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Abstract

Quantum noise is one of the limiting factors in laser-interferometric gravitational-
wave (GW) detectors. The application of squeezed states in these interferometers
allows the reduction of quantum noise in one quadrature. Due to opto-mechanical
coupling in a GW detector the squeezed quadrature needs to be rotated within
the spectrum to achieve a broadband noise reduction. So far, the implementation
of additional �lter cavities is considered that allow for the optimal, frequency-
dependent rotation of the squeezed quadrature. However, these cavities need to
have low loss, a length in the order of 100m and must be situated in the vacuum
system, making them cost-intensive.
In 2017, Ma and coworkers proposed a scheme for the broadband quantum-noise

reduction without the need of additional �lter cavities. It was shown by Brown et
al. that a similar scheme can be used to broadband-enhance interferometers with
a detuned signal-recycling cavity.
Here, we performed a proof-of-principle experiment of the proposal on a table-

top-scale. Squeezed states were produced detuned to the carrier �eld of a 2.5m-
linear cavity and read out in a bichromatic homodyne detection. The frequencies
of the lower and upper local oscillator were at entangled sidebands of the squeezed
�eld. Depending on the relations between the involved frequencies, we can address
both variants of the proposal. We show, that the frequency-dependences of the
resulting noise spectra �t to a theoretical model we derived from the theory used
by Ma et al. With this work we set the path towards an implementation of these
schemes in a GW-detector prototype, where the compatibility of the approach
with a low-frequency suspended interferometer can be tested.
Moreover, we used the same setup to show nonclassical interferometer enhance-

ment at low frequencies by high-frequency squeezed states. Here, a heterodyne
readout scheme was implemented to avoid limiting noises at low frequencies.
The application of squeezed states centered around the local oscillator frequency
yielded an improvement in signal-to-noise ratio of 3.4 dB± 0.3 dB.
Additionally, I designed, built and characterized a compact source of squeezed

vacuum-states at 1064 nm with a footprint of just 0.8 m2. I show measure-
ments of squeezed states from this source with a reduction of quantum noise of
10.7 dB ± 0.2 dB below the vacuum noise and present a noise reduction in the
frequency range from 70 kHz to 65MHz.

Keywords: Gravitational-wave detection, frequency-dependent squeezed light,
entanglement, bichromatic homodyne detection





Kurzfassung

Quantenrauschen ist einer der limitierenden Faktoren laserinterferometrischer
Gravitationswellen(GW)-Detektion. Die Anwendung von gequetschtem Licht er-
laubt die Reduktion von Quantenrauschen. Durch optomechanische Kopplung in
GW-Detektoren muss die gequetschte Quadratur frequenzabhängig rotiert wer-
den, um eine breitbandige Rauschreduktion zu erhalten. Bisher wurde der Ein-
satz zusätzlicher Filterresonatoren erwogen, die eine optimale Rotation der ge-
quetschten Quadratur erlauben. Jedoch müssen diese wenig Verlust, eine Länge
von etwa 100m haben und im Vakuumsystem sein, was sie kostenintensiv macht.
2017 haben Ma et al. ein Schema für eine breitbandige Quantenrausch-

Reduktion ohne zusätzliche Filterresonatoren vorgeschlagen. Brown et al. haben
gezeigt, dass ein ähnliches Schema für eine breitbandige Verbesserung von ver-
stimmten Signal-recycleten Interferometern benutzt werden kann.
Wir haben zum Beweis der Idee ein Experiment auf Labortisch-Gröÿe durchge-

führt. Gequetschte Zustände wurden verstimmt zum Trägerfeld eines 2.5m li-
nearen Resonators erzeugt und in einer zweifarbigen Homodyndetektion ausge-
lesen. Die Frequenzen der beiden Lokaloszillatoren stimmten mit verschränkten
Seitenbändern des gequetschten Feldes überein. Abhängig von der Relation der
beteiligten Frequenzen können wir beide Vorschläge adressieren. Wir zeigen, dass
die Frequenzabhängigkeiten der Rauschspektren zu einem theoretischen Modell
passen, dass wir auf Basis der Vorschläge entwickelt haben. Durch diese Arbeit
bereiten wir die Implementierung der Technik in Prototypen eines GW-Detektors
vor, um die Kompatibilität mit aufgehängten Interferometern zu testen.
Wir haben denselben Aufbau benutzt, um die nichtklassische Verbesserung

eines Interferometers bei tiefen Frequenzen durch gequetschte Zustände bei ho-
hen Frequenzen zu zeigen. Hierbei wurde ein Heterodyn-Ausleseverfahren imple-
mentiert um limitierendes Rauschen bei niedrigen Frequenzen zu vermeiden. Die
Anwendung von gequetschten Zuständen zentriert um die Lokaloszillator-Frequenz
brachte eine Verbesserung des Signal-zu-Rausch-Verhältnisses von 3.4 dB±0.3 dB.
Zusätzlich habe ich eine kompakte Quetschlichtquelle bei 1064 nm mit einer

Grund�äche von nur 0.8 m2 entworfen, aufgebaut und charakterisiert. Ich zeige
Messungen von gequetschten Zuständen, mit einer Reduktion des Quanten-
rauschens von 10.7 dB± 0.2 dB unter dem Vakuumrauschen und präsentiere eine
Rauschreduktion in einem Frequenzbereich von 70 kHz und 65MHz.

Schlüsselwörter: Gravitationswellendetektion, frequenzabhängiges ge-
quetschtes Licht, Verschränkung, zweifarbige Homodyndetektion
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CHAPTER 1

Introduction

The recent detections of gravitational waves by the LIGO and Virgo laser in-
terferometers [Ab16a, Ab16b, Ab17a, Ab17b, Ab17c, Ab17d] opened a new win-
dow for observations of our universe, the gravitational-wave astronomy [Pr72].
The �rst detections of binary black-hole mergers already proved the existence
of binary stellar-mass black-hole systems and their gravitational-wave emission
when inspiraling [Ab16a], allowed constraints on the population of binary black
holes [Ab16b] and their formation channels [Ab16b,Ab17a,Ab17b] and provided
new tests for general relativity [Ab16a, Ab16b, Ab17a, Ab17b]. The �rst detec-
tion of a gravitational-wave signal from an inspiraling binary neutron-star sys-
tem [Ab17c] enabled multi-messenger observations together with measurements
in the electromagnetic spectrum extending the capabilities of gravitational-wave
astronomy. Even black-hole mergers [Ab17d] allow multi-messenger observations,
e.g. to measure the Hubble constant, a cosmological property [So19]. Space-
based laser interferometers, like the Laser Interferometer Space Antenna [Am12],
are aiming to extend the observable spectrum of gravitational-waves to a range
from 0.1mHz to 1Hz. Pulsar timing arrays are already searching for gravita-
tional waves in the Nanohertz regime [De13], but without any detection yet. The
audio-band is covered by ground-based detectors. So far, eleven highly signi�-
cant detections of gravitational waves from ten binary black-hole mergers and one
binary neutron-star merger were recorded accompanied by some less signi�cant
event candidates [Ab18a]. Future observation runs, including the KAGRA detec-
tor [So12], will extend this list by tens of binary events [Ab18b], providing a higher
knowledge about the universe. Nevertheless, these observations with second-
generation gravitational-wave detectors are only the beginning of gravitational-
wave astronomy. Not yet observed, but expected to be seen in the future, are
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gravitational waves from core-collapse supernovae [Ot09], continuous-wave sources
like rotating neutron stars [Ab17f] and even a stochastic gravitational-wave back-
ground [Re17]. Upcoming third-generation ground-based detectors, like the Ein-
stein Telescope [Pu10a] and the Cosmic Explorer [Ab17e], will have an improved
performance to allow farther observation distances and to detect more and di�er-
ent events. Within several �elds strong e�ort has started targeting many limiting
noise contributions. Ideas for improved sensitivity include heavier mirror masses,
di�erent mirror materials [Pu10b] and coatings [St18], larger laser spots [Dw15],
underground locations and sophisticated mirror-suspension systems [Pu10b]. For
gravitational-wave detectors, quantum noise, being composed of shot noise and
radiation-pressure noise [Ca81, Sc10], is among the highest limiting factors al-
ready in current systems [Aa15]. The application of squeezed states of light [Sc17]
allows reducing quantum noise in one quadrature while increasing the noise in
the orthogonal quadrature. The capability of squeezed light application reducing
the shot-noise of gravitational-wave detectors was successfully demonstrated in
the GEO600 detector [Gr13]. However, due to opto-mechanical coupling, at lower
detection frequencies the light's radiation-pressure noise is the limiting factor, re-
quiring a frequency-dependent rotation of the squeeze angle [Un83, JR90]. With
parametric down-conversion, the state-of-the-art technique for producing strongly
squeezed states [Sc18b,Va16], only frequency-independently a �xed quadrature can
be squeezed [Sc17]. The optimal rotation of the squeeze angle can be achieved
by re�ecting the squeezed states o� �lter cavities before injecting them into the
interferometer [Ki01]. To reduce intra-cavity losses these �lter cavities need to
be of the length of hundreds of meters [Ca16, LIGO18]. In 2017, Ma et al. pro-
posed a scheme to use the signal-recycling cavity of the interferometer together
with the Einstein-Podolsky-Rosen(EPR) entanglement [EPR35] of the squeezed
states [Ha10] to achieve a broadband reduction of quantum noise. This idea avoids
the cost-intensive �lter cavities [Ma17]. This scheme implies a constraint of 3 dB
on the improvement compared to the conventional injection of squeezed states.
As proposed in [Br17], a similar scheme can be applied to broadband-enhance
gravitational-wave detectors operating a detuned signal-recycling cavity.
This work was dedicated to an experimental realization of the schemes pro-

posed in [Ma17] and [Br17] in a table-top experiment. For this purpose, we set
up a 2.5m-linear cavity emulating the signal-recycling cavity of a gravitational-
wave detector. In contrast to the conventional schemes of squeezed-light enhanced
gravitational-wave detectors, the squeezed states were produced detuned to the
carrier light of the cavity. This �eld was re�ected o� the cavity and acquired a
frequency-dependent phase shift. It was analyzed on one detector with two local
oscillators at a lower and an upper sideband, exploiting the EPR-entanglement of
the squeezed �eld. By adjustments on the relations between the center-frequency
of the squeezed �eld and the frequencies of the local oscillators both propos-
als [Ma17] and [Br17] were addressed. We derived a theoretical model based on
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the assumptions in [Ma17] and showed conditional measurements on squeezed
states for di�erent relations of the involved frequencies. The measurements and
the theoretical model are in good accordance. This work provides the founda-
tions for further investigations of the proposals on a gravitational-wave-detectors
prototype scale.
The structure of this thesis is as follows:

• In chapter 2, the theoretical foundations to describe squeezed and entangled
states of light are presented. It includes an introduction to non-linear optics
to understand the parametric down-conversion process generating squeezed
states.

• Chapter 3 is dedicated to the description of amplitude and phase modulation
in a phasor picture. This is then extended to quantum noise and squeezed
states. With this picture phase rotations of sidebands can explain the change
of the squeeze angle forming the basis of later experiments.

• Laser-interferometric gravitational-wave detection and its current limits are
the focus of chapter 4. Here, the impact of quantum noise on the detectors is
explained and the proposals of [Ma17] and [Br17] for a broadband squeezed-
light enhancement are presented.

• Chapter 5 explains the most important experimental methods used in this
thesis like cavity-enhanced squeezed-vacuum generation and monochromatic
and bichromatic homodyne detection of squeezed states.

• In chapter 6, a setup of a source of squeezed states at 1064 nm with a small
footprint I designed, assembled and characterized is described.

• In chapter 7, we show the enhancement of measurements at low frequencies
from higher-frequency squeezed states by using a heterodyne readout and a
2.5m-linear cavity.

• Chapter 8 demonstrates the experimental realization of the schemes from
[Ma17] and [Br17] in a table-top experiment. A theoretical model for our
setup based on the work in [Ma17] is presented and compared to the exper-
imental results.

• In chapter 9, all results are summarized and an outlook is given.
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CHAPTER 2

Quantum-mechanical description of light

The full nature of light cannot be described within classical physics. Properties as
squeezing or entanglement, being topics in this thesis, cannot even be explained
semi-classically. They require a quantum mechanical approach. As a consequence,
the amplitude and phase quadrature show uncertainties called quantum noise.
This chapter is mainly based on the textbook [GK05] and the review article [Sc17].

2.1 The quantum-mechanical harmonic oscillator

A harmonic oscillator can be described quantum-mechanically by its Hamiltonian

Ĥ =
1

2

(
p̂2 + ω2q̂2

)
, (2.1)

where p̂ and q̂ are the canonical position and momentum operators and ω the
angular frequency. p̂ and q̂ obey the commutation relation [q̂,p̂] = i~. They can
be replaced by the annihilation and creation operators de�ned by

â =
1√
2~ω

(ωq̂ + ip̂) , (2.2)

â† =
1√
2~ω

(ωq̂ − ip̂) , (2.3)

where ~ is the reduced Planck constant. They ful�ll the commutation relation[
â,â†

]
= 1. The annihilation and creation operators are non-Hermitian and hence

not observable. They can be used to express the amplitude- and phase-quadrature
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operators

X̂ = â† + â , (2.4)

Ŷ = i
(
â† − â

)
. (2.5)

These are dimensionless, Hermitian and proportional to the electric �elds at the

�eld's anti-nodes and nodes. They obey the commutation relation
[
X̂,P̂

]
= 2i.

The Hamiltonian then reads

Ĥ = ~ω
(
â†â+

1

2

)
= ~ω

(
n̂+

1

2

)
= ~ω

(
X̂2 + Ŷ 2

)
, (2.6)

with n̂ = â†â being the number operator, expressing the number of photons in a
given state.
The variance of an operator X̂, de�ned as

∆2X̂ = 〈X̂2〉 − 〈X̂〉2 , (2.7)

provides the quantum noise of the observable. For the ground state of the oscil-
lator, where no photons are present (〈n̂〉 = 0), the quadrature operators have a
variance of ∆2X̂ = ∆2Ŷ = 1. Whereas in a classical picture, the �eld at a node
vanishes, in a quantum-mechanical description it vanishes only on average, but
noise is still present as described by the variance of the phase-quadrature operator.
As well is the amplitude of a �eld only de�ned as the average �eld in its anti-nodes,
but shows noise as described by the variance of the amplitude-quadrature oper-
ator. This noise is referred to as quantum noise and especially for the ground
state of 〈n̂〉 = 0 as vacuum noise. The generalized quadrature operator can be
introduced with an arbitrary angle between the amplitude and phase quadrature
by applying a rotation

X̂θ = X̂ cos θ + Ŷ sin θ (2.8)

= âe−iθ + â†eiθ (2.9)

The variance of the generalized quadrature operator for the ground state is
∆2X̂θ = 1 for any angle θ.

2.2 Fock states

The photon number operator n̂ = â†â given in equation (2.6) has eigenstates that
are called Fock states |n〉. It has discrete eigenvalues n that give the deterministic
number of photons in |n〉 so that

n̂ |n〉 = n |n〉 . (2.10)

6



2.3 Coherent states

If no photons are present (n = 0) the state is called vacuum state |0〉. This is the
ground state of the harmonic oscillator and therefore the state with the lowest
energy. As equation (2.6) shows, the zero-point energy of the ground state |0〉
reads

〈0| Ĥ |0〉 = ~ω 〈0|
(
n̂+

1

2

)
|0〉 =

~ω
2
. (2.11)

It is remarkable that the energy is not vanishing even for the ground state in
contrast to classical physics. Quantum noise results from this zero-point energy.
The creation and annihilation operators raise or lower the number of the Fock
state by one

â† |n〉 =
√
n+ 1 |n+ 1〉 , (2.12)

â |n〉 =
√
n |n− 1〉 . (2.13)

Any Fock state can mathematically be created out of the vacuum state by applying
the creation operator n times,

|n〉 =

(
â†
)n

√
n!
|0〉 . (2.14)

2.3 Coherent states

Laser light can be described by coherent states |α〉. In contrast to Fock states
coherent states do not have a precise photon number but a Poissonian distribution
with an average photon number of n̄ = |α|2, where α is a complex number, and a
variance of the same value V = |α|2. Coherent states are de�ned as eigenstates of
the annihilation and creation operators

α̂ |α〉 = α |α〉 , (2.15)

〈α| α̂† = 〈α|α∗ , (2.16)

with complex eigenvalues α, α∗ respectively. Coherent states can be expressed by
a superposition of Fock states |n〉 as

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 . (2.17)

They can be described mathematically by applying the displacement operator
D̂(α) = eαâ

†−α∗â to the Fock state |0〉

|α〉 = D̂(α) |0〉 . (2.18)

7
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2.4 Heisenberg's uncertainty principle

Any two Hermitian, non-commuting observables can not be measured at the same
time with an arbitrary precision [He27]. It is based on the fact that measuring
one observable in�uences the measured system in the other observable. Hence,
the measurement of the other observable is disturbed by the �rst measurement.
Two observables ful�lling the commutation relation [Ro29][

Â,B̂
]

= Ĉ (2.19)

obey the uncertainty relation

∆2Â ·∆2B̂ ≥ 1

4

∣∣∣〈Ĉ〉∣∣∣2 . (2.20)

Using
[
X̂,P̂

]
= 2i, the uncertainty relation for the amplitude and phase quadra-

ture operators is given by
∆2X̂ ·∆2Ŷ ≥ 1 . (2.21)

The relation is true for all other orthogonal quadrature operators X̂φ and X̂φ+π/2.

∆2X̂φ ·∆2X̂φ+π/2 ≥ 1 . (2.22)

The vacuum state and coherent states of light minimize the left side of equation
(2.22) and are called minimum uncertainty states.

2.5 Squeezed states of light

Every state has to obey Heisenberg's uncertainty principle from equation (2.22).
The vacuum state and coherent states of light show equal variances for all quadra-
ture operators X̂θ. Nevertheless, it is possible to describe (and also create, see
chapter 5.4) states that have a variance in one quadrature X̂θ below the variance
of the ground state

∆2X̂θ < 1 . (2.23)

To ful�ll Heisenberg's uncertainty relation, the orthogonal quadrature must show
an increased variance

∆2X̂θ+π/2 ≥
1

∆2X̂θ

> 1 . (2.24)

If the equal sign holds for equation (2.24) the state remains a state of minimum
uncertainty.
States that show a reduced variance for at least one angle θ are called squeezed

states. A way to quantify this property is to de�ne the squeeze angle Θ and the
squeeze factor S (or equivalently the squeeze parameter r). The squeeze angle is

8



2.6 Phase space representations

the angle Θ for which the variance of the respective operator ∆2X̂Θ is the lowest of
all quadratures. The squeeze factor S and squeeze parameter r, being a measure
for the factor by which the variance of a squeezed state is below the vacuum
variance, are de�ned by

S = e−2r =
∆2X̂Θ

∆2X̂vac

. (2.25)

The squeeze factor S is often referred to on a logarithmic scale and given in decibel
(dB)

SdB = −10 · log10

(
∆2X̂Θ

∆2X̂vac

)
. (2.26)

Mathematically, squeezed vacuum states can be generated by applying the squeeze
operator Ŝ(ξ) to the ground state |0〉. The operator is de�ned as

Ŝ(ξ) = e
1
2

(ξ∗(â)2−ξ(â†)2) , (2.27)

where ξ = reiθ and r and θ being squeeze parameter and angle. Squeezed coher-
ent states can be generated by applying the displacement operator D̂(α) to the
squeezed vacuum

|α,ξ〉 = D̂(α)Ŝ(ξ) |0〉 . (2.28)

2.6 Phase space representations

States of light can be visualized in a plane that is spanned by the amplitude and
phase quadrature operators X̂ and Ŷ . Their uncertainties have to be taken into
account. In �gure 2.1 representations of a vacuum state (a) and a coherent state
(b) in the phase space are shown. The coherent state has a classical amplitude α in
contrast to the vacuum state. The uncertainties are depicted with circles propor-
tional to the variance of the quadrature operators (being equal for all quadratures
here). The probability distribution for the quadrature operators is Gaussian and
centered around the classical amplitude. Squeezed states of light have a reduced
variance below the vacuum variance for at least one angle. Their uncertainties
are therefore not equal for all angles. Figure 2.2 shows the representations of a
vacuum squeezed (a) and a coherent squeezed state (b) in the phase space, both
squeezed in the amplitude quadrature. The uncertainties are now depicted by
ellipses. They illustrate a squeezed variance along the amplitude quadrature and
anti-squeezed along the phase quadrature. This is the origin of the term squeezed
states.
The vacuum state has no de�ned phase and therefore it is only depicted as

squeezed in the amplitude quadrature for convenience. In an experimental im-
plementation the quadrature is only de�ned relative to an auxiliary �eld (e.g. a
control �eld).

9
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(a) (b)

Figure 2.1: Representations of a vacuum state (a) and a coherent state of light (b) in
phase space. The coherent state has an amplitude of α. For both states
their quantum uncertainty is depicted with a circle around their amplitudes.

(a) (b)

Figure 2.2: Representations of a squeezed vacuum (a) and displaced squeezed state
of light (b) in phase space. The amplitude of the displaced state is α.
Both states are squeezed along the amplitude quadrature. Their quantum
uncertainty is depicted with an ellipse around their amplitudes.

A full representation of a physical state can be given by the Wigner function.
It is de�ned as

W (X,Y ) =
1

2π~

∫ ∞
−∞

〈
X +

x

2

∣∣∣ ρ̂ ∣∣∣X − x

2

〉
e

iY x
2 dx , (2.29)

where ρ̂ is the density operator of the system. The Wigner function is a quasi-
probability distribution and can also have negative values.
The Wigner function can be used to calculate the probability distributions for

the amplitude or phase quadrature operators by integrating over the orthogonal
quadrature operator respectively

p(X) =
∫∞
−∞W (X,Y )dY , (2.30)

p(Y ) =
∫∞
−∞W (X,Y )dX . (2.31)
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2.7 The influence of losses on squeezed states

Figure 2.3 shows the Wigner function of a vacuum state. It is symmetric around
the origin and hence the projections onto the quadrature operators are the same
for all directions. They have a variance of ∆2X̂θ = 1 for all angles θ. Figure
2.4 shows a squeezed vacuum state with a squeeze factor of four (= 6 dB). It
is squeezed along the amplitude quadrature. A projection onto the amplitude-
quadrature operator yields a reduced (squeezed) variance, whereas a projection
onto the phase-quadrature operator has an increased (anti-squeezed) variance.

Figure 2.3: Wigner function of a vacuum state of light. The function is rotationally
symmetric around the origin. A projection onto the quadrature operators
leads to equal variances for all projection angles.

2.7 The in�uence of losses on squeezed states

In an experimental implementation, light �elds experience optical losses. Whereas
coherent states only experience a reduction of their amplitude by losses, a squeezed
state's squeeze factor is reduced (although it remains squeezed). The in�uence of
losses can be described by superimposing the squeezed state and a vacuum state
on a beam splitter as illustrated in �gure 2.5. Since the vacuum state has a larger
variance than the variance of the squeezed quadrature X̂θ, the superposition of
these two states will have an increased variance in the quadrature X̂θ with respect

11



Chapter 2: Quantum-mechanical description of light

Figure 2.4: Wigner function of a squeezed vacuum state of light. The squeeze factor is
four (= 6 dB) and the squeeze angle is chosen along the amplitude quadra-
ture. The function is not rotationally symmetric anymore and projections
onto the amplitude (or phase) quadrature lead to variances that are a factor
four smaller (or larger) than the variance of a vacuum state.

to the variance of the squeezed state. This can be written as

∆2X̂θ,loss = (1− L) ·∆2X̂θ + L ·∆2X̂vac , (2.32)

where L is the loss that can be modeled by the power transmittance T of the
beam splitter in �gure 2.5.
Losses can be caused by non-perfect mirrors (as described in the beam split-

ter picture), absorption in optical materials, non-perfect mode matchings to res-
onators or the readout local oscillator and non-perfect quantum e�ciencies of the
photo diodes.
Figure 2.6 shows the e�ect of losses on the noise power compared to vacuum

noise (given in decibel) for di�erent initial squeeze factors. It is clearly visible that
the in�uence of loss acts stronger on the squeezed than on the anti-squeezed noise
power. This cyn be explained by the higher in�uence of the noise of the vacuum
state on the relatively small noise power of the squeezed quadrature in contrast
to the small in�uence on the relatively large noise power in the anti-squeezed
quadrature.

12



2.8 Non-linear optics

Figure 2.5: The in�uence of losses on squeezed states modeled with a beam splitter.
The e�ect of losses can be understood by mixing a squeezed state with a
vacuum state on a beam splitter. The squeezed state is depicted by the
ellipse in phase space coming from below, the vacuum state is depicted
by the circle in phase space coming from the left. The beam splitter has
a power re�ectivity R and power transmittance T . The resulting ellipse
on the right of the beam splitter is still squeezed but with a lower squeeze
factor. The upper port of the beam splitter can be neglected in this picture.

Out of measured noise powers, here given in decibel relative to vacuum noise,
of the squeezed quadrature Var(X̂)dB and anti-squeezed quadrature Var(Ŷ )dB the
total loss L can by determined by

L =
1− 10

Var(X̂)dB
10 · 10

Var(Ŷ )dB
10

2− 10
Var(X̂)dB

10 − 10
Var(Ŷ )dB

10

. (2.33)

2.8 Non-linear optics

To explain the generation of nonclassical states (like squeezed states) higher-
order polarization e�ects in media are needed. An electro-magnetic wave E(t) =
E0 cos(ωpt) traveling through a medium excites the electrons in the medium to
oscillate. These oscillations can be described by the polarization P (E) in depen-
dence of the electro-magnetic �eld E(t) [Bo08]

P (E(t)) = ε0
(
χ(1)E(t) + χ(2)E(t)2 + χ(3)E(t)3 + ...

)
, (2.34)

where χ(i) is the i-th order susceptibility and a material property. Typically,
either the higher order terms of the susceptibility are too small or the amplitude
of the electro-magnetic �eld is too low to observe higher-order e�ects. Then, the
polarization is given by P (E) = ε0χ

(1)E0 cos(ωpt). The proportionality of the
cosine to the frequency ωp of the electro-magnetic �eld indicates that the emitted
�eld of the electrons has the same frequency as the incoming �eld.
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Figure 2.6: The in�uence of losses on the noise power of squeezed states for initial
squeeze factors of 3 dB, 6 dB and 10 dB. The red curves show the noise
power of the squeezed quadrature and the blue curves show the noise power
of the anti-squeezed quadratures according to (2.33). It is clearly visi-
ble that the in�uence of loss acts stronger on the squeezed then on the
anti-squeezed noise power. Even low loss reduces the squeezed properties
drastically.

By using special materials with larger higher-order susceptibilities and applying
higher optical powers, it is possible to access the quadratic terms of the polariza-
tion, which must then be written as P (E) = ε0

(
χ(1)E + χ(2)E2

)
. The quadratic

term of the electro-magnetic �eld can be expressed as

E2 = (E0 cos(ωpt))
2 =

E2
0

2
(1 + cos(2ωpt)) , (2.35)

where a proportionality to twice the frequency ωp is visible. For energy conser-
vation two photons at the frequency ωp must be involved in this process and one
photon at the frequency 2ωp, since the energy of one photon is proportional to its
frequency, E = ~ω.
If two photons of the frequency ωp create one photon at the frequency 2ωp the

process is called second-harmonic generation. Nevertheless, the process can also
take place in the reversed order where one photon at the frequency 2ωp is used to
create two photons at the frequency ωp. This process is called down conversion
and is the process that was used here to create squeezed states of light. The down-
conversion process will not necessarily produce photons of the same frequency ωp,
but at frequencies ωp±∆ω. They can be described as sidebands of frequency ∆ω

14



2.9 Entanglement

with respect to the carrier at frequency ωp. The photons created in the very same
process show quantum correlations of their quadrature operators (see chapter 2.9
and 3.4). Figure 2.7 illustrates both processes in an energy picture.

Second-harmonic
generation

Parametric down-
conversion

Figure 2.7: Second-harmonic generation and parametric down conversion process in the
energy picture. The left panel shows a second-harmonic generation process,
where the energy of two photons at the frequency ωp is taken to create one
photon at the frequency 2ωp. The right panel shows a parametric down
conversion process, where the energy of one photon at the frequency ω2p is
taken to create two photons at the frequencies ωp±∆ω. Since these photons
are generated in the very same process, they show quantum correlations in
their quadrature operators.

2.9 Entanglement

Entanglement is a property of a physical system consisting of two or more subsys-
tems (modes). This system is described in a Hilbert space Htot being the tensor
product of the Hilbert spaces of the subsystems [We89]

Htot = H1 ⊗H2 ⊗ ...⊗Hn . (2.36)

If such a system is separable, it can be described by the tensor product of the
subsystems. If a system can only be described by a single function it is called
entangled. In Einstein-Podolsky-Rosen entangled systems [EPR35], it is possible
to measure sums and di�erences of the entangled properties in di�erent subsystems
with an arbitrary high precision, contrary to the intuition. In the case of perfect
entanglement in the quadrature operators of subsystems A and B, this can be
stated as

∆2
(
X̂A − X̂B

)
= 0 , (2.37)

∆2
(
ŶA + ŶB

)
= 0 , (2.38)
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where the amplitude quadrature operators X̂A,B are correlated and the phase

quadrature operators ŶA,B are anti-correlated.
Squeezed states of light can be described by two photons at the upper and lower

sideband ωp±∆ω. The quadrature operators of the photons at each sideband for
a squeezed state have a variance of

∆2X̂(ωp + ∆ω) = ∆2X̂(ωp −∆ω) =
e2r + e−2r

2
≥ 1 , (2.39)

∆2Ŷ (ωp + ∆ω) = ∆2Ŷ (ωp −∆ω) =
e2r + e−2r

2
≥ 1 . (2.40)

Therefore, the uncertainty of each quadrature of each sideband is larger then
the uncertainty of a vacuum state if the state is squeezed (r > 0). Squeezed
variances of light �elds can be explained by the correlations of the quadrature
operators analogous to equation (2.37). In the case of an amplitude squeezed
state the variances of the sum of the amplitude operators and di�erence of the
phase operators read

∆2
(
X̂(ωp + ∆ω) + X̂(ωp −∆ω)

)
= e−2r ≤ 1 , (2.41)

∆2
(
Ŷ (ωp + ∆ω)− Ŷ (ωp −∆ω)

)
= e−2r ≤ 1 . (2.42)

They are below the vacuum variance due to their quantum-correlations.
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CHAPTER 3

Light �elds in the phasor picture

The phasor picture is a useful tool to visualize e�ects like amplitude or phase
modulation [Ma06]. In addition, also quantum noise and squeezed states of light
can be explained as sidebands at±Ω of a carrier ω0 [Sc17,Ch07]. In an experiment,
a measurement is always performed at a certain sideband frequency Ω within a
bandwidth ∆Ω. For visualization this bandwidth is chosen to be in�nitely small
in this chapter.

3.1 The phasor picture

The electric �eld of a classical light �eld can be described by E(t) = E0e
iω0t,

where E0 is the amplitude and ω0t the phase of the electric �eld. In the complex
plane the electric �eld is rotating counterclockwise with time t. For illustrations,
typically a coordinate system rotating with the same frequency ω0 is chosen to
get a stationary picture, the so-called rotating frame picture. If �elds at other
frequencies e.g. Ω 6= ω0 are included in the phasor diagram in a rotating frame,
these components rotate with a rate proportional to the di�erence frequency ω0−Ω
in time. They rotate clockwise if ω0 > Ω and counterclockwise if ω0 < Ω. An
example for the phasor picture of two �elds at frequencies ω0 and Ω < ω0 at
di�erent times is illustrated in �gure 3.1.
The phasor picture in the rotating frame allows for an easy picture of superposi-

tioning of light �elds at di�erent frequencies Ω. The superposition is the addition
of all phasors, where each phasor rotates with its own frequency ω0 − Ω.



Chapter 3: Light fields in the phasor picture

Figure 3.1: Phasor picture for a single sideband in a rotating frame for frequency ω0.
The sideband (blue arrow) has a frequency of ω0−Ω and rotates clockwise
in time whereas the carrier (red arrow) does not rotate. The upper panel
shows each sidebands' evolution in time. The lower panel is the superpo-
sition and time evolution of the �elds. For clarity here only the sideband
but not the carrier is shown.

3.2 Amplitude modulation of a classical light �eld

A modulation of only the amplitude of a light �eld E(t) = E0eiω0t with the mod-
ulation frequency Ω and modulation depth m can be written as

Eam(t) =E0 (1 +m cos(Ωt)) eiω0t (3.1)

=E0

(
1 +

m

2

[
eiΩt + e−iΩt

])
eiω0t (3.2)

=E0

(
eiω0t +

m

2
ei(ω0+Ω)t +

m

2
ei(ω0−Ω)t

)
. (3.3)
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3.2 Amplitude modulation of a classical light field

In addition to the carrier light at frequency ω0, two new terms at the frequencies
ω0 ± Ω with amplitudes E0

m
2
are generated. They are typically called upper

and lower sidebands with respect to the carrier light. Figure 3.2 illustrates an
amplitude modulation in a phasor diagram in a rotating frame with the frequency
of the carrier �eld for di�erent times. The upper and lower sidebands superimpose
with the carrier �eld such that only the total amplitude (=length of the phasor)
changes and the phase remains unchanged.

Figure 3.2: Phasor picture for an amplitude modulation in a rotating frame for fre-
quency ω0. The sidebands (blue arrows) have frequencies of ω0 ± Ω and
rotate clockwise (lower sideband) and counterclockwise respectively (upper
sideband) in time whereas the carrier (red arrow) does not rotate. The up-
per panel shows each sidebands' evolution in time. The lower panel is the
superposition and time evolution of the �elds (green arrow). For clarity,
here only the sidebands but not the carrier are shown. The sidebands inter-
fere in such a way with the carrier that only the amplitude of the resulting
�eld is changed but not its phase.
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Chapter 3: Light fields in the phasor picture

3.3 Phase modulation of a classical light �eld

A modulation of the phase of a light �eld E(t) = E0e
iω0t with the modulation

frequency Ω and modulation depth m can be written as

Epm(t) =E0e
i(ω0t+m cos(Ωt)) (3.4)

≈E0e
iω0t
[
J0(m) + iJ1(m)

(
eiΩt + e−iΩt

)]
(3.5)

=E0

[
eiω0t + i

m

2
ei(ω0+Ω)t + i

m

2
ei(ω0−Ω)t

]
, (3.6)

where Jj(m) are the Bessel functions of jth order. The approximation in the
second line is only valid for m � 1. For higher modulation indices, additional
sidebands at the frequencies ±nΩ are created. Here, two sidebands at frequencies
ω0 ± Ω with amplitudes E0

m
2
appear in addition to the carrier �eld. In contrast

to the amplitude modulation they show a phase shift of π/2 with respect to the
carrier. As it can be seen in �gure 3.3 this phase shift leads to a superposition
of the sidebands with the carrier in a way that the length is constant (for small
modulation indices), but only the phase of the carrier is modulated.

3.4 Quantum noise in the phasor picture

For illustrating quantum noise, the axes are changed from the complex plane to
the amplitude and phase quadrature operators. Contrary to the classical picture,
for every sideband frequency an uncertainty in the quadrature operators with
the variance of 1/2 needs to be introduced. This is the quantum noise for every
sideband frequency. If no carrier at frequency ω0 is present this is the vacuum
noise. It is important to say, that the noises are initially totally uncorrelated for
each sideband frequency. In a measurement at the sideband frequency ±Ω around
the frequency ω0 , the noises from the upper and lower sideband are added. Their
variances are added up since they are uncorrelated and the total variance is one.
Figure 3.4 shows an example of quantum noise for the sidebands ±Ω.
For squeezed �elds two correlated photons at sideband frequencies ±Ω are pro-

duced as described in chapter 2.8. These sidebands have increased uncertainties
compared to the vacuum uncertainties. But these uncertainties show correlations
and anti-correlations for the sideband frequencies ±Ω. Depending on the phase
of these correlations with respect to the carrier �eld the squeeze angle can be
chosen. This is analogous to the amplitude and phase modulation in the classical
picture. If no carrier is present, a squeezed vacuum �eld is produced. This has
by de�nition no certain phase and the squeeze angle can therefore only be stated
with respect to an auxiliary �eld. Figure 3.5 illustrates these correlations of the
sidebands for an amplitude squeezed �eld. Correlations in the quantum noise are
depicted by the symbols + and ◦, respectively.
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3.4 Quantum noise in the phasor picture

Figure 3.3: Phasor picture for a phase modulation in a rotating frame for frequency
ω0. The sidebands (blue arrows) have frequencies of ω0 ± Ω and rotate
clockwise (lower sideband) and counterclockwise respectively (upper side-
band) in time whereas the carrier (red arrow) does not rotate. The upper
panel shows each sidebands' evolution in time. The lower panel is the su-
perposition and time evolution of the �elds (green arrow). For clarity, here
only the sidebands but not the carrier are shown. The sidebands interfere
in such a way with the carrier that only the phase of the resulting �eld is
changed but not its amplitude.

Later in this thesis, a rotation in phase of only one side of the spectrum (e.g. the
lower sidebands) will be discussed. This does not reduce the correlations between
upper and lower sidebands but rotates the squeeze angle of the resulting �eld. If a
phase rotation of Θ is applied to one of the sidebands, the resulting squeeze angle
is rotated by Θ/2. Figure 3.6 illustrates a phase rotation by π/2 of the lower
sideband of an initially amplitude squeezed state. It shows the resulting �eld to
be squeezed at an angle of π/4.
The phase shift can be di�erent for each sideband frequency. By applying such a
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Figure 3.4: Phasor picture for vacuum quantum noise in a rotating frame for frequency
ω0. The quantum noises (red circles) are at frequencies of ω0±Ω and rotate
clockwise (lower sideband) and counterclockwise respectively (upper side-
band) in time, whereas the carrier (red arrow) does not rotate. The upper
panel shows each sidebands' evolution in time in a double-sided spectrum.
The variance of each uncertainty is 1/2. The lower panel shows a single-
sided spectrum. The variance of the added uncertainty at the sideband
frequency Ω is one.

phase transition, a frequency-dependent squeeze angle can be achieved. Figure 3.7
shows squeezed states at the three sideband frequencies Ω, 2Ω and 3Ω. Initially,
all states were amplitude squeezed but the lower sidebands acquired a gradient
phase transition from 0 (for −Ω) over π/2 (for −2Ω) to π (for −3Ω). The resulting
squeeze angles are rotated from 0 (amplitude squeezed) to π/2 (phase squeezed).
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Figure 3.5: Phasor picture for an amplitude squeezed vacuum state in a rotating frame
for frequency ω0. The quantum noises (red circles) are at frequencies of ω0±
Ω and rotate clockwise (lower sideband) and counterclockwise respectively
(upper sideband) in time. Since it is a vacuum state, no carrier is present.
The correlations in the upper and lower sideband that arise from their
creation in a down-conversion process are marked with the symbols + and
◦. The upper panel shows each sidebands' evolution in time in a double-
sided spectrum. The variance of each uncertainty is larger than for the
ground state (grey dashed line). The lower panel shows a single-sided
spectrum. Due to the correlations of the sidebands the quantum noise
is squeezed in the amplitude quadrature but anti-squeezed in the phase
quadrature.
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Figure 3.6: Phasor picture for an one-sided phase shift of an initially amplitude
squeezed state in a rotating frame for frequency ω0. The quantum noises
(red circles) are at frequencies of ω0 ± Ω and rotate clockwise (lower side-
band) and counterclockwise respectively (upper sideband) in time. Since it
is a vacuum state, no carrier is present. The correlations in the upper and
lower sideband that arise from their creation in a down-conversion process
are marked with the symbols + and ◦. The lower sideband is phase shifted
by π/2 with respect to the initially amplitude-squeezed state. The upper
panel shows each sidebands' evolution in time in a double-sided spectrum.
The variance of each uncertainty is larger than for the ground state. The
lower panel shows a single-sided spectrum. Due to the correlations of the
sidebands the quantum noise is squeezed in a rotated quadrature with an
angle of π/4 but anti-squeezed in the quadrature with an angle −π/4.
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Figure 3.7: Phasor picture for an one-sided phase transition of initially amplitude
squeezed states in a rotating frame for frequency ω0. The quantum noises
(red circles) are at frequencies of ω0 ± Ω, ω0 ± 2Ω and ω0 ± 3Ω and ro-
tate clockwise (lower sidebands) and counterclockwise respectively (upper
sidebands) in time. Since it is a vacuum state, no carrier is present. The
correlations in the upper and lower sideband that arise from their creation
in a down-conversion process are marked with the symbols + and ◦. The
lower sidebands have a phase transition from 0 to π with respect to the
initially amplitude squeezed state. The upper panel shows each sideband
in a double-sided spectrum. The variance of each uncertainty is larger than
for the ground state. The lower panel is the superposition of the �eld, that
is the same for all times. Due to the correlations of the sidebands the
quantum noise is squeezed in a rotated quadrature with a transition of the
angle from 0 (amplitude squeezed) to π/2 (phase squeezed).
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CHAPTER 4

Detection of gravitational waves

The �rst detections of gravitational waves by the LIGO and VIRGO detectors
opened the era of gravitational-wave astronomy, a new window to our universe.
This chapter is dedicated to an overview of laser-interferometric detectors in gen-
eral and their main limitations by quantum noise. A description of a novel ap-
proach for a broadband reduction of the quantum noise in such interferometers is
given.

4.1 Gravitational waves

Gravitational waves are perturbations of the spacetime and are described by Ein-
stein's theory of general relativity [Ei16]. They are caused by accelerated masses.
Although, in principle any acceleration causes gravitational waves, only astro-
physical sources are considered to have masses large enough to cause measurable
e�ects with state-of-the-art or near-future detectors. That involves events like
two inspiraling black holes, two inspiraling neutron stars, inspirals of a black
hole and a neutron star, super novae, or rotating neutron stars with non-perfect
surfaces. Gravitational waves are transversal waves propagating with the speed
of light. Their polarizations are called + and ×. These waves cause lengthen-
ing and shortening of the spacetime perpendicular to their direction of propaga-
tion. This change in length ∆L compared to a reference length L is called strain
h = ∆L

L
[Sa17]. The e�ect of these waves on freely falling test masses is shown in

�gure 4.1 for a gravitational wave of wavelength λ = 2πc
ω

and for the two di�erent
polarizations + (upper panel) and × (lower panel). The gravitational wave passes
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Figure 4.1: E�ect of gravitational waves of frequency ω on a ring of test masses for
a full oscillation period. The upper panel shows the +-polarization, the
lower panel the ×-polarization. The wave passes perpendicular through
the plane and causes a strain of h = 0.33. After a quarter period, the ring
of test masses is maximally stretched along one axis and compressed along
the orthogonal axis. After half a period the ring is transformed back to the
initial situation. Afterwards, the test masses are stretched and compressed
vice versa.

perpendicular through the plane and its strain is with h = 0.33 highly exaggerated
for illustration compared to real events.
In 1975, Hulse and Taylor discovered the binary pulsar system PSR B1913+16

[HT75] (for which they were awarded with the Nobel prize in physics in 1993).
Later studies showed the orbital period of the system to be decreasing [TW82].
This was in perfect agreement with general relativity and its prediction of grav-
itational waves and hence called the �rst indirect detection. In 2015 the LIGO
collaboration reported on the �rst direct detection of a gravitational wave using
a Michelson-like laser interferometer [Ab16a].

4.2 Interferometric detection of gravitational waves

Although there were other proposals for detecting gravitational waves (e.g. res-
onant antennas, called Weber bars [We60]), by today only laser-interferometric
detection schemes reached a sensitivity that is high enough to get a su�cient
signal-to-noise ratio. The most prominent representatives of these detectors are
the two Advanced LIGO detectors (situated in Livingston, Louisiana and Han-
ford, Washington) [Aa15] and the Advanced Virgo detector (situated close to Pisa,
Italy) [Ac15]. In its simplest version a Michelson-like laser interferometer consists
of a laser and three mirrors, where one mirror is used as a beam splitter and the
others as end mirrors of the two arms of the interferometer. Such a design is
depicted in �gure 4.2. The laser light gets split up by the beam splitter and send
along the arms of the interferometer. The end mirrors retro-re�ect the light and
both beams are overlapped on the beam splitter. The resulting signal at a photo
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Figure 4.2: Schematic drawing of a Michelson interferometer for gravitational-wave de-
tection. The laser is sent onto a beam splitter, travels along the interferom-
eter arms of length L and is retro-re�ected by the end mirrors. Afterwards
both beams are recombined on the beam splitter. The length di�erence
of both path are chosen such that almost no light is re�ected towards the
photo detector. If a di�erential change of the arm length of ∆L is applied
(e.g. by a gravitational wave) the light picks up the phase shift of the
change and the interferometer converts it to an amplitude modulation in
the output port. Most of the light is re�ected back towards the laser. A
Faraday isolator protects the laser from this re�ection.

detector is (ideally) only depending on the phase di�erence the light experiences
during the path in the arms. A gravitational wave of the right polarization leads
to an anti-symmetric change of the arm lengths. The light picks up that resulting
phase shift being visible as a signal at the output port. The signal strength for
gravitational wave detection is dependent on the laser power inside the interfer-
ometer and the arm length. The LIGO detectors work with an arm length of
4 km. Typically, the length di�erence between the arms is controlled such that
there is almost no light impinging on the photo detector, referred to as dark port
condition.
To increase the signal strength further, new techniques are needed. A power-

recycling mirror (with re�ectivity R = 97 % in the case of Advanced LIGO) can
be placed between laser and the interferometer and form a cavity with the end
mirrors. Thereby, a signi�cant increase of circulating light power can be achieved
without the need for lasers of the same power. The arms can be arti�cially length-
ened by inserting arm cavities. Here, a second mirror in each arm (with re�ectivity
R = 98.6 % in the case of Advanced LIGO) is inserted close to the beam splitter.
Together with the end mirrors, they build a cavity for each arm. This increases
the time the light �eld can interact with a passing gravitational wave and thereby
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Figure 4.3: Schematic drawing of a dual-recycled Michelson interferometer using arm
cavities. Additional to the Michelson-like interferometer, a power-recycling
mirror in front of the beam splitter is introduced. This mirror builds a
cavity with the end test-masses and re�ects the light �eld back into the
interferometer. Thereby, a higher light intensity inside the interferometer
can be achieved. Inside each of the arms a cavity is formed by the incoupling
test-masses and the end test-masses. This further increases the light power
in the arms without increasing the power on the beam splitter that could
lead to thermal lensing. The signal-recycling mirror re�ects the signal from
the dark port back into the interferometer which leads to a further increase
of the signal.

increases the phase shift of the light �eld. A third technique is the implementa-
tion of a signal-recycling mirror in the dark port, retro-re�ecting the signal back
into the interferometer [Me88]. Thereby an increase in the signal can be gained.
The design of such a dual-recycled interferometer with arm cavities is shown in
�gure 4.3.
There are many sophisticated techniques involved leading to the high sensitivity

of state-of-the-art gravitational-wave detectors that can not all be mentioned here.

4.3 Limits to the detection sensitivity

The design sensitivity of Advanced LIGO is shown in �gure 4.4 for a frequency
range of 1 Hz to 5 kHz as presented in [Aa15]. In black, the sum of all noise con-
tributions is shown. It is obvious, that the detector is mainly limited by quantum
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4.3 Limits to the detection sensitivity

Figure 4.4: Design sensitivity for the Advanced LIGO detectors in the frequency range
of 1 Hz to 5 kHz. The plot shows the total noise contributions as the black
curve. The detectors are mainly limited by quantum noise shown as the
purple curve. Only for low frequencies other noise components like seismic
noise and suspension thermal noise play a dominant role. Coating Brownian
noise has about the same in�uence as quantum noise in the range from 50 Hz
to 80 Hz. The quantum noise is the sum of radiation pressure noise being
dominant for lower frequencies and shot noise being dominant for higher
frequencies. Picture taken from [Aa15].

noise shown as the purple curve. The physical background of quantum noise was
given in chapter 2, but the coupling of quantum noise to an interferometer needs
its own review.
A light �eld consists of photons that are independent with respect to each other.

The average number of photons per time interval is constant, but they are not
arriving at the same time at a photo detector. This is referred to as photon shot-
noise, limiting the sensitivity of a measurement. The same property causes a
second e�ect in a gravitational-wave detector. The radiation pressure of the light
�eld pushes against the end mirrors and moves them a tiny bit, proportional to
the light power. Since the photons arrive independently, the mirrors sense a �uc-
tuating radiation pressure. This movement creates a back action on the light �eld.
This noise source is referred to as radiation-pressure noise [Ca81]. The single-sided
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power spectral densities of both displacement noises for a gravitational-wave de-
tector read [Sa17]

SSN
x =

c2~
2ω0P

, (4.1)

SRPN
x (Ω) =

~ω0P

c2m2Ω4
, (4.2)

with P being the power of the laser, m the mass of the mirror and Ω the sideband
frequency (above the resonance frequency of the mirror suspension). It can be
seen that shot noise is inversely proportional to the laser power P , but radiation
pressure noise is proportional to P. Additionally, radiation pressure noise is in-
versely proportional to the square of the mass of the mirrors. These displacement
noises can be transferred into the strain h = ∆x

L
of an interferometer (where the

radiation pressure has to be taken into account twice) and read [Sa17]

hSN =
1

L

√
SSN
x =

c

L

√
~

2ω0P
, (4.3)

hRPN(Ω) =
2

L

√
SRPN
x (Ω) =

1

mcLΩ2

√
2~ω0P . (4.4)

The sum of shot noise and radiation pressure noise is the optical readout noise
and can be written as

hORN =

√
(hSN)2 + (hRPN(Ω))2 . (4.5)

In �gure 4.5 the optical readout noise for an interferometer of 4 km arm length,
mirror masses of 10 kg at a wavelength of 1064 nm is shown for light powers 1 kW
(blue), 10 kW (green) and 100 kW (red). Additionally, the respective shot-noise
and radiation-pressure-noise contributions are given as dashed lines. A change by
a factor of 10 in the optical power results in a factor of

√
10 reduction of the shot

noise but a factor of
√

10 increase in radiation pressure noise. It can be seen that
a region of sensitivity below a certain curve can not be reached even if the laser
power can be chosen arbitrarily. This limit is referred to as the standard quantum
limit and shown in black in �gure 4.5. Mathematically, the standard quantum
limit for the strain sensitivity of an interferometer can be written as

hSQL(Ω) =
2

ΩL

√
~
m
. (4.6)
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Figure 4.5: Simulation of optical readout noise for di�erent light powers for an inter-
ferometer of 4 km arm length, mirror masses of 10 kg at a wavelength of
1064 nm. The noise is shown in the frequency range of 0.05 Hz to 50 Hz.
The solid colored lines represent the sum of the radiation pressure noise
(dashed lines proportional to Ω−2) and the shot noise (dashed lines being
frequency independent). The green line is the optical readout noise for an
incident light power of 10 kW. Increasing the light power by a factor of 10
to 100 kW decreases the shot noise by a factor of

√
10, but the radiation

pressure noise is increased by the same factor. By reducing the light power
by a factor of 10 to 1 kW the shot noise is increased by a factor of

√
10 and

the radiation pressure noise is decreased by the same factor. Taking the
minimum noise depending on the light power for each frequency leads to
the standard quantum limit shown as the black curve. This limit can not
be overcome by only changing the light power.

4.4 Squeezed-light enhanced gravitational-wave detection

Gravitational-wave detectors are operated at the dark-port condition for the arm
length di�erence. The incoming light of the laser is (almost perfectly) re�ected
back into the laser. On the other hand the vacuum noise entering through the
dark port interferes with the signal inside the interferometer, leaves through the
dark port and is detected on the photo detector. By replacing the incoupling
vacuum state with a squeezed state of light the quantum noise contributions can
be reduced [Ca81]. Thereby, the shot noise can be reduced by squeezing the
phase quadrature and the radiation-pressure noise can be reduced by squeezing
the amplitude quadrature. By applying amplitude- or phase-squeezed vacuum
either the radiation-pressure or the shot noise can be reduced but the noise in
the orthogonal quadrature is increased at the same time. A schematic setup of a
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Figure 4.6: Schematic drawing of a squeezed-light-enhanced Michelson interferometer.
The squeezed states of light are coupled into the interferometer via a Fara-
day rotator in the output port. They interfere with the signal �eld inside
the interferometer and are sent back to the dark port. Now, the are trans-
mitted by the Faraday rotator and sent on a photo detector. By that
scheme, the vacuum noise can be reduced in one quadrature. Here, for
simpli�cation arm cavities, signal and power recycling mirrors are omitted.

squeezed-light-enhanced interferometer is given in �gure 4.6, where the squeezed
vacuum is coupled into the dark port via a Faraday rotator.
The e�ect on the strain sensitivity is shown in �gure 4.7. Using only ampli-

tude or phase squeezed states of light is equivalent to decreasing or increasing
the light power by the same factor. Nevertheless, increased light power implies
higher technical di�culties like thermal lensing e�ects due to absorption. This can
be avoided by using squeezed light. The �rst application of squeezed light was
performed in the GEO600 detector with phase-squeezed light [Gr13]. As it can
be seen in �gure 4.7, it is not possible to achieve sensitivities below the standard
quantum limit with states having squeeze angles along the amplitude or phase
quadrature operators.
Nevertheless, it is possible to achieve sensitivities below the standard quantum

limit by using other squeeze angles. E.g. a squeeze angle of 45◦ introduces cor-
relations of the amplitude and phase quadrature in the output ports. Thereby, a
sensitivity below the standard quantum limit is possible within a small frequency
band. This is possible because the calculations for the standard quantum limit
assumed uncorrelated noise in both quadratures.
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Figure 4.7: E�ect of squeezed light on the strain sensitivity of a Michelson interferom-
eter. The simulation of optical readout noise is done for an optical power
of 10 kW in an interferometer of 4 km arm length, mirror masses of 10 kg
at a wavelength of 1064 nm. The noise is shown in the frequency range
of 0.05 Hz to 50 Hz. The green curve is the initial setup with no squeezed
light application. The red curve simulates a 10 dB phase squeezed state
reducing the shot noise by a factor of

√
10, whereas the radiation pressure

noise is increased by the same factor. The blue curve simulates a 10 dB
amplitude squeezed state reducing the radiation pressure noise by a factor√

10 but increasing the shot noise by the same amount. The application
of phase (or amplitude) squeezed states has the same e�ect as increasing
(or decreasing) the optical power. Therefore, by using only phase or ampli-
tude squeezed light it is impossible to reach sensitivities below the standard
quantum limit.

So far, only frequency-independent angles of the squeezed states were investi-
gated. From the previous examples it is obvious that for every detection frequency
Ω a perfect squeeze angle φ(Ω) can be de�ned. This is described by [Ki01]

φ(Ω) =
1

2
arccot

(
4I0ω0

mL2Ω2(Ω2 + γ2)

)
, (4.7)

where I0 is the input laser power, ω0 the laser frequency, m the end mirror
mass, L the length of the arm cavities and γ the bandwidth of the arm cavities.
Instead of injecting a frequency-independent squeezed state it can be replaced by
a modi�ed state, where the optimal squeeze angle for every frequency is chosen.
This is called frequency-dependent squeezing and is also shown in chapter 3.4
in the phasor picture. The squeezed vacuum via parametric down-conversion is
produced frequency-independently and acquires a frequency-dependent phase shift
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Figure 4.8: E�ect of squeezed light at 45◦ (blue trace) and optimized, frequency-
dependent squeeze angles (red trace) on the strain sensitivity of a Michel-
son interferometer. The simulation of optical readout noise is done for an
optical power of 10 kW in an interferometer of 4 km arm length, mirror
masses of 10 kg at a wavelength of 1064 nm. The noise is shown in the fre-
quency range of 0.05 Hz to 50 Hz. For comparison, the initial setup with no
squeezed light application is shown (green trace). The 45◦ rotated squeezed
angle can improve the sensitivity compared to no squeezed light applica-
tion in a small frequency band even below the standard quantum limit.
For other frequencies the noise in increased. The optimized squeezed angle
promises a broadband improvement in sensitivity by applying the perfect
angle for every frequency. The sensitivity is below the standard quantum
limit in a broad range (green area).

by re�ecting the squeezed vacuum o� cavities that have an optimal bandwidth and
detuning [Ki01]. Then, the frequency-dependent squeezed state is injected through
the dark port of the interferometer as in the frequency-independent case. Both
the e�ects on the sensitivity of squeezed states at 45◦ and the optimal frequency-
dependent squeeze angle are shown in �gure 4.8. It is visible that for a certain
bandwidth a sensitivity below the standard quantum limit can be reached.
However, frequency-dependent squeezed states are not easily produced. Kimble

et al. proposed two detuned cavities o� which the squeezed states are re�ected
to achieve the optimal squeeze angle for all frequencies [Ki01]. Later, Khalili pro-
posed one cavity being suitable [Kh10]. A possible setup for frequency-dependent
squeezed states in gravitational-wave detection (as proposed by Kimble et al.) is
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Figure 4.9: Schematic drawing of a frequency-dependent squeezed-light-enhanced
Michelson interferometer. The squeezed states are re�ected o� two detuned
�lter cavities to achieve an optimal frequency-dependent squeeze angle. Af-
terwards, the squeezed states are coupled into the Michelson interferometer
as shown before.

shown in �gure 4.9. Since squeezed states strongly su�er from optical losses, the
round trips in the cavity need to be minimized to avoid losses inside the coatings,
but the required bandwidth has to be in the order of the detection bandwidth.
This leads to �lter cavities that have length in the order of 100m [Ca16,LIGO18].
Building, maintaining and controlling them is a high technical e�ort and cost-
intensive.

4.5 Proposal for using conditional squeezing in

gravitational-wave detectors

In 2017 Ma et al. [Ma17] proposed a di�erent scheme to achieve a broadband
noise reduction below the standard quantum limit. This proposal does not require
additional �lter cavities to rotate the squeeze angle, but uses the signal-recycling
cavity of the interferometer to perform a suitable phase transition. In conventional
schemes, squeezed states were produced with a center frequency that equals the
interferometer carrier frequency ω0. They are generated by the parametric down-
conversion process being pumped by a bright �eld at the frequency 2ω0 and pro-
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ducing frequency-independent squeezed states. The proposal exploits frequency-
shifted squeezed light, where the pump frequency is shifted to 2ω0 +∆−δ, with ∆
being the free spectral range of the interferometer cavity and δ an additional de-
tuning. Thereby, sidebands at the frequencies ω0 (lower sideband) and ω0 + ∆− δ
(upper sideband) are created. They are fed into the dark port of the interferome-
ter. The lower sideband is resonant for the interferometer but the upper sideband
is o�-resonant. The upper sideband acquires a frequency-dependent phase shift
with respect to the lower sideband depending on the detuning δ due to the re-
�ection o� the cavity. By setting the detuning an optimal phase rotation can be
achieved. Both sidebands leave the interferometer through the signal port and are
separated by output mode cleaners. They are sent on homodyne detectors and
overlapped with local oscillators of their center frequencies ω0 and ω0 + ∆ − δ,
respectively. The measurement at the lower sideband frequency resolves the signal
produced by the gravitational wave detector and can be conditionally improved
by the subtraction of the upper sideband's noise information.
In more detail the measurements at the upper and lower center frequencies are

resolved at sideband frequencies Ω that lie in the detection band of a few 100Hz.
Thereby, the sidebands at frequencies ω0 + Ω and ω0 + ∆− δ−Ω are correlated as
well as the sidebands at frequencies ω0−Ω and ω0 + ∆− δ+ Ω. The conditioning
is applied by subtracting the measured noise of the correlated sidebands.
Due to the detection of each sideband with its own local oscillator the e�ective

squeeze factor is reduced compared to the direct detection with one local oscillator.
The improvement is given by log(cosh(2r))/2. This reduction is referred to as
3 dB-penalty since it reduces strongly squeezed states by 3 dB. Weakly squeezed
states are a�ected less. Nevertheless, the possibility of avoiding the operation and
installation of long �lter cavities as proposed by Kimble et al. can be seen as the
higher advantage compared to the disadvantage of the 3 dB-penalty.
The setup proposed by Ma et al. is depicted in �gure 4.10.
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Figure 4.10: Schematic drawing of a frequency-dependent squeezed-light-enhanced
Michelson interferometer by exploiting Einstein-Podolsky-Rosen entangle-
ment and conditioned measurements. The squeezed states are produced
detuned to the cavity-carrier light. A lower sideband is resonant for the
cavity, while the entangled, upper sideband is o�-resonant. The re�ected
�eld is separated into a part around the lower sidebands (containing the
gravitational-wave signal) and a part around the upper sidebands. The
measurements at the lower sidebands can be conditioned on measure-
ments at the upper sidebands. By setting the detuning, an optimal phase
rotation can be achieved.
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CHAPTER 5

Experimental methods

This chapter is dedicated to the description of experimental techniques imple-
mented in the optical setups used during this work.

5.1 Pound-Drever-Hall locking scheme

Holding optical cavities on resonance is essential for operating setups that include
several cavities. The cavity length can be varied slightly by including piezoelectric
elements in the design that shift one mirror of the cavity in the range of the
optical wavelength. Though, a signal to stabilize a cavity is not easily generated.
Detecting the re�ected (or transmitted) intensity and minimizing (or maximizing)
the signal in a control loop is not possible, since the resonance peak is symmetric
and the control loop can not distinguish between the cavity becoming longer or
shorter. The Pound-Drever-Hall locking scheme (as described in [Bl01]) uses a
phase modulation of frequency Ω on the incident light �eld (e.g. created by an
electro-optic modulator). Thereby, for small modulation indices three light �elds
are generated, the carrier �eld and a lower and an upper sideband. Due to the
di�erent frequencies the sidebands achieve di�erent phase shifts upon re�ection
o� the cavity compared to the carrier �eld. The re�ected light is sent onto a
photo detector and the resulting signal is demodulated with an electronic local
oscillator at the frequency Ω with an appropriate phase. This process creates
signals around DC and 2Ω. The latter is cut o� with a low-pass �lter. The other
part shows a zero crossing exactly at the resonance of the cavity. Hence it contains
an information whether the cavity is too long or too short and can serve as an
error signal. This signal is typically sent through a proportional-integral-derivative
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controller for a frequency-dependent shaping. Additionally, error signals with zero
crossings are created for the resonances of the sidebands. The cavity can also be
held on resonance for these sidebands. The sign of the zero crossings changes for
the sidebands with respect to the sign of the zero crossing for the carrier �eld.

5.2 Generation of bright �elds at sideband frequencies

In the experiments bright light �elds (of Popt ≈ 10 mW) at sideband frequencies
of f ≈ ±30 MHz with respect to the laser frequency needed to be available. These
sidebands can be imprinted as a strong phase modulation on the laser �eld by using
an electro-optic modulator which is driven by a sinusoidal modulated voltage at the
desired sideband frequency. I used a signal out of a self-built frequency generator
and additionally ampli�ed it by two commercially available TB-45 ampli�ers by
Mini-Circuits. The resulting power of the signal that was sent to the electro-optic
modulator was Psig ≈ 30 dBm and the modulator was additionally resonant for
the signal frequency. The phase-modulated light was sent onto a �rst triangular
cavity. A part of the re�ected light was sent onto a photo detector. The photo
detector signal was demodulated by an electronic local oscillator to generate an
error signal for locking the cavity on resonance according to the Pound-Drever-
Hall locking scheme. This error signal can be used to lock the cavity on either the
carrier light �eld or one of the sidebands. In the experiment the lower sideband
was chosen. Thereby, this sideband was transmitted through the cavity while
the carrier �eld and the upper sideband were re�ected. The re�ected �elds were
sent onto a second triangular cavity. The re�ected �eld was detected by a second
photo detector to lock the cavity on resonance for the upper sideband. The upper
sideband was transmitted and the carrier �eld was re�ected. By this scheme, all
three light �elds can be separated and accessed individually. A schematic setup
is shown in �gure 5.1. The exact sideband frequency was easily adjustable at the
frequency generator.
Another scheme to generate bright sidebands is the application of acousto-optic

modulators. Thereby, the �elds acquire a spatial separation and no cavity is
needed to separate the sidebands. Disadvantageous in this scheme is the depen-
dence of the angle of the generated sidebands on the modulation frequency. This
does not allow to �ne tune the modulation frequency without the need of read-
justing the beams. Therefore, this scheme was not chosen in this experiment.
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5.3 Balanced homodyne detection

The description of balanced homodyne detection is based on the textbooks
[GK05, SZ97]. For characterizing squeezed states of light, access to all possible
quadratures is needed. With one photo detector it is possible to measure squeezed
states only in the amplitude quadrature. The photo current of one photo diode is
proportional to the number of photons hitting the diode and hence to the photon
number operator,

î(t) ∝ n̂(t) = â†(t)â(t) . (5.1)

The annihilation and creation operators can be rewritten as

â = 〈â〉+ δâ = α + δâ , (5.2)

â† =
〈
â†
〉

+ δâ† = α∗ + δâ† , (5.3)

where they are described by an expectation value (the coherent amplitude α) and
the �uctuations of the operators. By inserting these expressions for the annihi-
lation and creation operators into equation (5.1) and assuming a real amplitude
α = α∗ it yields

î(t) ∝ (α∗ + δâ†)(α + δâ) (5.4)

= |α|2 + α
(
δâ† + δâ

)
+ δâ†δâ (5.5)

≈ |α|2 + αδX̂ . (5.6)

The term with the product of �uctuations was approximated to be negligible. The
de�nition of the amplitude operator from equation (2.4) was used. This illustrates,
that one photo diode only senses the amplitude quadrature. Information about
the phase quadrature can only be gained by an interferometric measurement. For
this, the signal �eld is overlapped with a bright �eld, usually referred to as local
oscillator, on a 50/50 beam splitter. This setup is depicted in �gure 5.2. The
phase di�erence between the signal �eld and the local oscillator is described by ϕ.
The output �elds read

â1 =
1√
2

(
âSig + âLOeiϕ

)
, (5.7)

â2 =
1√
2

(
âSig − âLOeiϕ

)
. (5.8)

This leads to photo currents being proportional to

î1 ∝ â†1â1 =
1

2

(
â†Sig + â†LOe−iϕ

) (
âSig + âLOeiϕ

)
, (5.9)

î2 ∝ â†2â2 =
1

2

(
â†Sig − â

†
LOe−iϕ

) (
âSig − âLOeiϕ

)
. (5.10)
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Figure 5.1: Schematic setup of the generation of bright upper and lower sidebands.
The sidebands were generated by a phase modulation in a electro-optic
modulator with a modulation frequency of ∆

2π ≈ ±30 MHz. To achieve a
high modulation depth, the sinusoidal electronic signal to the modulator
was ampli�ed by two TB-45 ampli�ers to a power of P ≈ 30 dBm. A
ring mode cleaner cavity being resonant for the lower sideband extracted
this sideband. The other two �elds were sent on another modecleaner being
resonant for the upper sideband. Both cavities were locked with the Pound-
Drever-Hall locking technique. This scheme allowed to separate and access
all three sidebands and easily adjust the modulation frequency.
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â1

âSig

âLO

â2

+f

Figure 5.2: Schematic setup of balanced homodyne detection. The signal �eld âSig

from the left and the local oscillator âLO from the top are overlapped on a
balanced beam splitter. The phase ϕ between both beams can be changed
via a phase shifter in one path (here in the local oscillator path). The
outgoing �elds are detected each on a photo diode and the photo currents
are subtracted from each other.

The outputs of the beam splitter are both detected on photo diodes and the
resulting photo currents are subtracted from each other. The di�erence of the
photo currents reads

î− = î1 − î2 ∝ â†SigâLOeiϕ + âSigâ
†
LOe−iϕ . (5.11)

When the operators are again rewritten as in equations (5.2) and (5.3), higher
order �uctuations are omitted, the identity of eiϕ + e−iϕ = 2 cosϕ is used and the
assumption of real amplitudes αSig = α∗Sig and αLO = α∗LO (the complex phase is
completely described by the phase ϕ) is made, the di�erence current reads

î− ∝ 2αLOαSig cos(ϕ) + αLO

(
δâ†Sigeiϕ + δâSige−iϕ

)
+ αSig

(
δâ†Sigeiϕ + δâSige−iϕ

)
,

(5.12)
and with equation (2.9)

î− ∝ 2αLOαSig cos(ϕ) + αLOX̂Sig,ϕ + αSigX̂LO,−ϕ (5.13)

≈ 2αLOαSig cos(ϕ) + αLOX̂Sig,ϕ . (5.14)

The term αSigX̂LO,−ϕ can be neglected for two reasons. On the one hand the
coherent amplitude of the local oscillator is much larger then of the signal �eld
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αLO � αSig but at the same time the quadrature amplitude is not much smaller,

so in total αLOX̂Sig,ϕ � αSigX̂LO,−ϕ. On the other hand (squeezed) vacuum states
have no amplitude at all αSig = 0, which then even leads to a vanishing �rst term.
All in all, the balanced homodyne detection scheme allows to measure the

quadrature operator X̂ϕ of the signal �eld. By changing the relative phase be-
tween signal and local oscillator �eld any quadrature operator of the signal �eld
can be read out.
Experimentally, the phase shift is achieved by mirrors mounted on piezoelectric

elements. For this detection scheme it is very important to maintain a good
spatial-mode, polarization and frequency overlap between the signal and local
oscillator �eld. In a typical squeezing experiment the frequency is determined by
the laser and the polarization is easily controllable. The spacial mode overlap can
be achieved by matching both input �elds from a point behind the beam splitter
onto a reference cavity. Thereby, an overlap of both spatial modes on the beam
splitter is achieved.

5.4 Squeezed-vacuum generation

As mentioned in chapter 2.8 squeezed states of light can be created via higher-
order susceptibilities of media. The �rst realization of squeezed state was achieved
by Slusher et al. using a four-wave-mixing process in sodium atoms in 1985
[Sl85]. The most powerful resource for creating strongly squeezed vacuum states
of light is the parametric down-conversion in crystals with su�ciently high χ(2)

parameters [Co84]. To observe high squeeze factors, this process needs to be
enhanced by a cavity, the optical parametric ampli�er, for both the pump �eld
and the fundamental �eld. Thereby, the e�ective pump power interacting with the
crystal can be increased by a high factor without the need of producing such high
laser powers. By having a cavity additionally for the squeezed �eld the down-
conversion process into other modes then the fundamental mode is suppressed.
This setup is operated below its oscillation threshold. In the crystal, the pump
and fundamental �eld overlap. To achieve the best overlap all modes need to have
a perfect phase relation over the whole crystal. Otherwise a created �eld (at the
fundamental frequency) at one point in the crystal interferes destructively with
another created �eld at other points. The length for which the generated �eld
at the fundamental wavelength interferes still constructively with itself is called
coherence length lc = c

4ω1(n(ω1)−n(ω2))
. A perfect phase relation is reached when the

refractive indices for both the pump and fundamental wavelength are the same,
although typically n(ω1) 6= n(ω2) for ω1 6= ω2. In the case of equal refractive
indices, the di�erence of all wave vectors vanishes

|~kω+ + ~kω− − ~k2ω| = 0 . (5.15)
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Figure 5.3: Di�erent phase matching conditions in nonlinear materials in a second-
harmonic generation process. The blue curve depicts the intensity of the
second harmonic for perfect phase matching temperatures. An continuously
increasing intensity can be observed. The red curve shows the intensity of
the generated �eld in the case of no phase matching. The intensity can only
reach a low value and is afterwards converted back to the fundamental �eld.
The green line shows the case of quasi-phase matching using periodically
poled crystals. The poling is indicated by the vertical black dashed lines
and the di�erent signs of the poling by the arrows. In the case of quasi-
phase matching light is converted to the second harmonic up to a maximum
from where it would be converted back without a periodically poling. But
since the poling changes, the conversion starts to rise again on every change
of the poling. Picture taken from [St13].

This is called phase matching. For squeezed light generation birefringent ma-
terials are utilized [St13]. By having the second harmonic and fundamental �eld
in orthogonal polarizations (Type I phase matching) and using di�erent tempera-

ture dependencies for the two wavelength dn(ω)
dT

phase matching (n(ω) = n(2ω)) is
possible. In �gure 5.3 the intensity of the generated �eld for a second-harmonic
process is shown in dependence of the interaction length with the crystal for dif-
ferent phase matching conditions. Perfect phase matching is depicted as the blue
curve. As a comparison the intensity in case of no phase matching is shown in
red. Disadvantageous is the reliance of materials having equal refractive indices
at temperatures that are su�ciently low to be used for cavities.
Another possibility is using quasi phase matching. This scheme does not rely on

equal refractive indices. The crystal is divided into zones of the length lc along the
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propagation axis of the light �elds. After each zone, the sign of the susceptibility is
�ipped. Here, the wave vectors drift apart during the propagation in one zone, but
sensing the �ipped susceptibility in the next zone, the di�erence in the wave vectors
vanishes again. This leads to a slower increase of the intensity of the generated
�eld as shown in �gure 5.3 as the green dashed line, but is experimentally easier
controllable. The sign of the susceptibility is depicted by the arrows. A heating
of the crystal is still necessary to compensate for a non-perfect length of the zones
in the crystal but this temperature can be chosen much lower.

5.5 Spectra of squeezed states from cavity-enhanced

generation

The spectrum of the squeezed light is reduced in a cavity-enhanced generation
due to the linewidth of the cavity. The spectra of noise power in the squeezed
and anti-squeezed quadratures for a given cavity with full-width-half-maximum
linewidth γ and oscillation threshold Pthres is described by [Fu15]

Ssqz/asqz(P,f) = 1∓ η
4
√
P/Pthres(

1±
√
P/Pthres

)2

+ 4
(

2πf
γ

)2 , (5.16)

where P is the pump power, f the sideband frequency and η the total detection
e�ciency.

5.6 Bichromatic homodyne detection of squeezed states

The local oscillator of the homodyne detection was so far considered to be
monochromatic at the center frequency ω0 of the squeezed �eld. The homodyne
detector measures at a sideband frequency of Ω around the frequency ω0 of the
local oscillator, so in total two sidebands are measured. The monochromatic local
oscillator can be replaced by a �eld consisting of two frequencies ω0 ± ∆. Each
detection with a local oscillator measures an upper and lower sideband at the fre-
quency of Ω around its center frequency. In total, four sidebands are measured at
frequencies ω0−∆±Ω and ω0 +∆±Ω. Having a squeezed �eld centered at ω0 the
sidebands at ω0−∆ + Ω and ω0 + ∆−Ω are entangled as well as the sidebands at
ω0 −∆−Ω and ω0 + ∆ + Ω. In a bichromatic measurement both entangled pairs
are resolved at the sideband frequency Ω in a single-sided spectrum. The resulting
noise spectra of the squeezed and anti-squeezed quadrature can be described by
two detuned spectra from equation (5.16) [Xi18]

Sbi,sqz/asqz(P,f) =
1

2

(
Ssqz/asqz(P,∆− Ω) + Ssqz/asqz(P,∆ + Ω)

)
, (5.17)
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where the same detection e�ciency η and optical power for both local oscillators
is assumed.
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CHAPTER 6

Compact source of squeezed vacuum-states at 1064 nm

In the recent years the footprints of sources of squeezed states of light became
progressively smaller [Va10, Sc18a]. Compact setups allow �exible applications
of squeezed states. The squeezed-light source for the gravitational-wave detector
GEO600 at 1064 nm was built 2010 on a breadboard of 1.5 m2. It was the �rst
source of strongly squeezed states that was transported to its place of operation.
In [Sc18a] a source was built on a footprint of 0.64 m2 working at the telecom-
munication wavelength of 1550 nm. Here, I present a squeezed-light source that
I designed and assembled on a breadboard with a footprint of 1 × 0.8 m2 work-
ing at the wavelength of 1064 nm. This size was achieved by carefully arranging
standard-sized optical components in a computer-aided-design before placing them
on a breadboard. I achieved a noise reduction of more then 10 dB below the vac-
uum noise. The source is dedicated to reduce the quantum noise in downstream
experiments. Lukas Terkowski was involved in the assembly as a master student
and demonstrated a �rst application in an opto-mechanical experiment [Te17].

6.1 Experimental setup

The schematic drawing of the source is shown in �gure 6.1, divided in the parts
Light preparation, Second-harmonic generation, Squeezed-light generation, Bal-
anced homodyne detection and Extension for coherent control lock. The following
subsections will explain these parts in more detail.
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Figure 6.1: Schematic drawing of the setup for a compact source of squeezed vacuum-
states of light. The setup is divided into the parts Light preparation (blue
box), Second-harmonic generation (yellow box), Squeezed-light generation
(grey box), Balanced homodyne detection (red box) and Extension for co-
herent control lock (green box). This overview excludes electronics and
all beams that are not important for the understanding of the setup. A
detailed description of these parts is given in the respective sections.

6.1.1 Laser light preparation

The coherent-light source used in this experiment was a diode-pumped Nd:YAG
laser Mephisto by Innolight with a total output power of 2W at the wavelength
of 1064 nm. A Faraday isolator was used to prevent back-re�ected light from the
experiment hitting the laser and disturbing its mode of operation. A quarter-wave
plate and half-wave plate were used to achieve optimal transmission through the
isolator. Although the spatial mode of the laser was already very good, the light
was sent through a �lter cavity. This ensured higher order spatial modes, remain-
ing contaminations in the orthogonal polarization and high-frequency amplitude
noise on the light to be �ltered out. To stabilize the cavity, the Pound-Drever-Hall
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locking technique was used. Therefore, a phase modulation at the frequency of
66.4MHz was imprinted on the light by using an electro-optic modulator. The
light re�ected o� the ring cavity was sent to a resonant photodetector, the result-
ing photocurrent was converted to a voltage and electronically demodulated with
the modulation frequency. A low-pass cuts the components at twice the modu-
lation frequency o� and hence an error signal was generated. This was sent to
a proportional-integral-derivative controller and the resulting feedback signal was
ampli�ed to a voltage range of 0-400V. The signal was sent to an piezoelectric
actuator being able to shift the round-trip length of the cavity in the order of the
wavelength of the light. This kept the resonator on resonance. Afterwards, the
light was split up by a beam splitter. One part served as the local oscillator for
the balanced homodyne detection, the other as the pump for the second-harmonic
generation. The setup of the light preparation is depicted in �gure 6.2.

Mode cleaner

EOM

Faraday
isolator

Laser

Light preparation

l/2

l/4

66.4 MHz

LO

to SHG

EOM: 
LO: 
l/2: 
l/4: 
SHG: 

Electro-optic modulator
Local oscillator
Half-wave plate
Quarter-wave plate
Second-harmonic generation

Figure 6.2: Schematic drawing of the setup of the laser light preparation stage. The
light at the wavelength of 1064 nm was sent through a Faraday isolator.
A phase modulation at the frequency of 66.4MHz was imprinted by an
electro-optic modulator. These sidebands were used to stabilize the mode-
cleaner cavity on resonance by the Pound-Drever-Hall locking technique.
Afterwards, one part of the light part served as the local oscillator for
the balanced homodyne detection, the other as the pump for the second-
harmonic generation.

6.1.2 Second-harmonic generation

A detailed illustration of the second-harmonic generation cavity is given in �g-
ure 6.3. The cavity consisted of a lithium niobate crystal with a magnesium-oxide-
doping concentration of 7% and with the dimensions 2 mm × 2.5 mm × 6.5 mm.
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One side was curved with a radius of curvature of 12mm. This side was highly
re�ective for both wavelengths (R1064 > 99.96 % and R532 > 99.9 %) and acted
as the closed end of the cavity. The crystal was mounted on two separated cop-
per blocks. They can be heated to individual temperatures by Peltier elements
being placed below the copper. Here, the larger part of the cavity was heated
to a temperature to achieve a good phase-matching between the two beams at
1064 nm and 532 nm. The smaller part consisted of the closed end of the cavity.
The temperature of this part was used to �ne tune the propagation lengths of both
�elds due to di�erent penetration depth in the coatings of the crystal. The other
side of the crystal was plane and coated anti-re�ectively for both wavelengths.
The cavity was formed with a coupling mirror having an air gap of 22mm to the
crystal. This mirror had power re�ectivities of R1064 = 89 % and R532 = 19 % and
a radius of curvature of 25mm on the side facing the cavity. Additionally, the
side of the mirror facing the outside had a radius of curvature of 20mm to reduce
the beam divergence and avoid parasitic cavities between optical surfaces. On
the outside, a piezoelectric element was placed to tune the length of the cavity in
the order of the involved wavelengths. For each temperature stage two negative-
temperature-coe�cient resistors (NTC833 ) were placed inside the copper blocks.
One of them was used to lock the temperature to a de�ned value using a feedback
loop with the Peltier elements as actuators. The other was used to monitor the
temperature. For a good conversion e�ciency both temperatures were set to be
around 20 kΩ or 60 ◦C respectively.
Following the light preparation stage, the light was sent through another electro-

optic modulator where a phase modulation with the frequency of 77.8MHz was
imprinted on the light. Afterwards, the laser beam was focused into the second-
harmonic generation cavity, where a bright light �eld at 532 nm was generated.
The residual light at 1064 nm and 532 nm leaking out of the cavity through the
highly-re�ective side was separated with a dichroic beam splitter. The light at
1064 nm was sent onto a resonant photo detector and demodulated with an elec-
tronic local oscillator. The resulting error signal was fed back via a proportional-
integral-derivative controller and an ampli�er for high voltage onto a piezoelectric
element to keep the cavity length on resonance. The leaking light at 532 nm was
detected by a photo detector to �nd the optimal conversion temperatures of the
crystal. The main part of the converted light is leaving the cavity through the cou-
pling mirror. It is separated from the light at 1064 nm by a dichroic beam-splitter.
A part of the phase modulation at 78.7MHz on the pump �eld is also up-converted
to 532 nm and can be used further for the lock of the parametric down-conversion
cavity. The setup for the second-harmonic generation is depicted in �gure 6.4.
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Figure 6.3: Detailed schematic drawing of the second-harmonic generation cavity. The
cavity consisted of a lithium niobate crystal with a magnesium-oxide-doping
concentration of 7% and with the dimensions 2 mm×2.5 mm×6.5 mm. One
side of the crystal was curved with a radius of curvature of 12mm. This
side was highly re�ective for both the fundamental and second-harmonic
wavelength (R1064 > 99.96 % and R532 > 99.9 %) and acted as the closed
end of the cavity. The other side of the crystal was plane and coated anti-
re�ectively for both wavelengths. The cavity is formed with the coupling
mirror that is placed with an air gap of 22mm in front of the plane side of
the crystal. It had power re�ectivities of R1064 = 89 % and R532 = 19 % and
a radius of curvature of 25mm on the side facing the cavity. Additionally,
the side of the mirror facing the outside had a radius of curvature of 20mm
to reduce the beam divergence and avoid parasitic cavities. On the outside
of the mirror a piezoelectric element was placed to change the length of the
cavity in the order of the involved wavelengths. The crystal was placed on
two copper blocks that can be heated individually by two Peltier elements.
The temperature of the main part of the crystal was used to achieve a good
phase-matching between both beams at 1064 nm and 532 nm. The other
part consisted of the back side of the crystal and its temperature was used
to achieve a �ne tuning for the propagation lengths of both beams due to
di�erent penetration depth in the coatings of the crystal. For each block
two negative-temperature-coe�cient elements (NTC833 ) were used. One
element was used to lock the temperature of the crystal to a desired value
and the other was used to monitor this temperature.

6.1.3 Parametric down-conversion

The design of the cavity for the parametric down-conversion process was exactly
the same as the one of the second-harmonic generation. The only di�erence was
the crystal material being periodically-poled potassium titanyl phosphate (PP-
KTP). The crystal had dimensions of 1 mm × 2 mm × 5 mm and a radius of cur-
vature of r = 10 mm on the closed end. This side was coated highly-re�ective for
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Figure 6.4: Schematic drawing of the setup of the second-harmonic generation stage.
In an electro-optic modulator, a phase modulation at the frequency of
78.7MHz was imprinted to the light at 1064 nm. Afterwards, the light was
sent into a cavity consisting of a lithium niobate crystal. Here, a bright �eld
a 532 nm was generated. This �eld was separated from the fundamental
�eld by a dichroic beam-splitter. The cavity was locked on resonance by
the Pound-Drever-Hall locking technique using a resonant photo detector in
transmission of the cavity. The error signal was fed back to a piezoelectric
electric element on the coupling mirror to change the length of the cavity.
A photo detector for light at 532 nm was used to monitor the generated
light power and �ne tune the temperature settings for phase matching.

both wavelengths. The plane side is anti-re�ectively coated for both wavelengths.
The coupling mirror had power re�ectivities of R1064 = 89 % and R532 = 97.5 %
and was placed in front of the plane side of the crystal with an air gap of 22.5mm.
The cavity design is depicted in �gure 6.5.
The beam at 532 nm was sent through a Faraday isolator to avoid back-

re�ections into the second-harmonic generation cavity. Afterwards, it was re�ected
o� a phase-shifter mirror. This design was implemented to allow a later extension
of the experiment by installing a lock of the pump phase, see also chapter 6.1.5.
Then, it was sent into the down-conversion cavity. The re�ected light o� that
cavity was detected on a resonant photo detector in the output of the Faraday
isolator. The photo current was transformed into a voltage, demodulated with an
electronic local oscillator at 78.7MHz and low-pass �ltered. The resulting error
signal was sent to a proportional-integral-derivative controller, ampli�ed to high
voltage and sent back onto the piezoelectric element inside the cavity to keep it
on resonance. Here, the up-converted phase modulation at 78.7MHz on the pump
beam was used. The squeezed light was leaving the cavity through the coupling
mirror and was separated from the pump beam by a dichroic beam-splitter. Insert-
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ing a control beam at 1064 nm from the closed end into the cavity helped to �nd
the best phase-matching temperature and to perform beam alignment and mode
matchings along the squeezed-light path. This was necessary since the squeezed
vacuum has no coherent excitation. Via a �ip mirror a single sideband �eld with
an o�set of +80MHz with respect to the laser light frequency can be injected into
the cavity. This was part of the coherent control extension described in chapter
6.1.5. Simultaneous resonance for both wavelengths was monitored by overlapping
the resonance peaks of the pump beam at 532 nm (on the photo detector used for
locking the cavity) and the control beam at 1064 nm (on one of the photo diodes
of the homodyne detector) by tuning the temperatures of the crystal. The setup
of the parametric down-conversion stage is depicted in �gure 6.6.

6.1.4 Balanced homodyne detection

The local oscillator and the squeezed light were superimposed on a 50/50 beam
splitter. In the path of the local oscillator, a piezoelectric phase-shifter mirror was
placed to adjust the relative phase between the two �elds. The outgoing �elds of
the beam splitter were focused on photo diodes. They were placed on a printed
circuit board such that the resulting photo currents were subtracted directly. The
resulting current was converted to a voltage, high-pass �ltered and recorded with a
spectrum analyzer. To achieve a good mode matching between the local oscillator
and the squeezed light, a �ip mirror was installed in one of the arms behind the
beam splitter. It guided the �elds to a ring cavity. Both �elds were mode matched
onto this diagnostic mode cleaner and were thereby well overlapped on the beam
splitter.

6.1.5 Possible extension to coherent control lock

The setup includes the possible extension to a coherent control lock of the phase
of the squeezed light to the local oscillator as described in [Va08]. This enables
a phase lock without the need of a coherent �eld at the laser frequency. Such
a design is essential to achieve phase-locking of squeezed states at low sideband
frequencies. Without adding this technique technical noise due a bright control
�eld at the laser frequency disturbs the measurements. For the lock, a single-
sideband generation is already included in the setup. A tap-o� before the �rst
mode cleaner of the laser light at frequency ω0 is sent through an acousto-optic
modulator that is driven with an electronic sinusoidal signal at 80MHz. This
creates a bright �eld at ω0 + 80 MHz leaving the modulator under an angle with
respect to the fundamental light. The single sideband passes pin holes to block the
fundamental �eld and is �nally �ltered by a ring mode cleaner cavity as described
in chapter 6.1.1. It is locked in the same way by using the Pound-Drever-Hall
technique utilizing the phase modulation of 66.4MHz. The sideband is fed into
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Figure 6.5: Detailed schematic drawing of the parametric down-conversion cavity. The
cavity consisted of a periodically-poled potassium titanyl phosphate crys-
tal with the dimensions of 1 mm × 2 mm × 5 mm. One side of the crys-
tal was curved with a radius of curvature of 10mm. This side was
highly re�ective for both the fundamental and second-harmonic wavelength
(R1064 > 99.95 % and R532 > 99.9 %) and acted as the closed end of the
cavity. The other side of the crystal was plane and coated anti-re�ectively
for both wavelengths. The cavity was formed with the coupling mirror
placed in front of the plane side of the crystal with an air gap of 22.5mm.
It had power re�ectivities of R1064 = 89 % and R532 = 97.5 % and a radius
of curvature of 25mm on the side facing the cavity. Additionally, the side
of the mirror facing the outside had a radius of curvature of 20mm to re-
duce the beam divergence and avoid parasitic cavities. On the outside of
the mirror a piezoelectric element was placed to change the length of the
cavity in the order of the involved wavelength. The crystal was placed on
two copper blocks that can be heated individually by two Peltier elements.
The temperature of the main part of the crystal was used to achieve a good
phase matching between both beams at 1064 nm and 532 nm. The other
part consisted of the back side of the crystal and its temperatures was used
to achieve a �ne tuning for the propagation length of both beams due to
di�erent penetration depth in the coatings of the crystal. For each block
two-negative-temperature coe�cient elements were used. One element was
used to lock the temperature of the crystal to a desired temperature and
the other was used to monitor this temperature.

the parametric down-conversion cavity through the back side via a �ip mirror.
The down-conversion process generates a sideband at ω0 − 80 MHz that can be
used to lock the phase of the pump �eld to the sideband and afterwards the phase
of the local oscillator to the squeezed �eld. Details can be found in [Va08]. The
lock is only a possible extension to the setup and was not completed.
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Figure 6.6: Schematic drawing of the setup of the parametric down-conversion stage.
The pump beam at 532 nm was sent through a Faraday rotator to avoid
back-re�ections to the second-harmonic generation cavity. A phase-shifter
mirror can be used to control the phase of the pump beam. Then, the light
was sent into the parametric down-conversion cavity. The re�ected light
was sent to a photodetector in re�ection of the Faraday isolator and the up-
converted phase modulation from the second-harmonic stage at a frequency
of 78.7MHz was used with the Pound-Drever-Hall locking technique to
keep the cavity on resonance. The generated squeezed light was separated
from the pump beam via a dichroic beam-splitter. From the closed end
of the cavity, a control beam can be sent into the cavity to �nd the best
phase matching temperature and for beam alignment along the path of the
squeezed �eld. Via a �ip mirror, a single sideband with a frequency shift
of +80MHz with respect to the fundamental beam can be injected to use
a coherent control lock.

6.2 Experimental results

For the generation of the light �eld at 532 nm, a total pump power of 350mW at
1064 nm was sent into the second-harmonic generation cavity. The temperature
of the long part of the crystal was set to 20.6 kΩ and of the shorter part to
20.2 kΩ, respectively 59.8 ◦C and 60.3 ◦C. With these settings, an output power
of ∼ 100 mW at 532 nm was generated. The conversion e�ciency of this process
is Pin

Pout
≈ 28 %. The reason for the low conversion e�ciency was not further

investigated since the generated optical power was high enough for the parametric
down-conversion. Additionally, the output mode showed a contribution of another
mode. The origin of this mode could not be determined, but had no in�uence on
further measurements since it was suppressed by the down-conversion cavity. The
mode matching of the pump �eld to the down-conversion cavity was 76% and
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Figure 6.7: Schematic drawing of the balanced homodyne-detection stage. The local
oscillator and the squeezed light �eld were superimposed on a balanced
beam splitter. Both outcomes were detected with photo diodes. The re-
sulting photo currents were subtracted directly on the printed circuit board
and transformed into a voltage, high-pass �ltered and recorded with a spec-
trum analyzer. In one of the arms behind the beam splitter, a �ip mirror
was placed to send the beams to a diagnose mode cleaner. Both the local
oscillator and the squeezed �eld were mode matched onto this cavity to
achieve a good overlap of the modes on the beam splitter.

mainly limited by the contribution of the other mode. For all measurements with
this setup, the power of the pump �eld was measured with a power meter directly
in front of the down-conversion cavity and this value was corrected by a factor
of 0.76 to determine the power entering the cavity in the fundamental mode. All
stated pump powers are the corrected values.
A homodyne detector with a linear response function is essential for the mea-

surement of strongly squeezed states. The shot noise power scales linearly com-
pared to the local oscillator power. Here, the local oscillator power was set to
di�erent values between 1mW and 25mW and the shot-noise power at the side-
band frequency of 5MHz scaled linearly with to the local oscillator power.
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Figure 6.8: Noise power of squeezed states normalized to vacuum noise at the side-
band frequency of 5MHz. The measurements were taken with a resolution
bandwidth of 300 kHz and a video bandwidth of 300Hz. The vacuum noise
power (black trace) was measured with a blocked signal path and averaged
5 times. With an open signal path, the noise power of the squeezed (red
trace) and the anti-squeezed (blue) quadrature were measured The phase
between the signal �eld and the local oscillator was adjusted manually.
The vacuum noise power was subtracted of the noise power of the squeezed
states. A noise reduction of 10.7 dB± 0.2 dB below the vacuum noise was
achieved. The related anti-squeezed quadrature showed an increase in noise
power of 15.0 dB± 0.2 dB above the vacuum noise. This equals a total loss
of 5.7 %± 0.5 %. A measurement of the noise power of the squeezed states
with a slowly scanned readout phase (green trace) is shown for comparison.
The electronic dark noise power of the detector was measured to be 20.2 dB
below the vacuum noise.

6.2.1 Zero-span measurements of noise power of squeezed states at
5MHz

A �rst characterization of the squeezed states produced by this setup was per-
formed with zero-span measurements of the noise power at the sideband frequency
of 5MHz. This frequency is far above frequencies for which squeezed states are
limited by technical noise but still within the bandwidth of the down-conversion
cavity. A pump power of 30mW and a local oscillator power of 22mW were
used. The phase-matching temperatures for the crystal were set to 60.9 kΩ for
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the longer part and 64.5 kΩ for the shorter part, respectively 32.2 ◦C and 30.8 ◦C.
The resulting measurements of the noise power of squeezed states are shown in
�gure 6.8, where the resolution bandwidth of the spectrum analyzer was 300 kHz
and the video bandwidth was 300Hz. The vacuum noise power (black trace) was
measured with a blocked signal path and averaged 5 times. With an open signal
port the noise power of the squeezed states was measured and the phase between
the local oscillator and the signal �eld was controlled with a piezoelectric element
in the local oscillator path. The vacuum noise power was subtracted of the noise
power of the squeezed states. A measurement of the noise power of the squeezed
states with a slowly scanned readout phase (green trace) covers all possible readout
angles. The noise power of the squeezed (red trace) and anti-squeezed (blue trace)
quadratures were measured by controlling the readout phase manually. Thereby,
a noise reduction of 10.7 dB± 0.2 dB below the vacuum noise was achieved. The
related anti-squeezed quadrature showed an increase in noise of 15.0 dB± 0.2 dB
above the vacuum noise. This equals to a total loss of 5.7 %± 0.5 % according to
equation (2.33). After these measurements the vacuum noise power was checked
again to ensure same noise levels. The electronic dark noise power of the detector
(orange trace) was 20.3 dB below the vacuum noise power. By correcting the noise
powers for the dark noise, a reduction of 11.2 dB± 0.2 dB below the vacuum noise
results. Principally, a loss of 5.7 % allows a reduction of quantum noise of 12.4 dB
below vacuum noise. Here, the initial squeeze factor was limited by the phase
matching temperatures.

6.2.2 Spectrum measurements of noise power of squeezed states

The spectrum of the noise power of squeezed states was measured in a lower
frequency band between 20 kHz and 1MHz and a higher frequency band between
2MHz and 65MHz. For the lower frequency band, a resolution bandwidth of
6.25 kHz and a video bandwidth of 30Hz were used. In the higher band, a re-
solution bandwidth of 30 kHz and a video bandwidth of 300Hz were used. A
pump power of 30mW and a local oscillator power of 22mW were used. Here,
no lock for the readout quadrature was available. Since a spectrum measurement
takes some seconds in which the phase drifts, the measurements were taken in
the MINHOLD (respectively MAXHOLD) mode of the analyzer for the squeezed
(respectively the anti-squeezed) quadrature. In this mode, the analyzer saves the
minimal (or maximal) value for each frequency during the measurement time. The
measurement was performed for several sweeps over the frequency band with a
slowly changed phase so that the optimal readout quadrature was measured for all
frequencies with a high probability. The vacuum noise power was acquired with a
blocked signal port in both analyzer modes. A normalization of the noise power
of the squeezed quadrature was made to the vacuum noise power measured with
the MINHOLD mode, for the anti-squeezed quadrature the normalization was
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made to the vacuum noise power measured in the MAXHOLD mode. From these
measurements, a quantitative analysis of the noise power in the squeezed and anti-
squeezed quadratures is not possible with absolute certainty since the measured
results are distorted. Special care needs to be taken to have a low noise on each
measured trace. Nevertheless, a qualitative discussion of the presence of squeezed
light for di�erent sideband frequencies and the estimation of the linewidth of the
down-conversion cavity can be made. The squeezed states were generated with a
pump power of 27mW.
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Figure 6.9: Spectra of the noise power of squeezed states normalized to vacuum noise
in a frequency band between 20 kHz and 1MHz. The measurements were
taken with a resolution bandwidth of 6.25 kHz and a video bandwidth of
30Hz. A pump power of 30mW and a local oscillator power of 22mW
were used. Since no lock for the readout phase was available, the squeezed
quadrature (red trace) was measured with the MINHOLD mode of the an-
alyzer, the anti-squeezed quadrature (blue trace) in the MAXHOLD mode.
Each measurement was taken for several sweeps of the analyzer over the
frequency band with a slowly scanned phase. They were each normalized to
the vacuum level (black trace) measured in the same mode. A measurement
in these modes requires special care to not strongly distort the results and
is referred to in the main text. A noise reduction below the vacuum noise is
possible down to a frequency of 70 kHz. Below that frequency the squeezed
properties were most likely masked by technical noise on the local oscillator
that was not fully suppressed. The noise in the anti-squeezed quadrature
was above the vacuum noise in the whole detection band. In this frequency
range, the detection was not limited by the detector's electronic dark noise
(orange trace). For all measurements, I performed a veri�cation with the
noise power measured in the CLR/WRITE mode, the mode used typically
for measurements of noise power of squeezed states.

Slight adjustments of the phase-matching temperatures compared to the zero-
span measurement at 5MHz were made to compensate for less heating by pump
power absorption in the crystal. For all measurements, I performed a veri�cation
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with the noise power measured in the CLR/WRITE mode, the mode used typically
for measurements of noise power of squeezed states.
For the lower frequency band, the measurements of the noise power are shown

in �gure 6.9. A reduction of the noise power below the vacuum noise (red trace)
was observed down to a frequency of 70 kHz. Below that frequency, the squeezed
properties were most likely masked by technical noise on the local oscillator that
was not fully suppressed. This might have resulted from a non-perfect splitting
ratio at the homodyne detector. The noise in the anti-squeezed quadrature was
above the vacuum noise in the whole detection band. The measurements were
not limited by the detector's electronic dark noise (orange trace) in the given
frequency range.
For the higher frequency band, the measurements of the noise power are shown

in �gure 6.10. A reduction of the noise in the squeezed quadrature below the
vacuum noise (red trace) over the whole frequency band was achieved. The cor-
responding the anti-squeezed quadrature (blue trace) had a noise power above
the vacuum noise for all given frequencies. A large dark-noise clearance of up to
20 dB (compared to the vacuum noise) for lower frequencies and 16 dB at the side-
band frequency of 60MHz was achieved. For higher frequencies both the squeezed
and the anti-squeezed quadrature showed the in�uence of the �nite bandwidth
of the down-conversion cavity. For both quadratures, equation (5.16) with the
respective sign was �tted to the measured data, where the pump threshold Pth,
the cavity linewidth γlw and the total loss Ltot were the �tting parameters (blue
dashed trace for the squeezed, red dashed trace for the anti-squeezed quadrature).
The �t resulted in values for the pump threshold of the down-conversion cavity of
Pth = 53 mW and a linewidth of γlw = 2π · 98 MHz for the wavelength of 1064 nm.

6.2.3 Pump power dependence of the noise power of squeezed states

At the sideband frequency of 5MHz, the noise power of the squeezed and anti-
squeezed quadratures were recorded in individual measurements with di�erent
pump powers in a range from 3.5mW to 32mW. Each measurement of noise power
was normalized to the vacuum noise (solid black trace) and the results are shown in
�gure 6.11 (red crosses for noise power in squeezed, blue crosses for noise power in
anti-squeezed quadratures). For each measurement the vacuum noise was recorded
separately and checked again after the measurement to ensure same power levels.
Additionally, the temperatures of the crystal were tuned individually for every
pump power due to di�erent heating by absorption of pump light. The phase of
the local oscillator was manually controlled. For both quadratures, equation (5.16)
with the respective sign was �tted to the measured data (red solid trace for noise
power in squeezed, blue solid trace for anti-squeezed quadrature). The pump
threshold Pth, the cavity linewidth γlw and the total loss Ltot were the �tting
parameters. The �t resulted in a pump threshold of Pth = 52 mW, a linewidth
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of γlw = 2π · 102 MHz for the wavelength of 1064 nm and a total loss of Ltot =
8.7 %. The linewidth and the pump threshold are in good accordance with the
results from chapter 6.2.2. The detection e�ciency was smaller than in the other
measurements. Since the pump-power dependence was measured on a di�erent
day, there might have been a worse overlap of the squeezed light's mode and the
local oscillator's mode on the beam splitter. For the pump powers between 7mW
and 17.5mW, both measurements of noise power in the squeezed and anti-squeezed
quadratures have less gain of the down-conversion process and lie above (squeezed
quadrature) or below (anti-squeezed quadrature) the �tted trace. This can be
explained by non-perfect temperature settings of the crystal.

6.3 Conclusion

Here, I present a source of squeezed states of light that was built on a breadboard
with a footprint of 80 cm × 100 cm including a homodyne detection. The source
provides squeezed states of up to 10.7 dB± 0.2 dB noise reduction below the vac-
uum noise at the sideband frequency of 5MHz with a corresponding anti-squeezed
quadrature with increased noise of 15 dB±0.2 dB above vacuum noise. This equals
to a total loss of 5.7 %± 0.5 %. Down to a sideband frequency of 70 kHz squeezed
properties were observed. For higher frequencies the in�uence of the linewidth of
the down-conversion cavity was shown, which was measured to be ∼ 2π ·100 MHz.
The pump threshold was measured to be 53mW.
The low conversion e�ciency and the origin of the second mode on the light

�eld at 532 nm were not investigated here. The source can be further improved
by integrating a coherent control lock of the phase of the squeezed light to the
local oscillator. Preliminary steps for this lock were presented. With this inte-
gration, longer measurement times of a de�ned quadrature are possible. A loss
of 5.7 % allows a reduction of quantum noise of 12.4 dB below vacuum noise by
�nding better phase matching temperatures and increasing the squeeze factor.
An investigation of limiting factors such as technical noise on the local oscillator
allows the measurement of squeezed properties at lower frequencies than 70 kHz.
By reducing the size of optical components, especially of the modecleaner cavities
and mirror holders, the size of the source can be decreased further.
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Figure 6.10: Spectra of the noise power of squeezed states normalized to vacuum noise
in a frequency band between 2MHz and 65MHz. The measurements
were taken with a resolution bandwidth of 30 kHz and a video band-
width of 300Hz. A pump power of 30mW and a local oscillator power of
22mW were used. The measurements were performed in the same detec-
tion modes (MINHOLD/MAXHOLD) as in the spectrum measurement
at low frequencies. A measurement in these modes requires special care
to not strongly distort the results and is referred to in the main text.
The squeezed quadrature (red trace) showed a noise reduction below the
vacuum noise (black trace) over the whole frequency range. The anti-
squeezed quadrature (blue trace) had an increased noise above the vac-
uum noise for all frequencies in this detection band. For both quadratures,
equation (5.16) with the respective sign was �tted to the measured data,
where the pump threshold Pth, the cavity linewidth γlw and the total loss
Ltot were the �tting parameters (blue dashed trace for the squeezed, red
dashed trace for the anti-squeezed quadrature). The �t resulted in values
for the pump threshold of the down-conversion cavity of Pth = 53 mW
and a linewidth of γlw = 2π · 98 MHz for the wavelength of 1064 nm.
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Figure 6.11: Noise power of squeezed states normalized to vacuum noise at the side-
band frequency of 5MHz for di�erent pump powers. The measurements
were performed in individual measurements for pump powers between
3.5mW and 32mW and normalized to the vacuum noise (black solid
trace). For each measurement the temperature of the crystal was ad-
justed due to di�erent heating by absorption of the pump power. The
phase of the local oscillator was manually set to measure noise power in
the squeezed (red crosses) or anti-squeezed (blue crosses) quadrature. Af-
terwards, a �t of equation (5.16) to the noise power in both quadratures
was performed with the respective sign (red solid trace for noise power
in squeezed, blue solid trace for anti-squeezed quadrature). The �t re-
sulted in values of Pth = 52 mW for the pump threshold, a linewidth of
γlw = 2π · 102 MHz.
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CHAPTER 7

Interferometer enhancement at low frequencies by

high-frequency squeezed states

Balanced homodyne-detection measurements at frequencies in the audio band and
their enhancement through squeezed light are technically challenging due to sev-
eral noise sources [St12]. Parasitic interferences from back-scattered stray light of
the local oscillator [Sc18a,Va07], electronic noise, beam jitter, and coupling from
noise on the local oscillator [Mc07] lead to measurements that are not quantum-
noise limited. Additionally, the generation of squeezed states at low frequencies
is challenging by itself [Va08]. Nevertheless, balanced homodyne detection is an
important tool in quantum-optics measurements allowing to measure a signal in
an arbitrary quadrature [BR04,Fr14]. The noise sources can be mitigated by using
super-polished optical components, experiments in clean-room environments, spe-
cial selection of electronics components, stable optics mountings and a very good
beam splitting for the homodyne detection. However, these techniques are cost-
intensive and require a speci�c know-how and are therefore not always feasible.
In [Li17] the enhanced detection of a signal at low frequencies by using broadband
squeezed states and a bichromatic local oscillator is reported. There, the squeezed
�eld is produced detuned to the signal frequency and the measurement on the sig-
nal is conditionally improved on a measurement on the entangled sidebands. Here,
we present the experimental realization of a squeezed-light-enhanced interferom-
eter with a single monochromatic heterodyne readout of the signal. By shifting
the local oscillator frequency, limitations at low frequencies can be avoided. The
squeezed states in this scheme are at high sideband frequencies and are used to im-
prove a measurement of a signal at low frequencies. We can show a signal-to-noise
improvement of 3.4 dB. This scheme has the potential to improve experiments
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high-frequency squeezed states

where a homodyne detection at low frequencies or the generation of squeezed
states at these frequencies is not possible.

7.1 Description of the detection scheme

We have a linear cavity of L = 2.5 m length with a free spectral range of ∆
2π

=
c/(2L) = 58.73 MHz. The transfer function of the cavity is shown in �gure 7.1.
The carrier �eld at the frequency ω0 is resonant for the cavity. This implies, that
light at the frequency ω0 +∆ is resonant as well. We produce squeezed states with
a center frequency exactly in the middle of two resonance peaks, ωSQZ = ω0 +∆/2.
The squeezed states are re�ected o� the interferometer cavity, where the quantum-
correlated lower and upper sidebands at ω0 and ω0 + ∆ acquire the same phase
shift. In fact, the phase shift is equal for all entangled sidebands of the squeezed
states, making the squeeze angle frequency-independent. We consider a signal to
have a frequency of |δ|. Together the carrier �eld, a signal at ω0 ± δ and the
squeezed �eld are sent onto a balanced detector. They are overlapped with a
light �eld at the frequency ω0 + ∆ serving as the local oscillator for a heterodyne
measurement of the signal frequency. Due to the quantum correlations of the
squeezed states the noise at the signal frequencies ω0 ± δ can be conditionally
squeezed by the upper sideband's noise at ω0 + ∆∓ δ. Compared to a homodyne
measurement of a signal, a heterodyne detection su�ers a 3 dB-reduction in signal-
to-noise ratio [Bu03]. With the notation used in this description, the additional
noise can be understood as follows: In a heterodyne readout, resolving the full
signal at the two sidebands ω0 ± δ involves a detection of four quantum-noise
sidebands at ω0 ± δ and ω0 + ∆ ∓ δ. In a homodyne readout of the same signal
and with a local oscillator at ω0, only two quantum noise sidebands at ω0 ± δ are
involved.

7.2 Experimental setup

In this section the experimental setup for interferometer enhancement at low fre-
quencies by high-frequency squeezed states is described. A schematic drawing of
the setup is depicted in �gure 7.2. In the following the highlighted subsections
Squeezed-light generation (blue box), Interferometer cavity (grey box), Sideband
generation (green box), Orthogonal polarization lock (yellow box) and Balanced
heterodyne detection (red box) are addressed in more detail. Due to an already
existing setup of a squeezed light source, the laser frequency de�ned the center
frequency of the squeezed light. In the experiment the carrier �eld for the cav-
ity was generated as described in chapter 5.2. I denote the carrier frequency by
ωCarrier = ω0 and the laser frequency ωLaser = ω0 + ∆/2.
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Figure 7.1: Transfer function of the interferometer cavity and involved sidebands for
interferometer enhancement at low frequencies by high-frequency squeezed
states. Shown are two adjacent resonance peaks of a cavity of length L
being separated by one free spectral range ∆

2π = c/(2 · L). The cavity is
operated at the carrier frequency ω0. The center frequency of the squeezed
�eld is at half the free spectral range at ωSQZ = ω0 + ∆/2. Upon re�ection
o� the cavity all sidebands that are entangled acquire the same phase shift,
making the squeeze angle frequency-independent. We consider a signal to
have a frequency of |δ|. The local oscillator for the balanced heterodyne
detection of the signal is at the center wavelength ω0 +∆/2 of the squeezed
light.

7.2.1 Squeezed-light generation

The squeezed-light generation used here was already set up for previous work and
is described in detail in [St13], [Ba13] and [As17].
A part of the laser light was sent to the second-harmonic generation cavity which

consists of a magnesium-oxide-doped lithium niobate crystal. It is locked by the
Pound-Drever-Hall locking scheme using a phase-modulation of 124.1MHz. This
setup is able to produce more than 200mW of light at 532 nm, which is su�cient
for the parametric down-conversion process. This �eld is further �ltered by a
mode cleaner ring cavity that is locked by an up-converted phase modulation of
124.1MHz. Afterwards it is sent to the down-conversion cavity via a dichroic beam
splitter. This cavity is monolithic and consisting of a periodically poled potassium
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Figure 7.2: Schematic drawing of the setup for interferometer enhancement at low
frequencies by high-frequency squeezed states. The setup is divided into
the parts Squeezed-light generation (blue box), Interferometer cavity (grey
box), Sideband generation (green box), Orthogonal polarization lock (yellow
box) and Balanced heterodyne detection (red box). This overview excludes
electronics and beams that are not important for the understanding of the
detection scheme. A detailed description of the highlighted parts is given
in the respective sections.

titanyl phosphate(PPKTP) crystal. A control �eld of the laser at the wavelength
1064 nm is sent to the back side of the cavity. The laser frequency is locked to
this cavity by the Pound-Drever-Hall locking technique using a phase-modulation
of 47.8MHz on the control �eld. The phase of the pump �eld can be locked by
demodulating the control �eld by an additional phase o�set of 90 ◦ compared to
the laser lock. The monolithic cavity has a full-width-half-maximum linewidth
of γ

2π
= 156 MHz. The squeezed light �eld generated in the cavity co-propagates

with the control �eld towards the interferometer cavity. A tap-o� of the laser light
is �ltered by a ring mode cleaner and serves as the local oscillator for the balanced
heterodyne detection of the signal. The squeezed-light generation setup is shown
in �gure 7.3 including simpli�ed electronic locking loops.

7.2.2 Interferometer cavity

In this experiment, a linear cavity of 2.5m length served as an interferometer. The
back mirror was highly re�ective, whereas the coupling mirror had a re�ectivity
of 97%. The cavity had a free spectral range of ∆

2π
= 58.73 MHz. The length

of the cavity was a trade-o� of having the free spectral range small enough with
respect to the bandwidth of the squeezed light and �tting the cavity onto an
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Figure 7.3: Schematic drawing of the squeezed-light generation. The laser frequency at
1064 nm is locked to the monolithic down-conversion cavity with the Pound-
Drever-Hall locking technique. A part of the laser is sent to the second-
harmonic generation cavity, producing ∼ 200 mW of light at 532 nm. This
green �eld is �ltered in a mode cleaner cavity and serves as the pump for
the down-conversion process in a monolithic cavity consisting of a periodi-
cally poled potassium titanyl phosphate(PPKTP) crystal. The broadband
squeezed �eld co-propagates with the transmitted control �eld towards the
interferometer cavity. A tap-o� of the laser light is �ltered by a ring mode
cleaner cavity to serve as a local oscillator in the balanced heterodyne de-
tection. The drawing includes simpli�ed electronic locking loops.

optical table. However, we needed to use a highly re�ective mirror inside the
cavity that allows for a 90 ◦ corner to achieve the desired length. Due to di�erent
penetration depth in the coating of this mirror for horizontally and vertically
polarized light, the cavity had a slight detuning for the polarizations. Therefore,
it was not resonant for both polarizations at the same time. The back mirror was
mounted on a piezoelectric element to change the length of the cavity in the range
of the wavelength of the carrier light �eld. Behind the cavity, a photo detector was
placed to monitor the transmitted light power and to perform mode matchings to
the cavity. The carrier �eld was overlapped with the squeezed �eld on a mirror
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with a re�ectivity of 1% and detected in one port. The signal was demodulated
with an electronic local oscillator at the beat frequency of 29.365MHz an error
signal for a phase lock of the two �elds was generated and fed back to a piezoelectric
element in the squeezed light path. Both �elds were afterwards sent onto the
interferometer cavity, the re�ected �eld was separated by a Faraday rotator and
sent to the balanced heterodyne detector. An electronic sinusoidal modulation at
the frequency of 250 kHz was imprinted on the piezoelectric element of the cavity
to simulate a signal. The interferometer cavity and the balanced heterodyne
detection are shown in �gure 7.4.
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Figure 7.4: Schematic drawing of the linear cavity including the phase lock between
carrier light and squeezed �eld. The cavity has a length of 2.5m which
results in a free spectral range of 58.73MHz. A highly re�ective mirror is
placed inside the cavity due to the limited length of the optical table. This
mirror creates a slight detuning for di�erent polarizations. The squeezed
light is overlapped with the carrier light on a mirror with a re�ectivity of 1%
and the transmitted �eld is sent to the cavity. The re�ected light is used to
create a phase lock of the squeezed �eld and carrier �eld by demodulating
the signal with the beat frequency of 29.365MHz and feeding the error
signal back to a piezoelectric element in the path of the squeezed light.
The squeezed light passes a Faraday rotator and is sent onto the cavity.
The re�ected �eld is re�ected by the rotator and sent to the balanced
heterodyne detection.

7.2.3 Cavity lock in orthogonal polarization

The interferometer cavity needed to be locked to resonance for the carrier �eld at
the frequency ω0 in horizontal polarization. Unfortunately, standard approaches
were not feasible here. A lock via the Pound-Drever-Hall locking technique using
a phase modulation on the carrier �eld requires a strong carrier light �eld being
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Figure 7.5: Scheme for locking the cavity on a sideband of an additional, phase-
modulated �eld in orthogonal polarization to the signal �eld. This scheme
avoids an impact of the lock �eld on the signal and allows an easy separa-
tion both �elds. Shown are the resonance peaks of the linear cavity for the
horizontal (green solid line) and vertical polarization (green dashed line).
The phase modulation on the lock �eld was chosen such that the cavity is
simultaneously resonant for the upper sideband of the modulation and the
signal �eld. The modulation frequency was therefore ωmod

2π = 89.1 MHz.

present for this lock. This results in a strong beat with the local oscillator satu-
rating the detector. The cavity can as well not be locked on a carrier �eld in the
vertical polarization using the Pound-Drever-Hall lock, since the cavity was not
degenerate in the polarization modes due to the mirror inside the cavity.
Here, a modi�cation of the Pound-Drever-Hall scheme combined with an addi-

tional �eld in the orthogonal polarization was used. Light in the vertical polariza-
tion was tapped o� the laser at the frequency ω0 + ∆/2 and a phase modulation
at the frequency ωmod was applied to this �eld. The modulation frequency was
tuned such that the upper sideband of the modulation at ω0 + ∆ + ωmod was
simultaneously resonant for the cavity as the carrier light at ω0 in the horizontal
polarization. The modulation frequency was therefore ωmod

2π
= 89.1 MHz. The

cavity could now be locked using the zero-crossing of the error signal that occurs
for the upper sideband and made it as well resonant for the carrier light. This
idea is presented in �gure 7.5 including the involved frequencies.
The lock �eld was overlapped with the signal �eld on a polarizing beam splitter

in front of the linear cavity. After being re�ected o� the cavity, it was separated
by the same beam splitter of the signal �eld and sent to a 50/50 beam splitter.
The transmitted part was sent on a photo detector and mixed with an electronic
oscillator at the modulation frequency. Thereby, an error signal is generated and
the cavity is locked on the upper sideband which coincided with the resonance of
the signal �eld. The schematic setup of this lock is shown in �gure 7.6.
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Figure 7.6: Schematic drawing of the lock of the interferometer cavity in orthogonal
polarization to the signal �eld. On the laser �eld in vertical polariza-
tion a phase modulation of 89.1MHz was imprinted. That frequency was
chosen to match the cavity resonance of the signal �eld in the horizontal
polarization. Both �elds in orthogonal polarizations were overlapped on
a polarizing beam splitter and sent to the cavity. The re�ected lock �eld
was sent to a 50/50 beam splitter, sent to a photo detector and the signal
was demodulated with an electronic local oscillator at 89.1MHz. This er-
ror signal was used to lock the cavity on resonance for the upper sideband
of the phase modulation in vertical polarization. This coincided with the
resonance of the signal �eld in horizontal polarization.

7.2.4 Balanced heterodyne detection

The re�ected �elds of the interferometer cavity, consisting of the carrier �eld at ω0,
the signal at ω0±δ and the squeezed �eld, were overlapped with the local oscillator
at the frequency of ω0 + ∆/2. The detector had a demodulation stage that was
used to demodulate the signal with an electronic oscillator at 47.8MHz. After
low-pass �ltering, this error signal was used to lock the phase of the squeezed
�eld and the local oscillator. In one of the arms of the heterodyne detector, a
�ip mirror was placed to mode match all �elds onto a diagnose mode cleaner to
achieve the best mode overlap on the beam splitter. The signal of the detector
was high-pass �ltered and sent to a spectrum analyzer.

7.3 Experimental results

For the experiments presented in this chapter, the pump power of the parametric
down-conversion cavity was set to 100mW. Firstly, the squeezed states were sent
directly onto the detector with a bypass to check the properties of the down-
conversion cavity. Since the local oscillator frequency and the center frequency
of the squeezed light are equal, a homodyne detection of the squeezed �eld was
performed here. At the sideband frequency of 5MHz the squeezed states showed
a noise reduction of 10.1 dB below the vacuum noise for the squeezed quadrature
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and correspondingly an increase of 17 dB above vacuum noise for the anti-squeezed
quadrature. The optical power of the control �eld was 0.5mW.
To illustrate the limitations of generating squeezed light at low frequencies, I

took a spectrum of the squeezed �eld with the control �eld in the sideband range
from f = 50 kHz to f = 10 MHz, where the readout angle of the homodyne
detector was locked to measure the squeezed quadrature. The results are shown
in �gure 7.7. Due to the control �eld, squeezed properties (red trace) were only
measured above ∼ 2.5 MHz. Below this frequency, the noise was even increased
above the vacuum noise (black trace) due to technical noise on the control �eld.
The electronic darknoise (green trace) was not limiting in this sideband range.
Measurements of signals below 2.5MHz could not be improved by squeezed light
in this con�guration. This limitation motivates the implementation of the scheme
for interferometer enhancement at low frequencies by high-frequency squeezed
states presented in this chapter.

7.3.1 Double-sided spectrum of the squeezed-light-enhanced
measurement by heterodyne detection

For the demonstration of the improvement of signals at low frequencies, the
squeezed states were sent onto the interferometer cavity. Firstly, the results are
presented as a double-sided spectrum as directly measured by the heterodyne de-
tector. The cavity was locked on resonance for the carrier light and a signal was
generated by a modulation of δ

2π
= 250 kHz to the piezoelectric element. Since

the local oscillator was at the center wavelength of the squeezed light the carrier
light created a peak at f = 29.365 MHz in the spectrum. The signal was present
at f = 29.365 MHz ± 250 kHz. The spectrum of this measurement is shown in
�gure 7.8. All measurements were taken with a resolution bandwidth of 6.25 kHz
and a video bandwidth of 50Hz. Without the application of squeezed light, the
signal had a signal-to-noise ratio of 19.2 dB± 0.2 dB (blue trace). Here, the path
from the down-conversion cavity was blocked and the noise level was given by
vacuum noise. This was veri�ed in a measurement where the path from the cavity
to the detector was blocked (grey trace) and vacuum noise was recorded. This had
the same noise power as the noise limiting the measurement with the open port.
By applying detuned squeezed states to the cavity (red trace), the signal-to-noise
ratio was improved to 22.6 dB ± 0.2 dB. This corresponds to an improvement
of 3.4 dB ± 0.3 dB compared to the measurement without squeezed light. In all
measurements the carrier �eld showed a broadened peak around 29.365MHz due
to technical noise on the carrier �eld. The modulation of 250 kHz was chosen to
be outside the in�uence of the technical noise. In all measurements, including
the dark noise (black trace), a peak at 29.365MHz is visible due to electronic
pick-up from the frequency generators. The enhancement by the squeezed light
was mainly limited by the mode matching from the cavity to the diagnostic mode
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Figure 7.7: Spectrum of noise power of squeezed states with a copropagating control
�eld of the source used in this chapter. This measurement illustrates the
limitation of generating squeezed states at low frequencies in this setup.
The measured noise power (red trace) was only reduced below vacuum
noise (black trace) for sideband frequencies above f = 2.5 MHz. Below
that frequency, the noise was even increased due to technical noise on the
control �eld. Squeezed properties at low frequencies are only achievable if
the control �eld is switched o�. However, this �eld is used for locking pur-
poses here. This limitation motivates the implementation of the scheme for
interferometer enhancement at low frequencies by high-frequency squeezed
states presented in this chapter.

cleaner of the heterodyne detector of a value of ∼ 80 % and the small dark noise
clearance of 8.5 dB of the vacuum noise. The modematching was limited by an
additional mode, whose origin was not understood, but which may resulted from
a re�ection of the anti-re�ective coating of the coupling mirror of the cavity. A
higher local oscillator power to increase the dark noise clearance was not feasible
here due to saturation of the heterodyne detector.

7.3.2 Single-sided spectrum of the squeezed-light-enhanced
measurement

To compare these results to a typical measurement, the output from the hetero-
dyne detector was electronically demodulated at 29.365MHz. Thereby, a single-
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sided spectrum was created. The results are shown in �gure 7.9. All measure-
ments were taken with a resolution bandwidth of 10 kHz and a video bandwidth
of 500Hz. Here, a signal-to-noise ratio of 18.4 dB ± 0.2 dB was measured, where
the squeezed light was blocked (blue trace). Again, this noise was checked to be
vacuum noise by a measurement with a blocked path from the interferometer cav-
ity to the heterodyne detector. The application of squeezed states resulted in a
signal-to-noise ratio of 21.9 dB± 0.2 dB, being an improvement of 3.5 dB± 0.3 dB
(red trace), which is in good accordance to the result of the measurement of the
double-sided spectrum. However, the di�erence in the absolute signal-to-noise ra-
tio can not be fully explained by the di�erent resolution bandwidths. Below the
signal frequency of f = 250 kHz, an in�uence of the technical noise on the carrier
�eld was visible in a higher noise on both measurements with the signal �eld. The
dark noise clearance of 8.5 dB (black trace) and the mode matching were again
the limiting factors.

7.4 Conclusion

With the scheme introduced in this chapter an interferometer enhancement at low
frequencies by high-frequency squeezed states was demonstrated. By applying de-
tuned squeezed states and performing a heterodyne measurement we showed an
increase of signal-to-noise ratio of 3.4 dB± 0.3 dB. We presented the results in a
double-sided spectrum, as directly measured, and in a single-sided spectrum gen-
erated by electronic demodulation. In comparison to a homodyne measurement of
the signal this scheme su�ers a 3 dB penalty. Since the improvement was higher
then 3 dB an overall improvement in signal-to-noise ratio was still achieved. The
main limitations of the improvement factor were the mode matching of the in-
terferometer cavity to the heterodyne detector of only ∼ 80 % and the dark-noise
clearance of the vacuum noise level of 8.5 dB. For future experiments the additional
mode in the mode matching should be investigated and its in�uence reduced. The
heterodyne detector can be equipped with electronic components generating less
dark noise or additional �lters for reducing the saturation. To achieve a lower
frequency of the signal, the in�uence of technical noise on the carrier �eld can be
reduced, e.g. by additional �lter cavities.
We suggest this scheme to be used in experiments where a homodyne detec-

tion at low frequencies is not possible due to the mentioned limitations or the
generation of squeezed states at these frequencies is not feasible.
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Figure 7.8: Double-sided spectrum of a squeezed-light-enhanced measurement in a het-
erodyne readout scheme. The interferometer cavity was locked on reso-
nance and a signal at δ/(2π) = 250 kHz was imprinted by a modulation
of the piezoelectric element. Due to the heterodyne readout the carrier
�eld created a peak at (∆/2)/(2π) = 29.365 MHz. The signal was present
at (∆/2 ± δ)/(2π) = 29.365 MHz ± 250 kHz. Without the application of
squeezed light (blue trace), the signal-to-noise ratio was 19.2 dB ± 0.2 dB.
The noise was independently con�rmed to be vacuum noise by a measure-
ment with a blocked path from the cavity to the heterodyne detector (grey
trace). With the application of detuned squeezed states, a signal-to-noise
ratio of 22.6 dB± 0.2 dB was achieved. This is an improvement in the sen-
sitivity of 3.4 dB ± 0.3 dB. The in�uence of technical noise on the carrier
light was visible in a broadened peak around f = 29.365 MHz. The signal
frequency was chosen to be outside this in�uence. The improvement was
mainly limited by the mode matching from the cavity to the diagnostic
mode cleaner of the heterodyne detector and the dark noise clearance of
the vacuum noise level of 8.5 dB (black trace). On all traces a peak at
f = 29.365 MHz was visible that resulted from electronic pick-up from the
frequency generators.
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Figure 7.9: Single-sided spectrum of a squeezed-light-enhanced measurement in a het-
erodyne readout scheme. The cavity was locked on resonance for the carrier
light and a modulation at 250 kHz was applied to the piezoelectric element
changing the cavity length. The output from the heterodyne detector was
electronically demodulated with a frequency of 29.365MHz. This created
a single-sided spectrum. All measurements were taken with a resolution
bandwidth of 10 kHz and a video bandwidth of 500Hz. With a blocked
path from the parametric down-conversion cavity a signal-to-noise ratio of
18.4 dB ± 0.2 dB was achieved (blue trace). The noise was vacuum noise,
which was veri�ed by a measurement with a blocked path from the cav-
ity to the heterodyne detector (grey trace). The application of detuned
squeezed states led to a signal-to-noise ratio of 21.9 dB ± 0.2 dB, which is
an improvement of 3.5 dB± 0.3 dB.
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CHAPTER 8

Demonstration of interferometer enhancement through

EPR entanglement

For the broadband squeezed-light enhancement of gravitational-wave detec-
tors a frequency-dependent rotation of the squeezed quadrature is necessary
[Un83,JR90]. This rotation can be achieved by external �lter cavities o� which the
squeezed states are re�ected [Ki01]. In section 4.5 a novel scheme for the broad-
band reduction of vacuum noise in gravitational-wave detectors by squeezed-light
injection was described making additional �lter cavities obsolete. The authors of
the proposal suggest the utilization of the signal-recycling cavity of the interferom-
eter to achieve a frequency-dependent quadrature rotation. The squeezed states
are sent into the output port of the interferometer. The center frequency of the
squeezed states is detuned to be almost in the middle between two adjacent free
spectral ranges of the signal-recycling cavity. It is set such that a lower sideband
ωL is resonant for the cavity, but the associated Einstein-Podolsky-Rosen(EPR)-
entangled sideband at ωU is o�-resonant and acquires a frequency-dependent phase
rotation. The carrier light of the cavity is at the frequency ωL. The gravitational-
wave signal is measured around ωL and conditioned on a second measurement
around the frequency ωU.
This chapter is dedicated to an experimental realization of the detection of such

detuned-cavity re�ected EPR-entangled states. A L = 2.5 m-long linear cavity
was emulating the signal-recycling cavity of a gravitational-wave interferometer.
In the proposal by [Ma17] a �lter cavity is introduced to separate the signals from
the lower and upper sidebands. Afterwards, a homodyne measurement on each
beam centered at the frequencies ωL and ωU is performed. In contrast to that,
we built a readout scheme using a bichromatic local oscillator at the frequencies
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ωL and ωU to avoid the need of the output �lter cavity. This allowed measuring
the �elds re�ected o� the cavity on a single homodyne detector. Disadvantageous
is the fact that we can not use a frequency-dependent (electronic) gain for the
conditioning as proposed in [Ma17]. The gain between the two measurements can
be in�uenced frequency-independently by using di�erent local oscillator powers.
In our experiment the frequencies for the local oscillators were individually

changeable. The measurements were taken for di�erent sets of the detunings for
the local oscillator frequencies. With these measurements we are able to show
that the experimental results are in good accordance with a theoretical model we
derived based on the work in [Ma17].

8.1 Theoretical model

This section presents the theoretical model of the noise spectra of initially
frequency-independently squeezed states, being re�ected o� a cavity and read
out by a bichromatic local oscillator. The formalism is similar to the description
used in [Ma17] and was derived by Mikhail Korobko. The detailed description
can be found in the appendix A.1. The calculations were done with Mathemat-
ica 9.0/11.0 and a respective notebook is presented in the appendix A.2. The
relation of the involved frequencies is explained in �gure 8.1. The detunings of
the lower and upper local oscillator to the resonance frequency of the cavity are
described by δ1 and δ2. The relative powers of the local oscillators are described
by α and β and the readout angle of the homodyne detection by ξ. The squeeze
parameter is given by r and the total detection e�ciency by η. The cavity has the
half-width-half-maximum linewidth of γ. Given these parameters, the formula of
the spectral density at the sideband frequency Ω = 2π · f reads

Syy =1− η + η cosh(2r) + 2αβη sinh(2r)·[ (
γ4 + (δ2

1 − Ω2)(δ2
2 − Ω2)− γ2(δ2

1 + δ2
2 − 2Ω2 + 4δ1δ2)

)
cos(ξ)

+ 2γ(δ1 + δ2)(γ2 − δ1δ2 + Ω2) sin(ξ)
]
·[

γ4 + (δ2
1 − Ω2)(δ2

2 − Ω2) + γ2(δ2
1 + δ2

2 + 2Ω2)
]

(α2 + β2)(γ2 + (δ1 − Ω)2)(γ2 + (δ2 − Ω)2)(γ2 + (δ1 + Ω)2)(γ2 + (δ2 + Ω)2)
.

(8.1)

The formula does not include losses inside the cavity. Including these losses into
the model is possible by extending the transfer functions from equation (A.13)
and introducing additional vacuum �elds. However, the formula for the spectral
density becomes very complex in this case. We omitted this extension as we expect
the additional losses to be very small. For the formula an in�nite bandwidth of
the squeezed spectrum was assumed.
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Figure 8.1: Transfer function of the interferometer cavity and involved frequencies.
The transfer function shows the phase and intensity of a �eld re�ected o�
a cavity. The cavity has a free spectral range of ∆ = c/(2L). It is resonant
for the optical frequencies ω0 and for ω0 + ∆. The two local oscillators are
at frequencies ωL = ω0−δ1 and ωU = ω0 +∆−δ2. Each measurement with
a local oscillator is performed at an upper and lower sideband frequency
±Ω. The center frequency of the squeezed light is at the frequency of
ωSQZ = ω0 + (∆ − δ1 − δ2)/2 exactly in middle between the two local
oscillators.

8.2 Experimental setup

The setup was similar to the one from chapter 7 and presented in �gure 8.2. The
broadband squeezed-light source (blue box) and the L = 2.5 m-long linear inter-
ferometer cavity (grey box) including the locking scheme (yellow box) remained
unchanged. The length L of the cavity is a trade-o� of �tting the cavity on an opti-
cal table and having a free spectral range ∆

2π
= c/(2L) = 58.73 MHz small enough

being inside the bandwidth of the squeezed light. The generation of the local
oscillators (green box) was extended as described in section 5.2 to produce bright
�elds at both the lower and upper oscillator frequency. In the readout scheme (red
box) the bichromatic local oscillator replaced the monochromatic local oscillator.
Both single oscillators were overlapped on a beam splitter and one output port was
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sent towards the detector. Additionally, a bypass for the squeezed light was set
up to guide the squeezed �eld directly onto the balanced bichromatic homodyne
detection without the interaction with the cavity (cyan box). With this bypass a
characterization of EPR-entangled states with a bichromatic readout scheme was
possible.
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Figure 8.2: Schematic drawing of the setup for cavity enhancement through EPR en-
tanglement. The squeezed light source (blue box) and the linear interferom-
eter cavity including the locking scheme (yellow boy) remained unchanged
compared to chapter 7. The generation of the local oscillators (green box)
was extended to produce not only the lower but also the upper oscillator
frequency. In the readout scheme (red box) the bichromatic local oscilla-
tor replaced the monochromatic local oscillator. The two single oscillators
were overlapped on a beam splitter and one output port is sent towards
the detector. Additionally, a bypass for the squeezed light (cyan box) was
implemented to send the �eld directly onto the detector without being
re�ected o� the interferometer cavity.
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8.3 Experimental results

8.3.1 Spectrum of the noise power of squeezed states with a
bichromatic local oscillator

Before investigating the EPR-entangled �elds re�ected o� the cavity, I sent the
squeezed states directly onto the bichromatic homodyne detector via the bypass
shown in �gure 8.2. Here, the squeezed light was centered around the frequency
ωLaser, and the lower and upper local oscillators were at frequencies ωL/U =
ωLaser∓2π·29.365 MHz. I chose the local oscillators frequencies at±2π·29.365 MHz
to �t to later measurements where these frequencies match half the free spectral
range of the interferometer cavity. Due to the bichromatic local oscillator two
homodyne measurements were performed simultaneously at sideband frequencies
ωL = ωLaser−2π ·29.365 MHz±Ω and ωU = ωLaser + 2π ·29.365 MHz∓Ω and both
were added directly. The power of each single local oscillator was 2mW. Our spec-
trum analyzers measured sidebands in ordinary frequencies f instead of angular
frequencies Ω and therefore all measurements are presented in ordinary frequen-
cies f . The relation is given by 2π · f = Ω. The measurements were taken in the
sideband frequency band from f = 1 MHz to f = 55 MHz, where I excluded mea-
surements in the sideband frequency band from f = 28 MHz to f = 30 MHz due
to electronic pickup of the sideband generation process. Since no control loop for
the readout phase was installed, the phase was controlled manually by adjusting
the o�set voltage on piezoelectric element in the local oscillator path. The spectra
of the noise powers of the squeezed and anti-squeezed quadrature, normalized to
vacuum shot noise, are shown in �gure 8.3. The squeezed quadrature (red trace)
showed a maximal noise reduction of 6.5 dB below vacuum noise of both local oscil-
lators, whereas the corresponding anti-squeezed quadrature (blue trace) showed an
increase of 14 dB above the shot noise. The anti-squeezed quadrature showed the
highest increase above vacuum noise around sideband frequencies of f ≈ 30 MHz.
At these frequencies the local oscillators measured squeezed states close to the
center frequency of the squeezed states, having the highest increase above shot
noise. Both spectra were �tted with equation (5.17) with the corresponding sign
for the squeezed (dashed blue) and anti-squeezed quadrature (dashed red), where
the pump parameter

√
P/Pthres, the total detection e�ciency η and the linewidth

γ of the down-conversion cavity were the �tting parameters. The �t resulted in a
linewidth of γ

2π
= 150 MHz, which is in good agreement with the linewidth mea-

sured in [Ba13]. The �t of the pump parameter resulted in
√
P/Pthres ≈ 0.76 and

the detection e�ciency resulted in η = 0.83. The loss factor was high compared
to a typical measurement of squeezed states. One the one hand the modematch-
ing of the squeezed �eld to the reference cavity was limited to 97%, on the other
hand the readout scheme required matching an additional local oscillator to the
reference cavity, resulting in more possible mismatches. Additionally, the param-
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eters of the �t were used to simulate a measurement with a monochromatic local
oscillator of squeezed state. The simulation shows the squeezed (dashed green)
and anti-squeezed (dashed yellow) quadratures. The monochromatically measured
noise power of the squeezed quadrature is always below the bichromatically mea-
sured squeezed quadrature. This is explained by the simultaneous measurement
of two sideband frequencies of the squeezed states in the bichromatic measure-
ment and the in�uence of the linewidth of the parametric down-conversion cavity.
With the same argument the bichromatically measured anti-squeezed quadrature
showed less increase of noise for lower measurement frequencies f compared to
monochromatically measured anti-squeezed quadrature.

8.3.2 Relations of the involved frequencies

For the following measurements I removed the bypass shown in �gure 8.2 and the
EPR-entangled states were sent onto the interferometer cavity that was locked
with the auxiliary �eld described in chapter 7.2.3. The re�ected �elds were then
sent onto the bichromatic balanced homodyne detection. The measurements were
taken for the following relations of the involved frequencies:

I Firstly, the upper and lower local oscillator were set to frequencies of ωL = ω0

and ωU = ω0 + ∆ being resonant for the linear cavity, with a frequency dif-
ference ∆ of one free spectral range of the cavity. This resulted in frequency-
independent noise spectra, simulating an interferometer with tuned signal
recycling and zero opto-mechanical coupling.

II Secondly, the upper local oscillator was detuned by δ2 from resonance to a
lower frequency ωU = ω0 + ∆ − δ2 resulting in frequency-dependent noise
spectra, simulating an interferometer with the in�uence of opto-mechanical
coupling. The measurements were performed with two di�erent detunings of
(a) δ2 = 2π · 400 kHz and (b) δ2 = 2π · 4 MHz.

III Afterwards, both local oscillators were detuned anti-symmetrically by −δ1 =
δ2 = 2π · 400 kHz to frequencies of ωL = ω0 + δ1 and ωU = ω0 + ∆− δ2. This
led back to frequency-independent noise spectra and illustrated a broadband
quantum-noise reduction. Additionally, it showed the broadband sensitivity-
enhancement of a detuned signal-recycling cavity.

IV As a fourth step, both local oscillators were symmetrically detuned by δ1 = δ2

to frequencies of ωL = ω0 − δ1 and ωU = ω0 + ∆− δ2 resulting in frequency-
dependent EPR-entangled states, demonstrating that the system can pro-
duce frequency-dependent (conditional) squeezing. These measurements were
performed for two di�erent detunings of (a) δ1 = δ2 = 2π · 400 kHz and
(b) δ1 = δ2 = 2π · 1 MHz
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Figure 8.3: Spectrum of noise power of a broadband squeezed �eld detected with a
bichromatic homodyne readout. The local oscillators are at frequencies
ω0±2π·29.365 MHz and the parametric-down conversion process is pumped
at the frequency 2ω0. Measurements in the frequency range of f = 28 MHz
to f = 30 MHz are excluded due to electronic pickup of the sideband gener-
ation process. The squeezed quadrature (red trace) shows a maximal noise
reduction of 6.5 dB below the vacuum noise of both local oscillators. The
anti-squeezed quadrature shows a corresponding increase of 14 dB above
the vacuum noise around the sideband frequency of f ≈ 30 MHz. The
�ts of the measurements (dashed blue trace for squeezed, dashed red trace
for anti-squeezed quadrature) yield parameters of γ

2π = 150 MHz for the
linewidth of the parametric down-conversion cavity, a pump parameter of√
P/Pthres ≈ 0.76 and a detection e�ciency of η = 0.83. For a comparison

the simulation of squeezed and anti-squeezed quadrature with a monochro-
matic local oscillator and the same parameters is given (dashed green for
squeezed, dashed yellow for anti-squeezed quadrature).

All measurement steps are presented on a double page, where on the top left
page a spectrogram of the measured quantum noise power with a continuously
swept phase of the local oscillator is shown. All spectrograms were recorded
with a realtime analyzer. The quantum noise power was normalized to the shot
noise of both oscillators. The theoretical model from equation (8.1) described in
chapter 8.1 was �tted to the data. The readout angle was �tted with a quadratic
function ξ(t) = a + b · t + c · t2 to emulate a non-linear transfer function of
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the piezoelectric element. The lower left picture shows the spectrogram of the
�tted model. In both spectrograms the time axes were substituted with the �tted
readout angle. The color coding is the same in all spectrograms. On the top right
page the transfer function of the cavity for re�ected light �elds is shown including
the involved frequencies of the local oscillators and the center wavelength of the
squeezed light for every experimental step. In the lower right picture the spectra of
two time traces of the spectrogram for readout angles of ξ = (−)π/2 and ξ = (−)π
is shown including the �tted model. The measurements were performed with local
oscillators of 2mW power each after overlapping them on the beam splitter. The
�t parameters of all measurements are given in tables 8.1 and 8.2.

8.3.3 Results of bichromatic measurements of cavity-re�ected
EPR-entangled states

I. Bichromatic measurements of cavity-re�ected EPR-entangled states
without detuning

For the �rst measurement step, I set both local oscillator frequencies to be resonant
for the cavity (detuning δ1 = δ2 = 0) as described in �gure 8.5(a). All measured
sidebands at frequencies ω0 ±Ω and ω0 + ∆∓Ω acquired the same, but opposite
phase shift upon re�ection o� the cavity and therefore the EPR-entangled �elds
were not rotated. This resulted in frequency-independent EPR-entangled states.
The measured quantum noise is shown in �gure 8.4 in a spectrogram with a

continuously swept phase and in a frequency range from 50 kHz to 2MHz. The
measurement shows that the quantum noise was frequency-independent. The
model matches both spectra from �gure 8.5(b). Only towards lower frequencies
a deviation of the expected quantum noise is apparent. The origin can not be
fully explained but might have arisen from one of the local oscillators not being
exactly on resonance. Additionally, increasing darknoise of the detector for lower
frequencies and a high-pass in the detectors output at 10 kHz limited the detection
at low frequencies. The detection e�ciency of η = 0.69 was even more reduced
than in the measurements in chapter 8.3.1. This can be explained by additional
losses due to a bad modematching from the interferometer cavity to the reference
cavity of the homodyne detector. Here, a limiting mode appeared whose origin
was not understood but might have arisen from a re�ection of the anti-re�ective
coating of the coupling mirror of the cavity. The peak at f = 1.1 MHz resulted
from electronic pickup, but was not identi�ed.

II(a). Bichromatic measurements of cavity-re�ected EPR-entangled
states with detuning of the upper local oscillator of 2π · 400 kHz

In the second measurement step I set the lower local oscillator frequency to be
resonant for the cavity (detuning δ1 = 0). The upper local oscillator was detuned
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by δ2 = 2π · 400 kHz towards lower frequencies. This scheme is described in
�gure 8.7(a). The measured sidebands at frequencies ω0±Ω and ω0 + ∆− δ2∓Ω
acquired di�erent phase shifts upon re�ection o� the cavity. This resulted in
frequency-dependent EPR-entangled states. The phase shift is strongest around
f = 400 kHz.
The measured quantum noise is shown in �gure 8.6 in a spectrogram with a

continuously swept phase and in a frequency range from f = 50 kHz to f = 2 MHz.
The spectrogram shows that the quantum noise was frequency-dependent with a
characteristic phase change around f = 400 kHz. The model matches both spectra
from �gure 8.7(b). Again, towards lower frequencies a deviation of the expected
quantum noise is apparent. The peak at f = 1.4 MHz resulted from electronic
pickup, but was not identi�ed.

II(b). Bichromatic measurements of cavity-re�ected EPR-entangled
states with detuning of the upper local oscillator of 2π · 4MHz

This measurement was similar to the previous one. The detuning of the upper
local oscillator is δ2 = 2π · 4 MHz, resulting in the strongest phase shift around
f = 4 MHz.
The measured quantum noise is shown in �gure 8.8 in a spectrogram with a

continuously swept phase and in a frequency range from f = 50 kHz to f =
6 MHz. The spectrogram shows that the quantum noise was frequency-dependent
with a characteristic phase change around 4MHz. For this measurement also the
detuning of the lower local oscillator δ1 was included in the �t parameters and
resulted in a small detuning of δ1 = −2π · 74 kHz. This can be explained by an
o�set of the locking electronics of the interferometer cavity. The model matches
both spectra from �gure 8.9(b). Here, at sideband frequencies around f = 4 Mhz
a deviation of the expected quantum noise is apparent that can not be explained.

III. Bichromatic measurements of cavity-re�ected EPR-entangled
states with anti-symmetric detuning of both local oscillators of
2π · 400 kHz

For this measurement, the local oscillators were detuned by −δ1 = δ2 = 2π ·
400 kHz. As is the case without any detuning, all measured sidebands at frequen-
cies ω0 + 2π · 400 kHz ± Ω and ω0 + ∆ − 2π · 400 kHz ∓ Ω acquired the same,
but opposite phase shift upon re�ection o� the cavity and therefore the EPR-
entangled �elds were not rotated. This resulted again in frequency-independent
EPR-entangled states.
The measured quantum noise is shown in �gure 8.10 in a spectrogram with a

continuously swept phase and in a frequency range from f = 50 kHz to f = 2 MHz.
The measurement shows that the quantum noise is frequency-independent. The
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model matches both spectra from �gure 8.11(b). Around f = 400 kHz a little
deviation from the expected model is apparent. This might have arisen from
increases losses, when a �eld is resonant for the cavity. These losses are not
included in the model. Again, towards lower frequencies a deviation is apparent.

IV(a). Bichromatic measurements of cavity-re�ected EPR-entangled
states with symmetric detuning of both local oscillators of 2π · 400 kHz

Here, the local oscillators were detuned by δ1 = δ2 = 2π · 400 kHz. The measured
sidebands at frequencies ω0− 2π · 400 kHz±Ω acquired the same phase shift upon
re�ection o� the cavity as the sidebands at ω0 +∆−2π ·400 kHz∓Ω and therefore
the EPR-entangled �elds were rotated depending on the sideband frequency Ω.
The measured quantum noise is shown in �gure 8.12 in a spectrogram with a

continuously swept phase and in a frequency range from f = 50 kHz to f = 2 MHz.
The measurement shows that the quantum noise was frequency-dependent with a
characteristic phase change around f = 400 kHz. The model matches both spectra
from �gure 8.13(b). However, the �t resulted in detuning parameters that are
equal but too low by 2π ·60 kHz compared to the set values. This can be explained
by an o�set of the cavity lock that occurred during the measurement. Again,
towards lower frequencies a deviation is apparent. The peak at f = 1.4 MHz
resulted from electronic pickup, but was not identi�ed.

IV(b). Bichromatic measurements of cavity-re�ected EPR-entangled
states with symmetric detuning of both local oscillators of 2π · 1MHz

This measurement was similar to the previous one, but the detunings of both
oscillators were set to δ1 = δ2 = 2π · 1 MHz. The EPR-entangled �elds were again
rotated and the rotation is depending on the sideband frequency Ω.
The measured quantum noise is shown in �gure 8.14 in a spectrogram with a

continuously swept phase and in a frequency range from f = 50 kHz to f = 2 MHz.
The measurement shows that the quantum noise was frequency-dependent with a
characteristic phase change around f = 1 MHz. The model matches both spectra
from �gure 8.15(b). The �t resulted in detuning parameters that are both too low
compared to the set values as in the previous case and might be explained in the
same way. Additionally, the detuning parameters do not equal here which can not
be explained. The peak at f = 1.4 MHz resulted from electronic pickup, but was
not identi�ed.
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I. Bichromatic measurements of cavity-re�ected EPR-entangled states
without detuning
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Figure 8.4: Spectrograms of measurements (upper sub�gure) and �tted simulation
(lower sub�gure) without detuning of the local oscillators. The quantum
noise was frequency-independent and for the readout angle of π a reduction
below the vacuum noise was achieved. The readout angle is inferred from
the �tting data. Further details are given in the main text.
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Figure 8.5: Transfer function of the interferometer cavity and involved sideband fre-
quencies without detuning (sub�gure (a)) and spectra of time traces as
well as the �tted model for readout angles π and π/2 (sub�gure (b)).
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II(a). Bichromatic measurements of cavity-re�ected EPR-entangled
states with detuning of the upper local oscillator of δ2 = 2π · 400 kHz
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Figure 8.6: Spectrograms of measurements (upper sub�gure) and �tted simulation
(lower sub�gure) with detuning of the upper local oscillator of δ2 =
2π · 400 kHz. The quantum noise was frequency-dependent with a char-
acteristic phase change around f = 400 kHz. The readout angle is inferred
from the �tting data. Further details are given in the main text.
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spectra of two time traces with the �tted model for readout angles ξ = −π
and ξ = −π/2 (sub�gure (b)).
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II(b). Bichromatic measurements of cavity-re�ected EPR-entangled
states with detuning of the upper local oscillator of δ2 = 2π · 4MHz
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Figure 8.8: Spectrograms of measurements (upper sub�gure) and �tted simulation
(lower sub�gure) with detuning of the upper local oscillator of δ2 =
2π · 4 MHz. The quantum noise was frequency-dependent with a char-
acteristic phase change around f = 4 MHz. The readout angle is inferred
from the �tting data. Further details are given in the main text.
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Figure 8.9: Transfer function of the interferometer cavity and involved sideband fre-
quencies with detuning of the upper local oscillator (sub�gure (a)) and
spectra of two time traces with the �tted model for readout angles ξ = −π
and ξ = −π/2 (sub�gure (b)).
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III. Bichromatic measurements of cavity-re�ected EPR-entangled
states with anti-symmetric detuning of both local oscillators of

2π · 400 kHz
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Figure 8.10: Spectrograms of measurements (upper sub�gure) and �tted simulation
(lower sub�gure) with anti-symmetric detuning of both local oscillators
−δ1 = δ2 = 2π · 400 kHz. As in case I, the quantum noise was frequency-
independent and for the readout angle of π a reduction below the vacuum
noise was achieved. The readout angle is inferred from the �tting data.
Further details are given in the main text.

100



8.3 Experimental results

Center frequency 
of squeezed light

Lower
local oscillator

Ph
as

e 
of

 r
ef

le
ct

ed
 f

ie
ld

R
ef

le
ct

ed
 i
n
te

n
si

ty

Frequency

Frequency

+2p

+p

0

+4p

+3p

Sideband
frequency  

Sideband
frequency  

‐W +W

I0

w0 w0+Dw0+D‐d2

=wU

‐W +W

Upper 
local oscillator

Detuning d2

w0+(D+d1‐d2)/2

Detuningd1

w0+d1

=wL

EPR entangled fields+
o

+
o

+
o

+
o

(a) Transfer function of the interferometer cavity and involved sideband frequencies

with anti-symmetric detuning of both local oscillators.

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

200k 400k 600k 800k 1M 1.2M 1.4M 1.6M 1.8M 2M

N
oi

se
 p

ow
er

 in
 d

B
,

 r
el

at
iv

e 
to

 v
ac

uu
m

 n
oi

se

Sideband frequency f in Hz

Measurement, angle pi
Fitted model, angle pi

Measurement, angle pi/2

Fitted model, angle pi/2
Vacuum noise

(b) Spectra of time traces with readout angles ξ = π and ξ = π/2

Figure 8.11: Transfer function of the interferometer cavity and involved sideband fre-
quencies with anti-symmetric detuning of both local oscillators (sub�gure
(a)) and spectra of two time traces with the �tted model for readout
angles ξ = π and ξ = π/2 (sub�gure (b)).
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IV(a). Bichromatic measurements of cavity-re�ected EPR-entangled
states with symmetric detuning of both local oscillators of

δ1 = δ2 = 2π · 400 kHz
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Figure 8.12: Spectrograms of measurements (upper sub�gure) and �tted simulation
(lower sub�gure) with symmetric detuning of both local oscillators of δ1 =
δ2 = 2π·400 kHz. The quantum noise was frequency-dependently squeezed
with a phase change around 400 kHz. The readout angle is inferred from
the �tting data. Further details are given in the main text.
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(b) Spectra of time traces with readout angles ξ = −π and ξ = −π/2

Figure 8.13: Transfer function of the interferometer cavity and involved sideband fre-
quencies with symmetric detuning of both local oscillators (sub�gure (a))
and spectra of two time traces with the �tted model for readout angles
ξ = −π and ξ = −π/2 (sub�gure (b)).
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IV(b). Bichromatic measurements of cavity-re�ected EPR-entangled
states with symmetric detuning of both local oscillators of

δ1 = δ2 = 2π · 1MHz
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Figure 8.14: Spectrograms of measurements (upper sub�gure) and �tted simulation
(lower sub�gure) with symmetric detuning of both local oscillators of δ1 =
δ2 = 2π ·1 MHz. The quantum noise was frequency-dependently squeezed
with a phase change around 400 kHz. The readout angle is inferred from
the �tting data. Further details are given in the main text.
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(b) Spectra of time traces with readout angles ξ = −π and ξ = −π/2

Figure 8.15: Transfer function of the interferometer cavity and involved sideband fre-
quencies with symmetric detuning of both local oscillators (sub�gure (a))
and spectra of two time traces with the �tted model for readout angles
ξ = −π and ξ = −π/2 (sub�gure (b)).
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through EPR entanglement

Set and �t parameters of the bichromatic measurements

In table 8.1 and 8.2 the �t parameters of equation (8.1) to the bichromatic mea-
surements from chapter 8.3.3 are given. Table 8.1 is divided into parameters that
I set in the model, (left column) and parameters for that the model was �tted
to the data by a script written in Python (middle column). For the �t of the
detuning values δ1,2, the expected values (as set in the experimental setup) are
shown in the right column. The values α and β describing the relative amplitudes
of the local oscillators are set to α = β = 1 for all measurements. The half-width-
half-maximum bandwidth of the interferometer cavity was set to γ = 2π · 125 kHz
for all measurements. Table 8.2 shows the �tting parameters of the readout angle
by the formula ξ(t) = a+ b · t+ c · t2.

8.4 Conclusion

In this chapter I presented measurements on squeezed states with a bichromatic
local oscillator readout scheme. In chapter 8.3.1 I sent squeezed states directly
onto a homodyne detector with a bichromatic local oscillator. The resulting spec-
tra of the measurements �t the theoretical model. The total loss of η = 0.83 is
high compared to typical measurements of squeezed states. For future measure-
ments the loss can be reduced by better modematching of the involved beams
onto the reference cavity. In chapter 8.3.3 I demonstrated the interferometer-
enhancement through EPR-entangled states. The measurements were performed
for di�erent settings of both the local oscillator frequencies with respect to the
cavity resonances. All measurements are in good accordance with the model de-
rived in chapter 8.1. Since the model is based on the same calculations as used
in [Ma17], the experiment is a proof-of-principle for the proposal. The in�uence
of the opto-mechanical coupling between the amplitude and the phase quadrature
is only visible in high-power interferometers with free-falling test-masses, like in
the LIGO detectors. Therefore, this could not be emulated with this setup.
Only towards lower frequencies, some measurements showed a deviation com-

pared to the model that might be explained by the detector's design or imperfec-
tions in adjustments. For future experiments, either the detector can be improved
to show less limitations at low frequencies and/or the cavity and local oscillator
locks can be improved to be more stable. The detection e�ciency in a range of
η = 0.65 to η = 0.71 can be improved by achieving better mode matchings es-
pecially from the interferometer cavity to the reference cavity of the homodyne
detector.
With these results we performed a proof-of-principle experiment for the pro-

posals of [Ma17] and [Br17] on table-top scale. We set the path towards further
investigations into this technique. By an implementation of these schemes in a
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GW-detector prototype, the compatibility of the approach with a low-frequency
suspended interferometer can be tested.
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Set parameters Fit parameters
Fit result Expected result

I. No detuning

δ1 = 0 kHz r = 1.27

δ2 = 0 kHz η = 0.69

II(a). Upper local oscillator detuned δ2 = 2π · 400 kHz

δ1 = 0 kHz r = 1.42

η = 0.65

δ2 = 2π · 399.9 kHz δ2 = 2π · 400 kHz

II(b). Upper local oscillator detuned δ2 = 2π · 4MHz

r = 1.40

η = 0.67

δ1 = −2π · 74 kHz δ1 = 0 kHz

δ2 = 2π · 3.95 MHz δ2 = 2π · 4 MHz

III. Both local oscillators detuned anti-symmetrically
−δ1 = δ2 = 2π · 400 kHz

δ1 = −2π · 400 kHz r = 1.29

δ2 = 2π · 400 kHz η = 0.69

IV(a). Both local oscillators detuned symmetrically
δ1 = δ2 = 2π · 400 kHz

r = 1.48

η = 0.65

δ1 = 2π · 339 kHz δ1 = 2π · 400 kHz

δ2 = 2π · 339 kHz δ2 = 2π · 400 kHz

IV(b). Both local oscillators detuned symmetrically δ1 = δ2 = 2π · 1MHz

r = 1.14

η = 0.71

δ1 = 2π · 949 kHz δ1 = 2π · 1000 kHz

δ2 = 2π · 889 kHz δ2 = 2π · 1000 kHz

Table 8.1: Set and �t parameters of bichromatic measurements of cavity-re�ected EPR-
entangled states for the di�erent experimental steps. The parameters are
the squeeze parameter r, the total detection e�ciency η and the detuninigs
δ1,2 of the lower and upper local oscillator.
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Fit parameters

I. No detuning

a = 6.53 rad b = 12.71 rad/s c = 6.43 rad/s2

II(a). Upper local oscillator detuned δ2 = 2π · 400 kHz

a = 2.88 rad b = −17.32 rad/s c = −3.78 rad/s2

II(b). Upper local oscillator detuned δ2 = 2π · 4MHz

a = −0.40 rad b = 20.58 rad/s c = −2.37 rad/s2

III. Both local oscillators detuned anti-symmetrically
−δ1 = δ2 = 2π · 400 kHz

a = −0.72 rad b = 14.86 rad/s c = 21.04 rad/s2

IV(a). Both local oscillators detuned symmetrically
δ1 = δ2 = 2π · 400 kHz

a = 5.72 rad b = −23.87 rad/s c = −9.78 rad/s2

IV(b). Both local oscillators detuned symmetrically δ1 = δ2 = 2π · 1MHz

a = 0.32 rad b = 24.66 rad/s c = 7.7 rad/s2

Table 8.2: Fit parameters of the readout angles of bichromatic measurements of cavity-
re�ected EPR-entangled states for the di�erent experimental steps. The
readout angle of each measurement was �tted with the function ξ(t) = a+
b · t+ c · t2
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CHAPTER 9

Summary and outlook

Compact sources of squeezed states are important for �exible applications in the
future. During this work, I planned, assembled and characterized a source of
squeezed states of light at 1064 nm on a breadboard with a footprint of 0.8 m2.
This size was reached by an optimized arranging of standard-sized optical com-
ponents. The source produced squeezed states with a noise power in the squeezed
quadrature of 10.7 dB ± 0.2 dB below the vacuum noise power at the sideband
frequency of 5MHz. The corresponding anti-squeezed quadrature showed a noise
power 15 dB ± 0.2 dB above the vacuum noise. The total loss was 5.7 % ± 0.5 %.
In measurements of the spectrum of the noise power a reduction below the vac-
uum noise was shown between sideband frequencies of 70 kHz and 65MHz. This
source was already used in a downstream, opto-mechanical experiment and can
be used in further quantum-noise-limited experiments. The setup allows for a
future integration of a coherent control lock. A further decrease of the footprint
is mainly limited by the size of the optical components. Especially by using
smaller modecleaner cavities and mirror holders, the footprint can be decreased
by a factor of two. Due to the loss of 5.7 %± 0.5 % as squeeze factor of 12.7 dB is
reachable by improved phase-matching temperatures.

Measurements by balanced homodyne detection in the audio band and their
enhancement through squeezed light are challenging due to technical reasons. In
this work I presented the experimental realization of a squeezed-light-enhanced
interferometer at low frequencies by heterodyne detection and detuned, high-
frequency squeezed states. A 2.5m-linear cavity emulated an interferometer
cavity. Here, the center frequency of the squeezed light was centered in the mid-
dle between to adjacent resonances of the interferometer cavity. A bright �eld at
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the same frequency served as a local oscillator in a balanced heterodyne readout
of a signal that was produced at low frequencies by modulation of the cavity
length. The measurements at the signal frequencies were conditionally improved
by the entangled sidebands of the squeezed �eld. This detection scheme su�ers a
3 dB penalty compared to conventional squeezed-light enhancement. We showed a
double-sided noise spectrum as directly measured in the heterodyne detection and
a single-sided spectrum by electronic demodulation. In both measurements an
improvement in the signal-to-noise ratio of 3.4 dB± 0.3 dB was achieved. By this
we have a higher improvement then 3 dB and can show an improvement compared
to no application of squeezed light. The measurements were mainly limited by
optical loss and a low darknoise clearance of the detector. By reducing these
limitations higher improvements are reachable. Technical noise on the carrier �eld
kept us from setting the signal frequency lower. By reducing this noise a lower
signal frequency is achievable. We suggest this scheme to be used in experiments
where a homodyne detection at low frequencies is not possible due to technical
limitations or the generation of squeezed states at these frequencies is not feasible.

The application of squeezed-states of light has been proven to decrease quan-
tum noise in gravitational-wave detectors. However, for achieving a broadband
quantum-noise reduction the squeezed quadrature needs to be rotated frequency-
dependently. So far, the implementation of cost-intensive, additional �lter cavities
with a length in the order of 100m is considered for this rotation. Ma et al. pro-
posed using the signal-recycling cavity together with an application of detuned
squeezed states and a conditional readout scheme with two balanced homodyne
detectors to avoid these cavities. In this work, I presented an experimental real-
ization of the proposed schemes in a table-top experiment. A 2.5m-linear cavity
emulated an interferometer cavity. Squeezed states were generated detuned to the
carrier frequency of the cavity. For the readout we built a bichromatic homodyne
detector. This allowed conditional measurements between the two local oscillators
with a single detector. We derived a mathematical model describing the measured
noise spectra that is based on the theory used in the proposal of Ma et al. In a
�rst measurement we set both local oscillators to be resonant for the cavity re-
sulting in frequency-independent noise spectra. Afterwards, we detuned the upper
local oscillator and introduced a frequency-dependent quantum noise comparable
to opto-mechanical coupling. The resulting noise spectra can be well explained
by our theoretical model. Due to the limitations of a table-top setup, we can
not directly show the in�uence of the opto-mechanical coupling to the rotation
of the squeezed-angle as expected in gravitational-wave detectors. By detuning
the lower local oscillator anti-symmetrically, we showed a compensation of the
frequency-dependent noise leading back to frequency-independent noise spectra.
By this we can show the potential of the proposal by Ma et al. Additionally,
this allows a broadband reduction of quantum noise in gravitational-wave detec-
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tors with a detuned signal-recycling cavity. In a fourth step, we detuned the
local oscillators symmetrically and achieved frequency-dependent noise spectra.
With this step we can show that the quantum correlations were retained over the
whole detection range. All measurements can be well explained by our theoretical
model. The measurements were mainly limited by the mode matching from the
interferometer cavity to the homodyne detection. With these results we performed
a proof-of-principle experiment the proposals of [Ma17] and [Br17] on table-top
scale and set the path towards further investigations into this technique. By an
implementation of these schemes in a GW-detector prototype, the compatibility
of the approach with a low-frequency suspended interferometer can be tested. Ad-
ditionally, in future experiments a focus needs to be put on the signal. Here, no
signal was introduced but in gravitational-wave detectors the readout angles need
to be optimized with respect to a given signal.
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APPENDIX A

Theoretical model of cavity-re�ected squeezed states

A.1 Calculations

This section gives a detailed theoretical description of the noise spectra of initially
frequency-independent squeezed states being re�ected o� a cavity and read out
by a bichromatic local oscillator. The formalism is similar to the description used
in [Ma17] and was derived by Mikhail Korobko.
The parametric down-conversion process, squeezing the phase quadrature of the

light �eld, transforms the input �eld at sideband frequencies ω ± Ω

d̂out(ω + Ω) = d̂in(ω + Ω) cosh r + d̂†in(ω − Ω) sinh r , (A.1)

d̂†out(ω − Ω) = d̂†in(ω − Ω) cosh r + d̂in(ω + Ω) sinh r . (A.2)

In terms of two-photon quadrature operators, de�ned by [Ca81]

d̂1(Ω) =
d̂(ω + Ω) + d̂†(ω − Ω)√

2
, d̂2(Ω) =

d̂(ω + Ω)− d̂†(ω − Ω)

i
√

2
(A.3)

the squeezing relation can be simply expressed as

d̂out,1(Ω) = d̂in,1(Ω)er, d̂out,2(Ω) = d̂in,2(Ω)e−r . (A.4)

In the case described in [Ma17] the frequencies of interest are not centered
around ω, but rather around two frequencies ω0 and ω0 + ∆. We can de�ne
new �elds â(ω0 + Ω′) ≡ d̂(ω − Ω) and b̂(ω0 + ∆ + Ω′) ≡ d̂(ω + Ω), and re-write
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equations (A.1) and (A.2) as

â(ω0 + Ω) = âin(ω0 + Ω) cosh r + b̂†in(ω0 + ∆− Ω) sinh r , (A.5)

â†(ω0 − Ω) = â†in(ω0 − Ω) cosh r + b̂in(ω0 + ∆ + Ω) sinh r , (A.6)

b̂(ω0 + ∆ + Ω) = b̂in(ω0 + ∆ + Ω) cosh r + â†in(ω0 − Ω) sinh r , (A.7)

b̂†(ω0 + ∆− Ω) = b̂†in(ω0 + ∆− Ω) cosh r + âin(ω0 + Ω) sinh r . (A.8)

These equations in terms of two-photon quadratures reduce to:[
â1(Ω)
â2(Ω)

]
= S

[
âin,1(Ω)

b̂in,2(Ω)

]
, (A.9)[

b̂1(Ω)

b̂2(Ω)

]
= S

[
b̂in,1(Ω)
âin,2(Ω)

]
, (A.10)

(A.11)

with the squeezing matrix de�ned as

S =

[
cosh r sinh r
cosh r − sinh r

]
. (A.12)

The transfer function of a cavity with natural half-width-half-maximum
linewidth γ for the frequency ω reads

d̂out(ω) = −ω − ωc − iγ
ω − ωc + iγ

d̂in(ω) , (A.13)

where ωc is the resonance frequency of the cavity. For the sidebands of the main
beam, that is detuned from the cavity resonance by δ it takes a form

d̂out(ω ± Ω) = −δ ± Ω− iγ
δ ± Ω + iγ

d̂in(ω ± Ω) = R(±Ω + δ)d̂in(ω ± Ω) , (A.14)

and in two-mode picture it is transformed into[
d̂out,1(Ω)

d̂out,2(Ω)

]
= R(Ω,δ)

[
d̂in,1(Ω)

d̂in,2(Ω)

]
, (A.15)

where we introduced a re�ection matrix

R(Ω,δ) =
2γ

(γ − iΩ)2 + δ2

[
γ − iΩ −δ
δ γ − iΩ

]
−
[
1 0
0 1

]
. (A.16)

With this de�nition in mind, and writing for simplicity the quadrature vector
as d̂(Ω) = {d̂1(Ω), d̂2(Ω)}T, we can write down the input-output relation in terms
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of quadratures

âout(Ω) = R(Ω,δ1)â(Ω) = R(Ω,δ1)S
[
âin,1(Ω)

b̂in,2(Ω)

]
, (A.17)

b̂out(Ω) = R(Ω,δ2)b̂(Ω) = R(Ω,δ2)S
[
b̂in,1(Ω)
âin,2(Ω)

]
. (A.18)

The homodyne detection with two LO beams of powers α,β is given by

y =
α√

α2 + β2
H(ζ)âout(Ω) +

β√
α2 + β2

H(χ)b̂out(Ω) , (A.19)

where the homodyne detection vector is H(φ) = {cosφ, sinφ},∀φ. When the
detection e�ciency is reduced, as modeled by a beam-splitter with power trans-
missivity η, the homodyne output is changed

ỹ =
√
ηy +

√
1− ηv , (A.20)

where v is vacuum noise.
We de�ne the spectral density of the �eld â(Ω) as

Sa(Ω)δ(Ω− Ω′) =
1

2
〈â(Ω)â(Ω′) + â(Ω′)â(Ω)〉 , (A.21)

and for vacuum �elds it's Sv(Ω) = 1. This allows us to �nally write down the
spectral density of the output signal as:

Sỹ(Ω) = 1− η+η
α2

α2 + β2
H(ζ)(Ω)R(Ω,δ1)SIS†R†(Ω,δ1)H(ζ)T+

+η
β2

α2 + β2
H(χ)(Ω)R(Ω,δ2)SIS†R†(Ω,δ2)H(χ)T+

+η
αβ

α2 + β2
H(ζ)(Ω)R(Ω,δ1)SIS†R†(Ω,δ2)H(χ)T+

+η
αβ

α2 + β2
H(χ)(Ω)R(Ω,δ2)SIS†R†(Ω,δ1)H(ζ)T , (A.22)

where I = {{1, 0},{0,1}} is the unity matrix. This gives the �nal spectral density:

Syy =1− η + η cosh(2r) + 2αβη sinh(2r)·[ (
γ4 + (δ2

1 − Ω2)(δ2
2 − Ω2)− γ2(δ2

1 + δ2
2 − 2Ω2 + 4δ1δ2)

)
cos(ξ)

+ 2γ(δ1 + δ2)(γ2 − δ1δ2 + Ω2) sin(ξ)
]
·[

γ4 + (δ2
1 − Ω2)(δ2

2 − Ω2) + γ2(δ2
1 + δ2

2 + 2Ω2)
]

(α2 + β2)(γ2 + (δ1 − Ω)2)(γ2 + (δ2 − Ω)2)(γ2 + (δ1 + Ω)2)(γ2 + (δ2 + Ω)2)
.

(A.23)

A.2 Mathematica notebook of the theoretical model
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Equations

T0p = -
W + ∆1 - ä Γ

W + ∆1 + ä Γ
;

T0m = -
-W + ∆1 + ä Γ

-W + ∆1 - ä Γ
;

Tp = -
W + ∆2 - ä Γ

W + ∆2 + ä Γ
;

Tm = -
-W + ∆2 + ä Γ

-W + ∆2 - ä Γ
;

ap = Cosh@rD ainp + Sinh@rD binm;

amd = Cosh@rD ainm + Sinh@rD binp;

bp = Cosh@rD binp + Sinh@rD ainm;

bmd = Cosh@rD binm + Sinh@rD ainp;

a1 =
1

2

HT0p ap + T0m amdL;

a2 =
1

ä 2

HT0p ap - T0m amdL;

b1 =
1

2

HTp bp + Tm bmdL;

b2 =
1

ä 2

HTp bp - Tm bmdL;

y =
Α

Α2 + Β2

Ha1 Cos@ΖD + a2 Sin@ΖDL +

Β

Α2 + Β2

Hb1 Cos@ΧD + b2 Sin@ΧDL �� FullSimplify;

Kap = Coefficient@y, 8ainp<D@@1DD �� FullSimplify;

Kam = Coefficient@y, 8ainm<D@@1DD �� FullSimplify;

Kbp = Coefficient@y, 8binp<D@@1DD �� FullSimplify;

Kbm = Coefficient@y, 8binm<D@@1DD �� FullSimplify;

y

1

2 Α2 + Β2

1

∆2
2 + HΓ - ä WL2

ã
-ä Χ

Β IIHΓ + ä ∆2L2
+ W

2M Hbinp Cosh@rD + ainm Sinh@rDL + ã
2 ä Χ

IHΓ - ä ∆2L2
+ W

2M Hbinm Cosh@rD + ainp Sinh@rDLM +

1

∆1
2 + HΓ - ä WL2

ã
-ä Ζ
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+ W

2M Hainp Cosh@rD + binm Sinh@rDL +

ã
2 ä Ζ IHΓ - ä ∆1L2

+ W
2M Hainm Cosh@rD + binp Sinh@rDLM



Resulting spectral density

Sd = HKap Kap­ + Kam Kam­ + Kbp Kbp­ + Kbm Kbm ­L Η + H1 - ΗL �� ComplexExpand ��
FullSimplify
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4
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2 I∆1

2
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2
+ 2 W

2MM
IIΓ
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2 I∆1
2
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2

- 2 W
2MM Cos@Ζ + ΧD +

2 Γ H∆1 + ∆2L IΓ
2

- ∆1 ∆2 + W
2M Sin@Ζ + ΧDM Sinh@2 rDM �

IIΑ
2

+ Β
2M IΓ

2
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2
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2
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