explicitly
only the friction model. Here we opt for the so called model-decomposition paradigm and
we use additional integral action to improve robustness. The proposed approach is substan-
tiated with experimental results demonstrating the effectiveness and success of the strategy
that keeps control setup simple and intuitive.

Keywords parallel manipulators, robust control, passivity formalism, sliding mode control,
desired dynamics compensation, velocity observer

1. Introduction

Due to their complexity, the practical control of parallel kinematic manipulators is challeng-
ing. The missing of appropriate control strategies plays a key role such that the promising
potentials of such machines, like high dynamics and high accuracy could not be exploited
satisfactorily in practice. Speaking about practical is speaking about control approaches that
respect computational limitation of conventional control systems and do not require addi-
tional hardware setups, like external sensors or additional actuators.
The proposed chapter presents a complete control strategy that is suitable for parallel manip-
ulators and that is robust to different sources of uncertainties. The issue of robust control in
robotics is not quite new and has been addressed by different authors since more than two
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decades. Fundamental works have been presented in (Abdallah et al., 1991; Qu and Daw-
son, 1996). For the present study two families of robust controller are interesting: linear high
gain controller, known to provide local uniform ultimate boundedness Berghuis and Nijmeijer
(1994); Egeland (1987); Qu and Dawson (1996) and nonlinear structure variable or switching
controller that can guarantee global stability Liu and Goldenberg (1996); Spong (1992). Even
if the fundamentals of robust control have been already elaborated, their practical implemen-
tation in the industrial field has been barely considered. This is especially the case for 6 DOFs
parallel robots, that are more complex and suffer especially from uncertainties due to the high
coupled structure Kim et al. (2000). For that reason we try to close this practical gap by propos-
ing a closed concept for the robust control of parallel manipulators.
The core of the scheme consists in the feedforward compensation of the inverse dynamics.
Such type of compensation is preferable then the feedback one, since the latter requires the
measurement or at least the precise knowledge of the endeffector’s pose, translational and an-
gular velocities, which is not easy to manage without additional and expensive sensors (Ab-
dellatif and Heimann, 2007; Abdellatif et al., 2005; Burdet et al., 2000; Kim et al., 2005; Wang
and Ghorbel, 2006). The feedback controllers of the single actuators are kept linear and sim-
ple to avoid additional computational effort. The necessity of velocity error feedback for the
typical stabilizing control of robotic systems is avoided by using observers of actuator’s ve-
locities Berghuis (1993); Burdet et al. (2000). The latter are also kept linear. The simultaneous
design of controller/observer pairs is achieved by means of the passivity formalism. Both
elements are tuned up, such that the closed-loop is robust against parametric uncertainties of
the implemented inverse dynamics model and against the use of feedforward compensation
as such, that introduces systematic errors into the control loop.
We demonstrate in this paper that the combination of desired dynamics compensation and lin-
ear robust control provides exponential ultimate boundedness. Nevertheless such approach
remains conservative in the way that it demands higher feedback the more uncertainties af-
fect the system. High feedback is limited in practice by the actuation constraints. We propose
therefore to keep this basic scheme to encounter systematic or small parametric uncertainties,
like those of the rigid-body model and to augment the scheme with sliding mode control.
To keep the practical and computational efficient implementation, the proposed switching
control considers explicitly only the friction model that is known to be more affected by time-
varying uncertainties. Here we opt for the so called model-decomposition paradigm and we
use additional integral action to improve robustness (Liu and Goldenberg, 1996).
The control approach is substantiated by a multitude of experimental results achieved on a
directly actuated 6-DOFs parallel manipulator and by using a commercial control system. It
is shown that the proposed strategy is highly appropriate to achieve high tracking accuracy at
high dynamics, exploiting therefore the benefits of parallel manipulators in a practical way.
The chapter is organized as follows. Section 2 provides the reader with a preliminary discus-
sion on the challenges that faces the control of complex parallel manipulators. Section 3 is
dedicated to the passivity-based design of the control algorithm. Afterwards and in section 4,
this algorithm is augmented with a sliding mode part to enhance robustness and accuracy.
Section 5 provides experimental results, that substantiate the proposed control strategy.
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2. Motivation and Preliminaries

2.1 Motivation for the proposed controller

Classically, the majority of model-based controller in robotics have been derived based on the
famous equations of motion for Euler-Lagrangian mechanical systems:

τ = M (z)s̈+C(z, ṡ)ṡ+ g(z), (1)

with τ , z, ṡ and s̈ being the generalized forces, coordinates, velocities and accelerations, re-
spectively. M , C and g consist in the positive definite and symmetric mass matrix, the Cori-
olis and centrifugal-forces matrix and the gravity vector, respectively. Notice that the gen-
eralized forces do not necessarily match with the actuating forces Qa that correspond to the
actuation variables or actuator displacements qa. From the actuation and sensing point of
view, both Qa and qa are the only available physical interfaces to the robotic system.
The well known approaches in robotics like the computed-torque or the non-adaptive basic
controller in (Slotine and Li, 1991) provide a control law that is composed of a nonlinear com-
pensating part uC and a stabilizing part ua, such that the actuation input is provided as

u = uC +ua. (2)

Classically, the first part uC compensates for the nonlinear dynamics corresponding to the
actual configuration (z, ṡ) of the robot and according to the model given by (1) or a similar
variation of it. In such manner, the closed-loop dynamics is approximately linearized and
could be stabilized by achieving feedback control via ua. Mostly, the latter is realized as a
linear control (e.g. PD or PID) of the actuators corresponding to their respective tracking er-
rors e = qa − qa,d, with qa,d being the desired displacements of the actuators. As it is well
documented in the text book of (Qu and Dawson, 1996) and proven by a series of journal pub-
lications (Abdallah et al., 1991; Berghuis and Nijmeijer, 1994; Egeland, 1987; Qu and Dorsey,
1991a;b), the robustness of classic model-based strategies has been demonstrated. As long as
the feedback action is strong enough, the closed loop is robust against uncertainties.
The realization of any model-based control is formally straightforward for the classic open-

chain robot, since the actuation or control variables coincide with the generalized ones: z � qa

and ṡ � q̇a = d
dt qa. The dynamics given by (1) can be re-written in the very well known form

Qa = M (qa)q̈a +C(qa, q̇a)q̇a + g(qa). (3)

Since the configuration and the actuation space are the same, no mapping between both is
necessary. The dynamics and therefore the control law can be calculated and derived directly
from the knowledge of the actuation variables. The latter are practically always available
and are provided by the actuation sensors, such incremental encoder or motor current. This
advantageous case is not given for high mobility parallel manipulators. The configuration of
such systems are defined with respect to the end-effector pose, velocities and accelerations x,
v and a such like (1) becomes

τ = M (x)a+C(x,v)v + g(x). (4)

The computation of the nonlinear part uC needs consequently the additional knowledge of
the end-effector motion, which is not available in practice. It is therefore mandatory to have
a mapping that provides the necessary but non measurable configuration variables from the
measurable actuation ones. For this reason and as it is brilliantly discussed by Wang and
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Fig. 1. Results of the direct kinematics for the first rotational DOF. Top: orientation angle,
middle: angular velocity, bottom: angular acceleration.

Ghorbel (2006), a common point to model-based control schemes for parallel robots is that the
direct or the forward kinematics problem (i.e. the determination of the end-effector motion
given the measured joint positions) needs to be solved in real-time in order to compute the
dynamics compensating term uC (Burdet et al., 2000; Cheng et al., 2003; Kim et al., 2005; Ting
et al., 2004). In general such operation do not have a closed-form solution and is achieved
in an iterative numerical manner. This does not only cause a severe computational problem
but yields high noisy estimation of the velocities and accelerations of the end-effector, even
for very small termination conditions of the direct kinematics and especially for the rotational
DOFs. The use of the Jacobian and its time derivative to calculate the velocities and acceler-
ations may yield modest or acceptable results for lower-mobility manipulators, like reported
in Cheng et al. (2003); Pietsch et al. (2005); Ren et al. (2005) and Vivas and Poignet (2005). The
results are however not acceptable for accurate tracking of 6 DOFs mechanisms. Figure 1 de-
picts an experimental example for the first rotational DOF of a spacial parallel manipulator
(see system description in section 5.1). It is obvious that both velocities and the accelerations
are not suitable for providing reliable dynamics and control inputs.
A second crucial issue for the control of parallel robots is the high complexity of their dynam-
ics, that compromises the real-time implementation of uC. Thus, many researchers suggest
the simplification of the dynamics model (Caccavale et al., 2003; Lee et al., 2003; Pietsch et al.,
2005; Vivas and Poignet, 2005; Wang et al., 2007) to ensure real-time ability. This will increase
the uncertainties to be counteracted by using higher feedback action. Due to the limitation
of actuator energy, it is not always possible to implement high-gain control. Model approx-
imation leads in the most of cases to a significant deterioration of the tracking quality (Ab-
dellatif and Heimann, 2007; Denkena et al., 2006). This is especially the case for the range of
high accelerations and velocities. The recommended and practical choice is to concentrate all
computationally intensive terms in uC and to keep the controller ua linear and as simple as
possible.
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A third point to be considered is common to all robotic systems that are governed by (1) and
stabilized by velocity feedback. The quality of actuator’s velocity signal affects directly the
possible range of the robust high-gain feedback (Berghuis, 1993; Slotine and Li, 1991). Since
the direct measurement of actuator’s velocities is not practical, the numerical calculation is
highly noisy and causal filtering introduces delay, it is recommended to use observation tech-
niques. This has been suggested in many works and in a variety of complexity (Berghuis, 1993;
Celani, 2006; de Wit and Slotine, 1991). A discussion concerning this subject in relationship to
fully parallel manipulators is though still missing in literature. The presented approach will
contribute to close such gap.

2.2 Preliminary analysis

This section is dedicated to the analysis of different properties that are useful for the compre-
hension of subsequent development.

2.2.1 Passivity of parallel robots with respect to the actuation space

Rigid multi-body systems with dynamics described by (1) are known to be passive from the
generalized forces τ to the generalized velocities ṡ by satisfying following property (Ortega
et al., 1998)

∃ 0 < β < ∞,

t∫

0

ṡT(t)τ (t)dt ≥ −β ∀ t ≥ 0. (5)

As proved in (Berghuis, 1993; Ortega et al., 1998; Qu and Dawson, 1996), the passivity property
results directly from the nature of the Christoffels symbols constituting the generalized Cori-
olis and centrifugal forces, such that the matrix Ṁ (z)− 2C(z, ṡ) is skew symmetric ∀ t. In
that sense and by substituting ṡ and τ with their corresponding values, an open-chain robot
is passive from Qa to q̇a (the most studied case (Berghuis, 1993; Ortega et al., 1998; Slotine and
Li, 1991)) and a 6 DOFs parallel robot is passive from τ to v. The latter is not directly rele-
vant for control design, since we need the passivity of parallel robots also with respect to the
actuated space from the actuation input or forces Qa to the velocities of the active joints q̇a.
To investigate such passivity, the equations of motion (4) are transformed into the actuation
space

Qa = Ma(x)q̈a +Ca(x,v)q̇a + ga(x) (6)

with

Ma(x) = JT(x)Ma(x)J(x)

Ca(x,v) = JT(x)C(x,v)J(x) + JT(x)M (z)J̇(x),

ga(x) = JT(x)g(x)

and J(x) = ∂v
∂q̇a

being the jacobian matrix of the robot. For non-singular jacobian1 the mass

matrix Ma is also positive definite. Due to the transformation, the term Ca(x,v) does not
satisfy the properties of the Christoffel’s symbols, such that the skew symmetry of Ṁa − 2Ca

is not evident anymore. However the relevant skew-symmetric property

uT
(
Ṁa − 2Ca

)
u = 0 ∀u ∈ R

6 (7)

1 The parallel manipulator is assumed to be mechanically designed, such that a singularity in the
workspace is avoided
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can be proven (see Appendix). The availability of the fundamental requirement (7) allows to
demonstrate the passivity of 6 DOFs parallel manipulator from Qa to q̇a in a straightforward
manner.
It is important to point out, that even if the dynamics equations (6) are available with respect
to the actuation space, the non-measurable variables x and v are still necessary to calculate
the different equation parts. Furthermore, the term Ca(x,v) q̇a decreases the flexibility and
variability of the control design in contrast to the case of serial robots. For the latter the Coriolis
and centrifugal forces Ca(qa, q̇a)q̇a (see eq. (3)) allows a variable interchanging of desired and
actual velocities in the corresponding control term to shape the energy of the closed-loop
system in a more sophisticated way (Berghuis, 1993; Slotine and Li, 1991; Wen and Bayard,
1988). Due to this fact and since Coriolis and centrifugal forces are directly responsible for
the global stability of Euler-Lagrange systems, the conditions on the control parameters for
parallel manipulators are more conservative than those of classic open-chain systems (see
section 3 for discussion).
Before proposing the control design, it is necessary to recall that the different components of
the dynamics equations are bounded, that is

0 < m ≤ ‖Ma(x)‖ ≤ m ∀x (8)

‖Ca(x,v)‖ ≤ c‖q̇a‖ ∀x, v. (9)

with ‖ · ‖ being the euclidean norm and where x and x denote generally the minimal and
maximal eigenvalue of a Matrix X , respectively. Finally the dynamics of a robotic parallel
manipulator is available in a linear form with respect to a minimal set of parameters p:

Ma(x)q̈a +Ca(x,v)q̇a + ga(x) ≡ A (x,v,a)p (10)

which is known to be the computationally most efficient (Abdellatif et al., 2005).

2.2.2 Impact of desired dynamics compensation

The desired dynamics compensation is achieved by the choice

uC � Ma(xd)q̈a,d +Ca(xd,vd)q̇a,d + ga(xd) = A (xd,vd,ad)p (11)

where ′d′ being the subscript that distinguishes desired variables. By considering (11), (2)
and (6) and by assuming - at this stage of analysis - a perfect model knowledge the following
equation

Ma(x)ë+Ca(x,v)ė−ua − ∆ = 0. (12)

results for the closed-loop dynamics. The term ∆ is equal to

∆ = (Ma(xd)−Ma(x)) q̈a,d + (Ca(xd,vd)−Ca(x,v)) q̇a,d (13)

+ (ga(xd)− ga(x))

and corresponds to the systematic errors introduced by using feedforward or desired dynam-
ics compensation instead of feedback- or actual dynamics compensation. With help of the
dynamics properties (8,9) it can be demonstrated that such term is bounded (Burdet et al.,
2000; Qu and Dawson, 1996)

‖∆‖ ≤ ᾱ‖e‖+ cv+‖ė‖ ∀t,x,v and a (14)

with α being a strict positive constant and v+ = supt ‖q̇a,d(t)‖. The boundedness of the
systematic error norm ‖∆‖ is a fundamental property for the design of control schemes with
desired dynamics compensation.
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3. Robust Control with Desired Dynamics Compensation

The proposed control scheme is basically composed of the compensation term given by (11)
and underlying independent control loops for the single actuators. These are linear con-
trol/observer combinations that are to be tuned according to the passivity formalism. This
proposed basic control scheme is the adaptation of the approach proposed by (Berghuis and
Nijmeijer, 1994) to the case of desired dynamics compensation. The same idea was also briefly
studied by (Burdet et al., 2000) but remained without successful experimental implementation.

3.1 Proposed control scheme

Based on the works in (Berghuis, 1993; Qu and Dawson, 1996) we propose for a 6 DOFs par-
allel manipulator the following robust and computationally high efficient controller

u = A (xd,vd,ad) p̂
︸ ︷︷ ︸

uC

−KD (s1 − s2)
︸ ︷︷ ︸

ua

, (15)

where p̂ is the estimate of the real parameters. The matrix KD is positive definite. The control
variables are defined as follows

s1 = ė+ Λ1e

s2 = ˙̂e+ Λ2ê,

where both Λ1 and Λ2 are positive definite matrices, e = qa − qa,d and ê = qa − q̂a denote
the tracking and observer errors, respectively. The vectors s1 and s2 correspond to first order
sliding tracking and observer variables, respectively (Slotine and Li, 1991). It is here important
to notice that due to the assumed absence of the actuator velocity signals q̇a either s1 nor s2

can be calculated separately. However, their difference is obtainable for the feedback term ua

from the available signals. It is straightforward to prove that

s1 − s2 = ˙̂qa − Λ2 (qa − q̂a)− q̇a,d + Λ1

(
qa − qa,d

)

contains only available signals. The velocity observer is proposed as suggested by Berghuis
and Nijmeijer (1994)

˙̂qa = zo +LD (qa − q̂a)
żo = q̈a,d +LP (qa − q̂a)

(16)

with zo being the internal observer variable, LD = lDI + Λ2, LP = lDΛ2 being symmetric
positive definite and lD > 0 is a strict positive scalar quantity. The observer error dynamics
are obtained from (16)

ë = ¨̂e+LD
˙̂e+LPê

yielding

ë = ¨̂e+ (lDI + Λ2) ˙̂e+ lDΛ2ê = ṡ2 + lDs2. (17)

The control error dynamics are obtained by combining (6) and (15)

Ma(x)ë+Ca(x,v)ė+KD(s1 − s2)−∆−∆ = 0. (18)
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Besides the systematic errors ∆ introduced by the desired dynamics compensation (see sec-
tion 2.2.2), the term ∆ arises in the last equation. It results from model uncertainties that may
be the consequence of biased parameter estimate p̂ or unmodeled dynamics Qdist. By con-
sidering the realistic assumption of bounded disturbances ‖Qdist‖ < Q ∀ t > 0 we obtain an
upper bound on ∆

‖∆‖ ≤ ‖A (xd,vd,ad)∆p‖+ Q. (19)

where the parameter uncertainties ∆p can be calculated by evaluating the confidence intervals
of the estimate as known from the identification theory (Abdellatif et al., 2008).
Considering both control and observer dynamics (17) and (18) the following closed-loop dy-
namics are obtained2

Maë+Cas1 =−KDs1+KDs2+CaΛ1e+∆+∆, (20)

Maṡ2+Cas2 =−KDs1+(−lDMa+KD+Ca) s2

−Caė+∆+∆. (21)

For the obtained nonautonomous nonlinear system the energy function

V = H1 =
1

2
sT

1Mas1+
1

2
eTK1e+

1

2
sT

2Mas2+
1

2
êTK2ê (22)

is a Lyapunov-function (Berghuis, 1993; Qu and Dawson, 1996), with

K1 = Λ1(2Λ
−1
1

KD −Ma)Λ1 and K2 = 2Λ
−1
2

KD.

By defining the error state vector

ze =
[

ėT (Λ1e)
T ˙̂eT (Λ2ê)

T
]T

we obtain

V =
1

2
zT

e Pze (23)

with

P1 =

⎡

⎢
⎢
⎣

[
Ma Ma

Ma 2Λ
−1
1

KD

]

0

0

[
Ma Ma

Ma Ma + 2Λ
−1
2

KD

]

⎤

⎥
⎥
⎦

.

Using (20), (21) and the skew symmetric property of Ṁa − 2Ca (see Appendix) the time
derivative of V results in

V̇(ze, t) =− zT
e Qze − sT

2 [lDMa(x)− 2KD −Ca(x,v)] s2

+ ėTCa(x,v)Λ1e− sT
2Ca(x,v)ė

+
(

sT
1 + sT

2

) (
∆ + ∆

)
(24)

2 The arguments x and v were omitted for convenience
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with

Q =

⎡

⎢
⎢
⎣

[
KD − Λ1Ma 0

0 KD

]

0

0

[
KD 0

0 KD

]

⎤

⎥
⎥
⎦

.

Furthermore and according to the property (8), the time derivative of the Lyapunov-function
is bounded (Qu and Dawson, 1996)

V̇(ze, t) ≤ φ0‖ze(t)‖ − φ1‖ze(t)‖2 + φ2‖ze(t)‖3

with

φ0 =2
√

2
(
‖A (xd,vd,ad)∆p‖+ Q

)
, (25)

φ1 =kD − λ1m − (1 + 3
√

2)cv+ − 2
√

2 λ1
−1

α, (26)

φ2 =(1 + 3
√

2)c (27)

resulting from the error dynamics of the here studied case. For given initial error ze(0) the
closed-loop system is locally uniformly and ultimately bounded when the following inequal-
ities are fulfilled

φ1 > 2
√

φ0 φ2,

φ2
1 + φ1

√

φ2
1 − 4φ0φ2 > 2φ0φ2

(

1 +
√

pM

pm

)

,

φ1 +
√

φ2
1 − 4φ0φ2 > 2φ2‖ze(0)‖

√
pM

pm
.

(28)

The variables pm and pM can be obtained from the eigenvalues of P1, as given by Berghuis
and Nijmeijer (1994)

pm = 1
3 p = 1

3 min{m, 2λ2
−1

λ1m}
pM = 3p = 3 max{2λ1

−1kD, 2λ2
−1kD}

. (29)

It is then possible to chose the matrices KD, Λ1 and Λ2 such that their eigenvalues sat-
isfy (28,29), i.e.

lD > m−1
[

2 kD + cv+
]

, (30)

kD > φ1 + λ1m + (1 + 3
√

2)cv+ + 2
√

2 λ1
−1

α (31)

which finishes the control design procedure. An additional benefit is the analytical availability
of the radius R of the region of final error convergence

R =
2φ0

φ1 +
√

φ2
1 − 4φ0φ2

. (32)

It is straightforward to deduce that the theoretical case of a perfect model (φ0 = 0) provides
semi-global exponential stability under the regarded controller/observer combination (15,16).
In contrast to the work Berghuis (1993) for serial manipulators, two major differences can be
stressed out. First, the presented robust control scheme for 6 DOFs parallel manipulators uses
consequently the compensation of desired dynamics. Second, the necessity of x and v for the
calculation of the inverse dynamics and especially the Coriolis and centrifugal terms shrinks
the theoretically possible region of attraction. Both effects yield more conservative conditions

on boundedness and therefore on stability, i.e. the terms 2
√

2 λ1
−1

α and (1+ 3
√

2)cv+ in (26).
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3.2 Considering friction

For the sake of simplicity, friction has not been regarded in the above discussed design. This
is not associated with a loss of generality, since friction preserves the passivity of the sys-
tem (Berghuis, 1993; Slotine and Li, 1991). For the exemplarily case of the classic modeling
approach of a superposition of coulomb friction and viscous damping, we obtain for every
passive or active joint i

Qfi
= f1i sgn(q̇i) + f2i q̇i. (33)

The overall friction that occurs in each actuator is obtained from (33) by means of kinematic
transformation (Abdelllatif et al., 2007):

Fa =

(
∂q̇

∂q̇a

)T

Qf = Af (x,v,a)pf.

The resulting model is also linear with respect to the parameter vector pf that groups all fric-
tion coefficients f1i and f2i. Consequently, the compensating term (11) can be updated by a
friction part:

uC = A (xd,vd,ad) p̂+Af (xd,vd,ad) p̂f.

The parametric uncertainties is consequently updated by the friction parameter estimate bias
and (19) may be re-written to

‖∆‖ ≤ ‖A (xd,vd,ad)∆p‖+ ‖Af (xd,vd,ad)∆pf‖+ Q.

As it is known for the Lyapunov-based design, the additional uncertainties yield more con-
servative bounds and therefore more conservative choice of the controller parameters. This is
especially the case for parallel robots, since the friction forces discussed here depend on the
system’s configuration. As demonstrated in (Abdelllatif et al., 2007), the resulting friction that
is to be counteracted by an actuator j is expressed as:

Faj = r1j(x) sgn(q̇aj ) + r2j(x)q̇aj (34)

and is not only dependent on the actuator velocity but also on the pose x of the manipulator.
The upper bounds of ‖∆‖ can be extended to

‖∆‖ ≤ r2 + α‖e‖+ (r1 + cv+)‖ė‖

and integrated in the design procedure. Since r1 and r2 are widely varying over the
workspace, their upper estimates r1 and r2 increase the conservatism of the control design,
in comparison e.g. to open-chain robots, where the friction forces depend only on the actua-
tor’s velocity. The interested reader is referred to the article (Abdelllatif et al., 2007) for deeper
insight into the consideration of friction for parallel manipulators.

4. Augmenting the Scheme with Sliding Mode Control

We demonstrate in the previous section that the combination of desired dynamics compensa-
tion and linear feedback provides robustness in the sense of local exponential ultimate bound-
edness. Such approach remains conservative in the way that the robustness is achieved pri-
marily through higher feedback. High feedback is limited in practice by the actuation con-
straints. Alternatively, nonlinear sliding mode (or switching) control strategy could provide
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robustness in a global manner (Slotine and Li, 1991). Therefore, we propose to extend the
basic algorithm given by (2) to

u = uC +ua +uR, (35)

with uR being the robustifying switching control term. The basic scheme is kept to encounter
systematic or parametric uncertainties, like those resulting from biased estimated rigid-body
model parameters. It is now extended with the new term uR. Inspired by our long experience
with parallel manipulators and in order to keep the practical and computational efficient im-
plementation, the proposed switching control considers explicitly only the friction model that
is more affected by time varying uncertainties and not only by constant bias.
The proposed control approach combines and merges a multitude of schemes, that have been
proposed in early years for serial manipulators. Primarily we use the parameter-based sat-
uration principle as proposed among others by Spong (1992) and we opt for the so called
model-decomposition paradigm of Liu and Goldenberg (1996) to limit the robust action on
the friction part. Our contributions are: first, to extend such strategies to the case of desired
dynamics compensation; second, to consider the observer dynamics within the control law
and last, to implement the control for the case of complex spatial parallel manipulators.

4.1 Proposed scheme with sliding mode control

The proposed extended controller is the following:

u = A (xd,vd,ad) p̂+Af (xd,vd,ad) p̂f
︸ ︷︷ ︸

uC

−KD (s1 − s2)
︸ ︷︷ ︸

ua

+Af(xd,vd,ad)uf
︸ ︷︷ ︸

uR

, (36)

with uf being dimensionally equal to the friction parameter vector pf: (dim(uf) = nf) and is
a robust parametric correction vector:

uf,k =

{

−ρk
Yf,k

‖Yf,k‖ if ‖Yf,k‖ > ǫk

− ρk

ǫk
Yf,k − KI,k

∫ t
t0
Yf,kdτ if ‖Yf,k‖ ≤ ǫk

, for k = 1 . . . nf. (37)

and

Yf = AT
f (xd,vd,ad) (s1 − s2) . (38)

Both parameters ρk and ǫk can be adjusted individually for each friction parameter pf,k. They
correspond in the sense of saturation control to the uncertainty bounds and to the width of the
boundary layers, respectively. The parameter ρk depends on the modeling and the parameter
estimate precision, whereas ǫk is a positive control parameter, that have to be chosen with
respect to the control goals. In classical approaches the boundary layer is shaped as thin as
possible by using very small ǫ to guarantee high tracking accuracy. This implies high feedback
action with its all related disadvantages. Therefore, Liu and Goldenberg has proposed the
integral control action, given above in the second equation (37). This is motivated by the fact,
that some aspects of parametric uncertainties like estimate bias affect the system as an offset
in the parameter domain. Thus, integral action in the same domain is the adequate method to
counteract such type of uncertainties. To avoid windups due to large initial errors, the integral
action is restricted to the case when the errors are small and are within the boundary layer.
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The integral term helps enlarging the boundary layer ǫ and therefore decreasing the feedback
action by keeping the same tracking accuracy. It is highly recommended for use in practice.
The proof of uniform ultimate boundedness can follow by combining the method shown in
the previous section 2.2.1 and the procedure demonstrated in (Liu and Goldenberg, 1996).
The proof - although straightforward - is too long to be put here. It shall be noticed that the
Lyapunov function candidate remains the same as (22) for the region outside the boudary
layer, and is extended with the term 1

2ξ
TKIξ in the contrary case. Here

ξ = K−1
I ∆pf −

∫ t

t0

Yfdτ. (39)

The next section provides a discussion on the provided sliding mode controller as well as its
comparison to alternative approaches from literature.

4.2 Discussion

As previously mentioned, the proposed control given by (37-38) results from merging clas-
sic approaches provided for serial manipulators and their adaptation to the case of desired
dynamics compensation with additional consideration of observer dynamics. In the original
approaches Liu and Goldenberg (1996); Spong (1992), the vector Yf resulted by using only
the sliding variable s1 (or similar variations of it), which is in general noisy3 and cause the
shrinking of control band width. Using the smoother variable (s1 − s2) as well as the noise-
free desired values xd, vd and ad allows for more freedom when tuning the feedback gain or
adjusting the boundary layer parameters ρ and ǫ. Even if the theory provides global uniform
and ultimate boundedness, practically the use of sliding observer component plays a key role
in the amelioration of tracking accuracy. It is believed, that the experimental studies in many
publications would provide better result, if an observer has been implemented.
Even if the control laws (37-38) appear complicated, they do not cause any major losing of
computational efficiency. This is due to the fact, that we consciously limited the switching
control to the friction model. The related part Af is very simple to obtain by 36 additions
and 54 multiplications (Abdellatif et al., 2005). Extending the switching control to the rigid-
body part is not very efficient, since the rigid-body model requires about twenty times more
computational effort. It is questionable to spend so much effort to counteract uncertainties
of rigid-body parameters, that and in exception of playloads are not affected by important
uncertainties. This is an additional important difference between our algorithms and other
alternative robust switching controllers developed for parallel manipulators (Kim et al., 2000;
2005; 2001).

5. Experimental Study

This section is dedicated to the experimental implementation of the proposed control strategy
on a 6 DOFs spatial parallel manipulator, which will be presented briefly in the first subsec-
tion.

5.1 Case study hexapod

All proposed approaches are substantiated on the hexapod PaLiDA (see Fig. 2), that has been
designed and constructed by the institute of production engineering and machine tools of the
university of Hannover. The machine is equipped with fast direct drives variable in length and

3 since the velocity errors are calculated by numerical differentiation
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Fig. 2. Case study: hexapod PaLiDA. Left: presentation at the Hannover industrial fair, right:
CAD model

has been designed to be a mixture of a high-speed manipulator and a tool machine (Denkena et
al., 2006). The application area covers fast handling and light cutting machining tasks with low
process forces. Central requirement is therefore to ensure acceptable tracking errors at highest
possible velocities and accelerations at the presence of disturbances. The maximal actuation
force is about 230N, whereas actuator accelerations of about 2-3 g could be achieved. The
internal hall sensors are affected with significant measurement noise, such that any feedback
strategy of numerically differentiated variables is challenging. The control system consists in
a commercial dSPACE Power-PC 604e single processor unit (333 MHz). The sample time is
0.5 ms. The proposed control approach requires (including path-planning) about 0.15 ms of
computational time, which demonstrates its efficiency.

k p unit p̂

1 f1α
[Nm] 0.654

2 f1β
[Nm] 0.675

3 f11
[N] 8.148

4 f12
[N] 5.288

5 f13
[N] 16.574

6 f14
[N] 7.743

7 f15
[N] 6.295

8 f16
[N] 9.525

9 f21
[Nsm−1] 18.774

10 f21
[Nsm−1] 16.092

11 f21
[Nsm−1] 4.428

12 f21
[Nsm−1] 17.444

13 f21
[Nsm−1] 17.915

14 f21
[Nsm−1] 3.454

Table 1. friction parameters pk with corresponding estimated values p̂k

As it has been derived and deeply discussed in former publications (see e.g. (Abdellatif and
Heimann, 2007; Abdellatif et al., 2005)) the dynamics model used for the feedforward con-
troller uC contains 24 minimal parameters. The rigid body model part corresponds to a set of
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Fig. 3. Investigated motions for the experimental study, left: motion 1, right motion 2.

10 minimal parameters p. As given by the modeling approach (33), the friction of each of the
6 actuators j is modeled by a dry friction coefficient f1j

and a viscous dumping coefficient f2j
.

Friction in the passive joints is modeled only as dry friction with a common parameter for all
αj (the first revolute joint of each strut) and another one for all β j-joints (the second revolute
joint of each strut). The friction model contains therefore 14 different parameters (see Table 1
for an overview and (Abdelllatif et al., 2007) for more details).
For the experimental validation of the proposed control, two exemplarily test motions (see
Fig. 3) are chosen. Both of them are demanding in point of view of achieved dynamics and ve-
locities. The circular motion (∅ = 20mm) allows for highest actuation forces of about 230 N.
The quadratic one (edge length= 28mm) allows for highest possible actuator velocities of
about 1.5 ms−1. To keep the influence of kinematic accuracy the same over the experiments,
we chose both test motions in the middle of the workspace and at the same hight. The exper-
imental comparison focuses on the two proposed schemes: the passivity based approach pre-
sented in section 3, which is denoted in the following by (P-FF) and the scheme with additional
Sliding mode control (P-SM). Additionally, both proposed schemes are compared to the clas-
sic feedforward computed-force technique (CF-FF), that consists in forwarding the dynamic
model by keeping the actuators controlled by standard PID (or PD) controllers (see Abdellatif
et al. (2005)). The common control parameters for P-FF and P-SM are set equal for a meaning-
ful comparison. For the classic CF-FF approachh, the PID parameters are tuned heuristically,
but the derivative part could not has set as high as for the passivity-based schemes, due to the
absence of a velocity observer. This can be stated already as an improvement of the proposed
control, that allows for higher control bandwidth thanks to the integration of the observer. All
different control parameters used in the following experimental study are given in Table 2.

5.2 Experimental results

The first experiment consists in comparing the three control strategies CF-FF, P-FF und P-
SM. For this purpose, the identification of the model parameters has been achieved to obtain
reliable estimate for p̂ and p̂f (see (Abdellatif et al., 2008) and results in Table 1). To examine
the robustness towards parametric uncertainties, different friction parameters p̄f = 1

2 p̂f has
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 00

KP kI KD Λ1 Λ2 lD ρ ǫ KI[103]

CF-FF 38000 85000 1000 - - - - - -

PF-FF - - 1400 42 42 180 - - -

PF-SM - - 1400 42 42 180

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6.32
7.15
99.39
74.43

129.05
72.67

104.74
140.78
210.72
148.49
228.80
151.94
178.42
221.57

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.06
0.06
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.31
0.35
49.69
37.21
64.52
36.33
52.37
70.39

105.36
74.24

114.40
75.97
89.21

110.78

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Table 2. control parameters for the experimental study

been used to compute the feedforward controller uC. As demonstrated by our experience
with the system, such choice is very realistic. Friction parameters could even vary more then
here assumed.

e
R
M

S
μ

e
R
M

S
μ

Fig. 4. Comparing the resulting root mean squares errors resulting from the two test motions
and by using three different controllers.

Comparing the root mean squares of the tracking errors with respect to the actuators yields
the results in Fig. 4. As expected the classic approach CF-FF shows the lowest tracking ac-
curacy. This is due to the fact, that the highly noisy velocity error signal inhibits increasing
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Fig. 5. Comparing the tracking errors of exemplarily chosen actuators resulting for the two
test motions (top: motion nr. 1, bottom: motion nr. 2) and by using three different controllers:
Thick line: P-SM, medium line: P-FF, thin line: CF-FF

the feedback action significantly without compromising the stability of the system. The use
of well tuned observer is a key issue to improve the tracking performance. It is also clear
that the controller augmented with the sliding mode component outperforms the other two.
This can be concluded by examining the time histories of the tracking errors (see some ex-
amples depicted in 5). The approach P-FF is able to counteract the effects of the parameter
uncertainty by increasing the feedback. Such operation has to be performed by the operator
or by the control engineer. The feedback action should then be tuned in relationship to the
estimate upper bound of the uncertainty. The switching mode robust controller is able to react
autonomously on the deviation of the nominal model. Its operating mode can be illustrated
for the present case by examining the robust corrections performed for the first and for the
10th friction parameters (see Fig. 6 and Fig. 7, respectively).
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Fig. 6. Robut correction for the first entry of the input vector uf corresponding to the first
friction parameters f1α
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Fig. 7. Robut correction for the first entry of the input vector uf corresponding to the 10th

friction parameters f22
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As given mathematically in (36-38) the entries of the switching robust controller uR depend
on the corresponding state ‖Yf,k‖ > ǫk (see right, bottom of the figures) . If the latter is
fulfilled then the boundary layer is violated and the controller switches to pull back Yf,k within
the layer. This is the case, when high uncertainty is given like it is the case for the friction
parameter f1α

of the passive joint. A higher switching action occurs (see left plot of Fig. 6). In
the contrary case, like for u f ,10 the algorithms reacts on the error dynamics s1 −s2 by adjusting
the output. As it can be better observed in Fig. 7, the output u f ,10 is highly correlated with the
corresponding Yf,k.
The case of significant initial errors showed however some drawbacks of the control approach
P-SM. The most important one is that in such case the switching controller is too aggressive
and leads very quickly to the violation of the actuator constraints. The design of the controller
has been made without any consideration of input constraints which explains such undesir-
able phenomena. This issue is left for future work and for future improvement. Figure 8 shows
corresponding experimental results achieved by driving the quadratic motion by significant
initial errors. The exemplarily depicted tracking errors for the second actuator demonstrates
that the P-SM controller yields the biggest overshoot. Additionally, it exhibits lower tracking
convergence quality. Notice that we used the region of final convergence R (see eq. (32)) in
Fig. 7 only for illustration purpose and in order to improve the understanding of the results.
To remedy the bad behavior of the sliding mode controller in presence of high initial errors,
another mild tuning of the parameters is required, e.g. increasing KI and decreasing ǫ by 100
times and 4 times, respectively. The corresponding experimental results are denoted by P-
SM’. It is clear that a tradeoff should be met between robustness and tracking accuracy, which
is the classic problem in control practice.

‖z
e
(t
)‖

R

tu = 52

‖s
2
‖

tu = 68

‖s
2
‖

t

e
2

tu = 56

‖s
2
‖

‖s1‖

R

Fig. 8. Comparison of ontrol performance in case of significant initial errors. Left, top: error
norm ‖ze‖, Left, bottom: exemplarily depicted tracking accuracy of the second actuator, on
the right side: convergence of the control and observer sliding errors for the compared control
approaches and with resulting convergence time tu.

The final and concluding experiment compares the accuracy of the three control approaches
in the cartesian space. Figure 9 shows the tracking performance of the circle as well as that of
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a corner achieved by the algorithms CF-FF, P-FF and P-SM. In this experiment we switched
back to the case of zero initial errors. The sliding mode approach outperforms the other two
controllers.

x

y

Fig. 9. Peroformance of tracking a circle (left) and a sharp corner (right) achieved by the three
investigated control approaches

6. Conclusions

In this paper an experimentally approved practical methodology for the robust control of 6
DOFs parallel manipulators has been presented. A discussion on the key issues for a suc-
cessful control strategy for such systems has been provided. The computational efficiency of
the control has two aspects: the first one is the calculation of the complex dynamics model
and the second is the determination of the end-effector motion. Both aspects can be solved by
feedforward desired dynamics compensation, that is in this sense more appropriate then the
feedback dynamics compensation. The use of observers for the actuator velocities allows to
increase the control bandwidth. We used the passivity paradigm to develop an approach that
merges the feedforward compensation technique with the observer-based feedback to provide
a first basic controller, that is locally uniformly and ultimately bounded.
In a second step the basic algorithm is extended with a robust switching term. This has been
designed to harmonize with the basic algorithm by consequently using desired dynamics and
the consideration of the observer dynamics. The practicability of the approach is improved
by restricting the robust term on the friction part of the model, which is classically affected by
important and time-varying uncertainty.
The presented methodology has been investigated and substantiated by a set of experiments.
It has been demonstrated that the algorithm augmented with the switching term exhibits the
best performance. Nevertheless, a tradeoff between accuracy and stability should be met
while tuning the controller, especially with respect to significant initial errors.
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7. Appendix

Proof of the skew symmetric property of Ṁa − 2Ca. Given the skew symmetry of Ṁ −
2C (Ortega et al., 1998) following transformations hold

Ma = JTMaJ ,

Ca = JTMaJ̇ + JTCJ ,

substitution yields

Ṁa − 2Ca =
d

dt

(

JTMaJ
)

− 2JTMaJ̇ − 2JTCJ ,

= JT
(
Ṁa − 2Ca

)
J + J̇MJ − JMJ̇ .

Let u ∈ R
6. It results

uT
(
Ṁa − 2Ca

)
u = uTJT

(
Ṁa − 2Ca

)
Ju

+uTJ̇MJu−uTJMJ̇u,

= uTJ̇MJu−uTJMJ̇u,

= 0 ∀u ∈ R
6

since uTJ̇MJu scalar, it results

uTJ̇MJu =
(

uTJ̇MJu
)T

= uTJMJ̇u.

yielding that

uT
(
Ṁa − 2Ca

)
u = 0 ∀u ∈ R

6

which completes the proof.
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