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Rhythmic auditory cueing has been shown to enhance gait performance in several

movement disorders. The “entrainment effect” generated by the stimulations can

enhance auditory motor coupling and instigate plasticity. However, a consensus as to

its influence over gait training among patients with multiple sclerosis is still warranted. A

systematic review and meta-analysis was carried out to analyze the effects of rhythmic

auditory cueing in studies gait performance in patients with multiple sclerosis. This

systematic identification of published literature was performed according to PRISMA

guidelines, from inception until Dec 2017, on online databases: Web of science,

PEDro, EBSCO, MEDLINE, Cochrane, EMBASE, and PROQUEST. Studies were critically

appraised using PEDro scale. Of 602 records, five studies (PEDro score: 5.7 ±

1.3) involving 188 participants (144 females/40 males) met our inclusion criteria.

The meta-analysis revealed enhancements in spatiotemporal parameters of gait i.e.,

velocity (Hedge’s g: 0.67), stride length (0.70), and cadence (1.0), and reduction in

timed 25 feet walking test (−0.17). Underlying neurophysiological mechanisms, and

clinical implications are discussed. This present review bridges the gaps in literature

by suggesting application of rhythmic auditory cueing in conventional rehabilitation

approaches to enhance gait performance in the multiple sclerosis community.

Keywords: rhythm perception, gait, movement disorders, rehabilitation, falls, spasticity

INTRODUCTION

Multiple sclerosis is a prevalent, progressive demyelinating disease of the central nervous system
(1). It is one of the most common causes of non-traumatic progressive disability in younger
population groups (2, 3), but is also not uncommon in aged population (4). The main pathological
characteristics of multiple sclerosis include progressive demyelination, and disruption of blood
brain barrier due to inflammatory changes (5). This eventually affects the functioning of relevant
axonal tracts, thereby causing widespread neurological symptoms (1, 6). The clinical manifestations
in patients with multiple sclerosis include disruptions in sensory, motor and cognitive functioning.
For instance, paresthesia, sensory loss, progressive hemiparesis, ataxia, fatigue, and depression have
been widely reported (7, 8).

Gait and postural dysfunctions are also common in patients with multiple sclerosis especially
due to the involvement of pyramidal track, cerebellar and spinal cord dysfunctions (9–11).
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Prosperini et al. (2) for instance, reported lesions primarily
in cerebellar, supratentorial associative bundles to affect the
static and dynamic stability in patients with multiple sclerosis.
Likewise, pathological involvement of leukocortical, intracortical,
and subpial regions have also been reported (7, 12). Together,
these sensory, motor and cognitive dysfunctions affect motor
control and coordination (13, 14), eventually promoting falls
(15), and affecting the quality of life (16). Typical gait
characteristics exhibited by patients with multiple sclerosis
include reduced gait velocity, stride length, cadence, and
increased step width, asymmetric gait, double limb support
duration (17, 18) [for a detailed review see (16, 19)].
Kinematic analysis of gait further reports larger range of
motion at hip joint (20), increased knee flexion, reducing
in ankle plantarflexion (21), and higher pelvic obliquity
(22). Furthermore, electromyographic studies report abnormal
musculoskeletal co-activation pattern especially at the ankle joint
(23). These adjustments in gait kinematics and muscular co-
contractions have been affirmed as cautionary measures adopted
by patients for promoting stability during gait (24). These gait
modifications although are intended to safeguard oneself from
falling. Retrospectively, these modifications promote a rather
slow, uneconomical, fatigue promoting, and highly fall prone gait
pattern (25–28).

Common treatment strategies to curb motor dysfunctions
in multiple sclerosis include physical exercise (29, 30), training
with virtual-reality (31), physical/occupational therapy (32),
hydrotherapy (33), electrical stimulations (16), martial arts (34),
dual-task training (28), and external sensory cueing (35, 36).
Studies report that sensory dysfunctions in patients with multiple
sclerosis primarily play a key role in disrupting motor control
and coordination (37). Disruptions in the perception of visual
(38), and proprioceptive (39, 40), systems have been well-
documented. Therefore, providing additional sensory cueing to
support movement execution might serve as a viable option to
overcome this loss. Only a handful of studies have analyzed
the effects of external sensory stimulations (auditory, visual) on
motor performance in patients with multiple sclerosis (35, 36,
41, 42). Nevertheless, the predominant role of auditory cueing
as compared to its visual counterpart has been emphasized
in literature (43, 44). Predominantly auditory cortex has been
reported to perceive rhythmic stimuli by as short as 20–
30ms, which is considerably shorter as compared to visual
and tactile thresholds (45–47). Moreover, it utilizes the rich
interconnectivity of the auditory cortex to motor centers
from spinal cord extending from the brainstem, cortical and
subcortical structures (48–50). This also enables the auditory
system to operate in a quite fast, precise, and efficient manner (51,
52). Several types of rehabilitation approaches have been reported
in the literature for delivering external auditory stimulations,
such as rhythmic auditory cueing (50), patterned sensory
enhancement (53, 54), and real-time auditory feedback (55, 56).
However, rhythmic auditory cueing is the most widely studied
treatment strategy with respect to healthy population groups
(28), population groups, and patients affected from movement
disorders such as parkinsonism (47), stroke (57), and cerebral
palsy (58). This type of stimulation can allow enhancements

in motor execution in a multifaceted manner (47, 52). For
instance, the sensory cueing can enhance biological motion
perception (55, 59), promote audio-motor imagery (60, 61),
reducing shape variability in muscle co-activation (62), mediate
cortical reorganization, neural-plasticity (63), reduce cognitive
overload (64), and more (45).

Moreover, recent research suggests increased financial burden
on patients with multiple sclerosis (65, 66), especially because
of the disease’s progressive and relapsing nature (67). Therefore,
development of affordable, and convenient rehabilitation
strategies must be emphasized. Rhythmic auditory cueing is an
effective strategy in these terms as it is viable, cheap, and can
also be effectively applied as a home-based intervention (26–28).
Therefore, we attempted to develop a state of knowledge by
conducting a systematic review and meta-analyses to determine
the effects of rhythmic auditory cueing on gait performance in
patients with multiple sclerosis.

METHODS

This review was conducted according to the guidelines outlined
in Preferred Reporting Items for Systematic Reviews and Meta-
analysis: The PRISMA statement (68).

Data Sources and Search Strategy
Academic databases such as Web of science, PEDro, EBSCO,
MEDLINE, Cochrane, EMBASE, and PROQUEST were searched
from inception until December 2017. A sample search strategy
has been provided in (Table 1).

Data Extraction
Upon selection for review, the following data were extracted
from each article i.e., author, date of publication, selection
criteria, sample size, sample description (gender, age, health
status), intervention, characteristics of auditory cueing, outcome
measures, results, and conclusions. The data were then
summarized and tabulated (Table 2).

The inclusion criteria for the studies was (i) Performed studies
were either randomized controlled trials, cluster randomized
controlled trials, or controlled clinical trials; (ii) Studies reporting
reliable and valid spatiotemporal gait parameters (iii) Studies
including dynamic aspects of gait stability (iv) Studies qualified
PEDro methodological quality scale (≥4 score); (v) Experiments
conducted on human participants; (vi) Published in a peer-
reviewed academic journals; (vii) Articles published in English,
German and Korean languages.

Quality and Risk of Bias Assessment
The quality of the studies was assessed using the PEDro
methodological quality scale (72). The scale consists of 11 items
addressing external validity, internal validity, and interpretability
and can detect potential bias with fair to good reliability
(73), and validity (72). A blinded rating of the methodological
quality of the studies was carried out by the primary reviewer.
Ambiguous issues were discussed between the 1st (SG) and the
2nd (IG) reviewer and consensus were reached. Included studies
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TABLE 1 | Sample search strategy EMBASE.

DATABSE EMBASE

DATE 10/12/2017

STRATEGY #1 AND #2 AND #3 AND #4 AND #5 AND #6 AND #7

#1 (“rhythmic auditory cueing” OR “rhythmic auditory cueing” OR “rhythmic acoustic cueing” OR “rhythmic auditory entrainment” OR “metronome cueing”

OR “metronome” OR “rhythmic metronome cueing” OR “acoustic stimulus” OR “acoustic cueing” OR “acoustic cueing” OR “external stimuli” OR

“external cueing” OR “external cueing” OR “music therapy” OR “Neurological music therapy” OR “tempo” OR “beat” OR “rhythm” OR “RAC” OR

“NMT” OR “real-time auditory cueing” OR “sonification”)/de OR (rhythmic auditory cueing OR rhythmic auditory cueing OR rhythmic acoustic cueing

OR rhythmic auditory entrainment OR metronome cueing OR metronome OR rhythmic metronome cueing OR acoustic stimulus OR acoustic cueing

OR acoustic cueing OR external stimuli OR external cueing OR external cueing OR music therapy OR Neurological music therapy OR tempo OR beat

OR rhythm OR RAC OR NMT OR real-time auditory cueing OR sonification)ti,ab

#2 (“MS” OR “Multiple sclerosis” OR “Acute fulminating sclerosis” OR “disseminated sclerosis”)/de OR (MS OR Multiple sclerosis OR Acute fulminating

sclerosis OR disseminated sclerosis))ti,ab

#3 (“walking” OR “gait” OR “locomotion” OR “range of motion” OR “ROM” OR “ambulation” OR “mobility” OR “treadmill gait” OR “balance” OR “stability”

OR “stride” OR “gait training” OR “gait rehabilitation”)/de OR (walking OR gait OR locomotion OR range of motion OR ROM OR ambulation OR

mobility OR treadmill gait OR balance OR stability OR stride OR gait training OR gait rehabilitation);ti,ab

#4 (“rehabilitation” OR “treatment” OR “rehab” OR “management” OR “therapy” OR “physiotherapy” OR “physical therapy” OR “prevention” OR “risk

prevention”)/de OR (rehabilitation OR treatment OR rehab OR management OR therapy OR physiotherapy OR physical therapy OR prevention OR risk

prevention);ti,ab

#5 (“age groups” OR “adolescent” OR “young” OR “elderly” OR old) AND (gender OR “male” OR “female”)/de OR [age groups OR adolescent OR young

OR elderly OR old AND (gender OR male OR female)];ti;ab

#6 (“intervention study” OR “cohort analysis” OR “longitudinal study” OR “cluster analysis” OR “crossover trial” OR “cluster analysis” OR “randomized trial”

OR “major clinical study”)/de OR (longitudinal OR cohort OR crossover trial OR cluster analysis OR randomized trial OR clinical trial OR controlled

trial);ti,ab

were rated, and interpreted according to scoring of 9–10, 6–
8, and 4–5 considered of “excellent,” “good,” and “fair” quality
(74), respectively. Inadequate randomization, non-blinding of
assessors, no intention to treat analysis and no measurement of
compliance were considered as major threats to biasing (75).

Data Analysis
This systematic review also included a meta-analysis approach
even with a few number of studies (76), with an aim to develop
a better understanding of the incorporated interventions (77).
The presence and lack of heterogeneity asserted the use of either
random or fixed effect meta-analysis (78). A narrative synthesis
of the findings structured around the intervention, population
characteristics, methodological quality (Table 2) and the type of
outcome are also provided. Likewise, summaries of intervention
effects for each study were provided in a tabular form (Table 2).
A meta-analysis was conducted between pooled studies using
CMA (Comprehensive meta-analysis V 2.0, USA). Heterogeneity
between the studies was assessed using I2 statistics. The data in
this review was systematically distributed and for each available
variable pooled, dichotomous data was analyzed and forest plots
with 95% confidence intervals are reported. The effect sizes
were adjusted and reported as Hedge’s g (79). Thresholds for
interpretation of effect sizes were as follows: a standard mean
effect size of 0 means no change, mean effect size of 0.2 is
considered as a small effect, 0.5 is considered as a medium effect
and 0.8 as a large effect (80). Interpretation of heterogeneity via I2

statistics was that values from 0-0, 25, 75% were viewed to sustain
negligible, moderate, and substantial heterogeneity, respectively.
A significance level of 0.05 was adopted.

RESULTS

Characteristics of Included Studies
Our initial search yielded a total of 602 studies, which on
implementing our inclusion/exclusion criteria, were reduced
to five (Figure 1). Data from the included studies have been
summarized in (Table 2). Of the five included studies, one was a
randomized controlled trial, whereas four were controlled clinical
trials.

Participants
A total of 188 participants were analyzed in the incorporated
studies (144 females/40 males). All the studies evaluated a mixed
gender sample size.

Risk of Bias
To reduce the risks of bias, studies scoring ≥4 on PEDro
were included in the review. Moreover, the limitation of
research protocols to be included in the review were limited to
gold standard randomized controlled trials, cluster randomized
controlled trials and controlled clinical trials. The individual
scores attained by the studies using the PEDro scale have been
reported (Tables 2, 3). The average PEDro score for the five
included studies were computed to be 5.2 out of 11, indicating
fair-quality of the overall studies. One study scored 7, one scored
6, one scored 5, and two studies scored 4. Publication bias
was analyzed by plotting a Hedge’s g against standard error
(Figure 2). Asymmetries concerning mean in the funnel plot
might suggest bias (either positive or negative), in which case
results are published. Risk of bias across the studies has been
demonstrated in Figure 3.
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FIGURE 1 | PRISMA flow chart for the inclusion of studies (68).

Meta-Analysis
Outcomes
The results suggest evidence for a positive impact of rhythmic
auditory cueing on spatiotemporal gait parameters patients
affected from multiple sclerosis. In the five included studies, all
the studies reported significant enhancements in gait parameters
with application of rhythmic auditory cueing.

Meta-Analyses
The evaluation of research studies via meta-analysis requires
a strict inclusion criteria to efficiently limit the heterogeneity
(81). However, among the pooled group of studies post
a strict inclusion criterion, some amount of unexplained
heterogeneity was still observed. Here, the few number of studies
included in the meta-analysis limited our capability to perform
additional sub-group analysis. The evaluated parameters were
the spatiotemporal gait parameters such as gait velocity, cadence,
stride length, and Timed-25 feet walking test.

Gait Velocity (Meter per Second)
The meta-analysis on gait velocity for patients with multiple
sclerosis revealed (Figure 4) a medium effect size in positive
domain with moderate heterogeneity (Hedge’s g: 0.67, 95% CI:
0.14 to 1.20, I2: 71.6%, p= 0.02).

Stride Length (Meters)
The meta-analysis on stride length for patients with multiple
sclerosis revealed (Figure 5) a medium effect size in positive
domain with substantial heterogeneity (Hedge’s g: 0.71, 95% CI:
0.17 to 1.26, I2: 82.3%, p= 0.03).

Cadence (Number of Steps per Minute)
The meta-analysis on cadence for patients with multiple sclerosis
revealed (Figure 6) a large effect size in positive domain with
substantial heterogeneity (Hedge’s g: 1.00, 95% CI: 0.24 to 1.76,
I2: 70.3%, p= 0.06).
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TABLE 3 | Individual Pedro scores for studies (1: point awarded, 0: no point awarded).

Study Pedro

score

Point

estimates &

variability

Between

group

comparison

Intention

to treat

Adequate

follow-up

Blind

assessors

Blind

therapists

Blind

subjects

Baseline

comparability

Concealed

allocation

Random

allocation

Eligibility

criteria

Shahraki et al.

(69)

4 1 1 0 1 0 0 0 0 0 0 1

Seebacher et

al. (70)

7 1 1 0 1 0 0 0 1 1 1 1

Seebacher et

al. (71)

6 1 1 0 1 1 0 0 0 0 1 1

Conklyn et al.

(41)

5 1 1 0 1 1 0 0 0 0 0 1

Baram and

Miller (42)

4 1 1 0 1 0 0 0 0 0 0 1

FIGURE 2 | Funnel plot for Hedge’s g & standardized effect for each effect in the meta-analysis. Each of the effect is represented in the plot as a circle. Funnel

boundaries represent area where 95% of the effects are expected to abstain if there were no publication bias. The vertical line represents mean standardized effect of

zero. Absence of publication bias is represented when the effects should be equally dispersed on either side of the line.

Timed 25 Feet Walking Test (Seconds)
The meta-analysis for timed-25 feet walking test for patients
with multiple sclerosis revealed (Figure 7) a small effect size
in negative domain with substantial heterogeneity (Hedge’s g:
−0.17, 95% CI:−0.48 to 0.12, I2: 0%, p > 0.05).

DISCUSSION

The primary objective of this present systematic review and
meta-analysis was to develop a current state of knowledge for
the effects of rhythmic auditory cueing on gait performance in
patients with multiple sclerosis. All the included studies reported
significant enhancements in gait performance post training with
auditory cueing. The meta-analysis revealed significant small-to-
large standardized effects for the beneficial influence of rhythmic
auditory cueing on spatiotemporal gait parameters. Previous
studies have reported a detrimental effect of multiple sclerosis
on spatiotemporal gait parameters (16). For instance, Muratori et

al. (82) has conclusively reported that a decrease in gait velocity,
cadence, and stride length are important predictors for decreased
quality of life, and increased fall related morbidity/mortality.
Authors reported that gait velocity had a strong correlation with
disease severity i.e., ExpandedDisability Status scale andMultiple
Sclerosis quality of life-54 scale. Likewise, Community Balance
and Mobility scale has a strong relationship with step length and
cadence (82). The current systematic review and meta-analysis
reveals that training with rhythmic auditory cueing enhances
gait velocity (Hedge’s g: 0.67), stride length (0.70), cadence (1.0).
Similarly, timed 25-foot walk test has been characterized as an
important predictor to determine quality of life by focusing
on functional independence and its impact on occupation, and
social life (83–85). Here as well, a decrease in Timed 25-
feet walking test (−0.17) was also reported in the analysis.
This therefore suggests potential benefits of rhythmic auditory
cueing for directly enhancing the quality of life and reducing
morbidity/mortality ratios in patients with multiple sclerosis.

Frontiers in Neurology | www.frontiersin.org 6 June 2018 | Volume 9 | Article 386

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ghai and Ghai Auditory Cueing in Multiple Sclerosis Gait

FIGURE 3 | Risk of bias across studies.

FIGURE 4 | Forest plot illustrating individual studies evaluating the effects of

rhythmic auditory cueing, on gait velocity (meter per second) for patients with

multiple sclerosis. Weighted effect sizes; Hedge’s g (boxes) and 95% C.I

(whiskers) are presented, demonstrating repositioning errors for individual

studies. The (Diamond) represents pooled effect sizes and 95% CI.

Neurophysiological mechanisms due to which auditory
cueing enhances gait performance in patients with multiple
sclerosis are not well-understood (16, 36, 42). In multiple
sclerosis the onset of movement disorders is usually due
to dysfunctions in white matter regions (16, 36, 86). Here
inference can be drawn for the beneficial effects of auditory
cueing, from a few studies analyzing the effects of auditory-
sensorimotor training onwhitematter plasticity inmusicians (87,
88). Bengtsson et al. (87) reported that auditory-sensorimotor
training can increase myelination due to increased neural activity

FIGURE 5 | Forest plot illustrating individual studies evaluating the effects of

rhythmic auditory cueing, on stride length (meters) for patients with multiple

sclerosis. Weighted effect sizes; Hedge’s g (boxes) and 95% C.I (whiskers) are

presented, demonstrating repositioning errors for individual studies. The

(Diamond) represents pooled effect sizes and 95% CI.

in the fiber tracts during training. The authors reported enhanced
Fractional Anisotropy [usually reduced in multiple sclerosis (89,
90)] in corpus callosum, cortico-spinal, cortico-cortical tracts,
and the posterior limb of the internal capsule. These neural
structures are of critical importance when considering fine motor
performance, bimanual coordination, auditory processing and
motor learning (91, 92). Therefore, we hypothesize that training
with auditory cueing could have enhanced the gait performance
by facilitating the deficit white matter regions and/or mediating
re-myelination. However, no research till date has analyzed the
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FIGURE 6 | Forest plot illustrating individual studies evaluating the effects of

rhythmic auditory cueing, on cadence (number of steps per minute) for

patients with multiple sclerosis. Weighted effect sizes; Hedge’s g (boxes) and

95% C.I (whiskers) are presented, demonstrating repositioning errors for

individual studies. The (Diamond) represents pooled effect sizes and 95% CI.

FIGURE 7 | Forest plot illustrating individual studies evaluating the effects of

rhythmic auditory cueing, on Timed 25 feet walking (seconds) test for patients

with multiple sclerosis. Weighted effect sizes; Hedge’s g (boxes) and 95% C.I

(whiskers) are presented, demonstrating repositioning errors for individual

studies. The (Diamond) represents pooled effect sizes and 95% CI.

influence of auditory cueing on white matter plasticity in patients
with multiple sclerosis. We strongly recommend future research
to analyze the effects of auditory-motor entrainment on white
matter plasticity in patients with multiple sclerosis.

Additionally, research in the past decades, for instance
by Grimaud et al. (86) has reported that involvement of
deep gray matter regions such as basal ganglia is unusual
in patients with multiple sclerosis. However, recent evidence
suggests that focal lesions and diffused neurodegeneration in
deep gray matter regions such as basal ganglia, thalamus are
an important precursors for contributing in development of
neurological disabilities (1, 93–99), cognitive dysfunctions (97,
100), and the onset of fatigue (101, 102). Interestingly, research
has also revealed a strong correlation between the quantitative
susceptibility mapping of putamen and caudate nucleus with the
severity of disease (97). Thereby suggesting greater involvement
of gray matter structures with disease progression. This therefore
again in our opinion might offer an additional explanation that
application of rhythmic auditory cueing could have targeted
the deficit basal ganglia circuitry similarly as in patients with

Parkinson’s disease to enhance gait performance, reduce the
level of depression, anxiety, and fatigue in patients with
multiple sclerosis [for a detailed mechanism see (47) and (27)].
Additionally, deficits in cerebellum [both gray and white matter
regions (103)] have also been widely reported in patients with
multiple sclerosis (104, 105). Here, findings of Molinari et al.
(106) can justify the enhancements in gait performance with
the application of auditory cueing. Molinari et al. (106) suggests
that cerebellar dysfunctions such as in multiple sclerosis might
impair the capability to consciously detect rhythmic variations
for stabilizing motor response. However, the authors suggest
that unconscious effects to entrain movements with external
auditory cues might still be preserved in such patients. The
authors suggest that in such cases the motor entrainment to
auditory cueing might be induced unconsciously, independent
of cerebellar processing at either the spinal or the cortical level.
The authors proposed that computing of the timing information
in such cases can be achieved peripherally i.e., directly in the
auditory nerve by neural excitation patterns generated by precise
physiological coding. This information can then be transferred
directly into adjacent motor structures, which entrain with the
neural motor codes and allow enhanced synchronization between
the auditory stimuli and motor response (106, 107).

Furthermore, research suggests that application of auditory
cueing can facilitate cortical reorganization in patients with
multiple sclerosis (50). Till date only one research has
analyzed the influence of rhythmic auditory cueing on cortical
activation in patients with multiple sclerosis (108). The authors
reported enhanced activation in left superior frontal gyrus,
left anterior cingulate, and left superior temporal gyrus after
gait training with rhythmic auditory cueing (36, 108). The
increased activation in these neural centers has been associated
with enhancements in executive functioning, auditory-motor
entrainment, attention and motivation (50, 53). Similarly,
enhanced activations in inferior colliculi (109), cerebellum,
brainstem (110, 111), sensorimotor cortex (112, 113), premotor
areas (114) have been reported post application of rhythmic
auditory cueing in other movement disorders such as stroke
and parkinsonism. Furthermore, modulation of neuromagnetic
β oscillations (representing functional coordination between
auditory-motor systems) with application of auditory cueing
has been reported in auditory cortex, inferior frontal gyrus,
somatosensory area, sensorimotor cortex and cerebellum (115).
This ability of auditory cues has been recently demonstrated
by Ross et al. (116) to facilitate immediate neural plasticity
by facilitating feedforward mechanisms. Studies also suggest
that training with rhythmic auditory cueing might offer
reorganization of cortical and cerebellar circuits (63). Schaefer
(117) for instance, suggested that auditory cueing infused
with regularity and repetition of movement can result in an
accelerated learning and neuroplasticity. Patients with multiple
sclerosis have been reported to possess similar rapid-onset
motor plasticity levels than that of healthy controls (118). Taken
together, this evidence suggests strong therapeutic potential of
external auditory stimulations to enhance gait performance in
patients with multiple sclerosis. However, lack of conclusive
evidence limits our interpretations, therefore we recommend
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future studies to analyse these components in neuroimaging
studies.

Furthermore, extending beyond the neurophysiological effects
of auditory stimulations Shahraki et al. (69) suggested that
external auditory stimulations could also enhanced stability
by facilitating the vestibular system via the medial-medial
geniculate nuclei and organ of Corti (119). The authors
demonstrated enhancements in spatiotemporal gait parameters
with the application of rhythmic auditory cueing as compared
to conventional physiotherapeutic gait training interventions
in patients with multiple sclerosis. Likewise, Baram and Miller
(42) too reported the beneficial aspects of external auditory
cueing as compared to visual cueing. The authors reported
higher gait velocity due to auditory cueing as compared to
visual cueing, because of reduced reaction time facilitated by
auditory stimulations during voluntary movements. The authors
reported significant enhancements in gait velocity (Experimental:
12.8% vs. control: −3.0%) and stride length (8.3 vs. 0.3%) with
the application of online rhythmic auditory cueing. Moreover,
the authors demonstrated enhanced learning during residual
performance (without auditory cueing) for both gait velocity
(18.7 vs. 2.4%), and stride length (9.9 vs. 4.0%).

Moreover, we believe that the external auditory cueing
could have also guided the gait of the patients’ by explicitly
synchronizing their ground contact and lift-off times (120). The
cueing could have allowed the patients to effectively plan their
movements before executing them (121). Likewise, enhanced
kinematic efficiency and reduced variability in musculoskeletal
activation patterns have been reported post training with
rhythmic auditory cueing (26). Moreover, change in tempo of
the auditory stimulation could have also played a major role
in mediating gait performance. In the current review, only one
study (69), trained their participants with a higher tempo (+10%)
of rhythmic auditory cueing as compared to their preferred
cadence. This “change in tempo” characteristic although not
evaluated in the meta-analysis due to lack of data can serve as
a crucial factor in rehabilitation of gait. For example, change
in tempo has been associated with various neurophysiological
changes such as increased neuronal activation in frontal-occipital
cortical networks (122), and increased excitability of spinal
motor neurons through the reticulospinal pathways (integral for
reducing the response time in a motor task). Moreover, it has
been reported that prolonged training with a constant pattern of
rhythm can decrease fractal scaling of stride times from healthy
1/f structure (123–125). Here, we hypothesize that changing the
tempo regularly during training can promote the development of
a stable, and adaptable gait pattern. In rehabilitation this might
serve as a measure to teach patients on how to regulate gait when
passing through different fall prone environments.

Another crucial aspect analyzed in the current review is
the effects of auditory cueing induced mental imagery in
patients multiple sclerosis (70, 71). Labriffe et al. (126) reported
higher activations in primary sensorimotor cortex and secondary
somatosensory cortex bilaterally during the imagination of gait.
The authors further reported correlated activations in bilateral
somatosensory area and right pre-somatosensory area during
mental imagery of gait. This training regime seems plausible

in patients with multiple sclerosis where physical fatigue is
a major concern for medical practitioners (127). Seebacher
et al. (70) in their randomized controlled trial, asked the
patients to kinaesthetically imagine gait from the first-person
perspective with music and metronome induced rhythmic
auditory cueing (71). The authors reported that mental imagery,
which is usually diminished in patients with multiple sclerosis
can be facilitated with rhythmic auditory cueing. Further,
their study revealed significant enhancements spatiotemporal
gait parameters such as timed 25-foot walking test, and 6-
min walking test with the application of metronome/music-
cued motor imagery groups. Here, comparable enhancements
during 6-min walking test in music-cued (512.6m), and
metronome-cued (533.9m) groups as compared to control group
(471.2m) clearly demonstrates beneficial effects of training with
auditory cueing for enhancing physiological performance i.e.,
reduced fatigue. Likewise, improvements in multiple sclerosis
related quality of life, pain, physical and mental health related
quality of life were larger both music/metronome-cued groups
as compared to control group. We would like to suggest
that the beneficial effects of mental imagery here can also
be effectively incorporated in home-based interventions. For
instance, physiological fatigue might force the patient to train
less at home. However, in such cases the patients can be taught
to imagine themselves performing gait, while also imagining
auditory cues. Previous studies suggest that the retention of
enhancements in rehabilitation is dependent on how much
the patient follows the treatment protocol at home (27, 28,
128). Therefore, developing interventions which can be easily
followed by patients at home are desired. One of the included
studies incorporated a home-based training intervention with
external auditory cueing (41). Conklyn et al. (41) utilized a
simple mp3 player to deliver rhythmic auditory cueing for
practizing gait as a home-based intervention. The authors
reported enhancements in spatiotemporal gait parameters and
found increased patient adherence to the treatment. This
type of home-based intervention could possibly be beneficial
for people lacking proper exposure to medical interventions
in developing countries (129). For instance, patients lacking
effective medical resources can utilize smartphone devices with
metronome applications for exampleWalkmate (124), Listenmee
(130), or imagine gait with external stimulations or even
imagine gait with auditory stimulations (joint audio-motor
imagery).

Finally, a quantitative assessment for analyzing specific
training dosage could not be performed in this study because
of the limited amount of data and substantial heterogeneity
in between the studies. Nevertheless, four of the included
studies used a training regime that lasted for more than 17min
per session and was performed for at least three times a
week for more than 3 weeks (41, 69–71). Likewise, based on
the current evidence of training dosage for other movement
disorders this dosage seems viable., for instance suggested a
dosage of 25–40 min/session, for 3–5 sessions per week for
patients with Parkinson’s disease. Moreover, according to the
findings of Bangert and Altenmüller (131) this training dosage
seems plausible. The authors investigated cortical activation
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patterns during an audio-motor task and reported auditory-
sensorimotor EEG co-activity after at least 20min of training.
Bangert and Altenmüller (131) speculate that this time frame is
crucial for sensitive auditory monitoring, forming associations
with the auditory target image in the working memory, during
motor execution. Therefore, we suggest future studies to design
training regimes with external auditory stimulations with at least
20min training sessions. A limitation of the present review is
that a meta-analysis was performed on a limited number of
studies. Although, the main aim for conducting a meta-analysis
was to allow a better understanding of the effects of auditory
cueing over different spatiotemporal gait parameters for medical
practitioners, patients and future researchers. This, however, does
not rule out the possibility of incurring a type II error. We
strongly suggest the reader to carefully interpret the results, while
also considering the qualitative description of include studies
provided in this review.

This review for the first time synthesized the evidence for
effects of training with rhythmic auditory on gait in patients with
multiple sclerosis. Our results are consistent with the findings
of review studies suggesting the beneficial effects of rhythmic
auditory cueing in healthy population (28), and population
groups with movement disorders such as parkinsonism (47),
stroke (57), and cerebral palsy (58). In conclusion, this review and
meta-analysis suggests the incorporation of rhythmic auditory
cueing for enhancing gait performance in patients with multiple
sclerosis.

FUTURE DIRECTIONS

Extending beyond the beneficial effects of conventional
isosynchronous auditory cueing, we recommend future studies
to analyse the effects of biologically variable auditory stimulations
on gait performance in patients with multiple sclerosis. Due to
excessive sensory loss higher than normal threshold for action
relevant acoustic input might be beneficial for patients with
multiple sclerosis (132). Therefore, using ecologically valid
action related sounds (walking on gravel, snow) conveying
spatio-temporal information can possibly enhance saliency
of sensory information for patients with multiple sclerosis
(133–136). Similarly, analyzing the effects of methods providing
real-time auditory information could possess considerable
benefits for enhancing gait performance as well. This type of
feedback allows converting the movement parameters in real-
time to sound (mapping with pitch, amplitude). Here, the aim is
to enhance motor perception and performance by targeting areas
associated with biological motion perception (55, 59, 137). have
shown that the synchronization of cyclic movement patterns
with real-time auditory feedback can reduces variability and
increases consistency of movements when compared with
isosynchoronous rhythmic stimulations (56). According to this
feedback can enable the patients to identify their own movement
amplitudes and compare their produced sound patterns with the
sound of an auditory movement model, thereby creating a new

auditory reference framework. This then can possibly allow a
better comparison between instructed and intended movement
while simultaneously amplifying the internal representation
of movements (138). In summary, we recommend future
studies to focus on mediating auditory signal characteristics
(ecologically valid, online feedback) for developing an efficient
auditory stimulation, which can allow widespread benefits for
patients with multiple sclerosis in both psychophysiological
domains.

We also suggest future research to analyse the combined
effects of external auditory stimulations with music therapy, as
it might yield additional benefits to curb deficits in cognitive
and physiological domain. For instance, Thaut et al. (139)
demonstrated that musical mnemonics can facilitate a stronger
oscillatory network synchronization in prefrontal regions during
a word learning task in patients with multiple sclerosis. The
authors suggested that musical stimuli might allow a “deep
encoding” during a learning task and might also sharpen
the timings of neural dynamics in brain which are normally
degraded by the demyelination process. The authors also
reported that this enhancement in cognitive performance was
correlated with higher EDSS scores (139). Thereby, indicating
that patients in more severe disease stages also benefited from the
music facilitated “deep learning” strategies (139, 140). Likewise,
enhanced cortical reorganization and regeneration in areas
associated with cognition have been reported post music therapy
(141, 142). We strongly recommend future research to analyse
these effects in patients with multiple sclerosis. Furthermore,
beneficial effects of music therapy in patients with multiple
sclerosis has also been reported on respiratory musculature
(143, 144). Future studies can focus on developing experimental
protocols that use rhythmic cueing during music to facilitate
breathing while performing gait. This approach might allow
simultaneous strengthening of respiratory musculature while
performing physical activities. Finally, it is important to consider
the important psychological support that music therapy can
offer to the patients with multiple sclerosis by reducing anxiety,
depression, improving mood, self-acceptance and motivation
(145–147). Future studies can also focus on analyzing these
psychological aspects during the training regimes as this might
allow in development of a multifaceted rehabilitation approach
focusing on psychophysiological recovery of patients with
multiple sclerosis.
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