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ABSTRACT
PspA, IM30 (Vipp1) and LiaH, which all belong to the PspA/IM30 protein family, form high molecular
weight oligomeric structures. For all proteins membrane binding and protection of the membrane
structure and integrity has been shown or postulated. Here we discuss the possible membrane
chaperoning activity of PspA, IM30 and LiaH and propose that larger oligomeric structures bind to
stressed membrane regions, followed by oligomer disassembly and membrane stabilization by
protein monomers or smaller/different oligomeric scaffolds.
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PspA, LiaH and IM30 are phylogenetically
related proteins

The proteins PspA, IM30 (Vipp1), LiaH and YjfJ belong to
the PspA/IM30 protein family. Structurally, all family mem-
bers are predicted to be mainly a–helical,1-4 and PspA,
IM30 and LiaH form high-molecular weight homo-oligo-
meric ring structures. Solely YjfJ is reported to not form
such complexes,5 and, in fact, YjfJ is the most distant and
least studied protein in this family. Therefore, it will not be
further discussed here. The tendency of purified PspA, LiaH
and IM30 to form ring structures or other higher order
oligomers is extremely pronounced and monomers repre-
sent a minor fraction in solution.6-9 The observed homo-
oligomeric rings are strikingly similar: PspA has been calcu-
lated to form 36-mers, and LiaH also forms ring structures
of that size range.3,7 IM30 has the intrinsic propensity to
form varying ring sizes containing (at least) 48–68 mono-
mers.1,2 Nevertheless, besides a common phylogenic origin
and obvious structural similarities, PspA, IM30 and LiaH
have different physiological functions.

PspA, IM30 and LiaH bind and stabilize stressed
membranes

The phage shock protein (Psp) system represents a con-
served stress response system of bacteria and archaea.10

In enterobacteria, Psp response proteins are encoded by
the pspABCDE operon and monocistronic pspF and
pspG genes. Thus far, the enterobacterial Psp system is
the best characterized representative involving a member
of the PspA/IM30 family.

In the absence of stress, PspA inhibits the transcription
factor PspF.11 One model suggests that the Psp system is
activated when PspA itself senses membrane defects or
stress, resulting in liberation of PspF.12 As a result, tran-
scription of the psp genes is enhanced and the PspA level
increases, which triggers the formation of membrane-pro-
tecting PspA assemblies.13 In agreement with this hypothe-
sis, PspA can stabilize stressed membranes in vitro.14

Alternatively, the main sensory role is attributed to the
membrane components PspB and PspC.15-17 In this model,
membrane stress results in recruitment of PspA to PspC,
and a concomitant release of PspF activates the Psp
response. Indeed, sensing of mistargeted secretins or mem-
brane-destabilizing proteins requires PspB and PspC,
which may function in conjunction with PspA.18,19 In
non-enterobacteria, PspBC may be replaced by other sen-
sory systems. Recent analyses of the PspA-PspF interaction
suggest that the PspAF complex does not necessarily need
to dissociate to modulate psp gene expression.20 In
summary, the function of PspA appears to be dual: (i)
membrane binding and membrane protection as well as
(ii) upregulation of corresponding genes.
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IM30 (Inner Membrane-associated protein of 30
kDa), alternatively named Vipp1 (Vesicle-Inducing Pro-
tein in Plastids), is conserved in all organisms harboring
thylakoid membranes (TMs), i.e. cyanobacteria (except
several Prochlorococcus marinus strains), algae and
higher plants.21 It has been reported that IM30 can
somehow functionally replace PspA in Escherichia
coli.22,23 Thus, while membrane binding and membrane
protection appears to be conserved, IM30 must have
gained extra functions. Although many IM30-specific
functions have been proposed in the past (for a recent
review, see ref. 21), a recent report suggests that IM30
can trigger membrane fusion upon membrane binding, a
process crucial for TM biogenesis and maintenance.24 A
fusogenic activity would in fact explain many of the pre-
viously proposed IM30 activities.

The Lia system is highly conserved in Bacillus and
Listeria species (low GC Gram-positive bacteria).25 Its
expression is controlled by the LiaFSR three-component
system.26 In the absence of stress conditions, the bifunc-
tional histidine kinase LiaS is kept in its phosphatase
state by the inhibitor protein LiaF, thereby repressing the
activity of the transcriptional factor LiaR.27 Under stress
conditions, LiaF presumably releases LiaS, which
switches its activity from phosphatase to kinase state.
Once activated by phosphorylation, LiaR induces tran-
scription of the liaIH operon.26,27 LiaI is the membrane
anchor of LiaH, which dynamically scans the membrane
and recruits LiaH to the site of envelope damages.28 It is
postulated that oligomeric LiaI/LiaH complexes stabilize
a perturbed envelope at the sites of membrane damage.28

Are members of the PspA/IM30 protein family
membrane chaperones?

While all studied members of the PspA/IM30 family
have acquired specific functions during the course of
evolution, PspA3,5,12,29,30 and IM301,2,4,6,12,31-33 have
been shown to directly bind to membrane surfaces and
thereby to alter the structure and organization of mem-
branes eventually resulting in membrane stabilization.
LiaH is suggested to have the same activity, but experi-
mental verification is still missing.28

PspA and IM30 preferentially bind to negatively
charged membranes or to surface curvature-stressed
membranes.6,12,24 Surface attachment of IM30 or PspA
increases the packing density of individual lipids, i.e., the
lipid bilayer becomes more ordered.6,12 Increasing the
lipid packing density might be a vital repair strategy if
stress-induced defects occur in lipid bilayers. Membrane
stress resulting in membrane reorganization and eventu-
ally in membrane defects might be induced by heat or
osmotic stress, by membrane remodeling agents, such as

alcohols, as well as by external forces. Importantly, the
major lipid species of bacterial as well as TMs are
non-bilayer forming lipids (such as PE (Phosphatidyleth-
anolamine) in E. coli and MGDG (Monogalactosyldia-
cylglycerol) in cyanobacterial/chloroplasts’ TMs). While
MGDG is crucial for TM organization,34 excess of
MGDG severely decreases the membrane stability.35 In
fact, under prolonged stress affecting membrane integ-
rity or fluidity, the MGDG content is adjusted.36,37 Mem-
brane binding of PspA or IM30 proteins might therefore
simply spatiotemporally stabilize short-living protein-
free (instable) lipid patches by insertion of the hydropho-
bic side-chains of a membrane-binding amphipathic
helix between the lipid acyl-chains of the cytoplasmic
lipid bilayer leaflet. Such membrane stabilizing mecha-
nism is discussed for many membrane-active proteins or
peptides that contain amphipathic helices, such as anti-
microbial peptides38-40 or BAR (Bin/Amphiphysin/Rvs)-
domain proteins.41,42 In case of negative curvature stress
or other defects in lipid bilayer structures, binding of
PspA or IM30 proteins to membrane surfaces might sta-
bilize the bilayer structure by the discussed hydrophobic
insertion mechanism.

The ability of selected proteins to bind and to protect
stressed membranes is important for the fitness and sur-
vival of microorganisms and plants, which are constantly
exposed to different stresses, like cold, heat, reactive oxy-
gen species (generated, among other, by an intense pho-
tosynthetic activity), acid or organic solvents.43-46

Membrane binding and protection has already been
described for oligomeric proteins belonging to the Small
Heat Shock Protein (sHSP) family. sHSPs are low-molec-
ular weight proteins (15–42kDa) that form dynamic 9- to
50-mers.47 However, the sHSPs active unit is most cer-
tainly a dimer.48 Hence, dimer formation requires disso-
ciation of the oligomeric structure. Under heat stress
conditions, the cyanobacterial sHSP HspA (also named
Hsp17) delocalizes from the cytoplasm and binds to
TMs to protect the membrane ultrastructure49 by
increasing the lipid order and reducing membrane fluid-
ity.50 Lo18, a sHSP from Oenococcus oeni, forms 16-mer
spherical complexes.51 Under ethanol-induced mem-
brane stress, 16-mer complexes disassemble into dimers
that bind to membranes and stabilize them.52 Further-
more, expression of the O. oeni Lo18 in Lactococcus
lactis improved acid stress tolerance of L. lactis,53 and
heterologous expression of HSP17 from Caenorhabditis
elegans enabled E. coli to grow at temperatures that are
normally lethal for the wild-type strain.54

It is tempting to postulate a similar role for members
of the PspA/IM30 family, that is, that the oligomers dis-
sociate on membrane surfaces upon membrane binding
to stabilize defined membrane patches. In fact, for
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PspA11,20 and IM306,24 dissociation of their large ring
assemblies is indicated. IM30 LMWO (lower molecular
weight oligomers) bind with an about 5-fold higher affin-
ity to PG liposomes than IM30 rings,6 which argues for
binding of monomers rather than high molecular mass
oligomers to membrane surfaces and/or IM30 ring disas-
sembly upon membrane binding.24 Increased membrane
affinity of LMWO (lower molecular weight oligomers)
IM30 is discussed to originate from exposure of amphi-
philic helices, which are otherwise involved in formation
of coiled-coil-type interactions within IM30 rings.21

Since LMWO (lower molecular weight oligomers)
appear to not be stable in solution, formation of the ring
structures might simply be vital for shielding the amphi-
philic helices. Thereby, PspA or IM30 proteins remain
soluble in the absence of stress conditions.

Binding of an IM30 ring to TMs requires a free lipid
area of about 380 nm2 (total surface of the ring consid-
ered as a disc with an assumed ring diameter of 22 nm).2

In Synechocystis PCC 6803 TMs, the proportion of pro-
teins (weight/weight) is 68%55 and in spinach TMs, the
proteins area occupancy has been estimated to be 75%.56

Thus, binding of IM30 rings seems barely probable
in vivo within the crowded environment of a TM, unless
stressed membrane areas are protein depleted or an
unknown mechanism creates such large protein-free
lipid domains. In fact, crowding is not homogeneous in
cyanobacterial and plant TMs that possess lateral hetero-
geneity with densely packed and more fluid areas.57,58

However, while a single IM30 ring covers an area of
»380 nm2, the center of a ring is open leaving a free area
of »80 nm2.2 Binding of smaller units (such as mono-
mers) or flexibly rearranging scaffolds to damaged mem-
branes could completely cover and protect damaged
and/or stressed membranes by stabilizing the order of
the lipid bilayer via filling the “gaps” between lipid head
groups.

Summary and outlook

Functional characterization of PspA/IM30 proteins has
been notoriously difficult. But combining the lessons
learned from its best studied members – the PspA from
enterobacteria, IM30 (Vipp1) from cyanobacteria and
plants, and LiaH from Firmicutes– allowed extracting a
first set of common features with respect to their oligo-
merization, membrane binding and putative membrane
protecting function, as discussed here. We propose that
membrane protection of members of the PspA/IM30
protein family is mediated by (1.) binding of oligomeric/
multimeric assemblies or ring structures to stressed
membrane areas followed (2.) by ring dissociation, which
results in exposure of membrane-binding amphiphilic

helices and finally in coverage of a stressed membrane
area by monomers or flexible scaffolds (Fig. 1). Notably,
membrane attachment of oligomeric proteins and subse-
quent local disassembly results in a high monomer con-
centration that is confined to a selected membrane area.

Clearly, besides the proposed membrane-protective
activity of PspA/IM30 proteins, they have gained more
specific functions in their special systems, and these
activities are likely differently regulated. However, the
here described insights can now serve as a starting point
for more detailed functional and biochemical analyses
that will ultimately unravel both general and organism-
specific features of the ubiquitously distributed PspA/
IM30 protein family.
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