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Abstract—To analyse the reliability and durability of large 

complex structures such as high-rise buildings, most 

realistically, it is advisable to utilize site-specific load 

characteristics. Such load characteristics can be made 

available as data records, e.g. representing measured wind or 

earthquake loads. Due to various circumstances such as 

measurement errors, equipment failures, or sensor limitations, 

the data records underlie uncertainties. Since these 

uncertainties affect the results of the simulation of complex 

structures, they must be mitigated as much as possible. In this 

work, the Procrustes analysis, finding similarity 

transformations between two sets of points in n-dimensional 

space is used and is extended to uncertainties so that data 

records can be analysed regarding the uncertainty. To find the 

best matching of two sets of points the Kabsch algorithm is 

used. In this manner, a basis is created to simulate and assess 

the reliability of high-rise buildings under load due to wind 

and earthquakes. 
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I. INTRODUCTION 

High-rise buildings are subject to environmental 
processes such as wind and earthquake loads. In order to 
make predictions as to whether high-rise buildings withstand 
certain loads, it is necessary to record and analyse data of 
these environmental processes. Often, these data are subject 
to uncertainties, as the measuring instruments operate not 
accurately enough or are subject to other influences. 
Common reasons for uncertain or limited data include 
measurement errors and sensor limitation or equipment 
failure. In the case of measurement errors, the data is 
recorded incorrectly and is different from the actual data. 
Likewise, the sensors may have certain limitations and data 
can only be detected up to a certain threshold. If the 
equipment fails, parts or even the entire earthquake will not 
be recorded. Device failures can be caused by the 
environmental process itself. This results in missing data 
within the measurement series, which must be reconstructed.  

To quantify these uncertainties, more than just one sensor 
should be positioned in a high-rise building so that the data 
from different sensors can be compared and potential 
uncertainties can be detected and mitigated as much as 
possible. The comparison of two data sets results in an 
orthogonal Procrustes problem [1,2,3]. Two similar data sets 
are compared and adapted to each other as best as possible. 
Often, as in this work, the Kabsch algorithm [4,5] is used to 
solve the orthogonal Procrustes problem. The Kabsch 
algorithm finds a wide field of application. For example, it is 
used in depth restoration of images [6], shape analysis [7], 

noise compensation for speaker recognition [8], network 
intrusion detection [9] and calibration of laser sensors in 
mobile robotics [10]. 

In this work, the various influences that make the 
measured signals uncertain are examined in more detail. The 
influence of noise, missing data and rotated sensors are 
considered. First, the strength of the influence of these 
factors is determined and then a sensitivity analysis is 
performed. It determines which influences affect the results 
most and whether they distort the results too much. 

This work is organised as follows. Section II provides a 
general overview and set up of the problem and describes the 
Kabsch algorithm. Section III first shows the results of the 
influence of the factors which may disturb the measured 
data. These are noise, missing data and rotated sensors. Then, 
a sensitivity analysis is performed considering these factors. 
It is followed by the conclusion in Section IV. 

II. PROBLEM 

The load recording is based on two sensors positioned in 
a high-rise building on the same floor as shown in Fig. 1. 
Both sensors measure movement and displacement of the 
high-rise building during the earthquake. It is necessary to 
place two or more sensors, as it is not always possible to 
place just one sensor in the centre of the building due to 
obstacles such as columns or walls. To measure the 
displacement in the middle of the building, the measured 
data of the sensors are transformed into the middle via (1). 

Therefore, the distances x and y respectively between both 
sensors and the distances xl, xr, yt and yb between the sensors 
and the middle of the building must be known. 

 

 

Fig. 1. Setup of the Problem 
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  () 

Furthermore, to calculate the mode shape magnitude it is 
necessary to place sensors in more than just one storey. An 
example is depicted in Fig. 2. 

 

Fig. 2. Sensors on two storeys to calculate mode shape magnitude 

 
To calculate the mode shape magnitude from 3rd to 4th 

floor (2) is considered. In this equation ωx, ωy and ωθ are the 
natural frequencies. 

  () 

with i ϵ {x, y, θ}. 

Because of the reasons given in section I, the data often 
cannot be measured accurately enough, it is necessary to 
compare the measured data of the two sensors with each 
other to estimate the uncertainty. The comparison of the two 
signals of the sensors results in an orthogonal Procrustes 

problem, since the data is mapped to each other. For this, the 
Kabsch algorithm is often used, which is considered in more 
detail in the following section. 

A. Kabsch algorithm 

The orthogonal Procrustes problem is a matrix 
approximation problem in which the best orthogonal matrix 
R is found to map two sets of points. The approximation is 
according to  

    () 

To solve this problem the Kabsch algorithm is used to 
find the best approximation for the rotation matrix R based 
on the least root mean square. The algorithm is explained in 
the following. Given two sets of points X and Y with points xi 
and yi (i=1,…,N). For every point xi of X exists a 
corresponding point yi in Y. The algorithm starts with 
calculating the centroid for each of the two sets of points. 
The centroids of the points sets are shifted to the origin of the 
coordinate system. In the next step, the covariance matrix 
A=X̃TY͂ of the centred matrices X̃ and Y͂ is calculated. A 
singular value decomposition is applied to the covariance 
matrix A=VSWT to estimate the rotation matrix R. To ensure 
that the estimated rotation matrix R is according to a right-
hand-sided coordinate system the determinant d=det(WTV) 
has to be calculated. Then the estimation of the rotation 
matrix is 

  () 

for the two-dimensional case, which is considered in this 
work. Now, R can be applied to the centred set of point Y͂ and 
the two sets of points are mapped as best as possible. 

The Kabsch algorithm is subject to two limitations. First, 
if data is missing due to system errors, the data must be 
missing at the same point in time in both data sets. It is 

Fig. 3. Sensor motion in x- and y-direction and corresponding frequencies 
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necessary that the compared sets of points consist of the 
same number of data points, which obviously is not the case 
when data is missing. Second, the position of both sensors 
must be known for a correct reconstitution of the data in the 
centre. 

Because the sensors are independent from each other, 
there is no guarantee that the data will be missing in the same 
point in time. It is assumed that at least the time steps at 
which the data is missing are known and can be filled up, so 
that both data sets have the same number of data points. 
Then the Kabsch algorithm can be applied. The second 
limitation is not a problem in this work either, as the position 
of the sensors must be known anyway for the meaningful 
validation of the data. 

III. RESULTS 

In this chapter the influence on the reconstruction of the 
individual factors will be discussed and later a sensitivity 
analysis will be performed. The reconstruction is evaluated 
by the least root mean square error as shown in (5). 

  () 

Since the simulations were influenced by random, each 
simulation was performed 10000 times. From this, the mean 
µe and standard deviation σe were calculated to obtain 
meaningful results. Outliers thus have less influence. 

(6) are used as the measured signal in x- and y-direction 
for both sensors.  

 

 

 

  () 

with t = [0; 5],  t = 0.005. 

The signal is also shown in Fig. 3 with the corresponding 
frequencies for both directions. 

An example of the following calculations is depicted in 
Fig. 4, where the first sensor measured undisturbed data and 
the second sensor was rotated by angle φ. 

A. Influence of the individual factors 

First, the influence of noisy data is considered. After that, 
the missing data will be discussed. Finally, the influence of 
rotated sensors is determined. 

The level of noise is characterized as signal-to-noise ratio 
(SNR). The SNR describes the ratio between the power of a 
signal to the power of the background noise, thus 

  () 

 Since the noise was placed randomly on the data, each 
simulation was performed 10000 times and the mean and 
standard deviation were calculated. Initially, only one sensor 
was placed with noise and rotated by 20°. After applying the 
Kabsch algorithm, the error was determined. The results are 
shown in Fig. 5. It turns out that at a very low SNR the error 
is very high, and the results are poorly reconstructed. 
However, from an SNR of about 40, the influence of noise is 
limited. The error here is almost 0, while it converges to 0 
with increasing SNR. The same simulation was performed 
when both sensors were noisy. However, there were no 
significant differences from the previous results. 

Fig. 4. Two sensors and the corresponding measured motion 
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Fig. 5. Influence of noise 
 

To determine the influence of the missing data on the 
reconstruction, they were randomly removed at a sensor and 
compared to the original data after reconstruction. The 
missing data was reconstructed by calculating the mean of 
the adjacent data points. Since the reconstruction of the data 
points is independent of a rotation of the sensors, this was 
initially not considered. 

In the first step, only missing data was generated in one 
sensor. The number of missing data was increased, and the 
error measured. The results are shown in Fig. 6. The error 
increases almost linearly with the number of missing data 
points until the range of 700-750 missing data points is 
reached. From this point the error increases drastically. The 
data can thus be reconstructed up to of about 700 missing 
data points with a moderate error. Thus, it can also be said 
that the ratio of the number of missing to the number of all 
data points matters and the error is limited only by the 
calculation of the mean value up to a ratio of 70%. 

 

Fig. 6. Influence of missing data for one sensor 

 
In the second case, the data at both sensors were 

randomly removed, reconstructed over the mean of the 
adjacent data points, and the error calculated. The data are 

not necessarily missing at the same points in time. The 
results are shown in Fig. 7. Again, a high number of missing 
data hinders a good reconstruction. The error increases 
moderately with the number of missing data points. The 
reconstruction becomes too inaccurate after a number of 
about 750 missing data points. However, it should be noted 
that the missing data points of two sensors hardly influence 
each other. Thus, the error remains approximately the same 
at any number of missing data points of the first sensor as the 
missing data points in the second sensor are increased. Even 
if data points are missing in both sensors, the ratio of 70% is 
easy to reconstruct. 

 

Fig. 7. Influence of missing data for two sensors 

 

Next, the influence of the rotation angle on the 
reconstruction of the data is determined. Since the Kabsch 
algorithm already provides good reconstructions with a small 
error for a fixed angle, it is considered here how a time-
varying angle relates to the reconstruction using the Kabsch 
algorithm. In the first case, the data is rotated evenly over 
time. In a second case, it is considered how a time-varying 
angle relates to the reconstruction. This is particularly 
interesting considering the simulation of earthquakes. 

For the first case, the sensor was rotated evenly over the 
entire measurement period, until an angle of 20° was reached 
at the last point in time. These data were reconstructed using 
the Kabsch algorithm. The error of the data is only 0.1297. 
The results are shown in Fig. 8. 

For the second case, the change of the angle per time step 
was determined at random. In each time step, a random 
discrete uniformly distributed number between -3 and 3 was 
generated and added to the angle of the previous time step. 
Thus, the angle changes randomly over time, which is more 
realistic for the simulation of earthquakes. An example 
simulation is shown in Fig. 9. Since each of these 
simulations are influenced by random, it was performed 
10000 times. The mean value of these simulations is 0.5198 
with a standard deviation of 0.1983.  
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B. Sensitivity analysis 

In the following section, the individual influencing 
parameters described and analysed in the previous section 
are examined by Monte Carlo simulations and the error of 
reconstruction is calculated using the Kabsch algorithm in 
order to do a sensitivity analysis. First, the influences are 
examined individually, later all factors are applied together. 
For each Monte Carlo simulation 10000 calculations were 
performed and the mean µe and standard deviation σe of the 
least root mean squared error were calculated. In addition, 
first one sensor and then both sensors with the respective 
influences were disturbed for all factors. For this section the 
motion of the sensors is different from each other to make 
the problem more realistic. For the first sensor 

  () 

are used and for the second sensor 

  () 

with t = [0; 5], t = 0.005 are used.  

For this case it is obvious that a perfect reconstruction is 
impossible, and an error will remain even if there are no 
influences disturbing the sensors. 

First, the influence of noise with Monte Carlo simulation 
was examined. The signal-to-noise ratio, which was applied 
to the sensors, was determined with an exponentially 
distributed random variable with Parameter λ=0.05 as an 
SNR of 140 is high enough to observe no influence. In table 
1, the results are shown both in case of one sensor and in 
case both sensors were disturbed. It turns out that there are 
hardly any differences between the two cases. This is 
consistent with the results from section III A. 

The number and position of missing data was only 
simulated. The number was determined by an exponentially 
distributed random variable with parameter  

  () 

with N as the total number of data points. The position in 
the data record at which the data is missing was determined 
by discrete uniform distributed random variables. Before 
measuring the error, the missing data points are reconstructed 
via the mean value of the adjacent data points. The results 
are shown in table 1. 

The first case of the rotated sensors, where a sensor is 
evenly rotated over time, is not considered here since it is 
deterministic. For the second case, where the sensors rotate 
randomly due to the earthquake ground motion, the results 
are shown in table 1. For this case the change of the angle to 
the previous time step is determined by a normally 
distributed random variable with the parameters µe=0 and 
σe=2. 

Fig. 8. Influence of evenly rotated sensors 
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As the last simulation, all influencing factors were 
applied in combination. For the generation of the individual 
influences, the same types of random variables with the same 
parameters were used as in the previous simulations. The 
results are shown in table 1. 

TABLE 1:  RESULTS OF THE SENSITIVITY ANALYSIS 

 
# disturbed 

sensors 
µe σe 

Noise 
1 0.3419 0.0729 

2 0.3453 0.1033 

Missing 

Data 

1 0.3501 0.062 

2 0.3673 0.0921 

Rotation 
1 0.6795 0.1971 

2 0.8763 0.2693 

All 

factors 

1 0.6866 0.2059 

2 0.8845 0.2789 

IV. CONCLUSION 

As the results in section III A show, the noise produces 
the smallest error. Only with an extremely poor SNR the 
error is too big, so that the data cannot be used. The error 
converges very fast to 0 with increasing SNR. In addition, 
the error behaves regardless of whether one or two sensors 
are noisy. 

The reconstruction is relatively robust against a high 
number of missing data. Since these are reconstructed with 
the mean value of the adjacent data points, records can 
contain up to 70% missing data while the error is in a 
moderate range. Only when the number of missing data is 
higher, the error rises sharply, and the measurements cannot 
be used. The limit of 70% missing data was shown for one as 
well as two sensors. 

With a sensor that rotates evenly over time, only a small 
error is calculated. The larger the angle in the last time step, 
the bigger the error becomes. Since this case is rather 
unrealistic, this was done here for the angle of 20° as an 
example. A more realistic example is the second case 
considered. The error is higher for this case, which is due to 
the fact that there can be a higher variation in the change of 
the angle. In addition, there can be significant outliers. 

To make the problem more realistic, two slightly 
different signals were generated for a sensitivity analysis in 
section III B. The signals were disturbed by the respective 
factors and the error was calculated. 

Here, too, the noise and the missing data have a much 
smaller influence on the reconstruction than the rotation of 
the sensors. While it hardly makes a difference in the noise 
or the missing data, if one or both sensors are disturbed, a 
much larger difference can be seen in the rotation of sensors. 

If all factors are applied at the same time, the mean and 
standard deviation is similar, as with the rotated sensors. This 
means that the rotated sensors have the biggest impact on the 
error and the other two tend to be negligible. All in all, the 
error in rotated sensors or applying all factors at the same 
time is quite large, but a use of the measured data for the 
analysis of the lifetime of high-rise buildings is possible. Due 
to the calculated standard deviations, different variations of 
the mean value can be used for simulations. 

In this work the problem was first described and the used 
Kabsch algorithm explained. Thereafter, the influence of 
each factor was carried out. A sensitivity analysis followed, 
in which the factors were presented realistically. Most 
recently, the results were interpreted. 
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