Photokatalytische Wasserreinigung an Elektroden von Wolframtrioxid

Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades

Doktor der Naturwissenschaften

(Dr. rer. nat.)

genehmigte Dissertation

von

Christoph Haisch, M. Sc.

2019

Referent: Prof. Dr. rer. nat. Detlef W. Bahnemann Korreferent: Prof. Dr. rer. nat. Jürgen Caro Tag der Promotion: 23.05.2019

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die mich beim Erstellen dieser Doktorarbeit unterstützt haben.

Mein besonderer Dank gilt Prof. Dr. Detlef Bahnemann für die intensive Betreuung und Begleitung während meiner Promotionszeit. Außerdem danke ich ihm für die hilfreichen Diskussionen und Anregungen.

Bei Prof. Dr. Jürgen Caro bedanke ich mich herzlich für die Übernahme des Korreferats bei meiner Doktorarbeit.

Prof. Dr. Thomas Scheper danke ich für die Möglichkeit in der sehr angenehmen Atmosphäre des Instituts für Technische Chemie promovieren zu können.

Meinen Studenten Agate Broda und Carsten Günnemann danke ich für ihre tatkräftige Unterstützung bei der Durchführung experimenteller Arbeiten und die gute Zusammenarbeit.

Mein besonderer Dank gilt meinen Kollegen im Arbeitskreis Bahnemann und im Arbeitskreis Scheper für schöne Zeit am TCI, die ich nie vergessen werde. Insbesondere danke ich hier meinen Besten aus der Bib Original.

Meinen Eltern Hiltrud und Joachim Haisch danke ich vielmals für die finanzielle und emotionale Unterstützung während des gesamten Studiums. Meiner Mutter danke ich hier insbesondere für den Rückhalt und die Unterstützung auf die ich mich während meines gesamten Werdegangs immer verlassen konnte. Außerdem möchte ich mich herzlich bei Erwin, Katja, Marlis, Celia, Adolf, Katharina, Peter und meiner Patentochter Penelope bedanken.

Zum Abschluss möchte ich mich bei meiner Frau Theresa bedanken, der ich diese Doktorarbeit widme. Der Dank, den ich Dir gegenüber empfinde, ist schwer in Worte zu fassen. Du bist seit über 11 Jahren an meiner Seite und ich konnte immer auf dich zählen. Ohne deine Unterstützung wäre ich nicht so weit gekommen. Du hast mich zu einem besseren Menschen gemacht und dafür möchte ich mich bei dir bedanken!

Kurzfassung

Die weltweite industrielle Entwicklung sowie der gesteigerte Energiebedarf liefern einen entscheidenden Beitrag zur Erhöhung der CO₂-Emission in die Atmosphäre und zum globalen Klimawandel. Daher ist es nötig eine Energie-Infrastruktur mit geringerem CO₂-Ausstoß zu etablieren. Eine wesentliche Rolle als regenerative Energiequelle kann dabei die Sonne spielen. Um die Sonnenergie nutzbar machen zu können, wurden im Rahmen dieser Arbeit solaraktive Wolframtrioxid-Photoelektroden für ein Verfahren untersucht, bei welchem mithilfe von photogenerierten Ladungsträgern Schadstoffe aus dem Wasser abgebaut werden und simultan Wasserstoff als Energieträger erzeugt wird. Um diese duale Nutzung des Sonnenlichts zu ermöglichen, wurden die photokatalytisch aktiven WO₃-Elektroden auf ihre physikalischen, optischen und photoelektrochemischen Eigenschaften untersucht.

Neben den Eigenschaften der Photoelektroden wurden auch verschiedene Beschichtungsverfahren untersucht. Es konnte gezeigt werden, dass mithilfe des Kaltgasspritzens als Beschichtungstechnik chemisch stabile Halbleiterfilme von WO3 auf Titanmetallsubstraten ohne Verwendung eines Additivs oder Binders produziert werden können. Die so hergestellten WO₃/Ti-Photoelektroden wurden mit einer Reihe von verglichen. Dabei kamen das Siebdruckverfahren anderen Elektroden als Vergleichsmethode zur Elektrodenbeschichtung und der kommerzielle Photokatalysator TiO₂ P25/20 als Benchmark-Halbleitermaterial zum Einsatz.

Bezüglich der photoelektrochemischen Aktivitäten für den Abbau von Methanol als Modellschadstoff wurde gefunden, dass die höchsten anodischen Photoströme der WO₃-Photoelektroden in einem Potentialbereich von 0,6 - 1,6 V vs. NHE erreicht werden. Wird keine oder eine niedrigere externe Spannung an die Zelle angelegt, sind jedoch die TiO₂-Photoanoden aktiver für die Methanoloxidation. Der größte Vorteil von WO₃ gegenüber TiO₂ zeigte sich bei der Effizienz zur Nutzung der Sonnenenergie (nach AM 1.5G). Die Absorptionskante von WO₃ ist um ca. 70 nm zu längeren Wellenlängen verschoben, weshalb mehr Photonen des Sonnenlichts für den photoelektrochemischen Methanolabbau genutzt werden können.

Zusätzlich wurden die Produkte des photoelektrochemischen Abbaus von Methanol untersucht. Dabei konnte Wasserstoff als das einzige Reduktionsprodukt der photoelektrochemischen Zelle, bestehend aus einer WO₃-Photoanode und einer Pt-Gegenelektrode, quantitativ nachgewiesen werden. Auf der Seite der Oxidationsprodukte konnten Formaldehyd, Ameisensäure und CO₂ als Produkte des Methanolabbaus gefunden werden. Außerdem konnten insgesamt 29 % der Stromdichte in der photoelektrochemischen Zelle der Wasseroxidation zu Sauerstoff zugeordnet werden (FARADAY'sche Effizienz), die bei dem Methanolabbau damit die wichtigste Konkurrenzreaktion darstellt.

Stichworte: Wolframtrioxid, Photokatalyse, Photoelektrochemie, Abwasserreinigung, Sonnenergie, Wasserstoffproduktion, Kaltgasspritzen.

Abstract

The global industrial development, accompanied by concomitant rises in atmospheric CO_2 levels has triggered a global climate change on Earth. As worldwide energy demand also increases steadily due to human population growth, it is necessary to create an energy infrastructure with lower CO_2 emissions. As part of the solution, mankind needs to exploit the solar energy as a regenerative energy source. In order to convert photon energy into chemical energy solar light active cold gas sprayed photoelectrodes made of tungsten trioxide were investigated. These photoelectrodes were tested for a process, in which photogenerated charge carriers decompose organic pollutants in water, and simultaneously generate hydrogen as an energy carrier. To enable this dual use of sunlight, photocatalytically active WO_3 electrodes were investigated for their physical, optical and photoelectrochemical properties.

Besides the study of the photoelectrode properties different electrode coating techniques have been investigated. Within the scope of this work it was shown that the coating technique of cold gas spray produces chemically stable semiconductor films on titanium metal substrates without the use of an additive or binder. These WO₃/Ti photoelectrodes were compared with a series of other electrodes. The screen printing technique was used as a different method for electrode coating and the commercial photocatalyst TiO₂ P25/20 was employed as benchmark semiconductor material.

With regard to the photoelectrochemical activities for the degradation of methanol as a model pollutant, the highest anodic photocurrents were found for the WO₃ photoelectrodes in a potential range of 0.6 - 1.6 V vs. NHE. If no or lower external voltage is applied to the cell, the TiO₂ photoanodes are more active for the methanol oxidation. The biggest advantage of WO₃ in comparison to TiO₂ was found by the analysis of the photoelectrochemical efficiency under solar irradiation (AM 1.5G). The absorption edge of WO₃ is shifted by about 70 nm to longer wavelengths. This means that twice as many photons of sunlight can be used for the photoelectrochemical degradation of methanol.

Additionally, the products of the photoelectrochemical degradation of methanol were investigated. Hydrogen was quantitatively detected as the only reduction product of the photoelectrochemical cell consisting of a WO₃ photoanode and a Pt counter electrode. As oxidation products of methanol degradation, formaldehyde, formic acid and CO₂ were found. In addition, 29 % of the current density in the photoelectrochemical cell could be attributed to water oxidation to oxygen (FARADAY efficiency), which reveals as the most important side reaction in methanol degradation.

Keywords: Tungsten trioxide, photocatalysis, photoelectrochemistry, waste water treatment, solar energy, hydrogen production, cold gas spray.

Abkürzungsverzeichnis

ABPE	Photostromeffizienz unter externem Potential (engl. "Applied Bias Photon		
	to Current Efficiency")		
ad.	adsorbiert		
AOP	Erweiterte Oxidation (engl. "Advanced Oxidation Process")		
AM 1.5G	Standardisiertes Sonnenspektrum (engl. "Air Mass 1.5 Global")		
CA	Chronoamperometrie		
CLV	engl. "Chopped Light Voltammetry"		
CV	Cyclovoltammetrie		
DDL	Diacetyldihydrolutidin		
DLS	Dynamische Lichtstreuung (engl. "Dynamic Light Scattering")		
DMFC	Direkt-Methanol-Brennstoffzelle (engl. "Direct Methanol Fuel Cell")		
et al.	und andere (lat. "et alii" bzw. "et aliae")		
FID	Flammenionisations-Detektor		
FTO	Fluor-dotiertes Zinnoxid (engl. "Fluorine Tin Oxide")		
HER	Wasserstoffentwicklungsreaktion (engl. "Hydrogen Evolution Reaction")		
2-HTA	2-Hydroxyterephthalsäure		
ICCD	engl. "International Centre for Diffraction Data"		
ICP-OES	Optische Emissionsspektroskopie mittels induktiv gekoppelten Plasmas		
	(engl. "Inductively Coupled Plasma Optical Emission Spectrometry")		
IPCE	Photostromeffizienz (engl. "Incident Photon to Current Efficiency")		
ITO	Indiumzinnoxid (engl. "Indium Tin Oxide")		
IR	Infrarotes Licht		
LED	Leuchtdiode (engl. ,,Light Emitting Diode")		
LEI	engl. "Lower Secondary Electron Image"		
LUMO	niedrigstes unbesetztes Molekülorbital (engl. "Lowest Unoccupied		
	Molecular Orbital")		
MID	engl. "Multiple Ion Detection"		
MS	Massenspektrometrie		
MSE	Quecksilbersulfatelektrode (engl. "Mercury sulfate electrode")		
NHE	Normal-Wasserstoffelektrode (engl. "Normal Hydrogen Electrode")		
NIST	engl. "National Institute of Standards and Technology"		
OER	Sauerstoffentwicklungsreaktion (engl. "Oxygen Evolution Reaction")		
ORR	Sauerstoffreduktionsreaktion (engl. "Oxygen Reduction Reaction")		
PEC	Photoelektrochemie		
REM	Rasterelektronenmikroskopie		
SEI	Sekundärelektronenbild (engl. "Secondary Electron Image")		
SEV	Sekundärelektronenvervielfacher		
STH	engl. "Solar to Hydrogen (Efficiency)"		
TA	Terephthalsäure		
TCO	Transparentes leitfähiges Oxid (engl. "Transparent Conductive Oxide")		
TGA	Thermogravimetrische Analyse		

UV	Ultraviolettes Licht
VIS	Sichtbares Licht
VS.	gegen (lat. "versus")
XRD	Röntgendiffraktometrie (engl. "X-ray Diffraction")

Physikalische Konstanten und Formelzeichen

Α	Beschichtungsfläche (cm ²)
С	Lichtgeschwindigkeit (299792458 m/s)
С	Kapazität (F/cm ²)
C_{RLZ}	Raumladungskapazität (F/cm ²)
d	Schichtdicke (µm)
d_{hkl}	Abstand der Netzebenen (Å)
d_{RLZ}	Ausdehnung der Raumladungszone (µm)
D	Donormolekül
e	Elementarladung (1,602176487 \times 10 ⁻¹⁹ C)
e	Elektron
Ε	Potential/ Spannung (V)
E_{BL}	Bandlückenenergie (eV)
E_F	FERMI-Energie (V vs. NHE)
E_{FB}	Flachbandpotential (V vs. NHE)
E_{LB}	Energie der Leitungsbandkante (V vs. NHE)
E_{LUMO}	Energie des LUMO (V vs. NHE)
E_{PA}	Photostrom-Anfangspotential (V vs. NHE)
E_R	Redoxpotential (V vs. NHE)
E_{VB}	Energie der Valenzbandkante (V vs. NHE)
EA_{HL}	Elektronenaffinität des Halbleiters (eV)
F	FARADAY-Konstante (96485,3399 C/mol)
ΔG	Freie Reaktionsenthalpie (kJ/mol)
h	PLANCK'sches Wirkungsquantum (6,62606896 $\times 10^{-34}$ J s)
h^+	Elektronenloch/ Loch
Ι	gemessener Strom (mA)
<i>j</i> Ph	Photostromdichte (mA/cm ²)
Κ	Gleichgewichtskonstante
k _B	BOLTZMANN-Konstante (1,3806504 \times 10 ⁻²³ J/K)
L_{h+}	Lochdiffusionslänge (µm)
т	Steigung der Regressionsgeraden (cm ⁴ /F ² V)
m_e	Elektronenmasse (9,10938215 \times 10 ⁻³¹ kg)
m_e^*	effektive Masse der Elektronen (kg)
n	Stoffmenge (mol)
n_{e-}	Parameter für Elektronenübergang
n_{hkl}	Anzahl der Netzebenen

N_A	Avogadrozahl (6,02214179 × 10^{23} mol ⁻¹)
N_D	Donordichte (cm ⁻³)
N_{LB}	effektive Zustandsdichte im Leitungsband (cm ⁻³)
P _{mono}	monochromatische Lichtleistung (mW/cm ²)
P _{Solar}	Lichtleistung der Sonne bzw. des Solarsimulators (mW/cm ²)
Q	Ladungsmenge (C)
R_{∞}	diffuses Reflexionsvermögen
t	gemessene Zeit (s)
Т	Temperatur (K)
V_{ex}	angelegte (externe) Spannung (V vs. NHE)
W	Breite der Raumladungszone (µm)
Z.	Ladungszahl/ Zahl ausgetauschter Elektronen
α	optische Absorptionstiefe (µm)
\mathcal{E}_0	elektrische Feldkonstante (8,854187817 × 10^{-12} F/m)
EHL	stoffspezifische Dielektrizitätskonstante
η_{EF}	FARADAY'sche Effizienz
θ	Beugungswinkel (rad)
λ	Wellenlänge (nm)
μ_{h+}	Mobilität der Löcher (cm²/V s)
v	Wellenzahl (cm ⁻¹)
ρ	Dichte (g/cm ³)
${\it \Phi}_{\it B}$	Potentialbarriere (eV)
${\it \Phi}_M$	Austrittsarbeit des Metalls (eV)

Inhaltsverzeichnis

Kurzfassung	II
Abstract	III
Abkürzungsverzeichnis	V
1. Einleitung und Zielsetzung	3
2. Theoretische Grundlagen	6
2.1 Wolframtrioxid als Photokatalysator	6
2.2 Metall-Halbleiter-Kontakt	8
2.3 Halbleiter-Elektrolyt-Grenzfläche	11
2.4 Photoelektrochemie	15
2.5 Mehrelektronentransferkatalyse	
2.6 Mechanismus der Methanoloxidation	19
2.7 Stand der Technik	22
3. Experimenteller Teil und Methoden	25
3.1 Herstellung der Halbleiterfilme	25
3.2 Röntgendiffraktometrie (XRD)	27
3.3 Brunauer-Emmett-Teller Messung (BET)	
3.4 UV/VIS-Spektroskopie	
3.5 Rasterelektronenmikroskopie (REM)	29
3.6 Impedanzspektroskopie und Mott-Schottky-Auftragungen	29
3.7 Photoelektrochemische Experimente (PEC)	
3.8 Hydroxylradikal-Bestimmung	
3.9 Formaldehyd-Bestimmung	
4. Ergebnisse	
4.1 Struktur und Eigenschaften des WO ₃ Pulvers	
4.1.1 Kristallstruktur und Reinheit	
4.1.2 Physikalische Eigenschaften des Pulvers	
4.1.3 Optische Eigenschaften des Pulvers	
4.1.4 Photokatalytische Aktivität des Pulvers	40
4.2 Struktur und Eigenschaften der WO ₃ Elektroden	41
4.2.1 Kristallstruktur der Elektroden	41
4.2.2 Morphologie und Schichtdicke	

4.2.3 Optische Eigenschaften der Elektroden46
4.2.4 Elektrochemische Eigenschaften der Elektroden48
4.3 Photoelektrochemischer Abbau von Methanol51
4.3.1 Messungen des Photostroms52
4.3.2 Bestimmung der potentialabhängigen Hydroxylradikalbildung61
4.3.3 Photoneneffizienz für den Methanolabbau64
4.3.4 Bestimmung der Formaldehydbildung im luftgesättigten System68
4.4 Produktanalyse des photoelektrochemischen Methanolabbaus71
4.4.1 Bestimmung der Formaldehydbildung unter Luftausschluss
4.4.2 Bestimmung der gasförmigen Produkte unter Luftausschluss73
4.5 Untersuchungen in einer 2-Elektroden-Photoelektrolysezelle82
5. Diskussion
5.1 Mechanismus der anodischen Oxidation von Methanol86
5.1.1 Photoelektrochemischer Abbau von Methanol86
5.1.2 Vergleich mit der Elektrooxidation von Methanol
5.2 Einfluss der Metall-Halbleiter-Grenzflächen92
5.2.1 Einfluss der Metall-Halbleiter-Grenzflächen auf die Aktivität der Photoelektrode
5.2.2 Einfluss des Metallsubstrats auf die Eigenschaften der Photoelektroden97
5.3 Bewertung und Vergleich der Aktivität der WO ₃ -Photoelektroden
5.3.1 Vergleich mit Titandioxid-Photoelektroden
5.3.2 Vergleich mit Wolframtrioxid-Photoelektroden aus der Literatur103
5.3.3 Effizienzen für die solare Wasserstoffproduktion
6. Zusammenfassung und Ausblick107
7. Literaturverzeichnis
8. Anhang128
9. Publikationsliste
10. Lebenslauf

1. Einleitung und Zielsetzung

Die Zukunft der Menschheit ist untrennbar mit Energie verknüpft. Unsere gesamte moderne Industrie und Gesellschaft basiert auf der Umwandlung von chemischer Energie aus fossilen Rohstoffen in Arbeit, Wärme und Kohlenstoffdioxid. Mit immer weiter steigenden Umsatzraten werden die fossilen Energieträger vom Menschen ausgebeutet, was zu steigenden CO₂-Konzentrationen in der Atmosphäre führt und damit einen Klimawandel einleitet, der die Zukunft des Lebens auf der Erde bedroht.^{1,2} Außerdem wird der internationale Bedarf an Energie in den kommenden 20 Jahren von derzeit rund $1,48 \times 10^5$ TWh pro Jahr auf etwa $2,02 \times 10^5$ TWh jährlich ansteigen, was die Erschließung neuer Energiequellen erforderlich macht.³ In diesem Sinne ist es die Aufgabe der Wissenschaft realisierbare Wege für die Entwicklung einer Energie-Infrastruktur mit weniger CO₂-Emission zu schaffen. Als Teil dieser Lösung ist es nötig, die $1,07 \times 10^9$ TWh Solarenergie, die jährlich auf unsere Erde treffen, als Energiequelle zu nutzen.¹ Im Kontext bedeutet diese Energiemenge, dass die Sonne in einer Stunde mehr Energie liefert, als weltweit in einem Jahr verbraucht wird.⁴

Gleichzeitig sorgt das globale Bevölkerungswachstum für eine weltweite Verknappung von unbelasteten Wasserressourcen. Seit den fünfziger Jahren hat sich der Wasserbedarf der Erdbevölkerung verdreifacht.⁵ Aus diesem Grund ist die Entwicklung neuer Verfahren, welche in der Lage sind die Sonnenenergie zu nutzen um zukünftige Energieund Wasserprobleme simultan zu lösen, von essentieller Bedeutung für eine nachhaltige Gesellschaft. Die photoelektrochemische Abwasserreinigung ist hierbei ein mögliches Verfahren. Der Ansatz dieser Arbeit sieht vor, organisch belastete Abwässer zu reinigen und gleichzeitig den chemischen Energieträger Wasserstoff als so genannten "*solar fuel*" zu erzeugen.^{1,6} Auf diese Weise genutzt, sind photoelektrochemische Zellen eine Speichertechnologie für Solarenergie, um diese auch in Perioden mit verringerter Sonneneinstrahlung verfügbar zu machen.

Dementsprechend gab es nach der Beschreibung der ersten photoelektrochemischen Zelle von FUJISHIMA und HONDA aus dem Jahr 1972 eine Vielzahl an wissenschaftlichen Publikationen in dem Themenbereich der Photoelektrochemie.^{7–14} Häufig wurden dabei n-Halbleiter als Photoanoden für die Sauerstoffentwicklungsreaktion und Platin als Kathode für die Wasserstoffentwicklungsreaktion eingesetzt.¹⁵ Als n-dotiertes Halbleitermaterial für die Photoanode hat sich Titandioxid (TiO₂) als Benchmark-Photokatalysator herauskristallisiert, welcher schon in der ersten photoelektrochemischen Zelle von FUJISHIMA und HONDA eingesetzt wurde.^{7,16,17}

Allerdings hat TiO₂ den Nachteil, dass die Bandlücke der photoelektrochemisch aktivsten Modifikation Anatas (3,2 eV) so groß ist, dass die Nutzung des sichtbaren Lichts, mit einem Energieinhalt von 43 % des Sonnenspektrums, für die Photokatalyse nicht möglich ist.¹⁸ Mit einer Bandlücke im sichtbaren Bereich des Lichts (2,1 eV) und als n-dotiertes Halbleitermaterial würde sich Hämatit (α-Fe₂O₃) ideal für die photoelektrochemische Anwendung unter Solarlicht eignen. In der praktischen Anwendung ist die photokatalytische Aktivität von Hämatit allerdings aufgrund einiger ungünstiger intrinsischer Eigenschaften gering. Dazu gehören eine niedrige elektrische Leitfähigkeit, und eine geringe Diffusionslänge für Elektronenlöcher geringer ein

Absorptionskoeffizient im spektralen Bereich des sichtbaren Lichts.^{19–21} Als ein weiteres alternatives n-dotiertes Anodenmaterial bietet sich Wolframtrioxid (WO₃) an, welches 1976 erstmals von HODES als Photoelektrode getestet wurde.^{22,23} Mit einer Bandlücke von 2,6 eV ist es ebenfalls in der Lage, sichtbares Licht bis zu einer Wellenlänge von ≤ 470 nm zu absorbieren.¹¹ Darüber hinaus weisen die Elektronenlöcher im WO₃ eine höhere Mobilität als die Löcher im TiO₂ auf.²⁴ Aufgrund dieser vielversprechenden Eigenschaften wurden WO₃-Elektroden schon zum photoinduzierten Abbau von umweltgefährdenden Substanzen wie Methanol verwendet.^{25–27} Die Untersuchung von Photoanoden zur Wasseraufreinigung ist von hohem wissenschaftlichen Interesse, weil organische Schadstoffe über photokatalytische Reaktionen vollständig mineralisiert werden können.²⁸ Dabei werden diese Schadstoffe durch die stark oxidativen Eigenschaften der Elektronenlöcher auf eine umweltfreundliche Art der Katalyse bei Raumtemperatur und mit Sonnenlicht als einzige Energiequelle abgebaut.^{17,29}

Die hier vorgelegte Doktorarbeit hat zum Ziel, kaltgasgespritzte WO₃-Photoanoden auf optischen und photoelektrochemischen Eigenschaften zu ihre physikalischen, untersuchen. Die WO3-Photoelektroden sollen dabei auf ihre Verwendbarkeit für die Anwendung in einer photoelektrochemischen Elektrolysezelle getestet werden. In dieser Zelle sollen Schadstoffe aus dem Abwasser oxidativ an der Photoanode mithilfe von photogenerierten Löchern zersetzt werden, während auf der Kathodenseite reduktiv Wasserstoff als Energieträger an einer Platinelektrode erzeugt wird. Die beiden Halbzellen sind durch eine Kationenaustauschermembran voneinander getrennt. Dadurch ist ein sauerstofffreies Arbeiten im Kathodenraum bei gleichzeitigem Einsatz von Luftsauerstoff als notwendiges Oxidationsmittel im Anodenraum möglich. Weitere Vorteile sind, dass die Rückreaktion von Wasserstoff und Sauerstoff in der photoelektrochemischen Elektrolysezelle durch die räumliche Auftrennung von Oxidations- und Reduktionsreaktion unterbunden wird und der entstehende Wasserstoff an der Platinelektrode ohne eine kostenaufwendige Gastrennung aus dem Kathodenraum gewonnen werden kann. Auf diese Weise werden in beiden Halbzellen der photoelektrochemischen Zelle technisch und ökologisch sinnvolle Prozesse durchgeführt.

Im Rahmen dieser Arbeit wird Methanol als organischer Modellschadstoff zur Simulation von Abwässern verwendet, da der photokatalytische Abbaumechanismus von Methanol aus der Literatur bekannt und somit ein Vergleich mit den Erkenntnissen aus dieser Arbeit Dazu werden die Abbauprodukte der photoelektrochemischen möglich ist. Methanoloxidation an den WO₃-Photoelektroden mithilfe von geeigneten Analysemethoden detektiert und die Photostromausbeuten bestimmt. Die erhaltenen Ergebnisse über die Aktivität von Kaltgaselektroden werden dann im Anschluss mit den Effizienzen von anderen Photoelektroden aus der Literatur verglichen.

Zur Herstellung der Photoelektroden mit einem WO₃-Film auf Titanmetall wurde die Methode des Kaltgasspritzens eingesetzt, da dieses Verfahren es ermöglicht Photoelektroden in einem technischen Maßstab für eine mögliche Anwendung zu produzieren. Diese Beschichtungstechnik hat den Vorteil, dass die Halbleiterpartikel ohne zusätzliches Bindemittel auf den Rückkontakt der Elektrode aufgebracht werden können, was den elektrischen Kontakt zwischen dem Halbleiter und dem Substrat verbessert.^{30,31} Um die Ergebnisse der kaltgasgespritzten WO₃-Photoelektroden besser vergleichen zu können, wurde der Siebdruck als zweite Beschichtungsmethode gewählt. Außerdem wurden TiO₂-Photoelektroden mit dem kommerziellen Photokatalysator P25/20 mit beiden Beschichtungstechniken hergestellt und ebenfalls untersucht.

Zu Beginn der Arbeit stehen die wichtigsten physikalischen und optischen Eigenschaften der kaltgasgespritzten WO3-Elektroden im Fokus der Untersuchungen. Mithilfe der photoelektrochemischen Methanoloxidation wird im Anschluss direkt untersucht, ob sich die Photoelektroden für den Abbau von Schadstoffen eignen. Dazu werden auch die photoelektrochemischen Effizienzen und die Produktausbeuten der Methanoloxidation bestimmt. In diesem Zusammenhang werden die Bildungsraten der gasförmigen Produkte photoelektrochemischen Zelle untersucht. Des Weiteren ist neben der der photoelektrochemischen Aktivität auch das Verständnis der ablaufenden Prozesse auf der Halbleiterelektrode von Interesse, um dem Abbaumechanismus von Methanol folgen zu können. Zudem werden die erhaltenen Ergebnisse mithilfe der publizierten Daten von verglichen, einen Zusammenhang anderen Autoren um zwischen der photoelektrochemischen Aktivität und den Eigenschaften der Photoelektroden herzustellen.

2. Theoretische Grundlagen

In diesem Kapitel werden die für diese Arbeit notwenigen theoretischen Grundlagen erläutert und zusammengefasst. Dabei wird im ersten Abschnitt zunächst auf Wolframtrioxid als Photokatalysator eingegangen und die chemischen und physikalischen Eigenschaften des Materials erläutert. Anschließend werden Metall-Halbleiter-Kontakte, sowie Halbleiter-Elektrolyt-Grenzflächen beschrieben, wobei der Fokus jeweils auf n-Halbleitern liegt. Zum Abschluss des Kapitels werden die photoelektrochemischen Reaktionsprozesse der Methanoloxidation erläutert und auf den aktuellen Stand der Technik eingegangen.

2.1 Wolframtrioxid als Photokatalysator

Wolframtrioxid (WO₃) ist eine Verbindung aus Wolfram und Sauerstoff, die in der Natur in Form ihrer Hydrate Tungstit, Elsmoreit und Meymacit vorkommt. Amorphes WO₃ durchläuft bei Temperaturen oberhalb von 315 °C einen irreversiblen Phasenübergang zur kristallinen Phase. Die genaue Struktur von kristallinem WO₃ ist temperaturabhängig. Bei Temperaturen von – 50 – 17 °C liegt es in einer triklinen, bei 17 – 330 °C in einer monoklinen, bei 330 – 740 °C in einer orthorhombischen und bei über 740 °C in einer tetragonalen Kristallstruktur vor.³² Die Schmelztemperatur von WO₃ liegt bei 1473 °C. Bei Raumtemperatur ist Wolframtrioxid ein grün-gelber Feststoff, der monoklin in der Raumgruppe $P2_1/n$ vorliegt.³³ Die Struktur des monoklinen γ -WO₃ ist in Abbildung 1 dargestellt und weist eine verzerrte Perowskit-Struktur AMO₃ mit einem unbesetzten Zentralatom A auf. Das von der zentralen Position leicht verschobene Wolframatom ist oktaedrisch von sechs Sauerstoffatomen koordiniert. Die entsprechenden WO₆-Oktaeder sind eckenverknüpft.

Abbildung 1: Kugel-Stab-Modell von monoklinem γ -WO₃. Die Elementarzelle ist durch die schwarzen Linien dargestellt. Das Volumen der Elementarzelle ist V = 423,2 Å³ mit a = 7,301 Å, b = 7,539 Å, c = 7,689 Å, $\alpha = \gamma = 90^{\circ}$ und $\beta = 90,9^{\circ}.^{34,35}$ Das Modell wurde aus Quelle 36 adaptiert (Copyright IOP Publishing).³⁶

Wolframtrioxid ist in Säuren unlöslich, kann aber mit Laugen zu Wolframaten reagieren. Bereits ab einem pH-Wert von > 4 ist WO₃ in wässriger Lösung nicht mehr stabil und sollte daher in saurem Medium als Photokatalysator verwendet werden.³⁷ Der Stabilitätsbereich von WO₃ in wässriger Lösung ist im POURBAIX-Diagramm in Abbildung 2 zu erkennen.

Abbildung 2: POURBAIX-Diagramm für elementares Wolfram (25 °C, $[WO_4^{2-}] = 10^{-6} \text{ mol/L})$. Linie **a** zeigt das Reduktionsgleichgewicht von Wasser $E_{0,a} = -0,0591 \text{ V} \times \text{pH}$ bei einem H₂ oder O₂ Druck von 1 bar. Linie **b** zeigt das Oxidationsgleichgewicht von Wasser $E_{0,b} = 1,228 \text{ V} - 0,0591 \text{ V} \times \text{pH}$. Der Stabilitätsbereich von WO₃ ist oben links im Diagramm dargestellt. Die Potentiale sind gegen eine Quecksilbersulfatelektrode (MSE) mit 0,64 V vs. NHE angegeben. Das Diagramm wurde aus Quelle 37 adaptiert (Copyright John Wiley and Sons).³⁷

Wolframtrioxid findet bereits als elektrochromes und gassensitives Material Verwendung. Eine weitere Anwendung als n-Halbleiter in der Photokatalyse ist von Interesse, da WO₃ eine gute Elektronenleitfähigkeit aufweist, stabil gegen Photokorrosion ist und im Vergleich zu anderen n-Halbleitern wie TiO₂ eine kleinere indirekte Bandlücke von 2,6 – 2,8 eV aufweist.^{11,22,24,38} Die Leitungsbandkante von WO₃ wird aus den 5*d*-Orbitalen der W⁶⁺-Kationen und die Valenzbandkante aus den 2*p*-Orbitalen der O^{2–}-Anionen gebildet. Die Ladungsträgerdichte von WO₃ und seine elektronischen Eigenschaften hängen stark von der exakten WO_{3-x} Stöchiometrie ab. Da Wolframtrioxid beim Erwärmen leicht Sauerstoff abgibt, ist es ein natürlicher n-Halbleiter. Im Bereich kleiner x sind die Sauerstofffehlstellen im Anionengitter die dominierenden Defekte.³⁹ Als n-Halbleiter weist das Material eine recht große Zahl von Sauerstofffehlstellen und somit eine hohe Donordichte auf, wodurch das FERMI-Niveau (*E_F*) knapp unterhalb des Leitungsbandes liegt.⁴⁰

Die Photokatalyse an Halbleitern wie WO₃ nutzt deren Eigenschaft Photonen zu absorbieren und Elektron-Loch-Paare zu bilden. Die Energie der absorbierten Photonen ist dabei stets höher oder gleich der Bandlückenenergie E_{BL} des Halbleiters ($hv \ge E_{BL}$). Die photogenerierten Ladungsträger können an die Oberfläche des Halbleiters migrieren und dort Redoxreaktionen eingehen. Abbildung 3 zeigt einen n-Halbleiter wie WO₃ mit den unter Belichtung ablaufenden Prozessen.

Abbildung 3: Schematische Darstellung der ablaufenden Prozesse in einem n-Halbleiter unter Belichtung. E_F ist das FERMI-Niveau und E_{BL} die Bandlücke des Halbleiters. Im ersten Schritt (a) wird durch die Lichtabsorption ein Elektron vom Valenzband ins Leitungsband angeregt, es entsteht ein Elektron-Loch-Paar. (b) zeigt die Rekombination des Elektron/Loch-Paares. (c) zeigt die mögliche Diffusion der photogenerierten Ladungsträger an die Oberfläche. Dort können die Löcher ein adsorbiertes Molekül oxidieren bzw. die Elektronen ein adsorbiertes Molekül reduzieren.

Im Detail wird durch die Bestrahlung von WO₃ mit Licht entsprechender Energie ein Elektron (e^-) aus dem Valenzband in das energetisch höher liegende Leitungsband angeregt. Es bleibt ein positiv geladenes Defektelektron, auch Loch (h^+) genannt, im Valenzband zurück.⁴¹ Durch die Rekombination von Elektron und Loch wird thermische Energie oder ein Photon emittiert. Nur wenn die Ladungsträger an die Oberfläche des Halbleiters diffundieren können sie eine dort Redoxreaktionen mit Akzeptormolekülen (für e^-) oder Donormolekülen (für h^+) eingehen.

2.2 Metall-Halbleiter-Kontakt

In einem isolierten Halbleiter nehmen Leitungsband (E_{LB}) und Valenzband (E_{VB}) charakteristische Energiewerte ein, die in dem gesamten Material konstant sind. Das gleiche gilt für das FERMI-Niveau (E_F), welches sich im n-Halbleiter dicht unterhalb des Leitungsbandes befindet. Wird der n-Halbleiter mit einem Metall in Kontakt gebracht, gleichen sich die FERMI-Niveaus der beiden Materialien im thermischen Gleichgewicht an, wie in Abbildung 4 gezeigt wird. Dabei ist es entscheidend, ob der Halbleiter vor dem Kontakt ein höheres (a) oder niedrigeres FERMI-Niveau (b) als das Metall aufweist. In jedem Fall kommt es an der Phasengrenze zu einer Bandverbiegung im Halbleiter. Liegt das FERMI-Niveau des Halbleiters vor dem Kontakt oberhalb vom FERMI-Niveau des Metalls (a), kommt es zu einem geringen Elektronenfluss in Richtung des Metalls. Es bildet sich eine positive Raumladungszone im Halbleiter aus, welche auch als Verarmungszone bezeichnet wird. Liegt das FERMI-Niveau des Halbleiters vor dem Kontakt unterhalb von dem des Metalls (b), kommt es zur Ausbildung einer negativen Raumladungszone (Akkumulationszone) im Halbleiter. In diesem Fall fließen die Elektronen vom Metall in den Halbleiter.⁴²

Abbildung 4: Darstellung von Metall-Halbleiter-Kontakten. Auf der linken Seite sind Metall und Halbleiter gezeigt, bevor sie miteinander in Kontakt treten. Dabei handelt es sich um einen Idealfall ohne Bandverbiegung. Die Lage des FERMI-Niveaus im Metall entspricht seiner Austrittsarbeit (Φ_M). (a) zeigt einen Halbleiter mit einem höheren FERMI-Niveau als das Metall. Nachdem der Kontakt zwischen Metall und Halbleiter hergestellt wird, kommt es zur Ausbildung einer Verarmungszone infolge der Angleichung der FERMI-Niveaus E_F bzw. der Austrittsarbeit Φ_M . (b) zeigt einen Halbleiter mit einem geringeren FERMI-Niveau als das Metall. Im thermischen Gleichgewicht nach Kontaktherstellung hat sich eine Akkumulationszone im Halbleiter ausgebildet.

Die Ausdehnung der Raumladungszone (d_{RLZ}) ist umgekehrt proportional zur Wurzel der Donordichte (N_D) des Halbleiters:

$$d_{RLZ} \propto \frac{1}{\sqrt{N_D}}$$
 [1]

Das bedeutet, dass eine niedrige Donordichte im Halbleiter zu einer breiten Raumladungszone führt und umgekehrt.⁴³ Beispielsweise bestimmte BUTLER in seiner Arbeit über WO₃-Halbleiterelektroden mit einer Donordichte von $N_D = 4 \times 10^{15}$ cm⁻³ eine entsprechende Raumladungszone von $W = 3 \mu m.^{24}$

Die Austrittsarbeit des Metalls (Φ_M) und die Elektronenaffinität des Halbleiters (EA_{HL}) sind die bestimmenden Größen für die Art des Metall-Halbleiter-Kontakts. Es wird im Allgemeinen zwischen einem SCHOTTKY-Kontakt und einem OHM'schen-Kontakt unterschieden. Für die verwendeten Titanmetallsubstrate in dieser Arbeit beträgt die Austrittsarbeit $\Phi_M = 4,33 \text{ eV}.^{44}$ Die Elektronenaffinität von WO₃ beträgt $EA_{HL} =$ 5,13 eV.⁴⁵ Ist die Differenz zwischen der Austrittsarbeit Φ_M und der Elektronenaffinität EA_{HL} groß, wie im vorliegenden Beispiel, kommt es zur Ausbildung eines SCHOTTKY-Kontakts. Ist die Differenz der beiden Werte gering, bildet sich ein OHM'scher Kontakt an der Metall-Halbleiter Grenzfläche aus, wie in Abbildung 4 zu erkennen ist.

Bei einem SCHOTTKY-Kontakt entsteht ein Metall-Halbleiter-Kontakt mit einem hohen elektrischen Widerstand, der eine gleichrichtende Wirkung auf den Stromfluss hat. Das heißt, es bildet sich eine Potentialbarriere (Φ_B), die dafür sorgt, dass der Stromfluss nur noch in eine Richtung durch den Metall-Halbleiter-Kontakt möglich ist. Die Strom-Spannungs-Kennlinie eines SCHOTTKY-Kontakts ist in Abbildung 5 (b) dargestellt. Der Strom steigt mit der Spannung bis ein Sperrbereich erreicht wird (gelber Bereich). Hier findet durch den Widerstand der Potentialbarriere kein Ladungsträgertransport zwischen dem Metall und dem Halbleiter statt. Wird eine höhere Spannung als die Potentialbarriere angelegt, findet erneut ein Ladungsträgertransport statt und der Strom steigt wieder an. Der Bereich der Strom-Spannungs-Kennlinie außerhalb des Sperrbereichs wird Durchbruchsbereich genannt.

Bei einem OHM'schen-Kontakt bildet sich ein linearer Übergang am Metall-Halbleiter-Kontakt mit einem niedrigen elektrischen Widerstand aus. An dieser Grenzfläche kann ein ungehinderter Ladungsträgertransport vom Halbleiter zum Metall und umkehrt stattfinden. Die Strom-Spannungs-Kennlinie des OHM'schen Kontakts ist in Abbildung 5 (a) dargestellt. Im Gegensatz zum SCHOTTKY-Kontakt gibt es hier keine Potentialbarriere und damit auch keinen Sperrbereich.

Abbildung 5: Schematische Darstellung von Strom-Spannungs-Kennlinien. (a) zeigt die Kennlinie eines OHM'schen Kontaktes. (b) zeigt die Kennlinie eines SCHOTTKY-Kontaktes. Im Sperrbereich (gelber Bereich) findet durch die Potentialbarriere kein Ladungsträgertransport vom Halbleiter zum Metall statt. Außerhalb des Sperrbereichs ist eine ausreichend hohe Spannung angelegt um die Potentialbarriere zu überwinden. Diese Bereiche, in denen ein Ladungsträgertransport stattfindet, werden Durchbruchsbereiche genannt.

Um die photoelektrochemischen Prozesse in dieser Arbeit vollständig beschreiben zu können, muss das System noch um eine weitere Grenzfläche vom Halbleiter zum Elektrolyten erweitert werden. Diese wird im folgenden Abschnitt erläutert.

2.3 Halbleiter-Elektrolyt-Grenzfläche

Nach der Betrachtung der Grenzfläche zwischen n-Halbleiter und Metall-Rückkontakt soll nun das energetische Gleichgewicht an der Halbleiter-Elektrolyt-Grenzfläche beschrieben werden (Abbildung 6). Vor dem Kontakt unterscheiden sich die Lagen der FERMI-Niveaus der Elektronen des n-Halbleiters (E_F) von denen des Redoxsystems des Elektrolyten (E_R). Wird der n-Halbleiter in den Elektrolyten eingebracht, kommt es zu einer Gleichgewichtseinstellung ($E_F = E_R$) durch einen Ladungstransfer vom höheren zum niedrigeren Energieniveau, wie in Abbildung 6 zu sehen ist. Die energetischen Lagen im Inneren des Halbleiters bleiben dabei unverändert, da sich der Ladungstransfer hauptsächlich an der Halbleiter-Elektrolyt-Grenzfläche abspielt. Zudem resultiert aufgrund der Verarmung an Majoritätsladungsträgern im Halbleiter eine Bandverbiegung an der Phasengrenze. Die Richtung der Bandverbiegung ist abhängig von der Art des Halbleiters.

An der Grenzfläche zwischen n-Halbleiter und Elektrolyt findet ein Ladungstransfer von Elektronen statt, die sich vom Halbleiter in den Elektrolyten bewegen. Dadurch bilden sich in einem schmalen Volumenbereich an der Phasengrenze ein Überschuss an negativer Ladung im Elektrolyten und ein Überschuss an positiver Ladung im Halbleiter. Die entstandene Ladungsdoppelschicht wird HELMHOLTZ-Doppelschicht genannt. Die Halbleiter-Bandkanten an der Phasengrenze sind angehoben. In der Schicht, in der die Bandverbiegung stattfindet, der Raumladungszone, ist die Konzentration der

Majoritätsladungsträger (negative Ladungen im n-Halbleiter) erniedrigt. Der Bereich der Erniedrigung der Majoritätsladungsträgerkonzentration in der Raumladungszone im Halbleiter wird auch als Verarmungszone bezeichnet.⁴⁶ Die energetischen Verhältnisse des Halbleiter-Elektrolyt-Kontakts entsprechen damit in erster Näherung denen eines SCHOTTKY-Kontakts an der Metall-Halbleiter-Grenzfläche (vgl. Abbildung 4).

Unter Belichtung (*hv*) spaltet sich das FERMI-Niveau im Halbleiter in je ein Quasi-FERMI-Niveau für Elektronen ($E^*_{F,n}$) und für Löcher ($E^*_{F,p}$) auf. Die Lichtabsorption in der Raumladungszone führt zu einer Bewegung des angeregten e^- entlang der Leitungsbandkante ins Innere des Halbleiters, während das Elektronenloch h^+ zur Halbleiter-Elektrolyt-Grenzfläche wandert. Es schließt sich ein elektrochemischer Ladungstransfer des h^+ auf eine oxidierbare (Redox)Spezies im Elektrolyten an. Das angeregte Elektron wandert im elektrischen Feld ins Innere der Halbleiterelektrode und baut dabei die bei der Gleichgewichtseinstellung mit dem Elektrolyten entstandene Bandverbiegung ab und die Photospannung zwischen dem Rückkontakt und dem Elektrolyten auf. In dem Energiediagramm in Abbildung 6 wird die Photospannung durch die Aufspaltung des FERMI-Niveaus in die entsprechenden Quasi-FERMI-Niveaus $E^*_{F,n}$ und $E^*_{F,p}$, dargestellt. Die Differenz zwischen den Quasi-FERMI-Niveaus steht als Photospannung zur elektrochemischen Umsetzung von (Redox)Spezies im Elektrolyten zur Verfügung.

Abbildung 6: Das Prinzip der Entstehung von Raumladungszonen am Halbleiter-Elektrolyt-Kontakt. Vor der Kontaktausbildung (links) sind Leitungsband E_{LB} und Valenzband E_{VB} des n-Halbleiters flach. Es existiert keine Raumladungszone. Beim Kontakt mit dem Elektrolyten (mittig) kommt es zum Austausch von Ladungsträgern und das FERMI-Niveau des Halbleiters E_F hat sich an das Redoxpotential des Elektrolyten E_R angeglichen. Dabei hat sich infolge der Bandverbiegung eine Verarmungszone an der n-Halbleiteroberfläche ausgebildet. Bei Belichtung des Halbleiters (rechts) spaltet sich das FERMI-Niveau in je ein Quasi-FERMI-Niveau für Löcher $E_{F,p}^*$ und Elektronen $E_{F,n}^*$ auf. Durch das elektrische Feld werden die Ladungsträger separiert.⁴⁷

In der Abbildung 7 ist die Potentialverteilung an einer Halbleiter-Elektrolyt-Grenzfläche im elektrochemischen Gleichgewicht nach BARD gezeigt.⁴⁸ Hinter der Phasengrenzfläche fällt das Potential im Elektrolyten über die HELMHOLTZ-Schicht und die diffuse Doppelschicht nach dem GOUY-CHAPMAN-Ansatz ab. Nach diesem Ansatz ist der Potentialabfall in der starren HELMHOLTZ-Doppelschicht linear und in der diffusen Doppelschicht exponentiell (Verlauf nach dem POISSON-BOLTZMANN-Modell).

Abbildung 7: Schematische Darstellung der Potentialverteilung (schwarze Linie) an der Halbleiter-Elektrolyt-Grenzfläche in Abhängigkeit des Ortes x. Es sind Halbleiter und Elektrolyt im elektrochemischen Gleichgewicht dargestellt. An der Grenzfläche zwischen Halbleiter und Elektrolyt hat sich eine HELMHOLTZ-Doppelschicht ausgebildet. Der Potentialverlauf im Elektrolyten ist innerhalb dieser starren Doppelschicht linear und verläuft in der diffusen Doppelschicht exponentiell gemäß der POISSON-BOLTZMANN-Gleichung. *U* ist das Elektrodenpotential und Δ_{HL} der Betrag für die Bandverbiegung im Halbleiter. Es gibt ein materialspezifisches Elektrodenpotential *U* bei dem die Bänder flach sind (d.h. Δ_{HL} = 0), dabei handelt es sich um das Flachbandpotential.^{48,49}

Für photoelektrochemische Anwendungen ist es wichtig, die energetische Lagen der Valenz- und Leitungsbandpositionen des n-Halbleiters an der Phasengrenzfläche zu kennen, da diese Energieniveaus maßgeblich die Oxidationskraft der Löcher bzw. die Reduktionskraft der Elektronen eines Halbleiters wie WO₃ bestimmen.⁵⁰ Die photogenerierten Löcher im WO₃ sind aus thermodynamischer Sicht in der Lage, Redoxpaare mit Redox-Potentialen oberhalb ihrer Valenzbandkante von 2,84 V *vs.* NHE zu oxidieren und die photogenerierten Elektronen sind in der Lage, Redoxpaare mit Redox-Potentialen ührer Leitungsbandkante von 0,24 V *vs.* NHE zu reduzieren. Dennoch kann eine Oxidations- bzw. Reduktionsreaktion durch Überspannungseffekte kinetisch gehemmt sein. Zur Bestimmung der Lage des Leitungsbands bzw. des Flachbandpotentials im n-Halbleiter werden im Allgemeinen potentialabhängige Messungen der Raumladungskapazität, so genannte MOTT-SCHOTTKY-Messungen, verwendet.

Die Grundlage zur Bestimmung des Flachbandpotentials im Halbleiter mit MOTT-SCHOTTKY-Auftragungen liefert die Untersuchung der Proben mittels Impedanzspektroskopie. Dabei wird eine Wechselspannung mit bestimmter Amplitude und Frequenz an die Elektrode angelegt und die resultierende Stromantwort aufgezeichnet. Die Frequenz wird bei der Messung variiert und so ein komplexes Impedanzspektrum gewonnen, welches Informationen über die resistiven und kapazitiven Eigenschaften der Elektrode liefert.⁵¹ Aus der Phasenverschiebung und dem Amplitudenverhältnis wird die Kapazität in Abhängigkeit vom Elektrodenpotential bestimmt. Da der Potentialabfall an der Grenzschicht im Wesentlichen durch die Änderung der Bandverbiegung in der Raumladungszone im Halbleiter bestimmt wird, kann angenommen werden, dass es sich bei der bestimmten Kapazität hauptsächlich um die Raumladungskapazität C_{RLZ} handelt. Auf der Elektrolytseite erfolgt der Potentialabfall über die HELMHOLTZ-Schicht und die diffuse Doppelschicht nach dem GOUY-CHAPMAN-Ansatz (siehe Abbildung 7).

Eine gute Beschreibung der Potentialabhängigkeit der Raumladungskapazität liefert die so genannte MOTT-SCHOTTKY-Gleichung:^{52–54}

$$\frac{1}{C_{RLZ}^2} = \frac{2}{\varepsilon_{HL} \,\varepsilon_0 \, e \, N_D} \left(U - E_{FB} - \frac{k_B T}{e} \right)$$
[2]

 C_{RLZ} = Raumladungskapazität, ε_{HL} = stoffspezifische Dielektrizitätskonstante, ε_0 = elektrische Feldkonstante, e = Elementarladung, N_D = Donordichte, U = angelegtes (externes) Elektrodenpotential, E_{FB} = Flachbandpotential, k_B = BOLTZMANN-Konstante, T = Temperatur.

Eine Auftragung der Raumladungskapazität $1/C^2$ als Funktion gegen das angelegte Potential *E* wird als MOTT-SCHOTTKY-Auftragung bezeichnet. Am Nullladungspotential des Halbleiters existiert weder ein elektrisches Feld, noch eine Bandverbiegung und damit auch keine Raumladungszone. Daher wird dieses Potential, an dem die Bänder des Halbleiters flach sind, auch als Flachbandpotential *E_{FB}* bezeichnet.⁵⁵ Durch die Extrapolation des linearen Bereichs der MOTT-SCHOTTKY-Auftragung auf den Schnittpunkt mit der Potentialachse kann das Flachbandpotential bestimmt werden. Am Schnittpunkt $1/C^2 = 0$ gilt:

$$U = E_{FB} + \frac{k_B T}{e}$$
^[3]

Mithilfe der Steigung *m* aus der entsprechenden Regressionsgeraden kann auf Basis der MOTT-SCHOTTKY-Gleichung zusätzlich die Donordichte (N_D) des Halbleiters mit der folgenden Beziehung berechnet werden:

$$N_D = \frac{2}{\varepsilon_{HL} \, \varepsilon_0 \, e \, m} \tag{4}$$

Die Flachbandpotentiale von WO_3 und TiO_2 zeigen in wässrigen Elektrolyten ein NERNST'sches Verhalten und verschieben sich dementsprechend bei einer Temperatur von 25 °C um ca. 0,059 V pro pH-Einheit.²⁴ Der Grund dafür ist das Adsorptionsgleichgewicht von Protonen (H⁺) und Hydroxid-Ionen (OH⁻) an der Halbleiter-Elektrolyt-Grenzfläche entsprechend Gleichung 5:

$$OH_{ad} + H^{+}_{aq} \rightleftarrows (OH_{2}^{+})_{ad}$$
^[5]

Um die photoelektrochemischen Prozesse gänzlich beschreiben zu können, muss auch das Gesamtsystem aus Metall, Halbleiter und Elektrolyt betrachtet werden. Dazu zeigt die Abbildung 8 einen schematischen Metall-Halbleiter-Elektrolyt-Kontakt unter Bestrahlung. Wie bereits im Kapitel 2.2 beschrieben müssen sich auch hier die FERMI-Niveaus und das Redoxpotential der verschiedenen Materialien angleichen. Es kommt zu einer Bandverbiegung im Halbleiter an der Grenzfläche zum Metall und zum Elektrolyten. Im Fall einer n-Halbleiter-Elektrode wandern die photogenerierten Elektronen von der Halbleiteroberfläche ins Innere des Halbleiters und schließlich über den Metall-Halbleiter-Kontakt (hier am Beispiel eines SCHOTTKY-Kontakts) hinweg zur Gegenelektrode. Die photogenerierten Löcher hingegen wandern an die Oberfläche des Halbleiters und durchtreten die Phasengrenze zum Elektrolyten, wo sie Oxidationsreaktionen eingehen. Entscheidend für die Ladungsträgerseparation sind dabei die Potentialbarrieren an den entsprechenden Grenzflächen. Die Höhe der Bandverbiegung am Metall-Halbleiter-Kontakt sollte geringer sein als die Höhe der Bandverbiegung an der Halbleiter-Elektrolyt-Grenzfläche, um einen effizienten Transport der Elektronen zum Metall-Rückkontakt zu gewährleisten. Durch die Ladungsträgerseparation wird deren Rekombinationsrate verringert, was einen positiven Effekt auf die photoelektrochemische Aktivität hat.

Abbildung 8: Schematische Darstellung eines Metall-Halbleiter-Elektrolyt-Kontaktes unter Belichtung. Durch den Kontakt der drei Medien gleichen sich die FERMI-Niveaus E_F von Metall und n-Halbleiter untereinander und mit dem Redoxpotential des Elektrolyten E_R an. Es kommt zur Bandverbiegung im Halbleiter an den entsprechenden Phasengrenzen. Durch die Bandverbiegung bewegen sich die Löcher des n-Halbleiters an dessen Oberfläche und können dort Oxidationsreaktionen durchführen. Die photogenerierten Elektronen im Leitungsband bewegen sich in das Innere des n-Halbleiters und werden auf das Metall übertragen. Durch die Potentialbarriere Φ_B am SCHOTTKY-Kontakt (roter Doppelpfeil) zwischen Halbleiter und Metall können sich die Elektronen nur in diese eine Richtung bewegen.

Nachdem in den beiden letzten Kapiteln alle wichtigen Phasengrenzen für die n-Halbleiter-Elektrode beschrieben wurden, werden im nächsten Kapitel die photoelektrochemischen Prozesse betrachtet.

2.4 Photoelektrochemie

Der photoelektrische Effekt wurde erstmals 1839 von BECQUEREL beobachtet. Bei seinem Experiment tauchte er zwei gleichartige Edelmetallelektroden in eine Elektrolytlösung. Durch die Belichtung von einer der beiden Elektroden konnte BECQUEREL eine Spannung messen.⁵⁶ Das erste Experiment zur Photoelektrochemie an Halbleitermaterialien wurde jedoch erst bedeutend später in der Literatur beschrieben. 1972 untersuchten FUJISHIMA und HONDA die photoelektrochemische Wasserspaltung in einer Zelle mit einer TiO₂-Einkristall-Anode und einer Platin-Kathode.⁷ Der entsprechende experimentelle Aufbau ist in Abbildung 9 dargestellt. Die gezeigten Prozesse gelten für Photoanoden aus TiO₂ und WO₃ gleichermaßen.

Abbildung 9: Schematische Darstellung des Experiments von FUJISHIMA und HONDA.⁷ Es sind die unter Belichtung ablaufenden Prozesse dargestellt. Der erste Schritt ist die Erzeugung eines Elektron/Loch-Paares durch die Absorption eines Photons. An der Halbleiter-Anode (TiO₂) wird Wasser durch die photogenerierten Löcher oxidiert. Die photogenerierten Elektronen wandern durch die externe Spannung zur Platin-Kathode und reduzieren dort Protonen zu elementarem Wasserstoff. (1) ist eine äußere Spannungsquelle und (2) ist ein protonendurchlässiges Diaphragma.

Zunächst wird durch die Belichtung der Halbleiter-Anode mit einer Xenonlampe ein Elektron/Loch-Paar erzeugt, welches entweder wieder rekombiniert oder durch das elektrische Feld separiert wird. Die photogenerierten Elektronen im Leitungsband des Halbleiters werden über die elektrischen Kontakte zur Pt-Gegenelektrode bewegt. Dort reagieren die Elektronen mit Protonen aus der wässrigen Lösung zu elementarem Wasserstoff als Reduktionsprodukt. Die erzeugten Löcher im Valenzband wandern durch die Bandverbiegung an die Oberfläche des Halbleiters und oxidieren dort Wasser zu Sauerstoff. Die bei der Wasserspaltung ablaufenden Prozesse lassen sich in den folgenden Reaktionsgleichungen 6 - 9 zusammenfassen:

Erzeugung eines Elektron/Loch-Paars:	$hv ightarrow e^- + h^+$	[6]
--------------------------------------	---------------------------	-----

Oxidative Teilreaktion an der Anode:	$2 \text{ H}_2\text{O} + 4 h^+ \rightarrow 4 \text{ H}^+ + \text{O}_2$	[7]
--------------------------------------	--	-----

Reduktive Teilreaktion an der Kathode:

 $2 \operatorname{H}^{+} + 2 e^{-} \to \operatorname{H}_{2}$ [8]

Gesamtreaktion:

$$2 H_2O + 4 hv \rightarrow 2 H_2 + O_2$$
 [9]

Für die photoelektrochemische Wasserspaltung wird eine Spannung von 1,23 V benötigt. Dieses Potential ergibt sich aus der Differenz der Redoxpotentiale für die Wasserstoffund die Sauerstoffentwicklungsreaktion. Es ist zu beachten, dass diese Spannung alleine nicht ausreicht, um Wasser zu spalten, da auftretende Überspannungseffekte berücksichtigt werden müssen.⁵⁵ Reicht die Energie der absorbierten Photonen alleine nicht aus, kann die Wasserspaltung durch eine externe Spannungsquelle unterstützt werden. Dies war auch bei dem Experiment von FUJISHIMA und HONDA der Fall, da TiO₂ Rutil als Photoelektrode benutzt wurde, dessen Lage des Leitungsbands nicht zur H₂-Bildung ausreicht.^{7,57,58}

Nur wenige Jahre später führten BUTLER et al. erste Experimente zur Photoelektrolyse von Wasser an WO₃-Einkristallelektroden durch.²³ Dabei fanden sie heraus, dass das Flachbandpotential der WO₃-Photoelektroden nach der NERNST-Gleichung vom pH-Wert abhängig ist. Untersuchungen der Stabilität der Einkristallelektroden ergaben, dass WO3 mit basischen Elektrolyten zu Wolframaten (WO₄²⁻) reagiert. Bei Verwendung eines sauren Elektrolyten waren die WO₃-Elektroden stabil und zeigen unter Beleuchtung keine Photokorrosion. 1977 veröffentlichte BUTLER weitere Ergebnisse seiner Arbeit an WO₃-Einkristallelektroden. Dabei lag der Fokus der Untersuchungen auf der Grenzfläche zwischen Halbleiter und Elektrolyt.²⁴ BUTLER analysierte die Prozesse an der Phasengrenze bei 1 V externem Potential und fand für die Ausdehnung der Raumladungszone im WO₃-Halbleiter $d_{RLZ} \approx 3 \mu m$, bei einer optischen Absorptionstiefe von $\alpha \approx 6 \,\mu\text{m}$ für eine Wellenlänge von 327 nm. Die berechnete Diffusionslänge der photogenerierten Löcher gab er mit $L_{h+} \approx 0.5 \,\mu\text{m}$ an. Somit beträgt die Diffusionslänge der photogenerierten Löcher lediglich ca. 1/6 der Ausdehnung der Raumladungszone. Daraus schlussfolgerte BUTLER, dass der Photostrom der WO3-Elektroden hauptsächlich von den Ladungsträgern abhängt, die innerhalb der Verarmungsschicht an der Halbleiteroberfläche durch Lichtabsorption erzeugt werden und das ein Großteil der erzeugten Ladungsträger wieder im Bulk des WO3 rekombinieren wird. Nichtsdestotrotz ist WO₃ als Photoelektrode interessant, da z.B. die Mobilität der WO₃-Löcher mit μ_{h+} = 10 cm²/Vs um den Faktor 20 höher ist als die Mobilität der Löcher im TiO₂ ($\mu_{h+} \approx$ $0.5 \text{ cm}^2/\text{Vs}$).^{24,59}

Die Leitungsbandkante im WO₃ liegt mit etwa 0,24 V vs. NHE deutlich unterhalb der Leitungsbandkante von TiO₂ mit ungefähr -0.3 V vs. NHE, weshalb die photogenerierten Elektronen im TiO₂ ein höheres Reduktionspotential haben.⁵⁷ Die Reduktion von Wasser zu Wasserstoff ist daher mit WO₃ als Photokatalysator ebenfalls nicht ohne eine externe Hilfsspannung möglich. Das photogenerierte Loch im Valenzband von WO3 hat ein Redoxpotential von etwa 2,8 V vs. NHE, weshalb Oxidationsreaktionen für WO₃-Photoelektroden von großer Bedeutung sind. Das h^+ ist in der Lage die meisten organischen Verbindungen zu oxidieren, weshalb sich WO₃ als Photoanodenmaterial zur Aufreinigung von Abwässern eignet.⁶⁰ Zudem kann das Loch an der Halbleiteroberfläche oxidative Sauerstoffspezies wie Hydroxylradikale ('OH), Superoxidradikale ($^{\circ}OH_2/^{\circ}O_2^{-}$) und Wasserstoffperoxid (H_2O_2) bilden.^{16,17,61} Das Redoxpotential seiner Leitungsbandelektronen liegt bei etwa 0,2 V, weshalb WO₃ nicht in der Lage ist Wasserstoff oder Sauerstoff zu reduzieren. Aus diesem Grund wird es ausschließlich als Anodenmaterial mit einer geeigneten Gegenelektrode bzw. Kathode verwendet. Durch eine ähnlich hohe Oxidationskraft seiner Löcher ist TiO₂ als Archetyp-Photokatalysator ebenfalls in der Lage viele anorganische und organische Verbindungen zu mineralisieren,⁶² weshalb es in dieser Arbeit als Benchmark-Photoanode für den Schadstoffabbau verwendet wurde.

2.5 Mehrelektronentransferkatalyse

Die gleichzeitige Oxidation und Reduktion von Wasser zu Sauerstoff und Wasserstoff ist eine komplexe Mehrelektronen-Redoxreaktion, weshalb die photoelektrochemische Wasserspaltung (Reaktionsgleichungen 6-9) ein insgesamt ineffizienter Prozess ist. Am Ort der Reaktion stehen in der Regel nur einzelne Elektronen oder Löcher zur Verfügung, weshalb photokatalytische Reaktionen in der Regel Ein-Elektron-Übertragungen sind.^{18,63,64} Die Multi-Elektronen-Reaktionen laufen daher entweder überhaupt nicht oder nur sehr langsam ab. Die größte Herausforderung in der Durchführung der Wasserspaltung an einem Halbleiter liegt daher in der Separation der photogenerierten Ladungsträger, um die Rekombination der Elektronen und Löcher zu verhindern und Mehrelektronentransfers möglich zu machen. Dies kann z.B. durch das Abscheiden eines Co-Katalysators auf der Oberfläche des Halbleiters erreicht werden. Die dabei eingesetzten Edelmetalle wie Platin bilden eine SCHOTTKY-Barriere an dem Halbleiter-Metall-Kontakt und dienen als Elektronenspeicher für die photogenerierten Elektronen. Die Zwei-Elektronen-Reduktion der Protonen zu Wasserstoff findet somit nicht mehr an der Halbleiteroberfläche, sondern am Platin statt, welches in saurer Lösung eine sehr kleine Überspannung für die Wasserstoffentwicklungsreaktion von ca. 0,09 V aufweist:55,65

$$2 \operatorname{H}^{+} + 2 e^{-} \to \operatorname{H}_{2}$$

$$[10]$$

Für TiO₂ wurde beispielsweise beobachtet, dass die photokatalytische Aktivität mit Platin als Co-Katalysator durch die Ladungsträgerseparierung gesteigert werden kann.^{66,67} Befindet sich kein Co-Katalysator auf der TiO₂-Oberfläche werden die photogenerierten Elektronen entsprechend Gleichung 11 als Ti³⁺ auf der Halbleiteroberfläche eingefangen (engl. "*trapping"*):¹⁸

$$\mathrm{Ti}^{4+} + e^{-} \to \mathrm{Ti}^{3+}$$
^[11]

In einer photoelektrochemischen Zelle ist die Halbleiteranode in der Regel mit einer Platingegenelektrode (Kathode) verbunden. Eine Ladungsträgerseparation wird erreicht, indem sich die photogenerierten Elektronen im elektrischen Feld über die Leitungen zum Platin bewegen und dort akkumulieren, wodurch die Zwei-Elektronen-Reaktion zu Wasserstoff möglich wird (Reaktionsgleichung 10). Gleichzeitig findet an der Photoanode die Oxidation von Wasser statt. Damit diese Mehrelektronenreaktion photokatalytisch ablaufen kann, müssen vier photogenerierte Löcher an der Halbleiteroberfläche akkumulieren und umgesetzt werden, was eine effektive Ladungsträgerseparation erforderlich macht:^{68,69}

$$2 H_2O + 4 h^+ \to 4 H^+ + O_2$$
 [12]

Iridiumdioxid (IrO₂) und Cobaltmonoxid (CoO) sind Beispiele für Co-Katalysatoren der O₂-Entwicklungsreaktion, die bislang in photokatalytischen Systemen auf Halbleiteroberflächen eingesetzt wurden, um die Rekombinationsrate zu verringern.^{70–73} NØRSKOV *et al.* führten 2017 eine Analyse der thermodynamischen Daten für die GIBBS-Energien zur Bildung von 'OH, H₂O₂ und O₂ und der Adsorption der entsprechenden Intermediate an verschiedenen Katalysatoroberflächen durch, darunter auch TiO₂, WO₃ und IrO₂.⁷⁴ Das Ergebnis der DFT-Berechnungen zeigt, dass TiO₂ aufgrund seiner

schwachen OH-Adsorption im Vergleich zu den beiden anderen Katalysatormaterialien die höchste Triebkraft hat, 'OH-Radikale in wässriger Lösung zu erzeugen. Zudem weisen die Halbleiter TiO₂ und WO₃ eine Tendenz für die Zwei-Elektronen-Oxidation von Wasser zu H₂O₂ auf, was bereits durch photokatalytische Experimente bestätigt werden konnte.^{74,75} Im Gegensatz dazu hat der Elektrokatalysator IrO₂ aufgrund von starker Oberflächenadsorption der Intermediate höhere Bildungsenergien für 'OH und H₂O₂. Dies begründet die starke Triebkraft für die Vier-Elektronen-Oxidation von Wasser zu O₂ auf der IrO₂-Oberfläche.⁷⁴ Auch Cobalt-basierte Co-Katalysatoren liegen im Fokus der Untersuchungen an photokatalytischen Wasserspaltungssystemen, da sie photogenerierte Löcher einfangen ("*trapping"*) und somit die nötige Überspannung für die O₂-Bildung auf Halbleiter-Photoanoden deutlich reduzieren können.^{76,77}

Ein Problem der Wasserspaltung ist die schnelle Rückreaktion von entstandenem Sauerstoff mit entstandenem Wasserstoff zu Wasser, was die Effektivität eines Systems zur Wasserstofferzeugung verringert.⁷⁸ Durch den Einsatz einer photoelektrochemischen Zelle mit zwei getrennten Halbzellen kann das Problem der Rückreaktion zwischen Sauerstoff und Wasserstoff umgangen werden, da diese an verschiedenen Orten (Elektroden) gebildet und aus der Zelle abgeführt werden. Eine Alternative wäre die Verwendung von organischen Verbindungen wie z.B. Alkoholen (Methanol, Ethanol, usw.) oder Aldehyden (Formaldehyd, Acetaldehyd, usw.) als Elektronendonatoren, so genannte Lochfänger. Sie reagieren mit den photogenerierten Löchern, weshalb kein oder weniger Sauerstoff gebildet wird. Dadurch wird Rückreaktion der Wasserbildung unterbunden, was wiederum die Ausbeute an Wasserstoff erhöht.⁷⁹

2.6 Mechanismus der Methanoloxidation

Damit eine Oxidation an der WO₃-Photoanode stattfinden kann, müssen die Reaktanden an der Halbleiteroberfläche adsorbiert vorliegen oder sich in der Lösung in der elektrischen Doppelschicht befinden.^{62,80} Dann können die photogenerierten Löcher (h^+) Donormoleküle (D) wie H₂O oder Methanol oxidieren:

$$\mathbf{D} + h^+ \to \mathbf{\dot{D}} +$$
[13]

In Abwesenheit geeigneter Reaktanden oder in Abwesenheit eines externen Potentials rekombinieren Elektronen und Löcher innerhalb weniger Nanosekunden und es finden keine Redoxreaktionen an den Elektroden statt.^{62,80}

Einer der Gründe, dass die photokatalytische Wasserspaltung noch keine technische Anwendung gefunden hat, ist die fehlende Effizienz bei der Erzeugung von Sauerstoff an der Anode. Damit Wasser zu Sauerstoff oxidiert werden kann, müssen 4 photogenerierte Löcher akkumuliert und umgesetzt werden, was die Effizienz der Gesamtreaktion limitiert.^{68,69} Zudem wird bei der Wasserspaltung mit Sauerstoff ein Oxidationsprodukt erzeugt, welches wirtschaftlich nicht von Interesse ist. Daher ist es aus ökonomischer und ökologischer Sicht besser, die oxidativen Eigenschaften der photogenerierten Löcher für die Aufreinigung von belasteten Abwässern zu verwenden.^{28,81} Im Rahmen dieser Arbeit wird Methanol als organischer Modellschadstoff zur Simulation von Abwässern verwendet. Es ist literaturbekannt, dass Methanol als effizienter Elektronendonor irreversibel mit photogenerierten Löchern reagiert.^{18,82–84} Durch die Zugabe von Methanol wird die Rekombinationsrate des photokatalytischen Systems verringert und damit die Quantenausbeute erhöht.⁷⁹ Damit eignet es sich sehr gut als Modellsubstanz, da auf diese Weise sichergestellt werden kann, dass Methanol als erste Komponente in dem wässrigen H₂SO₄-basierten Elektrolyten der photoelektrochemischen Zelle oxidiert wird. Für die vollständige Methanoloxidation haben KAWAI *et al.* den folgenden Abbaumechanismus vorgeschlagen:⁸²

Methanoloxidation: $\Delta_R G^\circ = + 64,1 \text{ kJ/mol}$	$CH_3OH \rightarrow HCHO + H_2$	[14]
Formaldehydoxidation: $\Delta_R G^\circ = -21,8 \text{ kJ/mol}$	$\rm HCHO + H_2O \rightarrow \rm HCOOH + H_2$	[15]
Ameisensäureoxidation: $\Delta_R G^\circ = -33,0 \text{ kJ/mol}$	$HCOOH \rightarrow CO_2 + H_2$	[16]
Gesamtreaktion: $\Delta_R G^\circ = +9,5 \text{ kJ/mol}$	$CH_3OH + H_2O \rightarrow CO_2 + 3 H_2$	[17]

Der erste Oxidationsschritt hat eine positive freie Enthalpie und läuft aus thermodynamischer Sicht nicht freiwillig ab. Die benötigte Energie wird durch die vom Halbleiter absorbierten Photonen geliefert. Im Vergleich zur Wasserspaltung ($\Delta G =$ + 237,2 kJ/mol) wird jedoch nur ein Bruchteil der Energie benötigt. Die dritte Reaktion zum Kohlenstoffdioxid hat eine negative freie Enthalpie und liefert daher eine intrinsische Energiebarriere für die unerwünschte Rückreaktion von entstandenem Wasserstoffgas. Der Wasserstoff kann ab diesem Zeitpunkt theoretisch nur wieder mit den photogenerierten Löchern oxidiert werden. Der erwartete photoelektrochemische Mechanismus der Methanoloxidation zu Formaldehyd ist im Detail mit allen Intermediaten in Abbildung 10 dargestellt.

Nach der Bildung eines Elektron/Loch-Paares (1) gibt es grundsätzlich zwei verschiedene Mechanismen für die Reaktion von Methanol. Die direkte Oxidation durch photogenerierte Löcher (h^+) (2) und die indirekte Oxidation durch oberflächengebundene Hydroxyl-Radikale ('OH) (4). Die 'OH-Radikale sind Produkte aus der Reaktion von Löchern mit oberflächengebundenen –OH Gruppen oder absorbiertem Wasser (3).^{83,85,86} Mit welchem Mechanismus die Methanoloxidation abläuft, ist derzeitig noch Gegenstand der Forschung. WANG *et al.* haben die Theorie aufgestellt, dass der Mechanismus von den am Halbleiter adsorbierten Molekülen abhängt. Dazu untersuchten WANG *et al.* die kompetitiven Adsorptionsprozesse von Wasser und Methanol an TiO₂-Oberflächen mit der Summenfrequenzspektroskopie.⁸⁷ Sie kamen zu dem Ergebnis, dass die indirekte Oxidation durch 'OH-Radikale (4) der bevorzugte Mechanismus ist, wenn Wasser die dominante Oberflächenspezies ist. Dabei muss das kritische molare Verhältnis zwischen Wasser und Methanol bei \geq 300 liegen. Liegt der Wasseranteil an adsorbierten Oberflächenmolekülen unter diesem Wert, ist die direkte Oxidation von Methanol durch photogenerierte Löcher (2) der dominante Mechanismus an der TiO₂-Oberfläche.⁸⁷ Im Gegensatz dazu kamen NOSAKA *et al.* 2015 zu dem Ergebnis, dass der Abbau von organischen Molekülen auf der Oberfläche von TiO₂ bevorzugt immer über die direkte Oxidation mittels photogenerierter Löcher (2) abläuft.⁸⁴

Abbildung 10: Schematische Darstellung der unter Belichtung ablaufenden Prozesse (1–7) in einer photoelektrochemischen Zelle. An der Photoanode wird Methanol oxidiert und an der Kathode werden Protonen zu Wasserstoff reduziert. Zwischen den Halbzellen befindet sich eine protonendurchlässige Membran. (1) ist die Absorption eines Photons und die Erzeugung eines Elektron/Loch-Paars. (2) ist die direkte Oxidation von Methanol mit einem photogenerierten Loch. (3) ist die Erzeugung eines 'OH-Radikals durch die Reaktion eines h^+ mit einer –OH Oberflächengruppe oder alternativ Wasser. (4) ist die indirekte Oxidation von Methanol mit einem 'OH-Radikal. (5) ist der *"current doubling"*-Effekt bei dem ein Hydroxymethyl-Radikal ein Elektron in das Leitungsband der Photoanode überträgt und so zu Formaldehyd reagiert. (6) ist die Oxidation von zwei H⁺ an der Kathode zu elementarem Wasserstoff.

Das erste stabile Oxidationsprodukt von Methanol ist Formaldehyd, welches aus dem Hydroxymethyl-Intermediat ($^{\circ}CH_2OH$) mit Sauerstoff gebildet wird (6).⁸³ Bei dieser Reaktion entsteht auch ein protoniertes Superoxid-Radikal ($^{\circ}O_2H$), welches ebenfalls wie folgt in der Lösung weiterreagieren kann:⁸⁸

$$O_2 H \rightleftharpoons O_2^- + H^+$$
[18]

$$H_2O_2 + hv \rightarrow 2 \text{ 'OH}$$
 [22]

Durch die Bildung von aktiven Sauerstoffspezies wie Wasserstoffperoxid (H₂O₂) und Singulettsauerstoff (¹O₂) ist das Oxidationspotential von Photoanoden nicht nur auf ihre Oberfläche beschränkt. Diese reaktiven Spezies können in die Lösung hinein diffundieren und Redoxreaktionen mit Donormolekülen (D) im Elektrolyten auslösen. Dieser Effekt wird "*remote photocataylsis*" genannt.^{41,89–93} Auch wenn die Ausbeuten in der Regel ein bis zwei Größenordnungen geringer sind, als bei den Reaktionen direkt an der Halbleiteroberfläche, sollte der Abbau von Schadstoffen im Anodenraum an der Luft erfolgen, damit die reaktiven Sauerstoffspezies gebildet werden können.

In Abwesenheit von Sauerstoff wird Formaldehyd über die Injektion eines Elektrons in das Halbleiter-Leitungsband gebildet (5). Dieser Prozess wird *"current doubling"* genannt, da dieses zusätzliche Elektron aus dem oxidativen Reaktionsmechanismus ebenfalls für die Wasserstofferzeugung an der Pt-Gegenelektrode verwendet werden kann (7).^{94,95} Dadurch ist es möglich, dass die FARADAY'sche Effizienz für die Wasserstofferzeugung in einer solchen anaeroben photoelektrochemischen Zelle über 100 % betragen kann. Die reaktiven Sauerstoffspezies können in der Abwesenheit von O₂ in diesem Fall nicht gebildet werden (6). Das bei der Methanoloxidation gebildete Formaldehyd wird anschließend in einem analogen Reaktionsmechanismus weiter zu Ameisensäure und letztendlich zu Kohlenstoffdioxid umgesetzt.^{96,97}

2.7 Stand der Technik

Vor allem in dem Bereich der elektrokatalytischen Wasseraufreinigung (d.h. ohne photogenerierte Ladungsträger) sind WO₃-basierte Anoden in elektrochemischen Zellen mit Pt-Gegenelektroden intensiv untersucht worden. Gemischte Pt/WO₃-Anoden, hergestellt mithilfe der elektrophoretischen Abscheidung, zeigen hohe Aktivitäten für den oxidativen Abbau verschiedener organischer Moleküle wie Methanol,^{98,99} Ameisensäure ^{100,101} und Glukose.¹⁰² Ohne den Einsatz von Platin gelang es HABAZAKI *et al.* Phenol als Modellschadstoff an WO₃-Filmen elektrokatalytisch abzubauen.¹⁰³ Die dafür genutzten WO₃-Filme wurden vorher kathodisch auf ein mit IrO₂-beschichtetes Titanmetallsubstrat abgeschieden und anschließend kalziniert. Der Einsatz von photoelektrochemischen Zellen mit dem Ziel der Aufreinigung von Wasser ist ein vergleichsweise selten untersuchter Ansatz, da die meiste Forschung auf dem Gebiet der photoelektrochemischen Wasserspaltung in H₂ und O₂ betrieben wird.^{1,14,15,104–108}

Im Gegensatz dazu ist die klassische Photokatalyse an Halbleiterpartikeln schon häufiger auf ihren Einsatz in der Abwasserwirtschaft getestet wurden.^{28,109,110} Der Vorteil bei der Verwendung der Photokatalyse zur Wasserbehandlung ist, dass im Gegensatz zu den konventionellen AOPs (engl.: "*Advanced Oxidation Process"*) keine zusätzlichen Reagenzien wie z.B. Wasserstoffperoxid oder Ozon für die Redoxreaktionen benötigt werden. Neben dem Photokatalysator selbst, wird nur Sonnenlicht bzw. UV-Licht benötigt, damit die Schadstoffmoleküle im Wasser abgebaut werden. Durch die Unabhängigkeit von zusätzlichen Substanzen ist die Photokatalyse die womöglich billigere Alternative zur Wasseraufreinigung. Dazu kommt, dass der photokatalytische Schadstoffabbau auch für den Einsatz an entlegenen Standorten geeignet ist.^{111–113} CHOI *et al.* haben bereits ein partikuläres Einkammersystem entwickelt, welches mittels Pt-modifiziertem TiO₂ als Photokatalysator organische Schadstoffe abbaut und gleichzeitig Wasserstoff produziert.⁶

Die größte Herausforderung, die bisher eine flächendeckende Anwendung der Photokatalyse zur Wasseraufreinigung verhindert hat, ist die Entwicklung eines passenden Photokatalysators. Dieser muss eine hohe und lang anhaltende Aktivität unter Solarbestrahlung aufweisen und in der Lage sein, durch entsprechende Bandpositionen ausreichend hohe Reaktivitäten für die photogenerierten Löcher und Elektronen bereitzustellen. Sobald eine Ladungsträgerspezies im umgebenden Medium keine Reaktionspartner findet, steigt die Rekombinationsrate und die Effizienz sinkt. Dieses Problem betrifft vor allem Materialien wie WO₃ und α-Fe₂O₃, deren Leitungsband nicht negativ genug ist, um eine Reduktion von Sauerstoff zu ermöglichen.^{114,115} Durch den Einsatz einer elektrochemischen Zelle mit einer n-typischen Halbleiteranode und mit einer p-typischen Halbleiterkathode bzw. einer Edelmetallkathode kann diese Limitierung überwunden werden.¹¹⁶ Die unreaktiven Leitungsbandelektronen vom ntypischen Anodenmaterial werden durch eine elektrische Spannung auf die Kathode übertragen und können dann dort Protonen zu Wasserstoff reduzieren.¹³ Dadurch ermöglicht es die Photoelektrochemie die beiden Teilreaktionen, Oxidation von Schadstoffen und Reduktion von Protonen, räumlich mit einer dazwischenliegenden Membran voneinander zu trennen. Dies wiederum führt zu einer Effizienzsteigerung durch sauerstofffreies Arbeiten im Kathodenraum bei gleichzeitigem Einsatz von Luft als notwendiges Oxidationsmittel im Anodenraum. Außerdem kann auf diese Weise die Rückreaktion von Wasserstoff mit Sauerstoff in der Halbzelle unterbunden werden. Zudem kann der entstehende reine Wasserstoff ohne eine kostenaufwendige Gastrennung direkt aus dem Kathodenraum gewonnen werden.

Die Gruppe von AUGUSTYNSKI an der Universität Genf führte ab 1983 umfangreiche Studien an WO₃-Photoanoden durch und untersuchte auch erstmalig die photoelektrochemische Methanoloxidation in sauren Elektrolyten an WO₃-Elektroden.^{26,27,107,117,118} AUGUSTYNSKI *et al.* nutzten einen transparenten 2 µm-dicken WO3-Film auf einem TCO-Glassubstrat (engl.: "Transparent Conductive Oxide") für ihre Experimente. Sie zeigten, dass die Photostromdichten durch die Zugabe von Methanol im Vergleich zur Wasseroxidation verdoppelt werden konnten. Auch die Photostromeffizienzen IPCE (engl.: "Incident Photon to Current Efficiency") stiegen deutlich an und erreichten Werte über 100 %, was ein Nachweis für das "current doubling" in der photoelektrochemischen Zelle ist. Der von AUGUSTYNSKI et al. vorgeschlagene Reaktionsmechanismus der Methanoloxidation stimmt mit dem Mechanismus aus Kapitel 2.5 überein.²⁶ Die Untersuchungen von verschiedenen Methanolkonzentrationen bestätigten was WANG et al. ebenfalls herausgefunden haben, ob Methanol direkt über h^+ oder indirekt über 'OH oxidiert wird, hängt von dessen Konzentration in der Lösung ab.⁸⁷ AUGUSTYNSKI et al. vermuten anhand ihrer photoelektrochemischen Daten, dass bei Methanolkonzentrationen von ≥ 0.1 M die direkte Oxidation über photogenerierte Löcher stattfindet, während bei Konzentrationen von ≤ 0.01 M Methanol indirekt über Hydroxyl-Radikale oxidiert wird.²⁶

2016 konnten NIEDERBERGER *et al.* mit ihrer Arbeit über die photoelektrochemische Wasserspaltung an WO₃-Elektroden aufzeigen, dass es von großer Bedeutung ist neben den Photoströmen auch die Produkte der Redoxreaktionen zu untersuchen.¹¹⁹ Sie verwendeten verschiedene kommerzielle WO₃ Pulver für die Fertigung von Photoanoden mit der Rakel-Beschichtungstechnik und untersuchten ihre Elektroden in verschiedenen sauren Elektrolyten. In chronoamperometrischen Experimenten bei 1,23 V *vs.* NHE erreichten sie z.B. stabile Photoströme von 1 mA/cm² in 1 M H₂SO₄ unter Bestrahlung mit AM 1.5G-Solarlicht. Zusätzlich zu den Photoströmen haben NIEDERBERGER *et al.* die Sauerstoffentwicklung gemessen und mit der theoretischen Menge an Sauerstoff verglichen, welche nach den FARADAY'schen Gesetzen entsprechend der gemessenen Stromdichten entstanden sein sollten. Auf diese Weise wurde für die Photostromdichte eine FARADAY'sche Effizienz von lediglich 8 % für die Sauerstoffentwicklung in 1 M H₂SO₄ gefunden. So konnte gezeigt werden, dass nicht die Wasseroxidation, sondern die Oxidation der SO₄^{2–}-Anionen des Elektrolyten zu S₂O₈^{2–}-Ionen hauptverantwortlich für den gemessenen Strom ist.¹¹⁹
3. Experimenteller Teil und Methoden

Das folgende Kapitel beschreibt im Wesentlichen die Herstellung und die Charakterisierung der Halbleiter-Photoelektroden. Hierbei wird zunächst auf die beiden Beschichtungsverfahren, Kaltgasspritzen und Siebdruck, eingegangen. Im Anschluss folgen mit der Röntgendiffraktometrie, den BET-Messungen, der UV/VIS-Spektroskopie und der Rasterelektronenmikroskopie Methoden, mit denen die physikalischen und optischen Eigenschaften der Halbleiterpulver und -filme untersucht wurden. Nachfolgend werden die elektrochemischen und photoelektrochemischen Untersuchungen als Schlüsselmethoden dieser Arbeit umfassend beschrieben. Zum Abschluss des Kapitels werden mit der Hydroxylradikal- und Formaldehyd-Bestimmung zwei Methoden erläutert, mit deren Hilfe die Elektrolytlösung nach den photoelektrochemischen Messungen analysiert wurde. Eine Tabelle mit allen verwendeten Chemikalien befindet sich im Anhang.

3.1 Herstellung der Halbleiterfilme

Die WO₃- und TiO₂-Filme wurden über zwei verschiedene Beschichtungsmethoden auf die Substrate Titanmetall und FTO-Glas aufgebracht. Das Kaltgasspritzen wurde verwendet, um die WO₃- und TiO₂-Schichten auf die Ti-Substrate aufzubringen. Bei dem Prozess wird das Halbleiterpulver über eine automatisierte Sprühpistole auf das Titanmetall geschossen und durch die hohe kinetische Energie mit dem Substrat verschweißt. Das Verfahren wurde an der Helmut-Schmidt-Universität mit der Prototypanlage HSU 8000-X durchgeführt. Als weitere Prozessgeräte wurden eine Typ 24 WC-Co Sprühpistole und ein PF4000 Pulverförderer (Cold Gas Technology, Deutschland) verwendet. Das Prozessgas war Stickstoff bei einer Temperatur von 800 °C und einem Druck von 4 MPa. Der Abstand zwischen Sprühpistole und Metallsubstrat betrug 60 mm. Für die Herstellung von TiO₂-Photoelektroden wurde TiO₂ P25/20 (Evonik, Deutschland) auf das Titanmetallsubstrat gesprüht. Bei der Herstellung der WO₃-Photoelektroden wurde H₂WO₄ (WO₃ · H₂O; Merck, USA) als Pulver gesprüht, welches sich noch im Sprühprozess durch die hohen Temperaturen in einer Dehydrierung nach Gleichung 23 in WO₃ umwandelte.¹²⁰

$$H_2WO_4 \rightarrow WO_3 + H_2O$$
 [23]

Nach dem Sprühprozess wurden die Photoelektroden in einem Hochtemperaturofen (Nabertherm, Deutschland) für 2 h bei 500 °C kalziniert. Weitere Details zu dem Kaltgas-Sprühverfahren wurden 2017 von HAISCH *et al.* veröffentlicht.³⁸

Als zweite Beschichtungsmethode wurde das Siebdruckverfahren zur Auftragung der Halbleiterfilme verwendet. Das für das Verfahren nötige Siebdrucksieb (80T Maschenweite) wurde mit Schablonen in Elektrodengeometrie von der Firma Blomenkamp & Reysen (Deutschland) bezogen. Für den Siebdruck der Halbleiterfilme wurden spezielle Siebdruckpasten angefertigt, deren Herstellung von FLEISCH,¹²¹ basierend auf einer Publikation von ITO *et al.* aus dem Jahr 2007,¹²² beschrieben wurde.

Als Halbleiter wurden kommerzielle Pulver von WO_3 (Merck, USA) und TiO₂ P25/20 (Evonik, Deutschland) eingesetzt und nach dem in Tabelle 1 beschriebenen Verfahren verarbeitet. Die Eigenschaften der eingesetzten Pulver für die Beschichtungstechniken sind am Ende dieses Kapitels in Tabelle 3 zusammengefasst.

Stoff	M (g/mol)	<i>m</i> (g)	<i>n</i> (mol)	P(g/mL)	V(mL)
P25/20	79,9	6	0,075	-	-
WO ₃	231,8	17,39	0,075	-	-
Essigsäure	60,05	1,05	0,017	1,05	1
Wasser	18	5	0,278	1	1
Ethanol	46,07	132,7	2,880	0,79	168
Terpineol	154,25	20	0,130	0,93	21,5
Ethylcellulose	-	3	-	-	-

Tabelle 1: Ansatzberechnung der Synthese von Siebdruckpasten.¹²²

Zu Beginn der Pastenherstellung wurden 3 g Ethylcellulose (45 CP) unter starkem Rühren in 30 mL Ethanol gelöst. Anschließend wurde pulverförmiges P25/20 (6 g, 0,075 mol) bzw. WO₃ (17,39 g, 0,075 mol) in einem Mörser zusammen mit jeweils 1 mL Essigsäure (17,49 mmol) für 5 min gemörsert. Dann folgte eine Sequenz von verschiedenen Behandlungsschritten, die in Tabelle 2 zusammengefasst sind.

Tabelle 2: Arbeitsschritte der Siebdruckpastenherstellung.¹²²

Schritt	Vorgang
1	5x Zugabe von 1 mL Wasser, 1 min mörsern
2	15x Zugabe von 1 mL Ethanol, 1 min mörsern
3	6x Zugabe von 2,5 mL Ethanol, 1 min mörsern
4	Überführung der Paste mit 100 mL Ethanol in einen Rundkolben
5	1 min rühren, 15 min Ultraschallbad, 1 min rühren
6	Zugabe 20 g Terpineol
7	1 min rühren, 15 min Ultraschallbad, 1 min rühren
8	Zugabe 3 g Ethylcellulose, gelöst in 30 g Ethanol
9	1 min rühren, 15 min Ultraschallbad, 1 min rühren
10	Entfernung des Ethanols am Rotationsverdampfer (ca. 40 min)

Am Ende der Pastenherstellung wurde das Ethanol mithilfe eines Rotationsverdampfers bei einem Druck von 50 mbar und einer Temperatur von 70 °C über einen Zeitraum von ca. 40 min entfernt. Als Produkt wurden im Fall von P25/20 eine weiße und im Fall von WO₃ eine grüne, zähflüssige Paste erhalten. Die Pasten wurden unter Argon als Schutzgas aufbewahrt. Zur Beschichtung der Substrate wurde analog zu FLEISCH eine geringe Menge an Halbleiterpaste neben der Siebschablone verteilt und dann über das Sieb gerakelt.¹²¹ Es wurde pro Elektrode je eine einzelne Siebdruckschicht von P25/20 bzw. WO₃ auf das FTO-Glas oder Titanmetall aufgebracht. Anschließend wurden die erzeugten Photoelektroden in einem Hochtemperaturofen für 2 h bei 500 °C kalziniert.

Halbleiterpulver/	BET-Oberfläche	Mittlere	Partikelmorphologie
Präkursorpulver	(m²/g)	Partikelgröße (µm)	
H_2WO_4	1,70	$\sim 20^{\dagger}$	sphärisch
WO ₃	2,20	$\leq 20^{\dagger}$	sphärisch
P25/20	50^{\dagger}	20^{\dagger}	sphärisch

Tabelle 3: Eigenschaften der für die Halbleiterfilme verwendeten Pulver ([†] laut Herstellerangaben).

In dieser Arbeit wurden folgende WO₃-Photoelektroden untersucht: Ein siebgedruckter WO₃-Film auf FTO-Glas (WO₃/FTO) und eine kaltgasgespritzte WO₃-Schicht auf Titanmetall (WO₃/Ti). Zusätzlich wurden in dieser Arbeit noch folgende Photoelektroden aus TiO₂ zu Vergleichszwecken untersucht: Ein TiO₂-Siebdruckfilm auf FTO-Glas (TiO₂/FTO), ein TiO₂-Siebdruckfilm auf Titanmetall (Siebdruck-TiO₂/Ti) und ein kaltgasgespritzter TiO₂-Film auf Titanmetall (TiO₂/Ti).

3.2 Röntgendiffraktometrie (XRD)

Die Röntgendiffraktometrie (XRD, engl.: "*X-ray Diffraction*") ist eine Methode, die es ermöglicht, Informationen über die Kristallinität und die Struktur der Probe zu gewinnen. Dafür werden monochromatische Röntgenstrahlen auf die Probe gelenkt und dort gebeugt. Die Beugung findet an den Netzebenen des Kristalls nach der BRAGG'schen Gleichung statt:¹²³

$$n_{hkl} \lambda = 2 \, d_{hkl} \sin(\theta) \tag{24}$$

 n_{hkl} = Anzahl der Netzebenen, λ = Wellenlänge der verwendeten Röntgenstrahlung, d_{hkl} = Abstand der Netzebenen, θ = Beugungswinkel.

Durch eine Variation des Beugungswinkels θ über einen bestimmten Bereich wird ein Diffraktogramm erhalten, welches die verschiedenen Reflexe unterschiedlicher Intensität der Probe zeigt. Die Gitterkonstanten des Kristalls bestimmen die charakteristischen Lagen der Reflexe, während ihre Intensität von den Formfaktoren der einzelnen Atome abhängt. Mithilfe von Referenzdiffraktogrammen ist es möglich, die Kristallstruktur der Probe zu bestimmen.

Die in dieser Arbeit beschriebenen Röntgenstrukturanalysen wurden mittels eines D8 Advance Röntgendiffraktometers (Bruker, USA) in der BRAGG-BRENTANO Geometrie (θ - θ Reflexionsgeometrie) durchgeführt. Die Proben wurden hierfür mit Cu-K_a-Strahlung bei Raumtemperatur bestrahlt. Die erhaltenen Reflexe wurden mithilfe der Software DIFFRAC Eva (Bruker, USA) und der ICCD Datenbank (engl.: "*International Centre for Diffraction Data*") indiziert.

3.3 Brunauer-Emmett-Teller Messung (BET)

Die Oberfläche des verwendeten H₂WO₄- und WO₃-Pulver wurden nach der Methode der BRUNAUER-EMMETT-TELLER (BET) Messung bestimmt.¹²⁴ Dafür wurde die Probe in einem FlowSorb II 2300 (Micromeritics, USA) mit einem Gasgemisch aus 70 % Helium und 30 % Stickstoff als Adsorbat untersucht. Die erhaltende spezifische BET-Oberfläche wurde anschließend auf das Gewicht der Probe normiert.

3.4 UV/VIS-Spektroskopie

Die Spektren der Halbleiterpulver und -filme wurden an einem Cary 100 Bio UV/VIS-Spektrometer (Varian, USA) in diffuser Reflexion mit Hilfe einer Ulbricht-Kugel vermessen. Die verwendete Ulbricht-Kugel war von innen mit Bariumsulfat beschichtet. Die Pulverproben wurden in einem Probenhalter mit einem Quarzglasfenster fixiert und die Halbleiterelektroden direkt mit dem Quarzglasfenster an die Ulbricht-Kugel angebracht. Bei der diffusen Reflexion wird das einfallende Licht von der Probe absorbiert, reflektiert oder diffus gestreut. Als Grundlinie für die Messung diente Bariumsulfat. Die erhaltende diffuse Reflexion wurde anschließend in die KUBELKA-MUNK-Funktion umgerechnet:¹²⁵

$$F(R_{\infty}) = \frac{(1 - R_{\infty})^2}{2 R_{\infty}} = \frac{K}{S}$$
[25]

 R_{∞} = diffuses Reflexionsvermögen, K = Absorptionskoeffizient, S = Streukoeffizient.

Bei diesem Zusammenhang werden die Annahmen getroffen, dass die Probe unendlich dick ist und es keine Untergrundreflexion gibt. Aus den Reflexionsspektren der Halbleiter können zusätzlich mit Hilfe von Gleichung 26 die Energien der optischen Bandlücken bestimmt werden:

$$(F(R_{\infty})h\nu)^{n_{e^{-}}} \propto h\nu - E_{BL}$$
[26]

hv = Photonenenergie, n_{e^-} = Parameter für Elektronenübergang, E_{BL} = Bandlückenenergie.

Der Parameter n_{e^-} charakterisiert den stattfindenden Elektronenübergang vom Valenzins Leitungsband. Bei direktem Übergang ist $n_{e^-} = 2$ und für indirekte Übergänge gilt $n_{e^-} = 0,5$. Da WO₃ und TiO₂ indirekte Halbleiter sind, wurde in dieser Arbeit $n_{e^-} = 0,5$ verwendet.^{18,24} Ein so genannter TAUC-Graph wird durch die Auftragung von $(F(R_{\infty}) hv)^n$ gegen hv erhalten.^{126,127} Durch eine lineare Regression kann über den Schnittpunkt mit der Abszisse die Bandlückenenergie E_{BL} erhalten werden.

3.5 Rasterelektronenmikroskopie (REM)

Die Rasterelektronenmikroskopie (REM) wurde genutzt, um Aussagen über die Oberflächenstruktur und Morphologie der verwendeten Halbleiterfilme treffen zu können. Zudem wurden einige Proben im Querschnitt vermessen, damit die Schichtdicke der Elektroden bestimmt werden konnte. Bei der Methode wird die Probenoberfläche mit einem Elektronenstrahl bestrahlt und angeregt. Durch die dabei entstehenden Sekundärelektronen und die Rückstreuelektronen kann ein Bild der Oberfläche der Probe erzeugt werden.

Die REM-Aufnahmen wurden in einem Arbeitsabstand von 3 bis 8 mm mit einem JSM-6700F Rasterelektronenmikroskop (JEOL, Japan) aufgenommen. Der Elektronenstrahl wurde mithilfe einer Kaltkathoden-Elektronenkanone und einer Beschleunigungsspannung von 2,0 kV erzeugt. Für die Aufnahmen in geringerer Auflösung wurde ein Lower Secondary Electron Image (LEI) Detektor und für die Aufnahmen in höherer Auflösung ein Secondary Electron Image (SEI) Detektor verwendet. Für die Messungen wurden Halbleiterelektroden klein geschnitten, auf einem Metallträger fixiert und für eine bessere Leitfähigkeit mit Silberleitlack (Acheson Silber DAG 1415, Deutschland) kontaktiert.

3.6 Impedanzspektroskopie und Mott-Schottky-Auftragungen

Um die Kapazitäten der Raumladungszonen in den Halbleiterfilmen zu bestimmen, wurde die Impedanzspektroskopie eingesetzt. Über diese Methode ist es möglich, die Flachbandpotentiale und die Donordichten der Photoelektroden zu bestimmen. Neben der Raumladungskapazität wird bei der Messung auch die Kapazität der Elektrolytdoppelschicht in Reihe erfasst. Doch da bei den hier verwendeten Elektrolytkonzentrationen die Kapazität der Doppelschicht um zwei bis drei Größenordnungen über jener der Raumladungszone liegt und sich die Gesamtkapazität durch die Addition der reziproken Werte bei einer Reihenschaltung ergibt, kann angenommen werden, dass die gemessene Kapazität im Wesentlichen von der Raumladungskapazität bestimmt wird.¹²⁸

Mit Hilfe der Kapazitäten aus den Impedanzspektren konnten die MOTT-SCHOTTKY-Auftragungen entsprechend der Theorie in Kapitel 2.3 konstruiert werden. Durch die Extrapolation des linearen Bereichs zum Schnittpunkt mit der Abszisse wurden die Flachbandpotentiale der Halbleiterelektroden bestimmt. Außerdem wurden die Donordichten aus der Steigung der Regressionsgeraden mithilfe der stoffspezifischen Dielektrizitätskonstanten berechnet.¹²⁹

Die Impedanzmessung wurde in einer 3-Elektrodenanordnung mit dem Halbleiterfilm als Arbeitselektrode, einer Platin-Gegenelektrode und einer Ag/AgCl-Referenzelektrode (3 M NaCl) durchgeführt. Als Elektrolyt wurde eine 0,1 M KCl-Lösung verwendet (pH \approx 7). Es wurde in einem Potentialbereich von – 1 bis 1 V vs. NHE mit einer Schrittweite von 50 mV im Dunkeln gemessen. Die Frequenzen der Wechselspannungen lagen bei 1 Hz, 100 Hz und 1000 Hz und hatten jeweils eine Amplitude von 5 mV.

Bei nicht-idealen Elektroden kann häufig eine Frequenzdispersion in den Mott-Schottky-Auftragungen beobachtet werden.¹³⁰⁻¹³² Verantwortlich dafür sind Einflüsse der Elektrodenoberfläche wie deren Rauigkeit, Porosität und Ladungsträgerinhomogenitäten. In der Auswertung der Mott-Schottky-Messungen werden allerdings die Kapazitäten eines idealen Kondensators im System verwendet. Dieser Sachverhalt ist jedoch aufgrund der genannten Elektrodeneinflüsse und existenten Widerständen an den Phasengrenzflächen unrealistisch. Für die in dieser Arbeit durchgeführten Mott-Schottky-Messungen wurden bei einer Frequenz von 100 Hz Ergebnisse gefunden, die am ehesten den Literaturdaten entsprechen.^{11,133} Aufgrund der auftretenden Frequenzdispersion im Bereich von 1 – 1000 Hz wurden daher alle Messungen bei 100 Hz durchgeführt und ausgewertet, damit die Ergebnisse und Daten in dieser Arbeit untereinander vergleichbar sind.

3.7 Photoelektrochemische Experimente (PEC)

Die photoelektrochemischen Messungen (PEC, Photoelektrochemie) in dieser Arbeit basieren auf der Analyse des potentialabhängigen Photostroms, welcher durch die Photoelektrode bereitgestellt wird. Damit ein Photostrom gemessen werden kann, muss die Photoelektrode von der Halbleiteroberfläche bis zum Rückkontakt elektrisch leitfähig sein, was für alle untersuchten Photoelektroden der Fall ist. Da die Elektroden aus WO₃ und TiO₂ als Photoanoden getestet werden, wurden Potentiale oberhalb der Flachbandpotentiale der beiden Halbleiter an die Zelle angelegt. Dadurch sind die Halbleiterelektroden anodisch polarisiert. Bei n-Halbleitern existiert dann an der Halbleiter-Elektrolyt-Grenzfläche eine Verarmungszone und der Ladungstransport findet durch die Minoritätsladungsträger (Löcher) statt. Meist ist der Ladungstransport ohne Bestrahlung der Photoanode so gering, dass kaum ein messbarer Dunkelstrom fließt. Erst wenn die Photoelektrode mit hochenergetischen Photonen ($hv \ge E_{BL}$) bestrahlt wird, werden Elektron-Loch-Paare generiert, die einen Stromfluss (Photostrom) im selben Potentialbereich ermöglichen.

Der schematische Messaufbau, mit dem diese Untersuchungen durchgeführt wurden, ist in Abbildung 10 dargestellt. Die meisten Messungen wurden in einer 3-Elektroden-Anordnung mit Arbeitselektrode (Halbleiterelektrode), Gegenelektrode (Pt-Draht) und Referenzelektrode (Ag/AgCl-Elektrode mit 3 M NaCl) in schwefelsaurem Elektrolyten durchgeführt. Alle gemessenen Potentiale wurden von der verwendeten Ag/AgCl-Referenzelektrode (3 M NaCl) nach Gleichung 27 auf die Normal-Wasserstoffelektrode (NHE) umgerechnet:

$$E(V vs. Ag/AgCl) + 0,209 V = E(V vs. NHE)$$
 [27]

Die Elektroden waren für die Messungen mit einem Zennium Potentiostaten mit der Software Thales 3.04 (ZAHNER-elektrik, Deutschland) verbunden. Als Messzelle diente eine PECC-2 Zelle der Firma ZAHNER-elektrik (Deutschland) aus Teflon mit einem

1

Quarzglasfenter. Die Photostromdichten wurden unter Beleuchtung mit einer 300 W Xenon-Lampe mit AM 1.5G-Filter (LOT-QuantumDesign, Deutschland) gemessen. Dieser so genannte Solarsimulator hatte eine Bestrahlungsintensität von $I_{250} - I_{500} = 14 \text{ mW/cm}^2$ im nutzbaren Bereich des Sonnenlichts. Das Lampenspektrum im Vergleich zum AM 1.5G-Spektrum ist im Anhang in Abbildung 63 gezeigt.

Abbildung 11: Schema des Messaufbaus zur photoelektrochemischen Charakterisierung. Dargestellt ist der Dreielektrodenaufbau bestehend aus einer Gegenelektrode, Referenzelektrode und Arbeitselektrode, welche alle in die Elektrolytlösung eingetaucht sind. Die photoelektrochemische PECC-2 Zelle (ZAHNERelektrik, Deutschland) wird mit simuliertem Solarlicht aus einer Xenon-Bogenlampe mit AM 1.5G-Filter (LOT-QuantumDesign, Deutschland) bestrahlt. Die externe Spannung wurde mithilfe eines Zennium Potentiostaten (ZAHNER-elektrik, Deutschland) an die Zelle angelegt.

Alle photoelektrochemischen Messungen wurden bei Raumtemperatur durchgeführt. Im Folgenden werden die einzelnen photoelektrochemischen Messmethoden und ihre Messparameter genauer erläutert.

Photoelektrochemische Strom-Spannungs-Messungen (CLV)

Bei einer CLV-Messung (engl.: "*Chopped Light Voltammetry*") schaltet eine Blende die Lichteinstrahlung auf die Zelle während einer klassischen Cyclovoltammetrie-Messung (CV) ein und aus. Eine CV-Messung ist eine Strom-Spannungs-Messung, die aufgrund ihres dreieckigen Potential-Zeit Verlaufs auch Dreieckspannungsmethode genannt wird.⁵⁵ Eine komplette CLV-Messung wird üblicherweise über eine vorher festgelegte Zahl von elektrochemischen Zyklen durchgeführt. Der Potentialverlauf vom Startpotential zum Umkehrpotential und zurück zum Startpotential wird als ein elektrochemischer CV-Zyklus bezeichnet. Bei der CLV-Messung wurde eine Blende der Firma LOT-QuantumDesign (Deutschland) genutzt, die mithilfe eines DG 1022 Funktionsgenerators (Rigol, China) als Steuereinheit bedient wurde.

Photoelektrochemische Strom-Zeit-Messungen bei konstantem Potential (CA)

Bei einer CA-Messung (Chronoamperometrie) wird ein für die gesamte Messung konstantes Potential an die photoelektrochemische Zelle angelegt und der Strom gemessen. Das Ergebnis wird üblicherweise in einem Strom-Zeit-Diagramm dargestellt. Bei den CA-Messungen in dieser Arbeit wurde die photoelektrochemische Zelle meist durchgehend mit einer Bestrahlungseinheit beleuchtet. CA-Messungen eignen sich besonders gut für die Kombination mit einer Produktanalyse, weil im Gegensatz zu der CLV-Messung ein konstanter Zustand erreicht wird und ein exakter Zeitrahmen $t_{Start} - t_{Ende}$ für das Experiment unter Bestrahlung festgelegt werden kann.

Photoelektrochemische Effizienz-Messungen (IPCE)

Die IPCE-Messung (engl.: "*Incident Photon to Current Efficiency*") ist eine Messung der Photostromeffizienz und gibt das Verhältnis vom Photostrom (d.h. einer Elektronentransferrate) zu der Rate der einfallenden Photonen als Funktion der Wellenlänge entsprechend Gleichung 28 an.¹⁴

$$IPCE = \frac{Elektronen/cm^2/s}{Photonen/cm^2/s} = \frac{|j_{Ph}| h c}{P_{mono} \lambda}$$
[28]

 j_{Ph} = Photostromdichte, h = PLANCK'sches Wirkungsquantum, c = Lichtgeschwindigkeit, P_{mono} = monochromatische Lichtintensität/-leistung, λ = Wellenlänge der Lichtquelle.

Die Rate der einfallenden Photonen wurde von einem PP211 Potentiostaten (ZAHNERelektrik, Deutschland) aus der Leistung der kalibrierten Lichtquelle berechnet. Als Lichtquelle diente ein CIMPS TLS03 LED-Array (ZAHNER-elektrik, Deutschland) mit insgesamt 26 LEDs zwischen 309 und 1019 nm. Das IPCE-Spektrum wurde von dem Potentiostaten mithilfe der kubischen Spline-Interpolation in 1 nm-Schritten aufgenommen.³⁸ In die IPCE gehen die Effizienzen für die Photonenabsorption (η_{e^-/h^+}), die Ladungsträgererzeugung (η_{e^-/h^+}), die Ladungsträgerseparierung (η_{e^-/h^+}), den Ladungsträgertransport zur Halbleiter-Elektrolyt-Grenzfläche ($\eta_{Transport}$) und den Ladungsträgertransport durch die Phasengrenze ($\eta_{Grenzfläche}$) ein.¹⁴

Photoelektrochemie mit Analyse der gasförmigen Produkte (PEC/MS)

Zur Aufnahme der Bildungsraten der gasförmigen Produkte H₂, CO₂ und O₂ aus dem photoelektrochemischen Abbau von Methanol musste das photoelektrochemische Setup entsprechend Abbildung 12 angepasst werden. Die photoelektrochemische Messung wurde in einer 3-Elektrodenandordnung mit einem Iviumstat Potentiostaten und der Software Iviumsoft (Ivium Technologies, Niederlande) durchgeführt (PEC). Die photoelektrochemische Zelle wurde gasdicht verschlossen und mit einem HPR-20 QIC Massenspektrometer (Hiden, England) verbunden (MS). Um die gasförmigen Produkte zum Massenspektrometer zu führen, wurde ein Argon-Gasstrom von 5 mL/min durch die Zelle geleitet. Außerdem wurde für diese Messungen eine 450 W Xenon-Bogenlampe mit einer Bestrahlungsintensität von $I_{250} - I_{500} = 33 \text{ mW/cm}^2$ verwendet. Diese Bestrahlungseinheit war nur mit einem Wasserfilter ausgestattet, um die Wärmestrahlung der Xenon-Lampe zu filtern. Das Lampenspektrum ist im Anhang in Abbildung 64 gezeigt.

Abbildung 12: Schematische Darstellung des verwendeten PEC/MS-Versuchsaufbaus für den Methanolabbau unter Luftausschluss. Der Aufbau besteht aus einer Xe-Bogenlampe mit Wasserfilter, einer photoelektrochemischen Zelle PECC-2 mit Arbeitselektrode (Halbleiter-Photoelektrode), Platin-Gegenelektrode und Ag/AgCl-Referenzelektrode (3 M NaCl). Die Elektroden sind mit einem Potentiostaten (Ivium Technologies, Niederlande) verbunden. Durch die Zelle wird ein Argon-Gasstrom geführt (5 mL/min), welcher die Produktgase aus dem Methanolabbau über PTFE-Schläuche und Stahlrohrleitungen zu einem Massenspektrometer leitet.

Mit dem Massenspektrometer wurde im MID-Modus (engl.: "Multiple Ion Detection Mode") mit einem Flammenionisationsdetektor (FID) und einem Sekundärelektronenvervielfacher-Detektor (SEV) für eine bestimmte Masse der Gasdruck über die Zeit gemessen. Die Massen für die Produktgase wurden anhand der Massenspektren aus der NIST (engl.: "National Insitute of Standards and Technology", USA) Standard Referenz-Datenbank Nr. 69 (Stand: 21 Juni 2017) ausgewählt. Die Ergebnisse in dieser Arbeit zeigen die Bildungsraten für die folgenden Massen: m/z 2 (H₂), m/z 16 (O₂), m/z 30 (Formaldehyd), m/z 44 (CO₂) und m/z 46 (Ameisensäure).

3.8 Hydroxylradikal-Bestimmung

Neben der direkten Reaktion mit Valenzbandlöchern sind Hydroxylradikale die wichtigste reaktive Spezies für die oxidativen Reaktionen an der Halbleiteroberfläche. Sie werden ab einem Redoxpotential von 2,73 V *vs.* NHE aus photogenerierten Löchern und Hydroxid-Ionen gebildet:^{74,134}

$$OH^- + h^+ \rightarrow OH$$
 [29]

Die entstehenden [•]OH-Radikale können mithilfe der Hydroxylierungsreaktion von Terephthalsäure nachgewiesen werden.¹³⁵ Im Detail beruht das Nachweisverfahren auf der Reaktion von Terephthalsäure (TA) mit Hydroxylradikalen zu 2-Hydroxyterephthalsäure (2-HTA) entsprechend der folgenden Reaktion:

$$\xrightarrow{H}_{HO} \xrightarrow{O}_{OH} \xrightarrow{O}_{HO} \xrightarrow{H}_{O} \xrightarrow{O}_{OH}$$
 [30]

Für die Nachweisreaktion wurden nach dem Ende der photoelektrochemischen Messung $300 \ \mu$ L-Proben aus der Elektrolytlösung entnommen und zur Fluoreszenzmessung in eine NunclonTM Delta Surface Mikrotiterplatte (Thermo Fisher Scientific, USA) überführt. Die Fluoreszenzmessung wurde mit einem F-7000 L Fluoreszenzspektrometer (Hitachi, Japan) durchgeführt. Die Anregung des 2-HTA erfolgte bei einer Wellenlänge von 315 nm und die Detektion bei einer Wellenlänge von 425 nm.¹³⁵ Bei der Fluoreszenzmessung wurden eine Emissions- und Extinktionsblendenöffnung von 10 nm, eine Photoelektronenvervielfacher-Spannung von 400 V und eine Scan-Rate von 12000 nm/min verwendet. Um die erhaltenen Fluoreszenzergebnisse in Konzentrationen umrechnen zu können, wurden Standardlösungen von 2-HTA vermessen und eine Kalibrationsgerade erstellt, welche im Anhang in Abbildung 65 dargestellt ist.

3.9 Formaldehyd-Bestimmung

Bei der photokatalytischen Oxidation von Methanol ist Formaldehyd das erste stabile Oxidationsprodukt. Es kann mithilfe des so genannten NASH-Reagenz nachgewiesen werden.¹³⁶ Das NASH-Reagenz besteht aus einer wässrigen Lösung von Essigsäure (0,05 M), Ammoniumacetat (2 M) und Acetylaceton (0,02 M). Wird Methanol zu dieser Lösung hinzugegeben entsteht als Produkt Diacetyldihydrolutidin (DDL), das mithilfe der Fluoreszenzspektroskopie nachgewiesen werden kann.¹³⁷ Die Reaktion zu DDL folgt dabei dem Mechanismus der HANTZSCH'schen Dihydropyridinsynthese:^{138,139}

$${}^{2}_{H_{3}C} \underbrace{\overset{\circ}{\overset{\circ}}_{CH_{3}}}_{H_{3}C} + \underbrace{\overset{\circ}{\overset{\circ}}_{H_{4}}}_{H} + \underbrace{\overset{\circ}{\overset{\circ}}_{H_{4}OAc}}_{-3H_{2}O} + \underbrace{\overset{\circ}{\overset{\circ}}_{H_{3}C}}_{H_{3}C} \underbrace{\overset{\circ}{\overset{\circ}}_{H_{4}}}_{H} + \underbrace{\overset{\circ}{\overset{\circ}}_{H_{4}OAc}}_{H}$$

$$(31)$$

Da das NASH-Reagenz nicht langzeitstabil ist, wurde es monatlich frisch präpariert und bis zur Verwendung kühl und dunkel gelagert. Für die Nachweisreaktion wurden nach dem Ende der jeweiligen photoelektrochemischen Messung 300 µL-Proben aus der Elektrolytlösung entnommen und mit einem Überschuss von 600 µL NASH-Reagenz versetzt. Für einen vollständigen Umsatz wurden diese Proben über Nacht im Dunkeln zur Reaktion gebracht (ca. 24 Stunden). Jeweils 250 µL dieser Reaktionslösungen wurden im Anschluss zur Fluoreszenzmessung in eine NunclonTM Delta Surface Mikrotiterplatte Scientific, USA) überführt und mit einem F-7000 (Thermo Fisher Fluoreszenzspektrometer (Hitachi, Japan) vermessen. Die Anregung des DDL erfolgte bei einer Wellenlänge von 412 nm und die Detektion bei einer Wellenlänge von 510 nm.¹³⁷ Bei der Fluoreszenzmessung wurden eine Emissionsund Extinktionsblendenöffnung von 5 nm, eine Photoelektronenvervielfacher-Spannung von

700 V und eine Scan-Rate von 12000 nm/min verwendet. Aufgrund der Alterung des NASH-Reagenz wurde vor jeder Fluoreszenzmessung eine Basislinie aufgenommen und von dem Ergebnis abgezogen. Um die erhaltenen Fluoreszenzergebnisse in die Formaldehyd-Konzentrationen umzurechnen, wurden Standardlösungen von Formaldehyd mit NASH-Reagenz versetzt und vermessen. Aus diesen Werten wurde eine Kalibrationsgerade erstellt, welche im Anhang in Abbildung 66 dargestellt ist. Unter Berücksichtigung der Verdünnung der Elektrolytprobe und mit der Annahme, dass Formaldehyd zu 1:1 in DDL umgewandelt wurde, konnte die Konzentration an Formaldehyd im Elektrolyten bestimmt werden.

4. Ergebnisse

In diesem Kapitel werden alle experimentellen Ergebnisse dieser Arbeit vorgestellt und beschrieben. Zu Beginn des Kapitels richtet sich der Fokus dabei auf die verwendeten Halbleiterpulver und anschließend auf die Charakterisierung der Halbleiterelektroden. Der Hauptteil der Arbeit besteht dann im Anschluss aus den Kapiteln "Photoelektrochemischer Abbau von Methanol" und "Produktanalyse des photoelektrochemischen Methanolabbaus". Zum Abschluss des Ergebnisteils werden die photoelektrochemischen Untersuchungen in der Vollzelle im Labormaßstab (Zweikammer-Photoelektrolysezelle) vorgestellt. Um die katalytische Aktivität des verwendeten Wolframtrioxids (WO3) als Photoanodenmaterial besser einschätzen zu können, werden die erhaltenden WO3-Ergebnisse mit den entsprechenden Ergebnissen des TiO₂-basierten P25/20 verglichen. Der Photokatalysator P25/20 ist eine kommerzielle Form des Benchmark-Katalysators P25, bei dem die TiO2-Nanopartikel agglomeriert vorliegen.

4.1 Struktur und Eigenschaften des WO3 Pulvers

Der Fokus dieses Kapitels liegt auf der Charakterisierung des verwendeten kommerziellen Pulvers von WO₃, welches für die Herstellung der Siebdruck-Elektroden verwendet worden ist. Dabei werden vor allem die Eigenschaften betrachtet, die für einen photokatalytischen Prozess entscheidend sind. Die Ergebnisse dieser Untersuchung sind in den folgenden Unterkapiteln "Kristallstruktur und Reinheit", "physikalische Eigenschaften des Pulvers", "optische Eigenschaften des Pulvers" und "photokatalytische Aktivität des Pulvers" zusammengefasst.

4.1.1 Kristallstruktur und Reinheit

Bei einem photokatalytischen Prozess ist die Reinheit des Katalysators von entscheidender Bedeutung. Verunreinigungen können die aktive Oberfläche als Katalysatorgift blockieren oder an unerwünschten Nebenreaktionen teilnehmen.¹⁴⁰ Aus diesem Grund wurde der Glühverlust des Pulvers thermogravimetrisch (TGA) bestimmt, um den Anteil organischer Bestandteile zu untersuchen. Zusätzlich wurde mithilfe der optischen Emissionsspektrometrie mit induktiv gekoppeltem Plasma (ICP-OES) eine Elementanalyse durchgeführt, da Fremdatome einen Einfluss auf die Aktivität und die Produktausbeute der photokatalytischen Reaktion haben können.¹⁴¹ Beide Messungen wurden in Projektkooperation von der Firma H.C. Starck in Goslar an dem verwendeten WO₃-Pulver (Merck, USA) durchgeführt.

Die Reinheit des eingesetzten WO₃ Pulvers wird vom Hersteller Merck mit 99,9 % angegeben. Eine Überprüfung dieser Reinheit zeigt, dass im Pulver keine organischen Verunreinigungen vorhanden sind. Der gemessene Glühverlust bei 750 °C nach 2

Stunden beträgt lediglich 0,06 %. Dabei handelt es sich aller Wahrscheinlichkeit nach um geringe Mengen von adsorbiertem Wasser.

Zusätzlich zeigen die Ergebnisse der Elementanalyse aus der ICP-OES Messung, dass die Probe keine chemischen Verunreinigungen bzw. Fremdatome enthält. Die Messwerte für alle getesteten Elemente liegen unterhalb der Nachweisgrenzen des Geräts. Das Ergebnis der Messung ist in Tabelle 4 gezeigt.

 Tabelle 4:
 Elementanalyse aus der ICP-OES Messung.
 Alle Messwerte liegen unterhalb der Nachweisgrenzen.

Element	Ergebnis (ppm)	Element	Ergebnis (ppm)
Si	< 10	Mg	< 1
Al	< 2	Мо	< 4
Ca	< 1	Na	< 1
Cu	< 1	Nb	< 5
Fe	< 2	Ni	< 2
K	< 1		

Die Röntgendiffraktometrie ist eine Methode, die zur Strukturanalyse von kristallinen Festkörpern verwendet wird. In dieser Arbeit wurde sie eingesetzt, um das verwendete kommerzielle WO₃ Pulver zu charakterisieren. Das Ergebnis ist in Abbildung 13 dargestellt und zeigt, dass es sich bei dem verwendeten Pulver um phasenreines monoklines WO₃ handelt. Die Reflexe des kristallinen WO₃ sind mithilfe der ICCD Datenbank zugeordnet worden.¹⁴²

Abbildung 13: XRD Pulverdiffraktogramm des verwendeten WO₃-Pulvers. Alle Reflexe des Diffraktogramms konnten mithilfe der ICCD Datenbank monoklinem WO₃ zugeordnet werden.¹⁴² Ein vergleichbares Diffraktogramm wurde unter anderem von HU *et al.* gemessen.¹⁴³

4.1.2 Physikalische Eigenschaften des Pulvers

Die Größe der katalytisch aktiven Oberfläche ist ein wichtiger Parameter für die Aktivität eines Photokatalysators, da alle Prozesse auf der Oberfläche der Partikel stattfinden. Aus diesem Grund sind die physikalischen Daten für das verwendete WO₃-Halbleiterpulver hier zusammengefasst. Die Partikelgrößenverteilung wurde extern bei der Firma H.C. Starck in Goslar mittels dynamischer Lichtstreuung (DLS) untersucht, während die spezifische Oberfläche mithilfe von BET-Oberflächenmessungen bestimmt wurde.

Die DLS Messung des WO₃ Pulvers zeigt, dass es sich bei dem eingesetzten Pulver um eine Mischung aus ungefähr 90 % größeren (10 – 200 µm Partikelgröße) und ca. 10 % kleineren (0,1 – 1 µm Partikelgröße) Partikeln handelt. Der größte Anteil der Partikel besitzt einen Durchmesser zwischen 60 – 70 µm. Mithilfe der BET-Messung wurde eine spezifische Oberfläche von 2,20 m²/g für das kommerzielle WO₃ ermittelt.

Die durchschnittlichen Partikeldurchmesser der WO₃-Partikel liegen deutlich über den Diffusionslängen von photogenerierten Löchern in WO₃ von ca. 0,5 μ m.²⁴ Außerdem ist die spezifische Oberfläche im Vergleich zum kommerziellen Photokatalysator TiO₂ P25/20 vergleichsweise gering. Die BET-Oberfläche von P25/20 beträgt nach Herstellerangabe 50 m²/g (Evonik, Deutschland) und in der Literatur nach VISWANATHAN *et al.* 56 m²/g.¹⁴⁴

4.1.3 Optische Eigenschaften des Pulvers

Um das Sonnenlicht für die Photokatalyse optimal nutzen zu können, sollte ein Material in erster Linie möglichst viel sichtbares (VIS) Licht absorbieren. Ein erster Hinweis auf die Aktivität unter sichtbarem Licht ist die Farbe des Halbleiterpulvers. Dieses erscheint für das menschliche Auge wie im Fall von WO₃ farbig, wenn sichtbares Licht vom Pulver absorbiert wird. Eine Fotografie der beiden untersuchten Halbleiterpulver von WO₃ und TiO₂ P25/20 ist in Abbildung 14 dargestellt.

Abbildung 14: Fotografische Aufnahme der verwendeten kommerziellen Halbleiterpulver von WO₃ und TiO₂ P25/20. Das WO₃-Pulver hat eine grün-gelbe Farbe, während das TiO₂ Pulver weiß ist.

Eine entsprechende VIS-Absorption sollte sich daher auch in den Absorptionsspektren der Materialien nachweisen lassen. Allerdings ist die Messung der Absorptionsspektren in einer Suspension problematisch, da es zu Überlagerungen mit Streueffekten kommen

Abbildung 15: Diffuse UV/VIS-Reflexionsspektren von TiO₂ P25/20 (rote Kurve) und WO₃ (blaue Kurve) Pulver.

Das Ergebnis in Abbildung 15 zeigt, dass die Reflexions- bzw. Absorptionskante des gelb-grünen WO₃ Pulvers im Gegensatz zum weißen TiO₂ P25/20 Pulver eine Rotverschiebung um ca. 70 nm aufweist. Außerdem ist ersichtlich, dass WO₃ deutlich weniger VIS-Licht reflektiert als das TiO₂ Pulver. Im Gegensatz dazu zeigt TiO₂ eine um ca. 5 % verringerte Reflektion im UV-Bereich des Lichts unter 350 nm.

Aus den aufgezeichneten Reflexionsspektren lassen sich neben dem Absorptionsverhalten der Halbleiterpulver auch Erkenntnisse zur elektronischen Struktur der untersuchten Materialien gewinnen. Durch die Analyse der Reflexionsspektren mithilfe von TAUC-Auftragungen kann die optische Bandlücke der Halbleiter bestimmt werden. Die TAUC-Graphen sind in der Abbildung 16 dargestellt und zeigen für P25/20 eine Bandlückenenergie von 3,02 eV und für WO₃ eine Bandlückenenergie von 2,60 eV. Diese Energien stimmen mit den Literaturwerten für TiO₂ in der Rutil-Modifikation von 3,0 eV und für WO₃ von 2,6 – 2,8 eV überein.^{11,18,22,145}

Abbildung 16: TAUC-Auftragung der diffusen Reflexionsspektren von TiO₂ P25/20 (links) und WO₃ (rechts). Die dazugehörigen Reflexionsspektren sind in Abbildung 15 gezeigt. Dargestellt sind die aufgezeichneten Messwerte (schwarze Kurven) und die dazugehörigen Regressionsgeraden (rote Linien).

4.1.4 Photokatalytische Aktivität des Pulvers

Das grundsätzliche Prinzip der Photokatalyse beruht auf der Eigenschaft der Halbleiter, Photonen zu absorbieren und dabei reaktive Elektron-Loch-Paare zu bilden, die in der Lage sind, viele organische und anorganische Verbindungen abzubauen. Die photokatalytische Aktivität des verwendeten Halbleiterpulvers WO₃ ist in gemeinsamer Projektarbeit (BMBF-Projekt "DuaSol") von HAMID untersucht wurden.¹⁴⁶ In der Abbildung 17 ist eine schematische Zusammenfassung der Ergebnisse aus diesen Untersuchungen gezeigt.

Abbildung 17: Schematische Zusammenfassung der photokatalytischen Aktivität von WO₃ für den Abbau von Natriumacetat unter Solarlicht bei pH 2. (A) zeigt den Acetatabbau an WO₃ in Gegenwart von Eisen(III)-Nitrat als Elektronenakzeptor. (B) Auch unter Abscheidung eines Pt Co-Katalysators auf der WO₃-Oberfläche finden in Abwesenheit eines Elektronenakzeptors keine photokatalytischen Reaktionen statt. Detaillierte Angaben zu den Abbauprodukten von Natrimacetat sind in der Arbeit von HAMID beschrieben.¹⁴⁶

Das verwendete kommerzielle WO₃-Pulver (Merck, USA) hat in seiner unmodifizierten Form eine sehr geringe photokatalytische Aktivität. In Experimenten zum Abbau von Natriumacetat in wässriger Halbleiter-Suspension bei verschiedenen pH-Werten im Bereich von 2-11 konnte kein Abbau des Natriumacetats festgestellt werden. In weiteren Untersuchungen wurde Platin zur Ladungsträgerseparation auf der Oberfläche der WO3-Partikel abgeschieden und das Experiment zum Acetatabbau wiederholt. Allerdings wurde erneut keine photokatalytische Aktivität des WO3 beobachtet. Erst durch die Zugabe des Elektronenakzeptors Eisen(III)-Nitrat Fe(NO₃)₃ konnte bei pH 2 eine photokatalytische Aktivität für den Abbau von Acetat nachgewiesen werden, die sogar höher war als die photokatalytische Aktivität von purem P25/20 ohne Elektronenakzeptor.

Der als Vergleichsmaterial eingesetzte Photokatalysator P25/20 ist eine kommerzielle Form des Benchmark-Katalysators P25 der Firma Evonik (Deutschland), bei dem die 21 nm großen TiO₂-Primärpartikel agglomeriert als ca. 20 µm große sphärische Partikel vorliegen (beide Werte nach Herstellerangaben). P25 ist eine TiO₂-Mischung bestehend aus ungefähr 80 % Anatas und 20 % Rutil. Es ist als Photokatalysator für seine vergleichsweise hohe Aktivität bekannt und wird daher häufig als Benchmark-Photokatalysator für wissenschaftliche Untersuchungen eingesetzt.^{147–149} Der kommerzielle Photokatalysator P25/20 hat bedingt durch seine veränderte Morphologie im Vergleich zum P25 eine etwas geringere photokatalytische Aktivität, wie die kürzlich erschienenen Untersuchungen von BAHAMONDE *et al.* zeigen.¹⁵⁰

4.2 Struktur und Eigenschaften der WO₃ Elektroden

Dieses Kapitel beschäftigt sich mit der Charakterisierung der siebgedruckten- und kaltgasgespritzten WO₃-Photoanoden. Dabei werden neben der Beschaffenheit der Anoden auch die entscheidenden Eigenschaften für den photoelektrochemischen Abbau von Schadstoffen betrachtet. Die Ergebnisse dieser Untersuchung sind in den folgenden Unterkapiteln "Kristallstruktur", "Morphologie und Schichtdicke", "optische Eigenschaften der Elektroden" und "elektrochemische Eigenschaften der Elektroden" zusammengefasst.

4.2.1 Kristallstruktur der Elektroden

Analog zu den XRD Untersuchungen der Halbleiterpulver wurden auch die Photoelektroden mithilfe der Röntgendiffraktometrie charakterisiert. So konnte bestätigt werden, dass es sich bei den untersuchten Elektroden um reine Filme von WO₃ handelt. Die Abbildung 18 zeigt das Diffraktogramm eines bei 500 °C kalzinierten WO₃-Films auf FTO-Glas (WO₃/FTO-Elektrode). Die Indizierung der Reflexe lässt auf zwei vorhandene Spezies schließen. Im Vergleich zum Pulverdiffraktogramm von WO₃ aus Abbildung 13 gibt es ein paar zusätzliche Reflexe (mit Sternmarkierung). Diese können auf das Zinn(II)-oxid des eingesetzten FTO-Glases zurückgeführt werden. Diese Beobachtung ist bei geringen Schichtdicken zu erwarten, da die Eindringtiefe der Röntgenstrahlung in der BRAGG-BRENTANO-Geometrie bei einem Winkel von $2\theta = 30^{\circ}$ ca. 500 nm entspricht. Mit steigendem Winkel erhöht sich auch die Eindringtiefe z.B. auf 1300 nm bei 80°.¹⁵¹ Neben den SnO₂-Reflexen ist auch sehr deutlich das monokline WO₃ zu erkennen, bei dem sich einige relative Intensitäten im Vergleich zum reinen Pulverdiffraktogramm aus Abbildung 13 verändert haben. Dieser Effekt kann auf die Überlagerung der Reflexe von SnO₂ und WO₃ zurückgeführt werden. Dadurch haben besonders die Reflexe bei 26,5°, 29,5° und 43,2° an relativer Intensität gewonnen. Für den amorphen Anteil im Winkelbereich von 20 – 30° ist das eingesetzte Glassubstrat verantwortlich.

Bei der Herstellung der Elektrodenfilme wurden Ethylcellulose und Terpineol als kohlenstoffhaltige Additive für die Halbleiterpasten verwendet. Ethylcellulose hat eine Selbstentzündungstemperatur von 370 °C und Terpineol einen Siedepunkt von 217 °C. In der Literatur verwenden ITO *et al.* eine Sintertemperatur von 500 °C um die beiden kohlenstoffhaltigen Verbindungen aus den Halbleiterfilmen zu entfernen.¹²² Daher wird davon ausgegangen, dass die beiden organischen Verbindungen auch bei den Elektrodenfilmen aus dieser Arbeit (während der Temperierung bei 500 °C für 2 h) entfernt wurden.

Abbildung 18: Röntgendiffraktogramm eines WO₃ Films auf einem FTO-Glassubstrat (WO₃/FTO). Der Film wurde durch den Siebdruck von WO₃ erzeugt und anschließend für 2 Stunden bei 500 °C im Ofen kalziniert. Die indizierten Reflexe (+) gehören zum SnO₂ des FTO-Glases.

Die Röntgendiffraktometrie wurde außerdem eingesetzt um die kaltgasgespritzten Photoanoden ebenfalls zu charakterisieren, bei denen Wolframsäure (H_2WO_4 bzw. $WO_3 \cdot H_2O$) als Ausgangsmaterial für das Beschichtungsverfahren verwendet wurde. In Abbildung 19 ist das entsprechende Röntgendiffraktogramm der WO₃-Schicht auf Titanmetall gezeigt.

Abbildung 19: Röntgendiffraktogramm einer WO₃ Schicht auf einem Titanmetallsubstrat (WO₃/Ti). Die Schicht wurde durch Kaltgasspritzen von H₂WO₄ erzeugt und anschließend für 2 Stunden bei 500 °C im Ofen kalziniert. Die indizierten Reflexe (\bullet) sind die Ti-Reflexe des Titanmetallsubstrats. Der rote Pfeil markiert einen Reflex bei 27,3° von TiO₂ in der Rutil-Modifikation.

Die Indizierung der Reflexe lässt auf insgesamt drei Phasen auf der Oberfläche der WO₃/Ti-Elektrode schließen. Das Diffraktogramm zeigt die Ti-Reflexe (●) des eingesetzten Ti-Metallsubstrates direkt unterhalb des Halbleiterfilms. Ein (110)-Rutil Reflex bei 27,3 °, welcher im Diffraktogrammen mit einem roten Pfeil markiert ist, kann der dünnen TiO₂-Passivierungschicht des Titanmetallsubstrats zugeordnet werden. Die TiO₂-Passivierungschichten auf Titanblechen weisen laut Literaturangaben üblicherweise Schichtdicken von 1.5 - 10 nm auf.¹⁵² Der gleiche Reflex konnte auch im Röntgendiffraktogramm einer Kaltgaselektrode von P25/20 auf Titanmetall beobachtet werden (TiO₂/Ti).³⁸ Zudem sind neben den bereits genannten Reflexen sehr deutlich die Reflexe des monoklinen WO₃ zuerkennen (siehe Abbildung 13), welches beim Kaltgasspritzen aus dem eingesetzten H₂WO₄ (WO₃ · H₂O) nach Gleichung 23 entstanden ist. Das Diffraktogramm aus Abbildung 19 bestätigt die Dehydrierung des H₂WO₄ zu WO₃, da keine nachweisbaren Mischphasen oder H₂WO₄-Reflexe (Vergleich mit Diffraktogramm aus der Literatur) beobachtet werden.¹²⁰ Die Nachweisgrenzen solcher Mischphasen im XRD liegen dabei im Bereich von ungefähr 2 Gew.-%.^{153,154}

4.2.2 Morphologie und Schichtdicke

Die Schichtdicke des Halbleiterfilms ist maßgeblich für die Lichtabsorption und die Weglänge der photogenerierten Löcher und Elektronen zur Oberfläche bzw. zum Rückkontakt. Bei den Siebdruckelektroden ist die Schichtdicke dabei von der Maschenweite des verwendeten Siebs abhängig. Für die verwendete Maschenweite von 80T wird nach FLEISCH für TiO₂ P25-Filme (Filmpräparation nach ITO *et al.*) eine homogene Schichtdicke von 2,9 µm erwartet.^{121,122} Bei dem in dieser Arbeit eingesetzten P25/20 handelt es sich um eine kommerzielle Form des Photokatalysators P25, bei dem die TiO₂-Nanopartikel zu 20 µm großen Partikeln agglomeriert wurden.¹⁵⁰ Bei der

Herstellung der Halbleiterpaste nach ITO *et al.* werden die Halbleiterpulver in mehreren Schritten in einem Mörser zermahlen und per Ultraschallbehandlung dispergiert, damit möglichst kleine Partikelgrößen in der Halbleiterpaste erhalten werden.¹²² Die Schichtdicke der Siebdruckelektroden mit P25/20 (TiO₂/FTO) wurde analog zu FREITAG gravimetrisch bestimmt:¹⁵⁵

$$d = \frac{\Delta m}{\rho A}$$
[32]

d = Schichtdicke, $\Delta m =$ Differenz der Massen mit und ohne Beschichtung, $\rho =$ Dichte des Pulvers, A = Beschichtungsfläche.

Die gravimetrische Bestimmung ergab Schichtdicken von ca. 2,9 μ m, womit bestätigt wird, dass die 20 μ m großen P25/20-Agglomerate bei der Herstellung der Halbleiterpaste nach ITO *et al.* wieder aufgebrochen und zermahlen werden.¹²²

Die verwendeten WO₃ Elektroden wurden mittels REM-Aufnahmen charakterisiert. In Abbildung 20 sind zwei typische Bilder der WO₃-Siebdruckfilme auf FTO in verschiedenen Vergrößerungen dargestellt. Zum Vergleich sind die entsprechenden REM-Bilder der WO₃-Kaltgasschichten auf Titanmetall in Abbildung 21 gezeigt.

Abbildung 20: Typische REM-Querschnitts-Aufnahmen eines siebgedruckten WO₃-Films auf FTO (A) in 1500-facher Vergrößerung zur Bestimmung der Schichtdicke. Die Dicke des WO₃-Films wurde an mehreren Stellen gemessen, sie beträgt $0.55 \pm 0.04 \,\mu$ m.

Die WO₃ Filme weisen trotz der Verwendung eines Siebs mit einer Maschenweite von 80T eine Grundschicht mit einer Dicke von nur $0.55 \pm 0.04 \,\mu\text{m}$ auf (Abbildung 20). Aus dieser Schicht ragen einzelne WO₃-Partikel und WO₃-Agglomerate um bis zu 3,5 μm heraus, wie in der REM-Aufnahme zu erkennen ist. Diese Unterschiede in der Schichtdicke zwischen den siebgedruckten WO₃-Filmen und den siebgedruckten P25-

Filmen aus der Arbeit von FLEISCH mit 2,9 μ m sind auf die eingesetzten Pulver zurückzuführen.¹²¹ Die Primärpartikel im P25 haben nach Herstellerangaben (Evonik, Deutschland) eine mittlere Größe von ca. 21 nm. LI *et al.* haben in ihrer Arbeit die Partikelgrößenverteilung von P25-Pulver mithilfe der dynamischen Lichtstreuung untersucht und fanden dabei Partikel im Größenbereich von 148 – 208 nm, welche sich aufgrund von Agglomeration in wässriger Lösung gebildet hatten.¹⁵⁶ Die WO₃-Partikel hingegen weisen, wie der siebgedruckte WO₃-Film auch, nach den DLS-Messungen eine sehr inhomogene Größenverteilung mit kleinen (0,1 – 1 μ m) und sehr großen (10 – 200 μ m) Partikeln auf (siehe Kapitel 4.1.2). Unter Berücksichtigung der DLS-Partikelgrößenverteilung ist es zudem sehr wahrscheinlich, dass die ca. 0,55 μ m dicke WO₃-Grundschicht größtenteils aus den kleineren (0,1 – 1 μ m) oder klein gemörserten Partikeln des kommerziellen WO₃-Pulvers gebildet wurde.

Abbildung 21: Typische REM-Querschnitts-Aufnahmen einer kaltgasgespritzten WO₃ Schicht auf Ti (A) in 1400-facher Vergrößerung und (B) in 10000-facher Vergrößerung.

Die kaltgasgespritzten Elektroden der Helmut-Schmidt-Universität Hamburg (HSU) weisen eine inhomogene Schichtdicke von 1 – 10 μ m auf.¹⁵⁷ Da es nicht ohne weiteres möglich war die Schichtdicke mithilfe der REM-Aufnahmen zu ermitteln, wurde die mittlere Schichtdicke stattdessen ebenfalls gravimetrisch analog zu FREITAG mit einer WO₃-Dichte von $\rho = 7,16$ g/cm³ bestimmt (Gleichung 32).¹⁵⁵ Die auf diese Weise bestimmte mittlere Schichtdicke der kaltgasgespritzten WO₃-Elektroden beträgt ungefähr 2,9 μ m. Die mittleren Schichtdicken der kaltgasgespritzten TiO₂-Photoelektroden wurden zum Vergleich ebenfalls gravimetrisch bestimmt. Dabei wurde für die kaltgasgespritzten TiO₂/Ti-Vergleichselektroden ebenfalls eine mittlere Schichtdicke von ca. 3 μ m gefunden.

Die REM-Aufnahmen aus Abbildung 21 zeigen außerdem, dass die anfänglich homogene Oberfläche des Titanmetallsubstrats durch das Kaltgasspritzen mit Halbleiterpulver bei hoher Geschwindigkeit deutlich penetriert worden ist. Daher ist es auch sehr wahrscheinlich, dass wie von HERRMANN-GEPPERT *et al.* vermutet, die dünne TiO₂-Passivierungsschicht auf der Oberfläche des Titanmetallsubstrats bei der Kaltgas-Beschichtung von den Halbleiterpartikeln durchstoßen wird.^{30,31}

4.2.3 Optische Eigenschaften der Elektroden

In diesem Kapitel werden die optischen Eigenschaften der beschichteten Halbleiterfilme untersucht. Dabei werden insbesondere die Unterschiede in den optischen Eigenschaften zwischen den Pulvern aus Kapitel 4.1.3 und den kaltgasgespritzten Halbleiterfilmen betrachtet. Die optischen Eigenschaften der Siebdruckfilme konnten nicht mithilfe der diffusen Reflexion untersucht werden, da die Halbleiterschichten auf dem FTO-Glas zu dünn und transparent waren, um aussagekräftige Reflexionsspektren zu erzeugen. Da sich die Siebdruckfilme optisch (siehe Abbildungen 23 und 24) nicht wesentlich von den verwendeten Pulvern (siehe Abbildung 14) unterscheiden, wird davon ausgegangen, dass sich die optischen Eigenschaften wie Absorptionsvermögen und optische Bandlücke der Siebdruckfilme im Vergleich zum eingesetzten Pulver nicht wesentlich verändert haben. Das Ergebnis der UV/VIS-Messung für kaltgasgespritzte Halbleiterschichten auf Titanmetallsubstraten ist in Abbildung 22 dargestellt.

Abbildung 22: Diffuse UV/VIS-Reflexionsspektren der kaltgasgespritzten Elektroden von TiO₂/Ti (rote Kurve) und WO₃/Ti (blaue Kurve). Die schwarze Messkurve zeigt die Reflexion eines unbeschichteten Ti-Metallsubstrats.

Die Reflexionsspektren der Kaltgas-Elektroden zeigen einen ähnlichen Trend wie die Spektren der Pulver von WO₃ und P25/20 (Abbildung 15). Die WO₃-Elektrode reflektiert deutlich weniger VIS-Licht als die TiO₂-Elektrode. Im Gegensatz dazu zeigt die Elektrode von TiO₂ eine um wenige Prozent verringerte Reflexion von UV-Licht unterhalb von 340 nm. Allerdings ist es offensichtlich, dass die Elektroden deutlich weniger einfallendes Licht reflektieren bzw. mehr einfallendes Licht absorbieren als die untersuchten Pulver. Dieses Verhalten kann auf den Einfluss des Metallsubstrates unter dem Halbleiterfilm zurückgeführt werden, welches selbst weniger als 50 % des einfallenden Lichts reflektiert. Besonders im UV-Bereich unter 400 nm ist die Reflexion des Titanmetalls sehr niedrig. Dadurch kann die Anwesenheit einer dünnen TiO₂-Passivierungschicht auf dem Metallsubstrat nachgewiesen werden.¹⁵² Unter der Annahme einer TiO₂-Passivierungsschichtdicke von 10 nm auf dem Titanblech und eines optischen Absorptionskoeffizienten von $1/\alpha = 100$ nm (für TiO₂ bei einer Wellenlänge von 300 nm) ergibt sich, dass ca. 10 % des einfallenden UV-Lichts von der Passivierungsschicht absorbiert werden.^{152,158}

Durch das Kaltgasspritzen haben sich zudem die Farben der Halbleitermaterialien verändert. Im Fall von WO₃ ist statt dem grün-gelben Pulver (siehe Abbildung 14) ein dunkelblauer Halbleiterfilm entstanden. Zum Vergleich sind in Abbildung 23 die Fotografien der Elektroden von WO₃/FTO und WO₃/Ti gezeigt. Die Fotografie eines unbeschichteten Titansubstrats vor dem Kaltgasspritzen ist in Abbildung 75 im Anhang gezeigt. Die WO₃/FTO-Photoelektrode aus dem Siebdruckverfahren (links) hat noch die ursprüngliche grünliche Farbe des Halbleiterpulvers, während sich die Farbe der WO₃/Ti-Photoelektrode aus dem Kaltgasspritzen (rechts) verändert hat.

Abbildung 23: Eine fotografische Aufnahme von beispielhaften WO₃-Photoelektroden, die in dieser Arbeit untersucht wurden. Die linke Photoelektrode besteht aus einem Siebdruckfilm von WO₃ auf FTO-Glas als Substrat (WO₃/FTO). Die rechte Photoelektrode besteht aus einem kaltgasgespritzten Film von WO₃ auf Titanmetall als Substrat (WO₃/Ti). Der ringförmige Abdruck auf der WO₃/Ti-Photoelektrode stammt von dem Dichtungsring der photoelektrochemischen PECC-2 Zelle.

Die Fotografien der untersuchten TiO₂-Photoelektroden sind in Abbildung 24 dargestellt. Die TiO₂/FTO-Photoelektrode aus dem Siebdruckverfahren (links) hat die ursprüngliche weiße Farbe des Pulvers beibehalten (siehe Abbildung 14). Das weiße P25/20 Pulver ist nach dem Kaltgasspritzen zu einem blau-grauen Halbleiterfilm auf der TiO₂/Ti-Photoelektrode (rechts) geworden. Die Fotografie einer Siebdruck-TiO₂/Ti-Photoelektrode, bei welcher der TiO₂-Film per Siebdruck auf das Titanmetallsubstrat aufgebracht wurde, ist in Abbildung 75 im Anhang gezeigt.

Abbildung 24: Eine fotografische Aufnahme von beispielhaften TiO₂-Photoelektroden, die in dieser Arbeit untersucht wurden. Die linke Photoelektrode besteht aus einem Siebdruckfilm von TiO₂ auf FTO-Glas als Substrat (TiO₂/FTO). Die rechte Photoelektrode besteht aus einem kaltgasgespritzten Film von TiO₂ auf Titanmetall als Substrat (TO₂/Ti). Der ringförmige Abdruck auf der TiO₂/Ti-Photoelektrode stammt von dem Dichtungsring der photoelektrochemischen PECC-2 Zelle.

Interessante Ergebnisse liefert die Analyse der Reflexionsspektren der kaltgasgespritzten Photoelektroden mithilfe von TAUC-Auftragungen, welche in Abbildung 25 dargestellt sind. Es zeigt sich, dass die Kaltgaselektroden größere optische Bandlücken aufweisen als die entsprechenden Pulver (Abbildung 16). Die Bandlückenenergie der TiO₂/Ti Elektrode beträgt 3,13 eV, während die WO₃/Ti Elektrode eine optische Bandlücke von 2,81 eV aufweist.

Abbildung 25: TAUC-Auftragungen der diffusen Reflexionsspektren von TiO₂/Ti (links) und WO₃/Ti (rechts). Die dazugehörigen Reflexionsspektren sind in Abbildung 21 gezeigt. Dargestellt sind die aufgezeichneten Messwerte (schwarz) und die dazugehörigen Regressionsgeraden (rot).

4.2.4 Elektrochemische Eigenschaften der Elektroden

Im Folgenden werden die Ergebnisse der Impedanzspektroskopie der WO₃-Filme präsentiert und mit den Ergebnissen der TiO₂-Filme verglichen. Die erhaltenden Daten über die Doppelschichtkapazitäten der Filme wurden verwendet, um MOTT-SCHOTTKY-Graphen zu konstruieren. Aus diesen Auftragungen wurden Informationen gewonnen, mit deren Hilfe es möglich war, die Flachbandpotentiale (E_{FB}), die Donordichten (N_D) und die energetischen Lagen der Leitungsbandkanten der Halbleiter zu bestimmen. Darüber hinaus ermöglichen es diese Informationen zusätzlich die Lagen der Valenzbandkanten zu bestimmen, da die Bandlückenenergien bereits aus der Analyse der TAUC-Graphen bekannt sind. Die Ergebnisse sind in Tabelle 5 zusammengefasst.

Tabelle 5: Die durch MOTT-SCHOTTKY-Graphen ermittelten Werte für das Flachbandpotential (E_{FB}) bzw. das Leitungsbandpotential (E_{LB}) und die Donordichte (N_D). Zusätzlich sind die Werte für das Valenzbandpotential (E_{VB}) mithilfe der optischen Bandlückenenergien (E_{BL}) aus den TAUC-Graphen berechnet worden. Alle Potentialangaben beziehen sich auf die Normal-Wasserstoffelektrode (NHE). * Die Bandlückenenergie von FTO wurde aus der Veröffentlichung von RAKHSHANI *et al.* entnommen.¹⁵⁹

Probe	$E_{FB}\cong E_{LB}(\mathbf{V})$	$E_{BL} (eV)$	$E_{VB}\left(\mathbf{V}\right)$	$N_D ({\rm cm}^{-3})$
FTO-Substrat	- 0,33	4,11*	3,78	$9,07 imes 10^{20}$
WO ₃ /FTO	0,24	2,60	2,84	$8,25 imes 10^{19}$
TiO ₂ /FTO	- 0,30	3,02	2,72	$5,82 \times 10^{21}$
Ti-Substrat	-0,49	/	/	$1,14 \times 10^{22}$
WO ₃ /Ti	0,24	2,81	3,05	$3,34 \times 10^{22}$
TiO ₂ /Ti	- 0,35	3,13	2,78	$5,83 imes 10^{21}$

Ein beispielhafter MOTT-SCHOTTKY-Graph für die WO₃/Ti-Elektrode ist in Abbildung 26 für eine Frequenz von 100 Hz gezeigt. Zunächst wird der Bereich konstanter Steigung identifiziert und mithilfe einer linearen Regression der Schnittpunkt der Regressionsgeraden mit der Potentialachse bestimmt. Dieser Schnittpunkt stellt das Flachbandpotential (E_{FB}) der Elektrode dar. Als nächstes wird aus der Steigung der Regressionsgeraden die Donordichte (N_D) berechnet.

Abbildung 26: MOTT-SCHOTTKY-Graph einer kaltgasgespritzten WO₃/Ti-Elektrode bei einer Frequenz von 100 Hz und einem pH-Wert von 7. Die Messung wurde in 0,1 M KCl als Elektrolyt durchgeführt. Dargestellt sind die aufgezeichneten Messwerte (schwarze Kurve) und die angelegte Regressionsgerade (rote Linie). Das gezeigte Potential ist das Flachbandpotential E_{FB} der Elektrode.

Wenn die angelegte Spannung dem Flachbandpotential entspricht, gibt es keine Bandverbiegung mehr. In diesem Fall entspricht die Differenz zwischen dem FERMI-Niveau (E_F) des Halbleiters und dem angelegten Potential nur noch dem Potentialabfall über die Helmholzschicht in der Lösung. In erster Näherung entspricht das Flachbandpotential daher dann dem FERMI-Niveau des Halbleiters. Im Falle eines durch Sauerstofffehlstellen n-dotierten Halbleiters wie WO₃ liegt das FERMI-Niveau < 0,1 eV unterhalb des Leitungsbandes.^{40,160}

Aus der Steigung der Regressionsgeraden aus Abbildung 26 konnte mithilfe von Gleichung 4 eine Donordichte für die WO₃/Ti-Elektrode von $N_D = 3,34 \times 10^{22}$ cm⁻³ berechnet werden. Dieser Wert bestimmt den Abstand zwischen dem FERMI-Niveau und der Leitungsbandkante (*E*_{LB}). Wenn die Donordichte (*N*_D) deutlich kleiner ist als die effektive Zustandsdichte im Leitungsband (*N*_{LB}) kann die folgende Näherung verwendet werden:

$$E_{LB} - E_F = k_B T \ln\left(\frac{N_{LB}}{N_D}\right)$$
[33]

 E_{LB} = Energieniveau der Leitungsbandkante, E_F = FERMI-Niveau des Halbleiters, k_B = BOLTZMANN-Konstante, T = Temperatur, N_{LB} = effektive Zustandsdichte im Leitungsband, N_D = Donordichte.

Die effektive Zustandsdichte im Leitungsband wird mit Gleichung 34 beschrieben:

$$N_{LB} = 2\left(\frac{2\pi m_e^* k_B T}{h^2}\right)$$
[34]

 m_e^* = effektive Masse der Elektronen, h = PLANCK'sches Wirkungsquantum.

Die effektive Masse der Elektronen in WO₃ beträgt $m_e^* = 2,4 \pm 0,9 m_e$.¹⁶¹ Damit ergibt sich für die effektive Zustandsdichte im Leitungsband $N_{LB} = 9,237 \times 10^{19} \text{ cm}^{-3}$. Dieser Wert liegt deutlich unterhalb der berechneten Donordichte, was bedeutet, dass Gleichung 33 nicht mehr gültig ist. Stattdessen kann angenommen werden, dass der Abstand zwischen dem FERMI-Niveau und der Leitungsbandkante vernachlässigbar klein wird.¹⁶² Daraus folgt, dass das ermittelte Flachbandpotential E_{FB} in Näherung der Position der Leitungsbandkante E_{LB} entspricht:

$$E_{LB} \cong E_F \cong E_{FB} \tag{35}$$

Schließlich kann mithilfe der optischen Bandlücke aus dem TAUC-Graph von 2,81 eV (Abbildung 25) auch die Position der Valenzbandkante bestimmt werden, da die Bandlückenenergie (E_{BL}) die Differenz zwischen Leitungsbandkante (E_{LB}) und Valenzbandkante (E_{VB}) ist:

$$E_{BL} = e(E_{VB} - E_{LB})$$
^[36]

Somit ergibt sich für die betrachtete WO₃/Ti Elektrode eine Valenzbandposition von E_{VB} = 3,05 V vs. NHE. Auf analoge Weise wurden auch die Flachbandpotentiale, Donordichten und Bandpositionen der anderen verwendeten Photoelektroden ermittelt. Die entsprechenden MOTT-SCHOTTKY-Auftragungen sind im Anhang in den Abbildungen 68 – 72 gezeigt. Die Ergebnisse dieser Analysen sind in Abbildung 27 dargestellt. Da die Valenz- und Leitungsbandpotentiale pH-abhängig sind, wurden die Messungen zur besseren Vergleichbarkeit alle bei einem konstanten pH-Wert von 7 in 0,1 M KCl durchgeführt.

Abbildung 27: Schematische Darstellung der Bandpositionen der untersuchten Elektroden. Gezeigt sind die durch MOTT-SCHOTTKY-Auftragungen ermittelten Positionen für die Flachbandpotentiale (E_{FB}), welche näherungsweise den Leitungsbandkanten (E_{LB} , rot dargestellt) entsprechen. Zusätzlich sind die Positionen für die Valenzbandkanten (E_{VB} , schwarz dargestellt) angegeben, welche mithilfe der optischen Bandlücken berechnet wurden. Alle Potentialangaben beziehen sich auf die Normal-Wasserstoffelektrode (NHE) und den pH-Wert 7. Die entsprechenden Werte sind in Tabelle 5 zusammengefasst.

4.3 Photoelektrochemischer Abbau von Methanol

In diesem Kapitel werden die photoelektrochemischen Aktivitäten und Charakteristika (PEC) der WO₃-Photoelektroden analysiert und mit denen von TiO₂ verglichen. Die Untersuchungen in diesem Kapitel umfassen dabei die Photoströme der Halbleiterelektroden, die photoelektrochemische Wasser-, sowie die Methanoloxidation,

die potentialabhängige Hydroxylradikalbildung und die IPCE-Photostromeffizienzen. Außerdem wurde die Formaldehydbildung während des photoelektrochemischen Methanolabbaus analysiert. Die nachfolgenden Ergebnisse in diesem Kapitel wurden alle unter Atmosphärenbedingungen an der Luft gemessen.

4.3.1 Messungen des Photostroms

Photostrom-Anfangspotential

Die Messung des Photostrom-Anfangspotentials E_{PA} stellt eine weitere Methode zur Bestimmung der Flachbandpotentiale der Photoelektroden dar. Dabei muss allerdings beachtet werden, dass das gemessene anodische Photostrom-Anfangspotential auch von dem verwendeten Donormolekül beeinflusst werden kann. Für die Messung des E_{PA} werden die Strom-Spannungs-Kennlinien in einer 3-Elektroden-Zelle im Dunkeln ("Dunkelstromkurve") und unter Belichtung mit $hv \ge E_{BL}$ ("Lichtstromkurve") bei einer langsamen Vorschubgeschwindigkeit gemessen. Ab einem bestimmten Potential werden photogenerierten Löcher in der n-typischen die Photoelektrode die O_2 -Entwicklungsreaktion (OER; engl.: "Oxygen Evolution Reaction") an der Halbleiter-Elektrolyt-Grenzfläche in Gang setzen, während die photogenerierten Elektronen an der Platin-Gegenelektrode die korrespondierende H2-Entwicklungsreaktion (HER; engl.: "Hydrogen Evolution Reaction") eingehen. Das Potential, an dem diese beiden Reaktionen unter Belichtung einsetzen, wird Photostrom-Anfangspotential (E_{PA}) genannt. Dieses Potential ist im Vergleich zum Flachbandpotential (E_{FB}) lediglich um den Betrag der für die OER nötigen kinetischen Überspannung verschoben, da die Überspannung für die HER an der Platin-Elektrode vernachlässigbar klein ist.^{55,65} Die Strom-Spannungs-Kennlinien für eine WO₃-Photoelektrode am Beispiel von WO₃/Ti und für eine TiO₂-Photoelektrode am Beispiel von TiO₂/Ti sind in Abbildung 28 dargestellt. Die gemessenen Ströme wurden durch eine Normierung auf die Elektrodenfläche in entsprechende Stromdichten umgerechnet. Zur besseren Vergleichbarkeit mit den Ergebnissen der MOTT-SCHOTTKY-Auftragungen wurden die entsprechenden Messungen ebenfalls in 0,1 M KCl bei einem pH-Wert von 7 durchgeführt. Dadurch ist es möglich die für die Sauerstoffentwicklung benötigten Überspannungen (OER) zu berechnen, da die entsprechenden Potentiale von der Elektrolytleitfähigkeit und dem pH-Wert der Lösung abhängen. Allerdings ist bei diesen Messungen zu beachten, dass WO₃ in wässriger Lösung ab einem pH-Wert > 4 nicht mehr langzeitstabil ist und Chlorid unter Bestrahlung zu Chlor oxidiert (1,36 V vs. NHE) werden kann.^{37,55,163} Daher wurden in diesem Elektrolyten lediglich Kurzzeitmessungen angefertigt.

Abbildung 28: Strom-Spannungs-Kennlinien von WO₃/Ti (links) und TiO₂/Ti (rechts) Photoelektroden unter Beleuchtung (rote Linie, Lichtstromkurve) und im Dunkeln (blaue Linie, Dunkelstromkurve). Die Stromdichten unter Beleuchtung wurden mit einer Xenon-Lampe (300 W) mit AM 1.5G-Filter gemessen. Alle Messungen wurden in 0,1 M KCl bei einem pH-Wert von 7 und einer Vorschubgeschwindigkeit von 10 mV/s durchgeführt. Die gestrichelten schwarzen Linien zeigen die Nullstromlinien, bei denen kein Strom durch die Zelle fließt.

An den dargestellten Strom-Spannungs-Kennlinien zeigen sich die Unterschiede zwischen den Halbleitern WO₃ und TiO₂ in Bezug auf eine photoelektrochemische Sauerstoffentwicklung sehr deutlich. Die Licht- (rote Kurve) und Dunkelstromkurven (blaue Kurve) von WO₃/Ti aus Abbildung 28 (links) zeigen anfänglich einen sehr ähnlichen Verlauf. Beide Kurven haben bei ca. 0 V vs. NHE einen Schnittpunkt mit der Nullstromlinie (gestrichelte Linie). Anschließend steigen die anodischen Stromdichten im Dunkeln und unter Beleuchtung auf knapp 0,2 mA/cm² an, bevor sie wieder leicht zu sinken beginnen. In dem Potentialbereich von 0,0 - 0,35 V vs. NHE sind beide Kurven unter Berücksichtigung von üblichen Stromdichteschwankungen von rund ± 5 % identisch. Erst ab einem externen Potential von ca. 0,36 V vs. NHE beginnt die Lichtstromkurve im anodischen Strombereich zu steigen. Dies ist das Photostrom-Anfangspotential E_{PA} der WO₃-Elektrode bei der die Sauerstoffentwicklungsreaktion an der Halbleiter-Elektrolyt-Grenzfläche durch die photogenerierten Löcher beginnt. Die Differenz zwischen dem Flachbandpotential aus der MOTT-SCHOTTKY-Messung (0,24 V vs. NHE; Abbildung 27) und dem Photostrom-Anfangspotential von 0,36 V vs. NHE beträgt 0,12 V. Diese Potentialdifferenz kann als zusätzlich nötige Überspannung für die OER verstanden werden. Im Anschluss an das EPA steigt der Lichtstrom über den gesamten Potentialbereich bis 1,0 V vs. NHE immer weiter an, während der Dunkelstrom weiter abfällt.

Die Licht- und Dunkelstromkurven von TiO₂/Ti sind in der Abbildung 28 rechts gezeigt. Die Dunkelstromkurve von TiO₂/Ti (blaue Kurve) zeigt im Potentialbereich ≥ 0 V vs. NHE geringe positive Stromdichten im nA-Bereich. Das bedeutet, dass keine OER und keine unerwünschten Nebenreaktionen (oxidativ) im Dunkeln stattfinden. Im Gegensatz dazu, setzt in negativer Richtung bei der Dunkelstromkurve bei einem Potential von ca. – 0,03 V vs. NHE ein kathodischer Dunkelstrom ein, der ab einem Potential von ca. – 0,35 V vs. NHE exponentiell ansteigt. Die fließende kathodische Dunkelstromdichte auf der TiO₂/Ti-Elektrode kann der Wasserstoffadsorption (– 0,03 V vs. NHE) bzw. der HER (– 0,35 V vs. NHE) oder einer kathodischen Korrosion zugeordnet werden.⁵⁵ Im Fall der Lichtstromkurve von TiO₂/Ti (rote Kurve) ist zu erkennen, dass der Schnittpunkt mit der Dunkelstromkurve bei ca. – 0,34 V vs. NHE liegt. Dies entspricht dem Photostrom-Anfangspotential E_{PA} der TiO₂-Elektrode und stimmt in etwa mit dem bestimmten Flachbandpotential von -0,35 V vs. NHE aus der MOTT-SCHOTTKY-Messung überein (Abbildung 27). Ansonsten zeigt die Lichtstromkurve von TiO₂/Ti einen charakteristischen Schnittpunkt mit der Nullstromlinie (gestrichelte Linie) bei einem Potential von ca. – 0,31 V vs. NHE. Oberhalb dieses Potentials wird ein anodischer Photostrom für die OER gemessen, der bei einem Potential von ca. – 0,17 V vs. NHE ein Plateau mit einer konstanten Stromdichte von ca. 0,04 mA/cm² erreicht. In diesem Bereich tritt eine Limitierung des Photostroms durch die eingestrahlte Lichtintensität (AM 1.5G) auf. Bei der Lichtstromkurve setzt unterhalb des Potentials von ca. - 0,31 V vs. NHE ein stark steigender kathodischer Strom ein, welcher wie im Fall des Dunkelstroms der HER zugeordnet werden kann. Aufgrund der negativeren Lage des Leitungsbands im TiO₂ (Abbildung 27) sind die Photoelektroden in der Lage mithilfe einer externen Spannung Wasserstoff zu erzeugen. Damit die Wasserstoffentwicklung auf den WO₃-Photoelektroden abläuft müsste eine höhere externe Spannung angelegt werden, da das Leitungsband von WO₃ bei 0,24 V vs. NHE liegt (Abbildung 27).

Korrosion der Wolframtrioxid-Filme

Im Gegensatz zu der TiO₂/Ti-Elektrode wird bei der WO₃/Ti-Elektrode ein anodischer Dunkelstrom im gesamten Potentialbereich gemessen, welcher nicht auf einen Photostrom zurückgeführt werden kann (Abbildung 28). Die Herkunft dieser Stromdichte lässt sich erst nachvollziehen, wenn der gesamte Stromfluss der Zelle im Dunkeln betrachtet wird. Dazu ist in Abbildung 29 das komplette Cyclovoltammogramm (CV) der WO₃/Ti-Elektrode im Dunkeln bei pH 7 dargestellt. Aus dem Strom-Spannungsverlauf der WO₃-Elektrode wird ersichtlich, dass der Dunkelstrom von einer teilweise reversiblen Redoxreaktion mit Hysterese stammt. Dabei handelt es sich um die von LEMASSON *et al.* beschriebene Reaktion von W⁶⁺ \rightleftharpoons W⁵⁺ entsprechend Gleichung 37:¹⁶⁴

$$(WO_3)_4 + e^- \rightleftarrows (WO_3)_4_{aq}$$
[37]

Im Rücklauf des CVs (d.h. von $1,0 \rightarrow -0,2$ V vs. NHE) kommt es zu einer Auflösung des WO₃ Films infolge der Reduktion von W⁶⁺ zu W⁵⁺ (kathodische Stromdichte), die umso stärker ausfällt, je negativer das angelegte Potential wird. Nach der Umkehrung der Vorschubgeschwindigkeit wird im Hinlauf des CVs (d.h. von $-0,2 \rightarrow 1,0$ V vs. NHE) ein anodischer Strom für die Rückreaktion bzw. die Abscheidung von WO₃ auf der Elektrodenoberfläche gemessen.

Abbildung 29: Cyclovoltammogramm (CV) einer WO₃/Ti Photoelektrode im Dunkeln (Dunkelstromkurve). Die Messung wurde in 0,1 M KCl bei einem pH-Wert von 7 und einer Vorschubgeschwindigkeit von 10 mV/s durchgeführt. Die gestrichelte schwarze Linie zeigt die Nullstromlinie, bei der kein Strom durch die Zelle fließt.

Um exakt bestimmen zu können, ob die beschriebenen Redoxprozesse im gewählten Potentialbereich reversibel sind, wurden die Flächen der Oxidationspeaks (Maxima bei ca. 0 V vs. NHE) und Reduktionspeaks (Maxima bei ca. -0.2 V vs. NHE) bestimmt. Als Grenzen der Peakflächen wurden die Umkehrpotentiale von -0.2 V vs. NHE und 0.4 V vs. NHE gewählt. Die anodische Stromdichte oberhalb von 0.4 V vs. NHE kann auf die Ausbildung der kapazitiven elektrochemischen Doppelschicht an der Halbleiter-Elektrolyt-Grenzfläche zurückgeführt werden und wurde daher nicht berücksichtigt.⁵⁵ Die Oxidationspeaks weisen Flächen von ca. $0.167 \text{ mA} \cdot \text{V/cm}^2$ auf, während die Flächen der Reduktionspeaks ca. $0.191 \text{ mA} \cdot \text{V/cm}^2$ betragen. Das bedeutet, dass bei einer Zyklisierung der WO₃-Elektrode in dem betrachteten Potentialbereich in 0.1 M KCl eine Auflösung des WO₃-Films stattfindet. Die Stabilität von W⁶⁺ in Cl⁻-haltigen Lösungen ist in der Literatur bereits intensiv untersucht wurden. Die Hydrolyse-Reaktion nach WESOLOWSKI *et al.* ist in Gleichung 38 gezeigt:¹⁶⁵

$$\mathrm{H}^{+} + \mathrm{WO_{4}}^{2-} \rightleftarrows \mathrm{HWO_{4}}^{-}$$
[38]

In 0,1 M KCl bei einer Temperatur von 20 °C beträgt die Gleichgewichtskonstante der Reaktionsgleichung 38 K = 4,05.¹⁶⁶ Nach dem Stabilitätsbereich von WO₃ aus dem POURBAIX-Diagramm aus Abbildung 2 ist die Auflösung des WO₃-Films bei einem pH-Wert von 7 zu erwarten. Daher sollte die WO₃ Elektrode nur als Photoanode in sauren Elektrolyten verwendet werden.

Photoelektrochemische Wasseroxidation

Eine sehr wichtige und typische photoelektrochemische Messmethode ist die CLV-Messung (engl.: "*Chopped Light Voltammetry*"), welche vom Prinzip her zu der Cyclovoltammetrie gehört. Im Gegensatz zu den bisher gezeigten elektrochemischen Messungen hat die CLV-Messung den Vorteil, dass Dunkel- und Lichtstrom praktisch gleichzeitig in einer einzelnen Messung aufgenommen werden können, wenn die "Lücken" in den beiden Kurven extrapoliert werden. Die Abbildung 30 zeigt die Strom-Spannungs-Kurven einer WO₃/Ti-Photoelektrode für die Wasser- (schwarze Kurve) und Methanoloxidation (rote Kurve), die aus einer CLV-Messung erhalten wurden.

Abbildung 30: Strom-Spannungs-Kurven von WO₃/Ti Photoelektroden. Die Stromdichten wurden unter Beleuchtung mit einer Xenon-Lampe (300 W) mit AM 1.5G-Filter gemessen. Während der Messung wurde die Lichteinstrahlung auf die Photoanode von einer Blende mit einer Frequenz von 200 mHz an- und ausgeschaltet (CLV). Die Messungen wurden in 0,5 M H₂SO₄ mit (rote Kurve; Methanoloxidation) und ohne (schwarze Kurve; Wasseroxidation) Methanol-Zusatz (10 Vol.-%) bei einer Vorschubgeschwindigkeit von 20 mV/s durchgeführt.

Die Strom-Spannungs-Messungen für die Methanoloxidation (rote Kurve) und die Wasseroxidation (schwarze Kurve) beginnen beide bei 0,3 V vs. NHE. Bei einem Potential von ca. 0,4 V vs. NHE ist die Blende offen und der Strom für die Methanoloxidation (rot) steigt schlagartig an. Zu diesem Zeitpunkt wird noch keine anodische Stromdichte für die Wasseroxidation (schwarz) gemessen. Dann schließt sich die Blende wieder und der Potentiostat misst für beide Systeme die fließende Stromdichte im Dunkeln (Dunkelstrom). Bei ca. 0,5 V vs. NHE öffnet sich die Blende erneut und dieses Mal wird für beide Oxidationsreaktionen ein fließender Strom unter Beleuchtung gemessen (Lichtstrom). Die Differenz zwischen Dunkelstrom (lückenhafte Kurve bei geöffneter Blende) ist der Photostrom.

Die vorliegenden Messungen zeigen, dass die Methanoloxidation (rot) bei allen untersuchten Potentialen eine mehr als doppelt so hohe Lichtstromdichte wie die Wasseroxidation (schwarz) erzeugt. Zudem wird bei der WO₃/Ti-Photoelektrode ein späteres Photostrom-Anfangspotential für die Oxidation von Wasser (ca. 0,45 V vs. NHE) im Vergleich zur Methanoloxidation (ca. 0,3 V vs. NHE) gefunden. Der Verlauf der Stromdichten im Dunkeln ist für beide Systeme praktisch analog zur Nullstromlinie. Das bedeutet, dass die WO₃/Ti-Photoelektrode in dem sauren Elektrolyten stabil ist und dass Wasser und Methanol ohne die Bestrahlung von Licht kaum oxidiert werden können. Thermodynamisch sollten beide Oxidationsreaktionen jedoch ablaufen, da die Potentiale der entsprechenden Redoxpaare bei 1,23 V vs. NHE (H₂O-Oxidation) und 0,02 V vs. NHE (CH₃OH-Oxidation) liegen.⁵⁵ Die Dunkelströme zeigen jedoch, dass die elektrochemischen Reaktionen nur sehr geringe Stromdichten erreichen. Die Wasseroxidation erreicht über den gemessenen Potentialbereich Stromdichten von 10 – $20 \,\mu$ A/cm² im Dunkeln. Bei der elektrochemischen Methanoloxidation werden Dunkelstromdichten bis zu 10 μ A/cm² erreicht, die erst ab ca. 1,4 V vs. NHE bis auf 40 μ A/cm² zum Ende der Messung ansteigen. Nur die photogenerierten Löcher im WO₃ sind mit ihrem hohen Potential von 3,05 V (Abbildung 27) in der Lage, Wasser und Methanol mithilfe geringer externer Spannungen zu oxidieren. Ähnlich hohe Überspannungen für die Wasser- und die Methanoloxidation im Dunkeln sind allerdings auch schon bei anderen Halbleiter-Photoanoden von α -Fe₂O₃ und TiO₂ beobachtet wurden.^{167,168}

Photoelektrochemische Methanoloxidation

Die photoelektrochemische Aktivität der WO₃ und TiO₂ Elektroden wurde für den Abbau von Methanol als Modellschadstoff in schwefelsaurem Elektrolyten (bei pH 0,3) untersucht. Die Strom-Spannungs-Kurven der kaltgasgespritzten und siebgedruckten Photoelektroden wurden mit der CLV-Methode aufgenommen und sind in Abbildung 31 dargestellt. Die Messungen wurden bei einer Methanolkonzentration von ca. 2 M der Oxidationsmechanismus durchgeführt, weshalb bevorzugt direkt über photogenerierte Löcher ablaufen sollte.²⁶ In den Abbildungen sind jeweils nur die CLV-Halbzyklen mit positiver Vorschubgeschwindigkeit gezeigt. In der linken Auftragung sind die Strom-Spannungs-Kurven der Siebdruckelektroden und in der rechten Auftragung die entsprechenden Kurven der Kaltgaselektroden dargestellt.

Abbildung 31: Strom-Spannungs-Kurven von TiO₂/FTO (links; schwarze Kurve), WO₃/FTO (links; grüne Kurve), TiO₂/Ti (rechts; rote Kurve) und WO₃/Ti (rechts; blaue Kurve) Photoelektroden. Die Stromdichten wurden unter Beleuchtung mit einer Xenon-Lampe (300 W) mit AM 1.5G-Filter gemessen. Während der Messung wurde die Lichteinstrahlung auf die Photoanode von einer Blende mit einer Frequenz von 200 mHz an- und ausgeschaltet (CLV). Die Messungen wurden in 0,5 M H₂SO₄ mit 10 Vol.-% Methanol (~ 2 mol/L) bei einer Vorschubgeschwindigkeit von 20 mV/s durchgeführt.

Die in Abbildung 31 dargestellten Strom-Spannungs-Kennlinien zeigen, dass die Photoströme der Elektroden mehr von dem verwendeten Halbleitermaterial (WO₃ bzw. TiO₂) anhängig sind, als von der Beschichtungstechnik (Siebdruck bzw. Kaltgasspritzen) oder dem verwendeten Substrat (FTO bzw. Ti). Die grundsätzlichen Kurvenverläufe der WO_3 -Photoelektroden von WO_3 /FTO (links; grüne Kurve) und WO_3 /Ti (rechts; blaue Kurve) sind, wie auch die beiden Kurvenverläufe der TiO₂-Photoelektroden von TiO₂/FTO (links; schwarze Kurve) und TiO₂/Ti (rechts; rote Kurve), sehr ähnlich.

Bei der CLV-Messung werden ab einem externen Potential von 0,4 V vs. NHE auf der WO₃/FTO-Elektrode Dunkelstromdichten für die Methanoloxidation von ca. 3 μ A/cm² erreicht, die bis zum Ende der Messung stabil sind (bis 1,6 V vs. NHE). Die Dunkelstromdichten auf den WO₃/Ti-Kaltgaselektroden liegen ab 0,4 V vs. NHE im Bereich von ca. 5 μ A/cm² und steigen bis zu 1,6 V vs. NHE auf ungefähr 20 μ A/cm² an. Die Stromdichten auf den TiO₂-Elektroden aus dem Kaltgas- und Siebdruckverfahren sind im Schnitt etwas höher und liegen im Bereich von 20 bis 30 μ A/cm² im Dunkeln.

Die Oxidation von Methanol an den WO₃-Elektroden beginnt unter Beleuchtung ab einem externen Hilfspotential von ungefähr $E_{PA} = 0,3 \text{ V} vs$. NHE. Aus Abbildung 31 ist ersichtlich, dass die Methanoloxidation an den TiO₂-Elektroden bereits bei geringeren Potentialen beginnt. Dies kann auf die Leitungsbandlagen der beiden Materialien aus Abbildung 27 zurückgeführt werden. Die Leitungsbandelektronen der TiO₂-Elektroden besitzen ein Potential von ca. – 0,3 V vs. NHE, während die Leitungsbandkante beim WO₃ bei 0,24 V vs. NHE liegt. Damit reicht das Potential der photogenerierten Elektronen des WO₃ nicht aus, um an der Platingegenelektrode Wasserstoff zu produzieren oder Sauerstoff zu reduzieren.¹⁸ Erst mit Hilfe einer externen Spannung wird die Reduktionsreaktion möglich gemacht und die Elektronen reagieren an der Platinoberfläche der Gegenelektrode mit Protonen zu H₂.

Dafür sind die Photoströme an den WO₃-Photoelektroden ab einem externen Potential von ca. 0,6 V *vs.* NHE höher als bei den entsprechenden TiO₂-Filmen. Die Messung wurde bis zu einer externen Spannung von 1,6 V *vs.* NHE durchgeführt. Bei solch hohen Potentialen sind die anodischen Photoströme der WO₃-Elektroden in etwa viermal so hoch wie die Ströme an der TiO₂-Elektrode, was auf die Limitierung des Photostroms durch die Lichtintensität zurückgeführt werden kann.³⁸ Die Photostromdichten für die WO₃-Photoelektroden bei 1,5 V *vs.* NHE liegen bei 2,72 mA/cm² für WO₃/FTO und bei 3,09 mA/cm² für WO₃/Ti. Alle untersuchten Photoelektroden haben gemeinsam, dass während der Methanoloxidation vernachlässigbare Dunkelströme gemessen werden, die wahrscheinlich auf einen kapazitiven Ursprung zurückgeführt werden können.⁵⁵ Daher kann angenommen werden, dass die Photoelektroden unter den gewählten Bedingungen (pH 0,3) stabil sind.

Es zeigt sich, dass die TiO₂-Elektroden mit einem Photostrom-Anfangspotential von E_{PA} = -0,1 V vs. NHE in der Lage sind Methanol im sauren Medium schon bei negativen Potentialen zu oxidieren. Das bedeutet, dass die TiO₂-Photoelektroden in der Lage wären, Methanol auch ohne ein externes Potential abzubauen, während die photokatalytische Oxidation von Methanol an einem WO₃ Film unter Solarbestrahlung nicht freiwillig ohne Hilfsspannung abläuft. Ab einem Potential von ca. 0,1 V vs. NHE wird für die TiO₂-Photoelektroden ein über den restlichen Potentialbereich konstanter Photostrom beobachtet. Die Photostromdichten bei 1,5 V vs. NHE liegen bei 0,75 mA/cm² für TiO₂/FTO und bei 0,62 mA/cm² für TiO₂/Ti.

Für die WO₃/Ti-Photoelektrode wurde zusätzlich eine chronoamperometrische Langzeitmessung (CA) bei 1 V vs. NHE durchgeführt, um zu überprüfen, ob die

kaltgasgespritzte Elektrode eine konstante Stromdichte über einen längeren Zeitraum unter Beleuchtung liefern kann. Das Ergebnis ist in Abbildung 32 dargestellt und zeigt, dass die Variation der Stromdichte bei der 10-stündigen Messung weniger als $100 \,\mu$ A/cm² beträgt. Nach ca. sechs Stunden wird eine konstante Stromdichte von ca. 2,32 mA/cm² erreicht, die bis zum Ende der Messung konstant bleibt. Während des Experiments wurde außerdem eine Gasblasenbildung auf der Oberfläche der WO₃-Photoelektrode beobachtet, welche für die gleichmäßigen und wellenartigen Schwankungen in der Stromdichte verantwortlich ist.

Abbildung 32: Strom-Zeit-Kurven einer WO₃/Ti-Photoelektrode bei 1 V vs. NHE. Die Stromdichten wurden unter Beleuchtung mit einer Xenon-Lampe (300 W) mit AM 1.5G-Filter gemessen. Die CA-Messung wurde in 0,5 M H₂SO₄ mit 10 Vol.-% Methanol (~ 2 mol/L) durchgeführt.

Die photoelektrochemische Oxidation Methanol läuft über die zwei von Zwischenprodukte Formaldehyd Ameisensäure bis zum Endprodukt und Kohlenstoffdioxid (siehe Kapitel ab 2.6). Aus diesem Grund wurde die photoelektrochemische Oxidation von Formaldehyd und Ameisensäure ebenfalls unabhängig voneinander gemessen. Die entsprechenden Strom-Spannungs-Kurven der Methanol-, Formaldehyd- und Ameisensäureoxidation für die WO₃/Ti-Photoelektrode sind in Abbildung 33 dargestellt.

Abbildung 33: Strom-Spannungs-Kennlinien von WO₃/Ti Photoelektroden unter Beleuchtung (durchgezogene Kurven) und im Dunkeln (gestrichelte Kurven). Es sind die Stromdichten für die Methanoloxidation (schwarze Kurven), die Formaldehydoxidation (rote Kurven) und die Ameisensäureoxidation (blaue Kurven) gezeigt. Der Pfeil zeigt den Einfluss der Beleuchtung mit einer Xenon-Lampe (300 W) mit AM 1.5G-Filter auf die Stromdichte. Alle Messungen wurden in 0,5 M H₂SO₄ mit der Addition von jeweils 2 mol/L Methanol, Formaldehyd oder Ameisensäure und einer Vorschubgeschwindigkeit von 20 mV/s durchgeführt. Die durchgezogene schwarze Linie bei 0 mA/cm² zeigt die Nullstromlinie, bei der kein Strom durch die Zelle fließt.

Bei den Strom-Spannungs-Kurven ist sehr auffällig, dass alle drei Spezies die gleichen Photostrom-Anfangspotentiale (d.h. Schnittpunkte der Dunkel- und Lichtstromkurve) zeigen. Auch der Verlauf der Stromdichten im Dunkeln (gestrichelte Kurven) und unter Beleuchtung (durchgezogene Kurven) ist jeweils fast identisch. Lediglich der Lichtstrom für die Oxidation von Ameisensäure (blaue Kurve) ist etwas geringer als die Lichtströme für die Methanol- (schwarze Kurve) und Formaldehydoxidation (rote Kurve). Das bedeutet, dass anhand einer photoelektrochemischen Strom-Spannungs-Messung nicht unterschiedenen werden kann, ob die gemessene Stromdichte z.B. aus der Reaktion von Methanol zu Formaldehyd, oder der Reaktion von Formaldehyd zu Ameisensäure resultiert. Außerdem ist die dargestellte Messung aus Abbildung 33 ein Beweis für die Potentialabhängigkeit des Photostroms durch den Reduktionsprozess, da alle drei Kurven übereinander liegen. Das heißt, die externe Hilfsspannung von ca. 0.3 - 0.4 V vs. NHE wird benötigt, um in allen drei Fällen die gleiche Reduktionsreaktion ablaufen zu lassen (H2-Entwicklung; siehe Kapitel 4.4). Die Strom-Spannungs-Kennlinien für die Dunkelstrommessung aus Abbildung 33 zeigen analog der Ergebnisse der CLV-Messung aus Abbildung 30, dass ein externes Potential von ca. 1,4 V vs. NHE benötigt wird, um Methanol und seine Folgeprodukte elektrochemisch an der WO₃/Ti-Elektrode zu oxidieren.

Zusammenfassend zeigen die CLV-Untersuchungen, dass WO₃ unter Solarbestrahlung ein aktiveres Photoanodenmaterial für die Methanoloxidation ist als TiO₂. Allerdings nur unter der Bedingung, dass in der photoelektrochemischen Zelle eine externe Hilfsspannung von mindestens 0,6 V *vs.* NHE verwendet wird. Für eine Anwendung in einem autarken System eignet sich TiO₂ besser als Photoanodenmaterial, da es Methanol auch nur durch Solarbestrahlung und ohne externe Hilfsspannung abbauen kann.
4.3.2 Bestimmung der potentialabhängigen Hydroxylradikalbildung

Die Untersuchungen aus dem letzten Kapitel (4.3.1) haben gezeigt, dass WO₃ eine externe Hilfsspannung benötigt, um Wasser- oder Methanolmoleküle zu oxidieren. Der Oxidationsmechanismus läuft dabei entweder über die direkte Oxidation durch photogenerierte Löcher (bei Methanolkonzentrationen von $\ge 0,1$ M) oder durch indirekte Oxidation über Hydroxyl-Radikale (bei Methanolkonzentrationen von $\le 0,01$ M) ab.²⁶ Die photogenerierten Valenzbandlöcher im WO₃ sind in der Lage, Hydroxyl-Radikale zu bilden, da die Valenzbandkante von WO₃ über dem notwendigen Potential zur [•]OH-Radikalbildung (2,73 V *vs.* NHE) liegt.¹³⁴

In diesem Kapitel wird die Potentialabhängigkeit der Hydroxylradikalbildung ('OH) auf WO₃-Filmen untersucht und mit dem Photostrom-Anfangspotential korreliert. Als Nachweisverfahren für die Hydroxylradikalbildung diente eine Fluoreszenzmethode, welche auf der Umsetzung von Terephthalsäure (TA) mit 'OH-Radikalen zur fluoreszierenden 2-Hydroxytherephthalsäure (2-HTA) beruht. Das Ergebnis der photoelektrochemischen Umsetzung von Terephthalsäure an WO₃/Ti und TiO₂/Ti Photoelektroden in einer NaOH-Lösung bei pH 11 ist in Abbildung 34 dargestellt.

Abbildung 34: Strom-Spannungs-Kennlinien von WO₃/Ti (links) und TiO₂/Ti (rechts) Photoelektroden unter Beleuchtung (rote Linie, Lichtstromkurve) und im Dunkeln (blaue Linie, Dunkelstromkurve). Die Stromdichten unter Beleuchtung wurden mit einer Xenon-Lampe (300 W) mit AM 1.5G-Filter gemessen. Die Messungen wurden in 1 mM NaOH-Lösung mit 0,4 mM Terephthalsäure (pH 11) bei einer Vorschubgeschwindigkeit von 20 mV/s durchgeführt. Die gestrichelten schwarzen Linien zeigen die Nullstromlinien, bei denen kein Strom durch die Zelle fließt.

In Abbildung 34 sind die Strom-Spannungs-Kennlinien unter Beleuchtung (rote Kurven) und im Dunkeln (blaue Kurven) für die Hydroxylierung von Terephthalsäure dargestellt. Anhand der Strom-Spannungs-Kennlinien lässt sich für die WO₃/Ti-Elektrode (links) ein Photostrom-Anfangspotential von ca. $E_{PA} = 0,05$ V vs. NHE bestimmen. Von diesem Potential an steigt die Photostromdichte bis zum Potential von 0,8 V vs. NHE stetig an. Die Dunkelstromdichte im niedrigen Potentialbereich kann der Reaktion aus Gleichung 37 zugeordnet werden. Bei höheren Potentialen wird dagegen kein weiterer Dunkelstrom gemessen. Im Fall der TiO₂/Ti-Photoelektrode (rechts) wird über den gesamten Potentialbereich ein Photostrom gemessen. Das bedeutet, dass das Photostrom-Anfangspotential negativer als – 0,5 V vs. NHE liegt. Ab einem externen Potential von ca. -0.1 V vs. NHE wird ein konstanter anodischer Lichtstrom von ca. 0.02 mA/cm² erreicht.

Um Aussagen über die Potentialabhängigkeit der Umsetzung von TA zu 2-HTA treffen zu können, wurden unabhängige chronoamperometrische Messungen (CA) über jeweils 10 Minuten bei verschiedenen Potentialen durchgeführt. Damit die gemessenen Stromdichten eindeutig der Hydroxylierung von Terephthalsäure zuordnet werden können, wurden die Elektrolytlösungen im Anschluss an alle photoelektrochemischen Messungen mithilfe der Fluoreszenzspektroskopie auf 2-HTA untersucht. Die WO₃/Ti-Photoelektrode wurde in 0,1 V-Schritten in dem Potentialbereich von -0,1-0,4 V vs. NHE untersucht. Für die TiO₂/Ti-Photoelektrode wurden CA-Messungen bei Potentialen von 0 und 0,4 V vs. NHE durchgeführt. Zusätzlich wurden Kontrollmessungen bei 10-minütiger Bestrahlung der Halbleiterelektroden ohne externes Potential durchgeführt. Die elektrochemischen Ergebnisse der CA-Messungen sind im Anhang in den Abbildungen 72 und 73 dargestellt. Die CA-Messungen zeigen, dass die Photostromdichte mit steigendem Potential ansteigt. Für die WO₃/Ti-Photoelektrode steigt auch die Konzentration des gebildeten 2-HTA an, wie in Abbildung 35 zu sehen ist.

Abbildung 35: Im Elektrolyten nachgewiesene Konzentrationen an 2-Hydroxytherephthalsäure (2-HTA; schwarze Kurve) in Abhängigkeit von dem Potential, das während der 10-minütigen CA-Messung der WO₃/Ti-Photoelektroden angelegt wurde. Der mit \bigstar -markierte Wert zeigt die Konzentration an 2-HTA nach 10-minütiger Bestrahlung ohne eine externe Hilfsspannung. Die zweite Y-Achse (rechts) zeigt die FARADAY'sche Effizienz η_{FE} (rote Kurve) der CA-Messungen im Bezug zur Ausbeute an 2-HTA.

In Übersteinstimmung mit der Strom-Spannungs-Kurve aus Abbildung 34 zeigen die Ergebnisse aus Abbildung 35, dass 2-HTA auf der WO₃/Ti-Photoelektrode erst ab einer externen Hilfsspannung von > 0 V vs. NHE gebildet wird. Im Folgenden steigt die 2-HTA Konzentration mit dem Potential an, bis schließlich ab 0,3 V vs. NHE eine Sättigung in der Kurve eintritt. Die rechte Y-Achse in Abbildung 35 zeigt die FARADAY'sche Effizienz η_{FE} entsprechend der Beziehung aus Gleichung 39 in Abhängigkeit vom Potential:

$$\eta_{FE} = \frac{Q_{Produkt}}{Q_{Strom}} = \frac{n \cdot z \cdot F}{\int I(t) dt}$$
[39]

 η_{FE} = FARADAY'sche Effizienz, $Q_{Produkt}$ = geflossene Ladung zur Erzeugung des Produkts (2-HTA), Q_{Strom} = geflossene Ladung in der Strommessung, n = Stoffmenge an Produkt (2-HTA), z = Ladungszahl, F = FARADAY'sche Konstante, I = gemessener Strom, t = gemessene Zeit.

Die FARADAY'sche Effizienz η_{FE} gibt an, wieviel vom Gesamtstrom auf die Erzeugung von 2-HTA über 'OH-Radikale abfällt. Die Effizienz konnte bei den WO₃/Ti-Photoelektroden nur für die CA-Messungen ab 0,1 V *vs*. NHE bestimmt werden, da nur bei diesen Potentialen ein anodischer Oxidationsstrom geflossen ist. Die η_{FE} für die Bildung von 2-HTA liegen im Bereich von 30 – 5 % und sinken mit steigendem Potential. Dies kann wahrscheinlich darauf zurückgeführt werden, dass mit steigendem Potential aufgrund der einsetzenden Wasseroxidation (als Nebenreaktion) insgesamt höhere Stromdichten gemessen werden.

Der 2-HTA Konzentrationsverlauf (schwarze Kurve in Abbildung 35) weist eine Ähnlichkeit zum Verlauf der Lichtstromkurve von WO₃/Ti aus Abbildung 34 auf. Allerdings tritt bei der 2-HTA Konzentration ab Potentialen von 0,3 vs. NHE eine Sättigung in der Kurve auf. Diese Sättigung hat die Lichtstromkurve bei 0,8 V vs. NHE noch nicht erreicht. Zusammen mit den sinkenden η_{FE} ist dies ein Hinweis darauf, dass ab einem externen Potential von 0,3 V eine Diffusionslimitierung bei der Reaktion von TA zu 2-HTA auftritt. Da die Gesamtstromdichte der WO₃/Ti-Elektrode mit dem Potential im Gegensatz zur 2-HTA Konzentration immer weiter ansteigt, muss eine weitere photoelektrochemische Reaktion an der WO₃-Oberfläche stattfinden. Am wahrscheinlichsten ist dabei die Reaktion von Valenzbandlöchern mit Wasser zu molekularem Sauerstoff, der unter den gegebenen Reaktionsbedingungen üblicherweise ebenfalls beobachtet wird.¹⁶⁹

Entsprechende Experimente an TiO₂/Ti-Elektroden zeigten, dass am TiO₂-Film bei jedem Potential Hydroxylradikale gebildet werden können. Die Ergebnisse für die 2-HTA-Konzentration und die FARADAY'schen Effizienzen bei den TiO₂-Photoelektroden sind in Abbildung 36 dargestellt.

Abbildung 36: Im Elektrolyten nachgewiesene Konzentrationen an 2-Hydroxytherephthalsäure (2-HTA; schwarze Kurve) in Abhängigkeit von dem Potential, das während der 10-minütigen CA-Messung der TiO₂/Ti-Photoelektroden angelegt wurde. Der \bigstar -markierte Wert zeigt die Konzentration an 2-HTA nach 10-minütiger Bestrahlung ohne eine externe Hilfsspannung. Die zweite Y-Achse (rechts) zeigt die FARADAY'sche Effizienz η_{FE} (rote Kurve) der CA-Messungen im Bezug zur Ausbeute an 2-HTA.

Anhand der Ergebnisse aus Abbildung 36 zeigt sich, dass TiO₂-Elektroden in der Lage sind, ohne eine externe Hilfsspannung photokatalytische Reaktionen wie die Bildung von 'OH-Radikalen unter Solarbestrahlung durchzuführen. Dieses Ergebnis unterstützt die DFT-Berechnungen von NØRSKOV, nach denen TiO₂ der Photokatalysator mit der höheren Triebkraft für die Bildung von 'OH-Radikalen ist.⁷⁴ Die Analyse der 2-HTA-Konzentrationen zeigt auch, dass die Produktion von 'OH-Radikalen bei den TiO₂/Ti-Photoelektroden weitestgehend unabhängig von der angelegten Hilfsspannung ist. Auch die FARADAY'schen Effizienzen sind deutlich weniger abhängig vom Potential als bei der WO₃/Ti-Photoelektrode.

Die Ergebnisse dieses Kapitels zeigen, dass auch im alkalischen Medium eine Hilfsspannung benötigt wird, damit Hydroxylradikale auf der WO₃-Elektrodenoberfläche gebildet werden können. Lediglich die TiO₂-Photoelektroden sind in der Lage Hydroxylradikale ohne eine externe Hilfsspannung zu bilden.

4.3.3 Photoneneffizienz für den Methanolabbau

Die photoelektrochemischen Aktivitäten der WO₃- und TiO₂-Elektroden für den Abbau von Methanol unter Solarbestrahlung (AM 1.5G) sind in Abbildung 31 als Strom-Spannungs-Diagramme dargestellt. Für eine detaillierte Analyse der Aktivität der Halbleiterfilme ist es allerdings auch wichtig zu wissen, welche Wellenlängen aus dem Solarlicht letztendlich für den Methanolabbau genutzt werden können. Denn damit die Photoelektrochemie unter Solarlicht praktikabel sein kann, ist es essentiell VIS-aktive Materialien zu verwenden, die einen möglichst großen Energieanteil des solaren Spektrums absorbieren und für die Generierung von Ladungsträger nutzen können. Die diffusen Reflexionsspektren aus Abbildung 22 geben einen Hinweis auf die wellenlängenabhängige Absorption der Elektroden. Allerdings absorbieren die Photoelektroden deutlich mehr Licht als für eine photokatalytische Reaktion an der Oberfläche verwendet werden kann. Im Fall der Titanmetallelektroden wird z.B. ein großer Teil des Lichtes von dem Substrat absorbiert. Eine genaue Aussage über die Effizienz der Umwandlung von absorbiertem Licht in einen Photostrom liefert die IPCE-Messung (engl.: *"Incident Photon to Current Efficiency"*), welche für alle untersuchten Elektroden durchgeführt wurde. Die Ergebnisse der Messung sind in Abbildung 37 gezeigt.

Abbildung 37: Photostromeffizienzen (IPCE) für die Methanoloxidation an TiO₂/FTO (schwarze Kurve), TiO₂/Ti (rote Kurve), WO₃/FTO (grüne Kurve) und WO₃/Ti (blaue Kurve) Photoelektroden. Die Effizienzen wurden bei einer Frequenz von 1 Hz, einem externen Potential von 1 V vs. NHE in 0,5 M H₂SO₄ mit 10 Vol.-% Methanol (ca. 2 mol/L) aufgenommen. Als Lichtquellen dienten monochromatische LEDs mit Wellenlängen zwischen 310 und 800 nm.

Die IPCE-Messungen zeigen, dass die WO₃-Photoelektroden im Gegensatz zu den TiO₂-Photoelektroden grundsätzlich in der Lage sind, sichtbares Licht für die Methanoloxidation zu nutzen. Die Unterschiede zwischen den IPCE-Kurven von TiO₂ und WO₃ können dabei hauptsächlich auf die optischen Eigenschaften der Halbleitermaterialien zurückgeführt werden. Dazu gehören unter anderem Unterschiede in den $\eta_{e^{-/h_+}}$ -Effizienzen für Photonenabsorption und Ladungsträgererzeugung, wie ein Vergleich der IPCE-Ergebnisse mit den optischen Eigenschaften der Photoelektroden zeigt (siehe Kapitel 4.2.3.). In Übereinstimmung mit den Ergebnissen der UV/VIS-Reflexionsmessungen aus den Abbildungen 15 und 22, können die WO3-Elektroden bereits Licht ab einer Wellenlänge von ca. 475 nm absorbieren und die entsprechende Photonenenergie in einen Photostrom umwandeln. Im Bezug zu dem AM 1.5G-Sonnenspektrum (Abbildung 64 im Anhang) bedeutet dies, dass ungefähr die doppelte Solarlichtenergie von WO₃ im Gegensatz zu TiO₂ verwendet werden kann. Die nutzbare Lichtintensität des Sonnenspektrums beträgt $I_{280} - I_{475} = 240 \text{ mW nm/cm}^2$ für WO₃ und $I_{280} - I_{410} = 120 \text{ mW nm/cm}^2$ für TiO₂. Damit können von der gesamten Lichtintensität (im Bereich von 280 – 4000 nm) die von der Sonne auf die Erde strahlt von WO3 maximal 17,8 % und von TiO₂ maximal 8,9 % genutzt werden.

Jedoch zeigt die IPCE-Messung auch, dass WO₃-Elektroden das UV-Licht mit Wellenlängen von \leq 360 nm nicht so effektiv in Photoströme umwandeln können wie TiO₂ Elektroden. Auch dieses Ergebnis passt gut zu den Erkenntnissen aus dem diffusem UV/VIS-Reflexionsspektrum aus Abbildung 15, da WO₃ in diesem Wellenlängenbereich weniger Licht absorbiert als TiO₂. Zudem ist bei WO₃ zu beobachten, dass sich die Effizienzen der kaltgasgespritzten und der siebgedruckten Elektroden bei diesem Halbleitermaterial weniger stark unterscheiden. Beide IPCE-Kurven haben einen ähnlichen Verlauf und ihre Maxima bei einer Wellenlänge von ca. 320 nm. Die Flächen der IPCE-Kurven betragen 3969 nm für WO₃/FTO (grüne Kurve) und 4186 nm für WO₃/Ti (blaue Kurve).

Bei einem Vergleich der TiO2-Elektroden untereinander zeigen die IPCE-Messungen, dass die Aktivität und die Effizienz der Elektroden aus dem Siebdruckverfahren höher sind, als die der Elektroden aus dem Kaltgasspritzen. Die maximale Effizienz der untersuchten TiO₂-Siebdruckelektrode liegt bei 327 nm (61 %), während die Kaltgaselektrode bei 345 nm (51 %) eine um ca. 10 % geringere maximale IPCE erreicht. Die IPCE-Maxima der beiden TiO₂-Photoelektroden liegen damit um 18 nm auseinander. Die Flächen der IPCE-Kurven betragen 3417 nm für TiO₂/FTO (schwarze Kurve) und 3060 nm für TiO₂/Ti (rote Kurve). Besonders das hochenergetische UV-Licht unterhalb einer Wellenlänge von 350 nm kann von der TiO2/FTO-Elektrode besser in einen Photostrom umgewandelt werden. Allerdings zeigen die IPCE-Messungen in Übereinstimmung mit den diffusen UV/VIS-Reflexionsspektrum aus Abbildung 15 auch, dass die TiO₂-Filme nicht in der Lage sind, Licht mit einer Wellenlänge von mehr als 420 nm, d.h. sichtbares Licht, für die photokatalytische Oxidation von Methanol zu nutzen. So ist insgesamt die Effizienz der Kaltgaselektrode von WO₃/Ti um 27 % höher als die Effizienz der TiO2/Ti-Elektrode. Bei den Siebdruckelektroden ist die WO3-Elektrode ebenfalls effektiver für den Methanolabbau. Die Gesamt-IPCE von WO₃/FTO ist um 14 % höher als die Effizienz TiO₂/FTO-Elektrode.

In ihren Arbeiten über kaltgasgespritzte TiO2-Photoelektroden zeigen HERRMANN-GEPPERT et al., dass die kaltgasgespritzten Elektroden im Vergleich zu gerakelten Photoelektroden (auf Titanmetallsubstraten) eine höhere photokatalytische Effizienz haben.^{30,31} Sie führen die verbesserte Aktivität vor allem auf einen verbesserten Partikel-Substrat-Kontakt durch das Kaltgasspritzen zurück. Die in Abbildung 37 gezeigten Ergebnisse können die Ergebnisse von HERMANN-GEPPERT et al. erst einmal nicht bestätigen, da die Siebdruckelektroden teilweise höhere Effizienzen als die Kaltgaselektroden zeigen. Um die Ergebnisse mit der Literatur noch besser vergleichen zu können, wurde als Kontrollexperiment eine zusätzliche Siebdruck-TiO2/Ti-Photoelektrode hergestellt und vermessen, da HERRMANN-GEPPERT et al. in ihren Untersuchungen nur Photoelektroden auf Metallsubstraten verglichen haben.^{30,31} Bei dieser Elektrode wurde der Halbleiterfilm mithilfe des Siebdruckverfahrens auf das Titanmetall aufgebracht und anschließend analog zu den anderen Photoelektroden bei 500 °C für 2 h kalziniert. Auf diese Weise kann zusätzlich neben dem Einfluss der Halbleitermaterialien, auch der Einfluss der verwendeten Rückkontakte auf die Photostromeffizienzen untersucht werden. Die IPCE dieser Siebdruck-TiO2/Ti-Photoelektrode (cyanblaue Kurve) ist Abbildung 38 dargestellt.

Abbildung 38: Photostromeffizienzen (IPCE) für die Methanoloxidation an Siebdruck-TiO₂/FTO (schwarze Kurve), Kaltgas-TiO₂/Ti (rote Kurve) und Siebdruck-TiO₂/Ti (cyanblaue Kurve) Photoelektroden. Die IPCE-Werte für die schwarze und die rote Kurve wurden aus der Abbildung 36 übertragen. Die Effizienzen wurden bei einer Frequenz von 1 Hz, einem externen Potential von 1,0 V vs. NHE in 0,5 M H₂SO₄ mit 10 Vol.-% Methanol (ca. 2 mol/L) aufgenommen. Als Lichtquellen dienten monochromatische LEDs mit Wellenlängen zwischen 310 und 800 nm.

In der Abbildung 38 werden alle drei TiO₂-Photoelektroden miteinander verglichen. Die Siebdruckelektroden TiO₂/FTO (schwarze Kurve) und TiO₂/Ti (cyanblaue Kurve) unterscheiden sich in ihren verwendeten Rückkontakten. Die Kaltgas-TiO2/Ti (rote Kurve) und Siebdruck-TiO₂/Ti-Photoelektroden unterscheiden sich in der gewählten Beschichtungsmethode. Im Vergleich zur TiO₂/Ti-Siebdruckelektrode zeigen die beiden anderen TiO₂-Photoelektroden deutlich höhere IPCE bei allen Wellenlängen unterhalb von 420 nm. Die cyanblaue IPCE-Kurve zeigt ein Maximum von 33 % bei ca. 350 nm, einer sehr ähnlichen Wellenlänge wie bei der IPCE der TiO₂/Ti-Photoelektrode aus der Kaltgasbeschichtung. Folglich resultiert die Verschiebung des IPCE-Maximums bei den TiO₂-Photoelektroden wahrscheinlich aus der Verwendung unterschiedlicher Rückkontakte. Die Fläche der IPCE-Kurve der TiO2/Ti-Siebdruckelektrode beträgt lediglich 1921 nm, was nur 62,78 % der Photostromeffizienz der TiO₂/Ti-Kaltgaselektrode entspricht. Damit wird in Übereinstimmung mit den Daten von HERRMANN-GEPPERT et al. in dieser Arbeit ebenfalls der Trend beobachtet, dass kaltgasgespritzte TiO₂-Halbleiterschichten auf Titanmetallsubstraten höhere Effizienzen aufweisen als gerakelte TiO₂-Siebdruckfilme auf Titanmetallsubstraten.^{30,31}

Zusammenfassend zeigen alle IPCE-Ergebnisse vor allem im niedrigeren Wellenlängenbereich ein auffälliges Verhalten. Die TiO₂-Elektroden erreichen z.B. Maxima in der IPCE bei 327, 342 und 350 nm. Bei geringeren Wellenlängen beginnen allerdings auch die Effizienzen für den Methanolabbau bis 310 nm wieder zu sinken. Ein solches Verhalten für TiO₂ wurde allerdings auch schon von EMELINE *et al.* für die Photoneneffizienzen und Quantenausbeuten bei dem photokatalytischen Abbau von Phenol und 4-Chlorophenol beobachtet.¹⁷⁰ Im Detail berichteten EMELINE *et al.*, dass die Photoneneffizienz sowohl von der Wellenlänge, als auch von dem Opferreagenz abhängig ist. Für den Abbau von Phenol und 4-Chlorophenol fanden sich Maxima in der

Photoneneffizienz bei 325 bzw. 334 nm, die mit sinkender Wellenlänge jeweils bei ca. 310 nm ein Minimum durchliefen.¹⁷⁰ Da die IPCE-Ergebnisse aus dieser Arbeit eine ähnliche Abhängigkeit für TiO₂ zeigen, ist es nicht verwunderlich, dass WO₃ als weiterer indirekter Halbleiter ebenfalls eine Wellenlängenabhängigkeit in der IPCE für die Methanoloxidation zeigt. Die Photostromeffizienzen der WO₃-Elektroden durchlaufen bei 312 nm (48 % für WO₃/FTO) und bei 315 nm (47 % für WO₃/Ti) ihre Maxima. Bevor diese Werte allerdings erreicht werden, durchlaufen beide Kurven ein lokales Minimum bei ca. 345 nm und ein zweites Maximum (WO₃/Ti) bzw. eine Schulter (WO₃/FTO) bei ca. 360 – 365 nm. Die Photostromeffizienzen von vergleichbaren Systemen aus der Literatur sind in der Diskussion in Kapitel 5.3.2 zusammengefasst.

4.3.4 Bestimmung der Formaldehydbildung im luftgesättigten System

Die photoelektrochemische Aktivität der WO₃- und TiO₂-Photoelektroden für die Methanoloxidation wurde bisher in CLV- und IPCE-Messungen analysiert. Zur Quantifizierung der Aktivität beruhen beide Messungen auf der Aufzeichnung der Menge des geflossenen Photostroms. Dass es sich bei dieser Photostromdichte um die Oxidation von Methanol handelt, ist wahrscheinlich, aber bis zu diesem Zeitpunkt noch nicht nachgewiesen worden. Besonders die Ergebnisse von NIEDERBERGER *et al.* (siehe Kapitel 2.6) zeigen, dass es wichtig ist, zusätzlich zu dem gemessenen Photostrom eine Produktanalyse durchzuführen.¹¹⁹ Aus diesem Grund wurden im Anschluss an die photoelektrochemischen CLV-Messungen die Konzentrationen von Formaldehyd (als erstes Oxidationsprodukt des Methanolabbaus) im Elektrolyten überprüft. Ein Teil dieser Ergebnisse wurde bereits von HAISCH *et al.* veröffentlicht.³⁸

Es wurden CLV-Messungen mit allen Photoelektroden über 5,5 elektrochemische Zyklen analog zu den Messungen in Abbildung 31 durchgeführt. Da die TiO₂- und WO₃-Elektroden jedoch in verschiedenen Potentialbereichen aktiv sind, wurde nur ein gemeinsames Umkehrpotential von 1,6 V *vs.* NHE festgelegt. Die Startpotentiale der CLV-Messungen wurden anhand der Daten der Photostrom-Anfangspotentiale ausgewählt. Die CLV-Messungen der WO₃-Photoelektroden wurden in einem Potentialbereich von 0,2 bzw. 0,3 – 1,6 V *vs.* NHE durchgeführt und beide TiO₂-Photoelektroden in einem Potentialbereich von -0,1-1,6 V *vs.* NHE zyklisiert. Nach Ende der Messung wurde der gesamte Elektrolyt aus der photoelektrochemischen Messzelle entnommen und mithilfe des NASH-Reagenz spektroskopisch auf seine Formaldehyd gefunden: 2,77 µmol für WO₃/FTO, 2,75 µmol für WO₃/Ti, 1,23 µmol für TiO₂/FTO und 0,99 µmol für TiO₂/Ti.

Bei den gefundenen Stoffmengen an Formaldehyd muss berücksichtigt werden, dass die CLV-Messungen in unterschiedlich langen Zeiträumen durchgeführt wurden. Diese ergaben sich aus dem gewählten Potentialbereich und der Zyklenanzahl von 5,5: Die WO₃/FTO-Photoelektroden wurden in einem Bereich von 0,2 bis 1,6 V *vs.* NHE (12:52 min), die WO₃/Ti-Elektroden in einem Bereich von 0,3 bis 1,6 V *vs.* NHE (11:57 min) und beide TiO₂-Photoelektroden in einem Potentialbereich von -0,1 bis 1,6 V *vs.* NHE (15:37 min) zyklisiert. Die entsprechenden Strom-Zeit-Kurven dieser

CLV-Messungen sind in den Abbildungen 39 für die WO₃-Photoelektroden und 39 für die TiO₂-Photoelektroden dargestellt.

Abbildung 39: Stromdichte-Zeit-Kurven von CLV-Messungen von WO₃/FTO (links) und WO₃/Ti (rechts) Photoelektroden über 5,5 Zyklen. Die Stromdichten wurden unter Beleuchtung mit einer Xenon-Lampe (300 W) mit AM 1.5G-Filter gemessen. Während der Messung wurde die Lichteinstrahlung auf die Photoanode von einer Blende mit einer Frequenz von 200 mHz an- und ausgeschaltet (CLV). Die Messungen wurden in 0,5 M H₂SO₄ mit 10 Vol.-% Methanol (~ 2 mol/L) bei einer Vorschubgeschwindigkeit von 20 mV/s durchgeführt.

Die Abbildung 39 stellt die gesamten Daten der einzelnen CLV-Messungen der WO₃-Photoelektroden als Funktion der Zeit dar. Da es sich um mehrere aufeinanderfolgende Zyklen handelt, kann eine Aussage über die Zyklenstabilität der Photoelektroden in 0,5 M H₂SO₄ getroffen werden. So wird bis auf einen kurzen kathodischen Peak und anodischen Peak am Umkehrpotential zwischen den einzelnen Zyklen kein signifikanter Dunkelstrom bei den WO₃-Elektroden beobachtet. Die Stromdichten fallen im Dunkeln ansonsten immer wieder auf ca. 0 mA/cm² zurück. Zudem bleiben die maximal erreichten Stromdichten mit jedem weiteren CLV-Zyklus nahezu konstant. Somit lässt sich schlussfolgern, dass die W⁵⁺ \rightleftharpoons W⁶⁺ Umwandlung in diesem Medium bei pH 0,3 im Gegensatz zu den Messungen bei pH 7 und pH 11 eine untergeordnete Rolle spielt. Im Vergleich der beiden Photoelektroden untereinander, können für die WO₃/Ti-Photoelektrode (blaue Kurve) insgesamt höhere Photostromdichten erreicht werden.

Abbildung 40: Strom-Zeit-Kurven von CLV-Messungen von TiO₂/FTO (links) und TiO₂/Ti (rechts) Photoelektroden über 5,5 Zyklen. Die Stromdichten wurden unter Beleuchtung mit einer Xenon-Lampe (300 W) mit AM 1.5G-Filter gemessen. Während der Messung wurde die Lichteinstrahlung auf die Photoanode von einer Blende mit einer Frequenz von 200 mHz an- und ausgeschaltet (CLV). Die Messungen wurden in 0,5 M H_2SO_4 mit 10 Vol.-% Methanol (~ 2 mol/L) bei einer Vorschubgeschwindigkeit von 20 mV/s durchgeführt.

Bei der TiO₂/FTO-Elektrode (schwarze Kurve in Abbildung 40) ist zu beobachten, dass ebenfalls kein Dunkelstrom während der Messung detektiert wird. Die Photostromdichte ist über die 5,5 Zyklen stabil und steigt sogar geringfügig während des ersten Zyklus an. Die TiO₂/Ti-Kaltgaselektrode (rote Kurve) zeigt in Übereinstimmung mit Abbildung 31 eine etwas geringere Photostromdichte als die entsprechende Siebdruckelektrode. Der Strom ist aber über die 5,5 elektrochemischen Zyklen ebenfalls konstant. Zusätzlich wird im ersten Zyklus ein Dunkelstrom auf der TiO₂/Ti-Elektrode gemessen, erkennbar an dem kleinen Peak nach 90 s im CLV (rote Kurve). Dieser kann der Umwandlung von Ti³⁺ \rightleftharpoons Ti⁴⁺ zugeordnet werden. Die Dunkelstromdichte nimmt jedoch mit jedem weiteren Zyklus ab bis sie nahezu komplett verschwindet.

Mithilfe der Strom-Zeit-Kurven und der Formaldehyd-Stoffmengen war es möglich, wie in Kapitel 4.3.2 beschrieben, die FARADAY'schen Effizienzen für den Vergleich der unterschiedlichen Photoelektroden zu berechnen. Diese betragen $\eta_{FE} = 95 \%$ (WO₃/FTO), $\eta_{FE} = 93 \%$ (WO₃/Ti), $\eta_{FE} = 92 \%$ (TiO₂/FTO) und $\eta_{FE} = 105 \%$ (TiO₂/Ti).

Das bedeutet, dass im Schnitt über 90 % der Photoströme der WO₃ und TiO₂ Elektroden auf die anodische Oxidation von Methanol zu Formaldehyd entfallen. Diese hohen Werte sind darauf zurückzuführen, dass die Messungen bei hohen Methanolkonzentrationen von ca. 2 mol/L und kurzen Reaktionszeiten (unter 16 min) durchgeführt wurden. Daher ist Formaldehyd als Produkt des ersten Oxidationsschrittes von Methanol das Hauptprodukt des photoelektrochemischen Methanolabbaus. Durch die Anwesenheit von Sauerstoff im Anodenraum wird der Methanolabbau zu Formaldehyd unterstützt, da das 'CH₂OH-Radikal mit Sauerstoff weiterreagieren kann, wie die folgenden Reaktionsgleichungen zeigen (direkte Oxidation über photogenerierte Löcher; weitere Details siehe Kapitel 2.5):

$$CH_3OH + h^+{}_{VB} \rightarrow CH_2OH + H^+$$
[40]

$$CH_2OH \to HCHO + H^+ + e^-_{LB}$$
[41]

$$CH_2OH + O_2 \rightarrow HCHO + O_2H$$
[42]

Die übrigen ca. 10 % der Photostromdichte lassen sich wahrscheinlich auf die Bildung weiterer Oxidationsprodukte zurückführen. So könnten die Reaktionen zu Sauerstoff (aus der Wasseroxidation), Ameisensäure (aus der Formaldehydoxidation) und Kohlenstoffdioxid (aus der Ameisensäureoxidation) für die restliche Photostromdichte verantwortlich sein. Um diese Fragestellung zu klären und die weiteren gasförmigen Produkte detektieren zu können, war es nötig den Aufbau der photoelektrochemischen Messung anzupassen. Die Ergebnisse dieser Untersuchungen sind in dem nächsten Kapitel (4.4) beschrieben.

4.4 Produktanalyse des photoelektrochemischen Methanolabbaus

In den bisherigen Untersuchungen wurden die photoelektrochemische Aktivität (Kapitel 4.3.1) und die Produktbildung (Kapitel 4.3.4) des Methanolabbaus in einem luftgesättigten System analysiert. Dazu wurden CLV-Messungen (Strom-Spannungs-Messungen) durchgeführt und die Formaldehyd-Konzentration nach Beendigung der Experimente im Elektrolyten untersucht. In diesem Kapitel werden erneut die Produkte und Ausbeuten der photoelektrochemischen Methanoloxidation der Photoelektroden von WO₃ analysiert und mit denen von TiO₂ verglichen. Allerdings wurden die Experimente in diesem Kapitel in einem Argon-gesättigten System unter Luftausschluss durchgeführt. Zur Produktanalyse wurden CA-Messungen (Strom-Zeit-Messungen) genutzt, um die Aktivitäten und Produktausbeuten der Photoelektroden im stationären Zustand zu untersuchen. Im ersten Unterkapitel werden die Ergebnisse der Formaldehydbildung unter Luftausschluss gezeigt und im zweiten Unterkapitel werden die Bildungsraten der gasförmigen Produkte der Methanoloxidation analysiert.

4.4.1 Bestimmung der Formaldehydbildung unter Luftausschluss

In diesem Kapitel wird der Einfluss des Luftausschlusses auf die FARADAY'schen Effizienzen für den Abbau von Methanol zu Formaldehyd untersucht. Dazu wurden photoelektrochemische Messungen mit vergleichbaren Messparametern (Lichtintensität) zu den Experimenten aus Kapitel 4.3 durchgeführt. Im Detail wurden CA-Messungen für jeweils 10 Minuten bei 1 V vs. NHE durchgeführt und die Elektrolyten nach dem Experiment auf die Bildung von Formaldehyd untersucht. Das Ergebnis der photoelektrochemischen CA-Messung ist in Abbildung 41 dargestellt.

Abbildung 41: Strom-Zeit-Kurven von WO₃/FTO (grüne Kurve), WO₃/Ti (blaue Kurve), TiO₂/FTO (schwarze Kurve) und TiO₂/Ti (rote Kurve) Photoelektroden bei 1 V *vs.* NHE. Die Stromdichten wurden unter Beleuchtung mit einer Xenon-Lampe (300 W) mit AM 1.5G-Filter gemessen. Die CA-Messungen wurden in 0,5 M H₂SO₄ mit 10 Vol.-% Methanol (~ 2 mol/L) durchgeführt.

Die CA-Messungen bei 1 V *vs.* NHE zeigen, dass auch unter Luftausschluss stabile Stromdichten für die einzelnen Elektroden erreicht werden. Nach 10 Minuten werden folgende Stromdichten unter AM 1.5G-Bestrahlung beobachtet: 2,18 mA/cm² für WO₃/FTO, 2,15 mA/cm² für WO₃/Ti, 0,75 mA/cm² für TiO₂/FTO und 0,59 mA/cm² für TiO₂/Ti.

In dem photoelektrochemischen Experiment im luftgesättigten System (Abbildung 31) betrugen die Stromdichten bei 1 V vs. NHE 2,44 mA/cm² (WO₃/FTO), 2,42 mA/cm² (WO_3/Ti) , $0,74 \text{ mA/cm}^2$ (TiO₂/FTO) und $0,61 \text{ mA/cm}^2$ $(TiO_2/Ti).$ Unter Berücksichtigung der Messungenauigkeit des Potentiostaten stimmen die Stromwerte für die TiO₂-Photoelektroden überein. Die WO₃-Elektroden zeigen hingegen etwas geringere Werte in der Abwesenheit von Sauerstoff, die mit der Abnahme der Aktivität in der CA-Messung über die Zeit zusammenhängen. Am Anfang der CA-Messung liegen die gemessenen Stromdichten noch im Bereich wie bei der CLV-Messung von 2,3 -2,5 mA/cm² (Abbildung 31). Damit zeigt sich, dass der Luftausschluss keinen Einfluss auf die photoelektrochemische Aktivität der Photoelektroden hat.

Im Anschluss an die CA-Messungen wurden folgende Stoffmengen an Formaldehyd gefunden: 5,02 µmol für WO₃/FTO, 4,78 µmol für WO₃/Ti, 1,36 µmol für TiO₂/FTO und 1,13 µmol für TiO₂/Ti. Um die Ergebnisse der CA-Messung unter Luftausschluss mit denen der CLV-Messung an der Luft besser vergleichen zu können, sind die FARADAY'schen Effizienzen (wie in Kapitel 4.3.2. beschrieben) berechnet worden. Diese betragen $\eta_{FE} = 88 \%$ (WO₃/FTO), $\eta_{FE} = 86 \%$ (WO₃/Ti), $\eta_{FE} = 72 \%$ (TiO₂/FTO) und $\eta_{FE} = 77 \%$ (TiO₂/Ti). Damit sind die FARADAY'schen Effizienzen der WO₃-Photoelektroden um ca. 6 % gegenüber dem System mit Luft gesunken. Bei den TiO₂-Elektroden beträgt die Abnahme rund 25 %. Das bedeutet, dass sich die Produktausbeute in der photoelektrochemischen Reaktion verschoben hat. Zwar ist Formaldehyd aufgrund der hohen Methanolkonzentrationen von ca. 2 mol/L und der kurzen Reaktionszeit von 10

Minuten immer noch das Hauptprodukt der Methanoloxidation, allerdings sind nun 20 – 30 % der Stromdichte auf die Bildung von anderen Produkten zurückzuführen.

Eine mögliche Erklärung könnte der Abbaumechanismus des Methanols liefern, welcher in Abbildung 10 dargestellt ist. Nachdem in einem ersten Schritt das Hydroxymethyl-Radikal (CH2OH) aus Methanol entstanden ist, gibt es zwei mögliche Wege, auf denen Formaldehyd aus dem CH₂OH-Radikal gebildet werden kann. Einer dieser Wege, die Reaktion mit Sauerstoff (Reaktion 6 in Abbildung 10) steht in der Argon-gesättigten Zelle nicht mehr zur Verfügung. Das 'CH2OH-Radikal kann nur zu Formaldehyd reagieren, indem es ein Elektron in das Leitungsband des Halbleiters überträgt (Reaktion 5 in Abbildung 10). Die Abwesenheit von Sauerstoff könnte zu der geringeren FARADAY'schen Effizienz in diesem System führen. Außerdem könnten die Potentiallagen der Leitungsbandkanten der beiden Halbeiter hier ebenfalls eine Rolle spielen. Die Leitungsbandkante von WO3 liegt bei einem Potential von 0,24 V vs. NHE (bei pH 7) und damit um ungefähr 0,6 V niedriger als die Leitungsbandkante von TiO₂. Folglich sind die Potentiallagen energetisch günstiger für das Hydroxymethyl-Radikal zur Übertragung eines Elektrons in das Leitungsband von WO₃ als in das Leitungsband von TiO₂. Dies würde erklären, warum die Effizienz für die TiO₂-Photoelektroden (-25 %) stärker gesunken ist als für die WO₃-Photoelektroden (-6 %).

4.4.2 Bestimmung der gasförmigen Produkte unter Luftausschluss

In diesem Kapitel werden die gasförmigen Produkte des Methanolabbaus unter Luftausschluss untersucht. Dafür wurde der photoelektrochemische Versuchsaufbau mit einem Massenspektrometer verbunden, um die zu den Photoströmen korrespondierenden Produktgase simultan können Bildungsraten der messen zu (PEC/MS: Photoelektrochemie mit gekoppelter Massenspektrometrie). Der experimentelle Aufbau ist in Abbildung 12 im experimentellen Teil gezeigt. Da Ergebnisse der Messungen weitestgehend unabhängig vom verwendeten Substrat waren, werden in diesem Kapitel die Ergebnisse der WO₃-Photoelektroden am Beispiel von WO₃/Ti und die Ergebnisse der TiO₂-Photoelektroden am Beispiel von TiO₂/Ti gezeigt.

Produktanalyse des Methanolabbaus an der WO₃-Photoelektrode

Als Grundlage für die Produktanalyse dienten CA-Messungen, welche für 15 Minuten bei 1 V *vs.* NHE aufgenommen wurden. Die elektrochemischen und massenspektroskopischen Ergebnisse für die WO₃/Ti-Photoelektrode sind in den Abbildungen 42 und 43 dargestellt.

Abbildung 42: Stromdichte-Zeit-Kurve einer WO₃/Ti-Photoelektrode bei 1 V *vs.* NHE. Die Stromdichten wurden unter Beleuchtung mit einer Xenon-Lampe (450 W) mit Wasserfilter (zur Absorption von IR-Licht) gemessen. Die Bestrahlungsintensität der Lampe beträgt $I_{250} - I_{500} = 33$ mW/cm². Die CA-Messung wurde in 0,5 M H₂SO₄ mit 10 Vol.-% Methanol (~ 2 mol/L) durchgeführt. Bei der "An"-Markierung (0 min) wurde die Bestrahlung gestartet und gleichzeitig das Potential angelegt. Bei der "Aus"-Markierung wurden Bestrahlung und Potential abgeschaltet.

In Abbildung 42 sind die Ergebnisse der photoelektrochemischen CA-Messung dargestellt. Während der Messung wurde die photoelektrochemische Zelle mit einem Argon-Gasstrom durchflutet, um die gasförmigen Produkte zum Massenspektrometer zu transportieren. Aufgrund der höheren Lichtintensität der 450 W Xe-Lampe ($I_{250} - I_{500} = 33 \text{ mW/cm}^2$) mit einem Wasserfilter (zur Absorption von IR-Licht), werden nun höhere Stromdichten mit der WO₃/Ti-Elektrode im Gegensatz zu den Messungen bei AM 1.5G-Solarlicht ($I_{250} - I_{500} = 14 \text{ mW/cm}^2$) erreicht. Diese betragen am Anfang der Messung ca. 6,2 mA/cm² und sinken bis zum Ende der Messung auf ca. 4,7 mA/cm². Nachdem das photoelektrochemische Experiment beendet war, wurde die Zelle weiter mit Argon gespült und die Gaszusammensetzung am Massenspektrometer analysiert. Die entsprechenden Daten sind in der Abbildung 43 dargestellt.

Abbildung 43: Signal-Zeit-Kurven der Massen für die photoelektrochemische Bildung von Wasserstoff (rote Kurve), Sauerstoff (blaue Kurve) und Kohlenstoffdioxid (schwarze Kurve) auf einer WO₃/Ti-Photoelektrode. Die Messung wurde unter Beleuchtung mit einer Xenon-Lampe (450 W) mit Wasserfilter (zur Absorption von IR-Licht) in 0,5 M H₂SO₄ mit 10 Vol.-% Methanol (~ 2 mol/L) durchgeführt. Die Bestrahlungsintensität der Lampe beträgt $I_{250} - I_{500} = 33 \text{ mW/cm}^2$. Die detektierten Signale für die Gase wurden kalibriert und in Bildungsraten (µmol/min) umgerechnet. Bei der "An"-Markierung (0 min) wurde die Bestrahlung gestartet und gleichzeitig das Potential angelegt. Bei der "Aus"-Markierung wurden Bestrahlung und Potential abgeschaltet.

Die Auswertung der Daten des Massenspektrometers zeigt, dass vor allem große Mengen an Wasserstoffgas (rote Kurve) detektiert werden. Dieses ist bei der Oxidation von Methanol an der Photoelektrode das korrespondierende Reduktionsprodukt von Protonen an der Pt-Gegenelektrode. Insgesamt sind bei der Messung 103 μ mol H₂ in 15 Minuten entstanden. Die Wasserstoffbildung beginnt sofort nachdem die Beleuchtung und das Potential eingeschaltet wurden und endet auch direkt mit deren Abschaltung. Das gleiche gilt für Kohlenstoffdioxid (schwarze Kurve), welches jedoch in deutlich geringeren Mengen von insgesamt 8 µmol CO₂ detektiert wurde. Trotz der hohen Konzentration an Methanol von 2 mol/L wurde das entstandene Formaldehyd von Anfang an direkt weiter zu Ameisensäure und Kohlenstoffdioxid oxidiert, da die CO₂-Bildung offenbar sofort mit der photoelektrochemischen Messung startet. Mit fortlaufender Dauer des Experiments ist zudem zu beobachten, dass die CO₂-Bildungsrate vom Anfang bis zum Ende der Beleuchtung und des angelegten Potentials immer weiter ansteigt. Erst mit dem Ende der photoelektrochemischen Messung sinkt die Bildungsrate wieder. Zusätzlich wird noch Sauerstoff (blaue Kurve) detektiert. Die Sauerstoffbildung startet mit einer geringen Verzögerung gegenüber den beiden anderen Gasen. Die Ausbeute an Sauerstoff betrug $5 \mu mol O_2$ in 15 Minuten.

Die Gasdetektion am Massenspektrometer musste insgesamt für 200 Minuten durchgeführt werden, da CO_2 und vor allem O_2 noch lange nach Ende der photoelektrochemischen Messung detektiert wurden. Die CO_2 -Konzentration am Massenspektrometer ging erst nach ca. 50 Minuten wieder auf die Basislinie zurück, während es bei O_2 fast 200 Minuten dauerte bis die Basislinie wieder erreicht wurde. Da in der Abbildung 43 eine Bildungsrate angegeben ist, kann diese leicht fehlinterpretiert werden. Nach dem Ende des photoelektrochemischen Experiments, also nach 15

Minuten, wird kein neues CO_2 oder O_2 mehr in der photoelektrochemischen Zelle gebildet. Es dauert lediglich länger bis die entstandenen Gase nach der Reaktion aus der photoelektrochemischen Zelle ausgetrieben und am Massenspektrometer ankommen sind. Beeinflussende Faktoren können dabei unter anderem die Löslichkeit der Gase in saurer wässriger Lösung, sowie die Adsorption der Gasblasen an den beiden Elektrodenoberflächen sein. Die Löslichkeit von CO_2 in Wasser liegt allerdings mit ca. 1,7 g/L deutlich über den Löslichkeiten von O_2 (ca. 0,045 g/L) und von H_2 (ca. 0,0016 g/L) in Wasser. Aber auch die zwischenzeitliche Adsorption der Gase an den verwendeten PTFE-Schläuchen, mit deren Hilfe der Argon-Gasstrom in und aus der photoelektrochemischen Zelle geleitet wurde, wird hierbei eine Rolle spielen. Letztendlich werden diese Faktoren dazu beitragen, dass auch nach ausreichender Wartezeit durch Adsorptionseffekte etwas weniger Produktgase detektiert werden, als eigentlich bei der Reaktion entstanden sind.

Zusätzlich zu den photoelektrochemischen Experimenten wurden Vergleichsexperimente im Dunkeln durchgeführt. Bei diesen Kontrollmessungen wurden bei allen untersuchten Photoelektroden keine Produkte im Massenspektrometer gefunden. Auch eine Analyse der Formaldehydkonzentration nach der Messung zeigte, dass sich in dem Versuch kein Formaldehyd im Elektrolyten gebildet hatte. Damit haben die Vergleichsexperimente belegt, dass eine Bestrahlung und ein externes Potential nötigt sind, um Methanol an den WO₃-Photoelektroden abzubauen.

Anhand der vorhandenen Daten kann für H₂, CO₂ und O₂ eine FARADAY'sche Effizienz, wie in Kapitel 4.3.2 beschrieben, berechnet werden. Die entsprechenden Werte betragen $\eta_{FE} = 172$ % für H₂, $\eta_{FE} = 40$ % für CO₂ und $\eta_{FE} = 17$ % für O₂. Die hohe Effizienz von H₂ kann darauf zurückgeführt werden, dass Wasserstoff das einzige mögliche Reduktionsprodukt der photoelektrochemischen Reaktion ist. Die FARADAY'sche Effizienz über 100 % liegt an dem "current doubling"-Effekt, der unter anaeroben Bedingungen bei dieser Reaktion auftritt. Der Effekt beruht darauf, dass Formaldehyd in Abwesenheit von Sauerstoff über die Injektion eines Elektrons vom Hydroxymethyl-Radikal in das Halbleiter-Leitungsband gebildet wird (Reaktion 5 in Abbildung 10). Dieses zusätzliche Elektron wird nun ebenfalls für die Wasserstofferzeugung an der Pt-Gegenelektrode verwendet.^{94,95} Dadurch ist es möglich, dass die FARADAY'sche Effizienz für die Wasserstofferzeugung in einer solchen sauerstofffreien photoelektrochemischen Zelle bei über 100 % liegen kann. Auf der Seite der Oxidationsprodukte konnten ca. 40 % der Stromdichte auf die Bildung von CO2 zurückgeführt werden. Dazu kommen ca. 17 % für die Bildung von Sauerstoff aus der konkurrierenden Wasseroxidation. Damit ist die FARADAY'sche Effizienz für die Sauerstofferzeugung schon mehr als doppelt so hoch wie bei dem Wasserspaltungsexperiment (in H₂ und O₂) an WO₃/FTO-Photoelektroden ohne Methanol-Zusatz ($\eta_{FE} = 8$ %), welches von NIEDERBERGER *et al.* durchgeführt wurde.¹¹⁹ Insgesamt konnten mit der PEC/MS-Messung 57 % der Stromdichte auf der WO₃/Ti-Photoelektrode entstandenen Produkten zugeordnet werden. Die fehlenden 43 % der Stromdichte können wahrscheinlich auf die Bildung von Formaldehyd und Ameisensäure zurückgeführt werden, deren Bildungsraten in dem noch folgenden WO₃/Ti-Langzeitexperiment in diesem Kapitel gezeigt sind.

Produktanalyse des Methanolabbaus an der TiO2-Photoelektrode

Auch für die TiO₂/Ti-Photoelektrode diente eine 15-minütige CA-Messung als Grundlage für die Produktanalyse bei 1 V *vs.* NHE. Die Ergebnisse sind in den Abbildungen 44 und 45 dargestellt.

Abbildung 44: Stromdichte-Zeit-Kurve einer TiO₂/Ti-Photoelektrode bei 1 V vs. NHE. Die Stromdichten wurden unter Beleuchtung mit einer Xenon-Lampe (450 W) mit Wasserfilter (zur Absorption von IR-Licht) gemessen. Die Bestrahlungsintensität der Lampe beträgt $I_{250} - I_{500} = 33 \text{ mW/cm}^2$. Die CA-Messung wurde in 0,5 M H₂SO₄ mit 10 Vol.-% Methanol (~ 2 mol/L) durchgeführt. Bei der "An"-Markierung (0 min) wurde die Bestrahlung gestartet und gleichzeitig das Potential angelegt. Bei der "Aus"-Markierung wurden Bestrahlung und Potential abgeschaltet.

Die Kurve der CA-Messung der TiO₂/Ti-Photoelektrode zeigt einen sehr inkonstanten Verlauf. Dieser kann auf die hohen Stromdichten und die damit einhergehende Gasblasenbildung auf der Elektrodenoberfläche zurückgeführt werden, welche während des Experiments zu beobachten war. Im Gegensatz zur WO₃-Elektrode sinkt die Stromdichte auf der TiO₂-Elektrode während der Bestrahlung nicht. Am Anfang des Experiments wird eine Stromdichte von ungefähr 5,7 mA/cm² gemessen, welche bis zum Ende der Messung auf ca. 6 mA/cm² ansteigt. Die TiO₂-Photoelektrode zeigt eine höhere photoelektrochemische Aktivität als die WO₃-Elektrode, was auf den erhöhten Anteil an hochenergetischer UV-Strahlung bei diesem Experiment zurückzuführen ist. Die Bildungsraten der Produktgase für TiO₂/Ti sind in Abbildung 45 gezeigt.

Abbildung 45: Signal-Zeit-Kurven der Massen für die photoelektrochemische Bildung von Wasserstoff (rote Kurve), Sauerstoff (blaue Kurve) und Kohlenstoffdioxid (schwarze Kurve) auf einer TiO₂/Ti-Photoelektrode. Die Messung wurde unter Beleuchtung mit einer Xenon-Lampe (450 W) mit Wasserfilter (zur Absorption von IR-Licht) in 0,5 M H₂SO₄ mit 10 Vol.-% Methanol (~ 2 mol/L) durchgeführt. Die Bestrahlungsintensität der Lampe beträgt $I_{250} - I_{500} = 33$ mW/cm². Die detektierten Signale für die Gase wurden kalibriert und in Bildungsraten (µmol/min) umgerechnet. Bei der "An"-Markierung (0 min) wurde die Bestrahlung gestartet und gleichzeitig das Potential angelegt. Bei der "Aus"-Markierung wurden Bestrahlung und Potential abgeschaltet.

Bei der massenspektroskopischen Analyse der Produktgasströme zeigt sich für die TiO₂/Ti-Photoelektrode, dass im Vergleich zu WO₃ ähnliche Mengen an CO₂ und geringere Mengen an O₂ gefunden werden. Die Gesamtmengen an produzierten Gasen liegen bei 8,5 µmol für CO₂ und bei 0,96 µmol für O₂. Das entspricht FARADAY'schen Effizienzen von $\eta_{FE} = 36 \%$ (CO₂) und $\eta_{FE} = 3 \%$ (O₂). Die Daten für H₂ liegen mit 79 µmol und $\eta_{FE} = 113 \%$ unter den Werten der WO₃-Photoelektrode.

Ein möglicher Grund für die geringere FARADAY'sche Effizienz für die Wasserstoffbildung im Vergleich zu WO₃ kann aus den verschiedenen Lagen der Leitungsbänder der beiden Halbleiter resultieren (Abbildung 27). In dem System unter Luftausschluss läuft die Oxidation von Methanol zu Formaldehyd über den "*current doubling*"-Effekt, bei dem ein Elektron vom 'CH₂OH-Radikal in das Leitungsband des Halbleiters übertragen wird (Reaktion 5 in Abbildung 10). Laut Literatur liegt das Potential des Hydroxymethyl-Radikals bei ungefähr 1,45 V *vs.* NHE (pH = 0).⁸³ Dieses Potential sollte ausreichen, um gleich viele Elektronen in die Leitungsbänder von WO₃ und TiO₂ zu injizieren. Allerdings ist die Lage der Leitungsbandkante von WO₃ für die Injektion eines Elektrons energetisch günstiger als beim TiO₂ (Abbildung 27), weshalb der "*current doubling*"-Effekt beim WO₃ stärker ausfallen könnte.

Langzeituntersuchung des Methanolabbaus an der WO3-Photoelektrode

Für eine detailliertere Analyse des photoelektrochemischen Abbaus von Methanol auf WO₃-Photoelektroden und um deren Stabilität zu überprüfen wurde zusätzlich zu der 15minütigen PEC/MS-Messung (Abbildungen 42 und 43) noch eine CA-Messungen über 3 Stunden bei 1 V vs. NHE durchgeführt. Bei diesem Experiment wurden darüber hinaus

auch Formaldehyd und Ameisensäure massenspektroskopisch aufgezeichnet. Das Ergebnis der photoelektrochemischen Messung ist in Abbildung 46 dargestellt.

Abbildung 46: Stromdichte-Zeit-Kurve einer TiO₂/Ti-Photoelektrode bei 1 V vs. NHE. Die Stromdichten wurden unter Beleuchtung mit einer Xenon-Lampe (450 W) mit Wasserfilter (zur Absorption von IR-Licht) gemessen. Die Bestrahlungsintensität der Lampe beträgt $I_{250} - I_{500} = 33 \text{ mW/cm}^2$. Die CA-Messung wurde in 0,5 M H₂SO₄ mit 10 Vol.-% Methanol (~ 2 mol/L) durchgeführt. Bei der "An"-Markierung (0 min) wurde die Bestrahlung gestartet und gleichzeitig das Potential angelegt. Bei der "Aus"-Markierung wurden Bestrahlung und Potential abgeschaltet.

In dem kurzen CA-Experiment für 15 Minuten wurde mit der WO₃/Ti-Photoelektrode keine konstante Stromdichte erreicht. Die 3 stündige CA-Messung bei 1 V *vs*. NHE zeigt zwar einen ähnlichen Verlauf, aber die Stromdichte ist nach ca. 100 Minuten konstant bei 4,6 mA/cm². Die dazugehörigen Bildungsraten der Produktgase sind in Abbildung 47 gezeigt.

Abbildung 47: Signal-Zeit-Kurven der Massen für die photoelektrochemische Bildung von Wasserstoff (rote Kurve), Sauerstoff (blaue Kurve) und Kohlenstoffdioxid (schwarze Kurve) auf einer WO₃/Ti-Photoelektrode. Die Messung wurde unter Beleuchtung mit einer Xenon-Lampe (450 W) mit Wasserfilter (zur Absorption von IR-Licht) in 0,5 M H₂SO₄ mit 10 Vol.-% Methanol (~ 2 mol/L) durchgeführt. Die Bestrahlungsintensität der Lampe beträgt $I_{250} - I_{500} = 33$ mW/cm². Die detektierten Signale für die Gase wurden kalibriert und in Bildungsraten (µmol/min) umgerechnet. Bei der "An"-Markierung (0 min) wurde die Bestrahlung gestartet und gleichzeitig das Potential angelegt. Bei der "Aus"-Markierung wurden Bestrahlung und Potential abgeschaltet.

Bei der 3-stündigen CA-Messung konnten im Vergleich zum 15-minütigem Experiment größere Mengen an den Produktgasen Wasserstoff, Kohlenstoffdioxid und Sauerstoff mithilfe der Massenspektroskopie nachgewiesen werden. Die Gesamtmenge an gebildetem Wasserstoff beläuft sich auf 1132 µmol H₂, was einer FARADAY'schen Effizienz von $\eta_{FE} = 166$ % entspricht. Die Effizienz liegt damit in einem ähnlichen Bereich wie bei der Kurzzeitmessung. Bei Betrachtung der Bildungsrate fällt auf, dass Wasserstoff ein sehr unregelmäßiges Signal liefert. Dieses ist stark abhängig von der Gasblasenbildung auf der Platin-Gegenelektrode. Die Gasblasen sind bei ihrer Bildung noch an der Pt-Oberfläche adsorbiert und wachsen an, bis sie sich schließlich lösen und vom Argon-Gasstrom zum Massenspektrometer transportiert werden. Dort erzeugt eine ankommende Wasserstoffglasblase einen Peak in der Signal-Zeit-Kurve. Daher wird keine konstante H₂-Bildungsrate für das Experiment erreicht.

Die Gesamtmenge an gebildetem Kohlenstoffdioxid beläuft sich auf insgesamt 148 µmol CO₂, was einer FARADAY'schen Effizienz von $\eta_{FE} = 65$ % entspricht. In diesem Fall konnte die Ausbeute im Vergleich zum Kurzeitexperiment um 25 % gesteigert werden, was auf die höhere Bildungsrate zurückgeführt werden kann. Diese steigt, nach einem anfänglichen Plateau, bis zum Ende des Experimentes mit einer relativ konstanten Steigung von $1,11\times10^{-12}$ mol/s² an. Mit dem Fortschreiten des Experiments bildet sich immer mehr Formaldehyd und Ameisensäure in dem Elektrolyten, so dass mit der Zeit immer mehr CO₂ gebildet werden kann. Ein ähnlicher Trend wird für das Sauerstoff-Signal beobachtet. Auch hier steigt die Bildungsrate mit der Zeit mit einer konstanten Steigung von $8,39\times10^{-13}$ mol/s² bis zum Ende der Messung an. Erst mit der Abschaltung der Beleuchtung und des Potentials beginnt das Signal, wie beim CO₂, wieder zu fallen.

Insgesamt wurden bei diesem Versuch 100 µmol O₂ gebildet. Das entspricht einer FARADAY'schen Effizienz von $\eta_{FE} = 29$ %, die somit im Vergleich zur Kurzzeitmessung fast verdoppelt werden konnte. Somit konnten auf der Seite der Oxidationsprodukte bisher schon 94 % der gemessenen Stromdichte entsprechenden detektierten Produkten zugeordnet werden. Um den Nachweis zu erbringen, dass auch Formaldehyd und Ameisensäure gebildet werden, wurden diese beiden Spezies in dem vorliegenden Experiment ebenfalls untersucht. Die entsprechenden Signal-Zeit-Kurven sind in der Abbildung 48 dargestellt.

Abbildung 48: Signal-Zeit-Kurven der Massen für die photoelektrochemische Bildung von Formaldehyd (links) und Ameisensäure (rechts). Die Messung wurde unter Beleuchtung mit einer Xenon-Lampe (450 W) mit Wasserfilter (zur Absorption von IR-Licht) in 0,5 M H₂SO₄ mit 10 Vol.-% Methanol (~ 2 mol/L) durchgeführt. Die Bestrahlungsintensität der Lampe beträgt $I_{250} - I_{500} = 33$ mW/cm². Es sind die ursprünglichen Signale des Massenspektrometers für die Bildungsraten ohne Kalibrierung angegeben. Bei der "An"-Markierung (0 min) wurde die Bestrahlung gestartet und gleichzeitig das Potential angelegt. Bei der "Aus"-Markierung wurden Bestrahlung und Potential abgeschaltet.

Formaldehyd und Ameisensäure sind nach ihrer Bildung und Desorption von der Halbleiteroberfläche in der wässrigen Lösung gelöst und gehen normalerweise in nicht sofort die geringen Konzentrationen in Gasphase über. Da die photoelektrochemische Zelle während des gesamten Experiments jedoch mit 5 mL/min Argon gespült wurde, konnten diese beiden Produkte ebenfalls im Massenspektrometer detektiert werden. Die Dampfdrücke und Löslichkeiten (in Wasser) der beiden Verbindungen bei 20 °C betragen 435,7 kPa für Formaldehyd und 4,46 kPa für Ameisensäure bzw. 13.3 mol/L für Formaldehvd und 21.7 mol/L für Ameisensäure. Das bedeutet, dass Formaldehyd die flüchtigere Verbindung ist und sich schlechter im Elektrolyten löst. Daher kann es mit dem verwendeten Versuchsaufbau besser detektiert werden, wie die höheren Bildungsraten beim Formaldehyd aus Abbildung 48 zeigen. Außerdem zeigen die Kurven, dass die Bildung von Formaldehyd praktisch direkt mit dem Experiment beginnt, während die Bildungsrate von Ameisensäure erst nach 30 Minuten stark zu steigen beginnt, obwohl bereits nach 5 Minuten ein geringes Signal für Ameisensäure beobachtet wird. Zusammenfassend kann mithilfe der massenspektroskopischen Ergebnisse für Formaldehyd und Ameisensäure davon ausgegangen werden, dass die restlichen 6 % der Stromdichte wahrscheinlich auf die Bildungsreaktionen von Formaldehyd und Ameisensäure zurückgeführt werden können.

4.5 Untersuchungen in einer 2-Elektroden-Photoelektrolysezelle

Alle bisherigen photoelektrochemischen Untersuchungen wurden in einem Einkammersystem mit 3-Elektroden-Anordnung unter Nutzung von Arbeitselektrode, Gegenelektrode und Referenzelektrode durchgeführt, da ein solches System ideal für die Untersuchung der Arbeitselektrode (d.h. der Photoanode) ist. In der technischen Anwendung einer photoelektrochemischen Elektrolysezelle werden im Gegensatz dazu mit Anode und Kathode nur zwei Elektroden in verschiedenen Halbzellen verwendet, die durch eine protonendurchlässige Membran voneinander getrennt sind. Im Rahmen dieser Arbeit wurden daher auch Messungen in einer prototypischen Zweikammerzelle im Labormaßstab durchgeführt, welche in Abbildung 49 zu sehen ist. Die Experimente dazu wurden in einer 2-Elektroden-Messanordnung mit Photoanode und Platinkathode durchgeführt.

Abbildung 49: Fotografien der photoelektrochemischen Elektrolysezelle im Labormaßstab in der Vorderansicht (links) und in der Rückansicht (rechts). Zwischen den Halbzellen befindet sich eine Nafion-Membran. Auf der Vorderseite sind zwei Quarzglasscheiben mit Gummidichtungen und Schrauben eingespannt. Durch eine 0,95 cm² große Öffnung in dem verschließendem Teflon-Plättchen kann Licht durch das Quarzglas auf die Elektroden geleitet werden. Die Anode und Kathode werden auf der Rückseite zwischen den Halbzellen und den Aluminiumblechen platziert und festgeschraubt. Die Laborzelle hat 6 verschließbare Ausgänge mit standardmäßigen GL-14 Schraubgewinden.

Die verwendete Laborzelle besteht aus zwei Halbzellen, die durch eine Nafion-Membran getrennt sind, um eine reale Photoelektrolysezelle in der Anwendung zu simulieren. Dabei wurde im Anodenraum eine Photoanode aus WO₃ bzw. TiO₂ in einer schwefelsauren Methanol-Lösung eingesetzt. Im Kathodenraum wurde eine Platinelektrode in 0,5 M H₂SO₄ verwendet. Platin wurde hier als Gegenelektrode gewählt, weil es die geringste Überspannung für die HER aufweist und dementsprechend keine limitierenden Effekte auftreten sollten. Zur Charakterisierung der Laborzelle wurden CLV-Messungen durchgeführt. Die Abbildung 50 zeigt jeweils einen typischen CLV-Zyklus einer WO₃-Pt- sowie einer TiO₂-Pt-Zelle.

Abbildung 50: Strom-Spannungs-Kurven von WO₃/Ti (links, blaue Kurve) und TiO₂/Ti (rechts, rote Kurve) Photoelektroden. Die Stromdichten wurden unter Beleuchtung mit einer Xenon-Lampe (300 W) mit AM 1.5G-Filter gemessen. Während der Messung wurde die Lichteinstrahlung auf die Photoanode von einer Blende mit einer Frequenz von 200 mHz an- und ausgeschaltet (CLV). Im Anodenraum wurde 0,5 M H_2SO_4 mit 10 Vol.-% Methanol (~ 2 mol/L) und im Kathodenraum reine 0,5 M H_2SO_4 als Elektrolyt eingesetzt. Die Messung wurde bei einer Vorschubgeschwindigkeit von 20 mV/s durchgeführt. Als Membran zwischen den Halbzellen wurde eine Nafion-Membran eingesetzt.

Im Vergleich zu der Methanoloxidation in der Einkammer-Halbzelle (CLV in Abbildung 31) wird deutlich, dass geringe Stromdichten in der Zweikammer-Elektrolysezelle erreicht werden. Die Ursachen dafür liegen in der neuen Messanordnung begründet. Durch die Verwendung einer 2-Elektroden-Messung (Vollzelle) ohne Referenzelektrode werden sowohl der Strom, als auch die Spannung zwischen den beiden Messelektroden (Photoanode/Arbeitselektrode und Platinkathode/Hilfselektrode) bestimmt. In der Halbzelle war es durch die Verwendung einer Ag/AgCl-Referenzelektrode noch möglich die Spannung stromlos zwischen Arbeitselektrode und Referenz zu bestimmen. In der 2-Elektroden-Messanordnung geht mit dem Stromfluss durch die beiden Messelektroden ein OHM'scher Spannungsverlust einher. Außerdem ist das Innenvolumen der Elektrolysezelle ca. 3-mal so groß wie das Innenvolumen der Halbzelle (7 mL), weshalb die beiden Elektroden in dem Zweikammer-System weiter voneinander entfernt sind. Zusätzlich erhöht auch die Polymermembran den elektrischen Widerstand zwischen den Elektroden in den beiden Halbzellen. Allerdings zeigen die Messungen aus Abbildung 50 auch, dass die anodischen Photostromdichten der TiO₂/Ti-Photoelektroden deutlich weniger stark zurückgegangen sind, als die Photostromdichten der WO₃/Ti-Anoden. Bei einem angelegtem Potential von 1,5 V sind die Photostromdichten im Vergleich zum Einkammersystem (Abbildung 31) um ca. 84 % (WO₃/Ti) und um ca. 58 % (TiO₂/Ti) zurückgegangen. Aus den Messungen ist auch ersichtlich, dass mindestens ein externes Potential von ungefähr 0,8 V angelegt werden muss, damit die WO₃-Photoelektrode höhere Photoströme liefert als die TiO2-Elektrode. Der höchste gemessene Photostrom wurde dementsprechend bei der WO₃/Ti-Elektrode bei 1,5 V vs. Pt beobachtet und beträgt 0,49 mA/cm². Wird in der 2-Elektroden-Anordnung ein Potential von 0 V vs. Pt angelegt, fließt in der Elektrolysezelle nur noch der Kurzschlussstrom. Dieser beträgt für WO₃/Ti unabhängig von der Beleuchtung der Photoelektrode - 0,095 mA/cm². Bei TiO₂/Ti beträgt der Kurzschlussstrom im Dunkeln - 0,037 mA/cm² und unter Beleuchtung -0,126 mA/cm². Folglich erzeugt die TiO₂/Ti-Photoelektrode ohne eine Spannung und nur mit Solarlicht einen anodischen Photostrom von 0,089 mA/cm². Das bedeutet, dass

der Abbau von Methanol zu CO₂ und Wasserstoff in der TiO₂-Pt-Zelle auch ohne eine Hilfsspannung realisiert werden kann.

Der gemessene Photostrom in den CLV-Messungen wurde in den vorherigen Kapiteln den entsprechenden Produkten des Methanolabbaus zugeordnet. Daher kann auch in den vorliegenden Messungen davon ausgegangen werden, dass im Anodenraum hauptsächlich Methanol über die Zwischenstufen Formaldehyd und Ameisensäure zu Kohlenstoffdioxid oxidiert wird und im Kathodenraum Wasserstoff aus Protonen entsteht. Als Nebenprodukt wird im Anodenraum zusätzlich noch Sauerstoff entstehen.

Bei dem Potential von 1,5 V vs. Pt wurde auf der WO₃/Ti-Elektrode auch ein beträchtlicher Dunkelstrom gemessen, welcher ca. 17 % der Gesamtstromdichte von 0,59 mA/cm² ausmacht (Abbildung 50). Allerdings zeigt auch die TiO₂/Ti-Photoelektrode einen entsprechenden Dunkelstrom, der wie bei WO₃ mit steigendem Potential ansteigt. Aufgrund dieses Verhaltens ist es sehr wahrscheinlich, dass es sich bei dem Dunkelstrom um kapazitive Ströme handelt. Das heißt, dass sich eine elektrolytische Doppelschicht an der Elektrodenoberfläche angereichert hat. Infolge der Potentialänderung der Elektrode kommt es zu einem Stromfluss ohne Ladungsdurchtritt. Um auszuschließen, dass der Dunkelstrom durch die Auflösung der Photoelektroden bedingt ist, wurden CA-Langzeitmessungen bei 1 V vs. Pt über 2,5 Stunden gemacht. Die Messungen, mit denen die Stabilität des Photostroms untersucht werden kann, sind in Abbildung 51 dargestellt.

Abbildung 51: Stromdichte-Zeit-Kurven von CA-Messungen von WO₃/Ti (links) und TiO₂/Ti (rechts) Photoelektroden über 150 Minuten bei 1 V *vs.* Pt externem Potential. Die Stromdichten wurden unter Beleuchtung mit einer Xenon-Lampe (300 W) mit AM 1.5G-Filter gemessen. Während der Messung wurde die Lichteinstrahlung auf die Photoanode von einer Blende mit einer Frequenz von 20 mHz an- und ausgeschaltet (CLV). Im Anodenraum wurde 0,5 M H₂SO₄ mit 10 Vol.-% Methanol (~ 2 mol/L) und im Kathodenraum reine 0,5 M H₂SO₄ als Elektrolyt eingesetzt. Die Messung wurde bei einer Vorschubgeschwindigkeit von 20 mV/s durchgeführt. Als Membran zwischen den Halbzellen wurde eine Nafion-Membran eingesetzt.

Die CA-Messungen bei 1 V vs. Pt zeigen, dass die Photoelektroden unter den gegebenen Reaktionsbedingungen stabil sind. Zwar fällt der Photostrom zu Beginn der Messungen mit der Zeit etwas ab, aber nach ungefähr 80 Minuten bzw. ca. 120 Minuten erreichen die WO₃/Ti- bzw. TiO₂/Ti-Photoelektroden einen stationären Zustand und konstante Photoströme resultieren. Das gleiche gilt für die Dunkelströme auf beiden Elektroden, die ebenfalls mit der Zeit abnehmen. Sind die gemessenen Dunkelstromdichten am Anfang der Messung noch so hoch wie in der CLV-Messung (Abbildung 50), sinken sie bis zum Ende der CA-Messung auf 6,3 μ A/cm² (WO₃/Ti) bzw. 2,6 μ A/cm² (TiO₂/Ti) ab. Aus diesem Grund kann die Auflösung der Halbleiterfilme auf den Elektroden ausgeschlossen werden. Das heißt, die Dunkelströme aus der CLV-Messung (Abbildung 50) haben einen kapazitiven Ursprung.

Zusammenfassend zeigen die vorgestellten photoelektrochemischen Untersuchungen, dass die kaltgasgespritzten WO₃/Ti-Photoanoden auch in einer Zweikammer-Photoelektrolysezelle mit Membran eingesetzt werden können. Allerdings sollte die Zelle mit einer externen Hilfsspannung von mindestens 0,8 V unter Solarlichtbestrahlung betrieben werden. In einer Photoelektrolysezelle ohne Hilfsspannung oder mit geringem externem Potential ist die TiO₂-Photoanode die bessere Wahl.

5. Diskussion

In diesem Kapitel werden die zuvor vorgestellten Ergebnisse zusammengefasst, interpretiert und diskutiert. Thematisch findet hierzu eine Aufteilung in die drei Bereiche "Mechanismus der anodischen Oxidation von Methanol", "Einfluss der Metall-Halbleiter-Grenzflächen" und "Bewertung und Vergleich der Aktivität der WO₃-Photoelektroden" statt. Im ersten Themengebiet werden die gewonnenen Ergebnisse in Bezug zu dem literaturbekannten photokatalytischen Abbaumechanismus von Methanol gesetzt und mit der Elektrooxidation von Methanol verglichen. Nachfolgend wird im zweiten Abschnitt auf die Besonderheiten und den Einfluss des Metallsubstrats auf die photoelektrochemische Aktivität der Photoelektroden eingegangen. Zum Abschluss des Diskussionskapitels folgen eine Bewertung und ein Vergleich der Aktivitäten der kaltgasgespritzten WO₃-Photoelektroden aus dieser Arbeit mit dem ebenfalls untersuchten TiO₂-Benchmark und mit Resultaten von WO₃-Elektroden aus der Literatur.

5.1 Mechanismus der anodischen Oxidation von Methanol

5.1.1 Photoelektrochemischer Abbau von Methanol

Der photokatalytische Methanolabbau folgt einem bekannten Reaktionsmechanismus, welchem auch der photoelektrochemische Methanolabbau folgen sollte. Die größten Unterschiede der PEC zu einem klassischen photokatalytischen System sind die räumliche Auftrennung von Oxidations- und Reduktionsreaktion und das angelegte externe Potential. Das Letztere sorgt in der photoelektrochemischen Zelle für eine effektivere Ladungsträgerseparierung auf der Photoelektrochemische Methanoloxidation im Zusammenhang mit dem vorgeschlagenen Reaktionsmechanismus (aus Kapitel 2.5) diskutiert. Hier sind noch einmal ein paar der wichtigsten Reaktionen aus dem Reaktionsmechanismus aufgeführt (siehe Abbildung 10):

$$CH_{3}OH + h^{+}_{VB} \rightarrow CH_{2}OH + H^{+}$$
[43]

$$CH_{3}OH + OH \rightarrow CH_{2}OH + H_{2}O$$
[44]

$$^{\cdot}\mathrm{CH}_{2}\mathrm{OH} \rightarrow \mathrm{H}\mathrm{CHO} + \mathrm{H}^{+} + e^{-}_{LB}$$

$$[45]$$

$$^{\cdot}CH_{2}OH + O_{2} \rightarrow HCHO + ^{\cdot}O_{2}H$$
[46]

$$2 \operatorname{H}^{+} + 2 e^{-} \to \operatorname{H}_{2}$$

$$[47]$$

$$\text{HCHO} \rightarrow \rightarrow \text{HCOOH} \rightarrow \rightarrow \text{CO}_2$$
[48]

Das grundsätzliche Prinzip des in Kapitel 2.5 gezeigten Oxidationsmechanismus ist, dass Methanol über die Zwischenprodukte Formaldehyd und Ameisensäure zu CO₂ reagiert. Der erste Schritt zur Überprüfung des Reaktionsmechanismus war die Untersuchung der photoelektrochemischen Stromdichte, die jeweils für die Oxidation von Methanol, Formaldehyd und Ameisensäure verantwortlich ist. Dabei wurde für die WO₃-Photoelektroden gefunden, dass das Photostrom-Anfangspotential und die Stromdichte unter AM 1.5G-Beleuchtung für die Oxidation der jeweiligen Substanzen nahezu identisch ist (Abbildung 33). Das bedeutet, dass aus einer photoelektrochemischen Strom-Spannungs-Kennlinie für die Methanoloxidation nicht ersichtlich ist, ob an der WO₃-Halbleiteroberfläche gerade Methanol, Formaldehyd oder Ameisensäure oxidiert wird. Außerdem zeigen die identischen Kurvenverläufe, dass der Reduktionsprozess an der Platin-Gegenelektrode potentialbestimmend ist und es sich in allen drei Fällen um die gleiche Reduktionsreaktion (Wasserstoffentwicklung, Gleichung 47) handelt.

Die Ergebnisse aus der Produktanalyse bestätigen, dass die entsprechenden Zwischenprodukte bei der Methanoloxidation gebildet werden. Beide Intermediate der CO₂-Bildung konnten in dem Elektrolyten nachgewiesen werden. In den kurzzeitigen PEC-Messungen (10 – 20 Minuten) aus den Kapiteln 4.3.4 und 4.4.1 ist dabei vor allem Formaldehyd das Hauptprodukt der Methanoloxidation an WO₃-Photoelektroden, wie die Abbildung 52 zeigt.

Abbildung 52: Balkendiagramme der gemessenen Stromdichte (weiß-strukturierte Balken) im Vergleich zu der Stromdichte, die für die Zwei-Elektronen-Oxidation von Methanol zu Formaldehyd geflossen ist (grüne Balken). Links sind die Stromdichten für den Methanolabbau an der Luft (Kapitel 4.3.4) und rechts die Stromdichten in dem 10-minütigem Experiment für den Methanolabbau unter Luftausschluss (Kapitel 4.4.1) dargestellt. Die Belichtungsintensität bei dem Experiment (AM 1.5G) betrug $I_{250}-I_{500} = 14 \text{ mW/cm}^2$. Die Stromdichten der grünen Balken sind mithilfe der FARADAY'schen Effizienzen berechnet wurden.

In dem luftgesättigten System konnten im Schnitt ca. 94 % des Photostroms auf die Zweielektronenreaktion von Methanol zu Formaldehyd zurückgeführt werden (FARADAY'sche Effizienz). Im Argon-gesättigten System sinkt die η_{FE} auf Werte von ungefähr 87 %, da Sauerstoff in diesem System nicht als zusätzliches Oxidationsmittel zur Verfügung stand (Gleichung 46). Formaldehyd kann dann aus dem Hydroxymethyl-Radikal lediglich über die Injektion eines Elektrons in das Leitungsband des Halbleiters gebildet werden ("*current doubling*", Gleichung 45). Dieser Effekt tritt in einem sauerstofffreien System bei zwei der drei Radikal-Intermediate auf:

$$CH_2OH \rightarrow HCHO + H^+ + e^-_{LB}$$
 [49]

$$^{\cdot}\text{COOH} \rightarrow \text{CO}_2 + \text{H}^+ + e^-_{LB}$$
[50]

In PEC/MS-Experimenten unter Luftausschluss wurden die gasförmigen Produkte des photoelektrochemischen Methanolabbaus untersucht (Kapitel 4.4.2). Eine Zusammenfassung der Ergebnisse ist in Abbildung 53 dargestellt. Die Messungen mit der WO₃/Ti-Photoelektrode wurden sowohl für den kurzzeitigen (15 min) als auch für die langezeitigen (3 h) Methanolabbau durchgeführt. In dem PEC/MS-Kurzzeitexperiment (Abbildung 53) wurde auf der Seite der Reduktionsprodukte eine FARADAY'sche Effizienz von $\eta_{FE} = 172$ % für die Wasserstoffproduktion gefunden. Dieser Wert bestätigt, dass der "current doubling"-Effekt in diesem System auftritt (Gleichungen 49 und 50). Auf der Seite der Oxidationsprodukte konnten insgesamt ca. 57 % der gemessenen Stromdichte auf die Bildung der gasförmigen Produkte Sauerstoff (η_{FE} = 17 %) und Kohlenstoffdioxid ($\eta_{FE} = 40$ %) zurückgeführt werden. Die restlichen 43 % der Stromdichte sind wahrscheinlich auf die Bildung von Formaldehyd und Ameisensäure zurückzuführen. Damit ergibt sich eine unterschiedliche Produktausbeute im Vergleich zum PEC-Kurzzeitexperiment unter Luftausschluss aus Abbildung 52 (mit Formaldehyd $\eta_{FE} = 87$ %). Dieses Ergebnis könnte auf die um 1/3-längere Reaktionszeit und die insgesamt höheren Stromdichten bei diesen Experimenten zurückzuführen sein.

Abbildung 53: Balkendiagramm der gemessenen Stromdichte (weiß-strukturierte Balken) im Vergleich zu der Stromdichte, die für die Bildungsreaktionen von H₂ (rote Balken), CO₂ (schwarze Balken) und O₂ (blaue Balken) geflossen ist. Die Stromdichten für den Methanolabbau wurden in dem 15-minütigem PEC/MS-Experiment unter Luftausschluss gemessen (Kapitel 4.4.2). Die Belichtungsintensität bei dem Experiment betrug $I_{250} - I_{500} = 33$ mW/cm². Die Stromdichten der roten, schwarzen und blauen Balken sind mithilfe der FARADAY'schen Effizienzen berechnet wurden.

Dass die restliche Stromdichte bei der PEC/MS-Messung mit großer Wahrscheinlichkeit ebenfalls auf die Bildung von Formaldehyd und Ameisensäure zurückzuführen ist, zeigt das Langzeitexperiment, bei welchem neben den typischen Produktgasen auch die Bildungsraten an Formaldehyd und Ameisensäure detektiert wurden. Zwar konnten die Bildungsraten dieser beiden Zwischenprodukte nicht quantifiziert werden, aber es zeigte sich, dass Formaldehyd direkt mit dem Start der Beleuchtung und dem Anlegen des Potentials von 1 V vs. NHE als Produkt beim Methanolabbau anfällt. Ameisensäure hingegen wird erst ab einer Reaktionszeit von 5 Minuten im Gasstrom detektiert, was wahrscheinlich mit der geringeren Flüchtigkeit und der höheren Löslichkeit der Ameisensäure (Dampfdruck: 4,46 kPa; Löslichkeit: 21,7 mol/L) im Vergleich zum Formaldehyd (Dampfdruck: 435,7 kPa; Löslichkeit: 13,3 mol/L) zusammenhängt. Erst ab ca. 25 Minuten steigt die Bildungsrate von Ameisensäure stark an, was erklären würde, weshalb in den Kurzzeitexperimenten < 20 min immer Formaldehyd das Hauptprodukt der photoelektrochemischen Oxidation ist (entsprechend der FARADAY'schen Effizienzen).

Im Vergleich zum PEC/MS-Kurzzeitexperiment wurden bei der dreistündigen Messung außerdem höhere FARADAY'sche Effizienzen für die Kohlenstoffdioxidbildung (+ 25 %) und für die Bildung von Sauerstoff (+ 12 %) gefunden. Dies ist darauf zurückzuführen, dass sich die Stoffbilanz im Elektrolyten mit fortlaufender Reaktionszeit vom Edukt Methanol immer weiter auf die Seite der Zwischen- und Endprodukte verschiebt. Dem entsprechend steigen die Bildungsraten der Oxidationsprodukte Formaldehyd, Ameisensäure, Kohlenstoffdioxid und Sauerstoff bis zum Ende des PEC-Experiments immer weiter an. Lediglich die Bildungsrate von Wasserstoff (auf Platin) als Reduktionsprodukt scheint, trotz ihrer Abhängigkeit von der Gasblasenbildung, über das PEC/MS-Experiment konstant zu sein.

Zudem zeigen die WO₃-Ergebnisse dieser Arbeit im Gegensatz zu den Ergebnissen von NIEDERBERGER *et al.*, dass die Oxidation von Wasser zu O₂ signifikant zur Stromdichte beiträgt.¹¹⁹ In dem Langzeitexperiment konnten fast 30 % der Stromdichte auf die Sauerstoffbildung zurückgeführt werden. In einem System zum Methanolabbau ist die Wasseroxidation eine unerwünschte Nebenreaktion, weil auf der Halbleiteroberfläche potentielle Adsorptionsplätze für Methanolmoleküle blockiert werden. Allerdings bedeuten die Ergebnisse gleichzeitig, dass die hier vorgestellten kaltgasgespritzten WO₃/Ti-Photoelektroden ebenfalls in einem System zur photoelektrochemischen Wasserspaltung eine Anwendung als Photoanoden finden könnten.

Zusammenfassend durchgeführten der zeigen die Messungen, dass photoelektrochemische von Abbaumechanismus Methanol auf einer WO₃-Photoelektrode analog zu dem gezeigten photokatalytischen Mechanismus in Kapitel 2.5 abläuft. Die Abbildung 10 zeigt den ersten Reaktionsschritt von Methanol zu Formaldehyd im Detail. Die nachfolgenden Oxidationsmechanismen von Formaldehyd zu Ameisensäure und von Ameisensäure zu Kohlenstoffdioxid laufen in gleicher Weise ab.^{96,97} Vor allem die Bildungsraten von Kohlenstoffdioxid sind für eine Anwendung der WO3-Photoelektroden vielversprechend, da sie zeigen, dass der Methanolabbau nicht schon bei einem der Zwischenprodukte endet, sondern Methanol komplett bis zu CO₂ oxidiert wird.

5.1.2 Vergleich mit der Elektrooxidation von Methanol

Das Ziel dieser Arbeit ist die Untersuchung von kaltgasgespritzten WO₃-Photoelektroden für eine mögliche Anwendung zum anodischen Methanolabbau. Dabei soll in diesem Kapitel diskutiert werden, ob die Photooxidation von Methanol Vorteile gegenüber der Elektrooxidation von Methanol bietet. Daher wird in diesem Abschnitt der Mechanismus der Elektrooxidation von Methanol mit dem photoelektrochemischen Mechanismus verglichen. Die anodische Oxidation von Methanol (im Dunkeln) wird schon seit einigen Jahrzenten untersucht, um eine mögliche Anwendung von DMFCs (engl.: "*Direct Methanol Fuel Cells*") voranzutreiben. Einer der Gründe dafür ist die hohe freie Reaktionsenthalpie $\Delta G^{\circ} = 702,5$ kJ/mol der Oxidationsreaktion:⁵⁵

$$CH_3OH + 1\frac{1}{2}O_2 \rightarrow CO_2 + H_2O$$
[51]

Das reversible Ruhepotential der Reaktion liegt bei 0,015 V vs. NHE.⁵⁵ Problematisch sind jedoch die benötigten Überspannungen für den anodischen Methanolabbau. Selbst für die Elektrokatalysatoren Platin und Pt/Ru-Legierungen liegen die Überspannungen bei 550 mV bzw. 350 mV.⁵⁵ Das Anfangspotential für die elektrochemische Methanoloxidation (im Dunkeln) auf der WO₃/Ti-Elektrode beträgt aufgrund von kinetischen Überspannungseffekten sogar 1,4 V vs. NHE (Abbildung 33). Vergleichbar hohe Überspannungen für die Dunkeloxidation von Methanol sind auch schon von KAMAT et al. für TiO₂-Photoanoden beobachtet wurden.¹⁶⁷ Die elektrochemische Oxidation Methanol (Reaktionsgleichung 51) erfordert von einen Mehrelektronentransfer, der an einem Elektrokatalysator wie Platin im Vergleich zu einem Metalloxid-Halbleiter wie WO₃ deutlich bevorzugt abläuft (vergl. Kapitel 2.5), was eine Erklärung für die hohe Überspannung der Elektrooxidation von Methanol am Halbleiter sein kann. Nach den thermodynamischen Berechnungen von NØRSKOV et al. für die Oxidation von Wasser, sind Ein- und Zwei-Elektronenreaktionen (zu 'OH bzw. H₂O₂) an den Halbleiteroberflächen von TiO₂ und WO₃ die bevorzugten Oxidationsreaktionen, während Elektrokatalysatoren wie IrO2 und RhO2 eine höhere Triebkraft für die Vier-Elektronen-Oxidation von Wasser zu O₂ aufweisen.⁷⁴

Ein Vorteil der photoelektrochemischen Oxidation von Methanol sind die geringen Überspannungen für den Methanolabbau unter Bestrahlung. Durch die hohe Oxidationskraft der photogenerierten Löcher müssen bei TiO₂-Photoelektroden kein externes Potential und bei WO₃-Photoelektroden nur ein geringes Potential von ungefähr 300 mV *vs*. NHE angelegt werden, um den Methanolabbau zu CO₂ zu starten.^{38,167} Diese Effekte lassen sich wahrscheinlich auf die verschiedenen Reaktionsmechanismen der Methanoloxidationen im Dunkeln und unter Bestrahlung zurückführen.

Beim elektrokatalytischen Abbaumechanismus von Methanol an einer Platinoberfläche im sauren Medium gibt es deutliche Unterschiede im Vergleich zu dem photoelektrochemischen Methanolabbau an einer Halbleiteroberfläche (Abbildung 10). Mithilfe der FTIR-Spektroskopie konnte an einer Pt(111)-Elektrode nachgewiesen werden, dass der Oxidationsmechanismus von Methanol im Sauren zu einem erheblichen Anteil über adsorbiertes Kohlenmonoxid abläuft, welches über das Kohlenstoffatom an das Platin gebunden ist.¹⁷¹ Als mögliche Bildungsreaktionen für das CO_{ad} werden die folgenden Reaktionen angegeben:⁵⁵

$$CH_3OH \rightarrow CO_{ad} + 4 H^+ + 4 e^-$$
[52]

$$\text{HCHO} \rightarrow \text{CO}_{\text{ad}} + 2 \text{ H}^+ + 2 e^-$$
[53]

$$\text{HCOOH} \rightarrow \text{CO}_{\text{ad}} + \text{H}_2\text{O}$$
[54]

Das adsorbierte CO wird im Anschluss über den Langmuir-Hinshelwood-Mechanismus mit zwei adsorbierten OH-Spezies zu CO₂ unter der Bildung von Wasser oxidiert.¹⁷² In dem Potentialbereich der Methanoloxidation von 0,4 - 0,7 V vs. NHE ist die

Weiteroxidation von CO zu CO₂ der geschwindigkeitsbestimmende Schritt. Die daraus resultierende Akkumulation des Kohlenmonoxids auf der Platinoberfläche führt zu einer Reduzierung der aktiven Katalysatorfläche und wirkt somit als Katalysatorgift.^{173,174} Dies wird als einer der Gründe angesehen, weshalb es noch keine technische Anwendung für eine DMFC gibt.

Im Gegensatz zum elektrokatalytischen Reaktionsmechanismus ist nach CHEN et al. das Methanol im photokatalytischen bzw. photoelektrochemischen Mechanismus über das Sauerstoffatom an die Halbleiteroberfläche gebunden,⁸⁵ was eine Erklärung für die Unterschiede in den beiden Oxidationsmechanismen von Methanol darstellen kann. Auch die Oberflächenchemie von Wolframtrioxid deutet auf eine Adsorption des Methanols über das Sauerstoffatom hin. Die Wolfram- und Sauerstoffatome an der Oberfläche des Halbleiters besitzen eine freie Valenz an der Moleküle aus dem Elektrolyten dissoziativ adsorbiert werden können. Dieses Adsorptionsgleichgewicht zwischen der Halbleiteroberfläche und der Lösung ist vom pH-Wert abhängig, wie in Abbildung 54 gezeigt ist.

Abbildung 54: Oberflächenladung von Halbleiterpartikeln bei verschiedenen pH-Werten. Der pH_{PZC} von WO₃ liegt bei 2.¹⁷⁵ Unterhalb des pH_{PZC} wird die Halbleiteroberfläche aus WOH₂⁺-Spezies gebildet (links) und oberhalb des pH_{PZC} befinden sich WO⁻-Spezies an der Oberfläche. Die Oberflächenladung von TiO₂ verhält sich analog mit einem pH_{PZC} von 6,6.¹⁷⁶ Es sind die attraktiven (links) und repulsiven (rechts) Wechselwirkungen der Halbleiteroberfläche mit der OH-Gruppe des Methanols in Lösung gezeigt.¹⁷⁷

Der Wert, an dem die Oberfläche der Halbleiterpartikel ungeladen ist, wird durch den pH_{PZC} (engl.: "*Point of Zero Charge*") angegeben. Dieser liegt bei WO₃ bei einem pH-Wert von 2.¹⁷⁵ Unterhalb des pH_{PZC} ist die Oberfläche positiv und oberhalb des pH_{PZC} negativ geladen. Die Messungen zum Methanolabbau in dieser Arbeit wurden bei pH-Werten unterhalb von 2 durchgeführt. Bei diesen pH-Werten sind die Oberflächen von WO₃ und TiO₂ positiv geladen.^{175,176} Dadurch ist eine Adsorption des Methanols über das Sauerstoffatom der Alkoholgruppe als Zentrum für die negative Ladung im Methanolmolekül aufgrund von attraktiven Wechselwirkungen zum WOH₂⁺ bzw. TiOH₂⁺ an der Halbleiteroberfläche wahrscheinlicher.¹⁷⁷ Folglich werden im radikalischen Reaktionsmechanismus der photokatalytischen Methanoloxidation mit großer Wahrscheinlichkeit keine Intermediate wie CO gebildet, welche die Photokatalysatoroberfläche blockieren (d.h. keine Katalysatorgifte), was für eine technische Anwendung von Vorteil ist.

Im Vergleich zur Photooxidation werden bei der Elektrooxidation von Methanol auf Platin allerdings höhere Stromdichten erreicht. Bei einem externen Potential von ca. 0,6 V *vs.* NHE werden mit Platin in 1 M CH₃OH/1 M H₂SO₄ konstante Stromdichten von rund 10 mA/cm² erreicht.¹⁷⁸ Das bedeutet für die reine Aktivität der Umsetzung von Methanol zu CO₂, dass die Elektrooxidation auf Pt-basierten Anoden effektiver ist als die Photooxidation auf WO₃-Photoanoden. Die Vorteile der WO₃-Photoelektroden gegenüber Platin liegen in den Anschaffungskosten des Katalysators. Nach der Bundesanstalt für Geowissenschaften und Rohstoffe lag der Preis für WO₃-Erz im Jahr 2016 bei ca. 9.700 \$/kg. Für die gleiche Menge an Platin hätten zur selben Zeit umgerechnet ca. 31.500 \$ gezahlt werden.

5.2 Einfluss der Metall-Halbleiter-Grenzflächen

5.2.1 Einfluss der Metall-Halbleiter-Grenzflächen auf die Aktivität der Photoelektrode

Zeitaufgelöste Untersuchungen haben ergeben, dass photogenerierte Ladungsträger in Halbleitern wie WO₃ und TiO₂ innerhalb weniger Nanosekunden rekombinieren, wenn sie nicht z.B. durch ein elektrisches Feld voneinander separiert werden.¹⁷⁹ In einer photoelektrochemischen Zelle sind die Bandverbiegung und das angelegte Potential die Triebkraft der Ladungsträgerseparierung.¹⁸⁰ Alle in dieser Arbeit untersuchten Photoelektroden besitzen eine Bandverbiegung an der Metall-Halbleiter-Grenzfläche und an der Halbleiter-Elektrolyt-Grenzfläche. In diesem Kapitel wird diskutiert, welchen Einfluss die verschiedenen Grenzflächen der WO₃- und TiO₂-Photoelektroden auf die Ladungsträgerrekombination haben.

Die Bandverbiegung an der Metall-Halbleiter-Grenzfläche hängt vor allem von der Austrittsarbeit des Substratmetalls und des Halbleiters ab. In den Fällen von WO₃ und TiO₂ können anstatt der Austrittsarbeiten auch die Elektronenaffinitäten herangezogen werden, da die entsprechenden Werte für n-Halbleiter nahezu identisch sind. Die kaltgasgespritzten Elektroden wurden mit Titanmetallsubstraten hergestellt, die eine Austrittsarbeit von $\Phi_M = 4,33$ eV aufweisen.⁴⁴ Die Siebdruck-Elektroden besitzen FTO-Substrate mit einer Austrittsarbeit von $\Phi_M = 5,0$ eV.¹⁸¹ Die Elektronenaffinitäten von WO₃ und TiO₂ wurden von BUTLER *et al.* mit 5,13 eV bzw. 4,33 eV ermittelt.⁴⁵

Aus diesen Werten ergibt sich für die kaltgasgespritzte WO₃/Ti-Photoelektrode ein Metall-Halbleiter-Kontakt mit einer SCHOTTKY-Barriere von $\Delta \phi \approx 0.8$ eV.²⁴ Für die TiO₂-Ti-Grenzfläche wird in der Literatur ebenfalls ein **SCHOTTKY-Kontakt** angenommen.^{182,183} Entsprechend der Differenz zwischen der Austrittsarbeit von Ti und der Elektronenaffinität von TiO₂ ($\Delta \phi \approx 0 \text{ eV}$) ist eine SCHOTTKY-Barriere an der Grenzfläche praktisch nicht vorhanden, viel eher müsste dort ein OHM'scher Kontakt (d.h. keine Barriere) vorliegen. Zur Herstellung der Siebdruck-Elektroden wurden FTO-Substrate verwendet. Aus der entsprechenden Austrittsarbeit ergeben sich SCHOTTKY-Barrieren von $\Delta \phi \approx 0.13$ eV für WO₃/FTO und $\Delta \phi \approx 0.67$ eV für TiO₂/FTO. Damit ergibt sich die Situation, dass an der Metall-Halbleiter-Grenzfläche der siebgedruckten WO₃-

Photoelektrode nur eine geringe Potentialbarriere vorhanden ist, während die TiO₂-Elektrode eine etwas höhere SCHOTTKY-Barriere aufweist. Die Energiediagramme für die beiden möglichen Kontaktarten an den Phasengrenzflächen sind in Abbildung 55 gezeigt.

Abbildung 55: Energiediagramme für n-Halbleiter/Ti-Photoelektroden unter Beleuchtung nach der Einstellung des Gleichgewichts der FERMI-Niveaus (E_{FB}) von Metall, Halbleiter und Elektrolyt. Für die Metall-Halbleiter-Grenzfläche ist links ein SCHOTTKY-Kontakt und rechts ein OHM'scher Kontakt (keine Potentialbarriere) dargestellt. Die Bandverbiegung an der Halbleiter-Elektrolyt-Grenzfläche ist typisch für n-Halbleiter. Φ_M ist die Austrittsarbeit des Metalls, *EA* ist die Elektronenaffinität des Halbleiters und *RLZ* stellt die Raumladungszone an der Halbleiter-Elektrolyt-Grenzfläche dar. Für die WO₃/Ti- und TiO₂/FTO-Phasengrenzen werden SCHOTTKY-Kontakte mit einer Potentialbarriere erwartet. Für die TiO₂/Ti- und WO₃/FTO-Grenzflächen werden praktisch keine Potentialbarrieren vermutet, was einem OHM'schen Kontakt entsprechen würde. An der Oberfläche der n-Halbleiter oxidieren die photogenerierten Löcher einen Elektronendonor *D*.

Der Einfluss der Metall-Halbleiter-Phasengrenze auf die photokatalytische Aktivität wurde bereits in der Literatur diskutiert.^{184,185} DAI et al. untersuchten den Elektronentransfer in einem TiO₂-Film sowohl auf metallischen als auch auf ITO-Glas Substraten (ITO = Indiumzinnoxid).¹⁸⁴ Die Autoren führten die verschiedenen photokatalytischen Aktivitäten auf die unterschiedlichen Metall-Halbleiter-Grenzflächen zurück. Im Falle eines OHM'schen Kontakts existiert keine Potentialbarriere an der Grenzfläche und die Elektronen können sich frei zwischen dem Metall und dem Halbleiter bewegen. Ähnliche Situationen können für die TiO₂/Ti- und WO₃/FTO-Grenzflächen angenommen werden. Aufgrund einer solchen Phasengrenze wäre die Rekombinationsrate im Halbleiter erhöht und damit die photokatalytische Aktivität erniedrigt, weil sich die Ladungsträger vom Metall zum Halbleiter bewegen können. Auf der anderen Seite erhöht eine SCHOTTKY-Barriere an der Metall-Halbleiter-Grenzfläche die photokatalytische Aktivität durch eine effektivere Ladungsträgerseparierung. Die Migration von Elektronen aus dem Metall zum Halbleiter ist energetisch inhibiert. Folglich sollten die Lebensdauern der photogenerierten Ladungsträger länger bzw. die Rekombinationsraten geringer sein. Solche Situationen mit höherer Potentialbarriere werden für die WO₃/Ti- und TiO₂/FTO-Elektroden angenommen. Beim Vergleich der photoelektrochemischen IPCE-Werte und der CLV Aktivitäten für den Methanolabbau werden dieselben Trends wie bei DAI et al. für die Metall-Halbleiter-Grenzflächen beobachtet.^{184,185} Die WO₃- und TiO₂-Photoelektroden mit SCHOTTKY-Barrieren weisen höhere photoelektrochemische Aktivitäten für den Methanolabbau auf als die entsprechenden Photoelektroden mit geringen Potentialbarrieren bzw. OHM'schen Kontakten. Das heißt, die Photoelektroden von WO₃/Ti zeigen eine höhere Aktivität als die WO₃/FTO-Elektroden und die Photoelektroden von TiO₂/FTO zeigen eine höhere Aktivität als die TiO₂/Ti-Elektroden (Abbildungen 31 und 37).

In einem photoelektrochemischen System müssen die Eindringtiefe des einfallenden Lichts in den Halbleiter, die Breite der Raumladungszone und die Filmdicke der Halbleiterelektroden ebenfalls als Faktoren betrachtet werden. Die optische Eindringtiefe $(1/\alpha)$ ist wellenlängenabhängig. Für den Halbleiter WO₃ beträgt sie 1 µm bei 380 nm, 2,2 µm bei 420 nm und 4,5 µm bei 440 nm.²⁷ Die Eindringtiefen von UV-Licht der Wellenlänge 350 nm in TiO₂ ist vergleichbar mit $1/\alpha = 2 \ \mu m$.¹⁸⁶ Damit entsprechen die Eindringtiefen des nutzbaren Lichts in etwa den Schichtdicken der kaltgasgespritzten Halbleiterfilme von $1 - 10 \,\mu\text{m}$ mit einer mittleren Schichtdicke von 2,9 μm .^{30,31} Die Siebdruckelektroden von TiO₂ haben mit 2,9 µm ebenfalls eine vergleichbare Schichtdicke,¹²¹ während die siebgedruckten WO₃-Filme eine deutlich geringe Dicke von ungefähr 0,55 µm aufweisen (Abbildung 20). Auf diese Weise kann mit Ausnahme der WO₃/FTO-Elektrode sichergestellt werden, dass das gesamte einfallende und nutzbare Licht von den Halbleiterfilmen und nicht von den Elektrodensubstraten absorbiert wird. Allerdings wird dieser "Nachteil" der WO₃/FTO-Photoelektrode eher gering ausfallen, denn trotz der vergleichsweise hohen optischen Eindringtiefen können nur ein Bruchteil der photogenerierten Ladungsträger in TiO₂ und WO₃ für die Redoxreaktionen verwendet werden. Der Grund dafür sind geringe Ladungsträgermobilitäten und kurze Diffusionslängen, die zu einer hohen Rekombinationsrate in den beiden Halbleitern führen.^{24,179} Auch wenn die Mobilität der Löcher in WO₃ ($\mu = 10 \text{ cm}^2/\text{Vs})^{24}$ ca. 20-mal so groß ist wie die Mobilität der Löcher in TiO₂ ($\mu = 0.5$ cm²/Vs)⁵⁹ sind es hauptsächlich die Ladungsträger, welche in der Raumladungszone generiert wurden, die zu dem gemessenen Photostrom beitragen. Die Breite der Raumladungszone in WO3 beträgt 0,75 µm (bei einer moderaten Donordichte von $N_D = 10^{16}$ cm⁻³), was im Bezug zur Schichtdicke der Kaltgaselektroden und der optischen Eindringtiefe vergleichsweise gering ist.²⁷ Alle WO₃-Elektroden aus dieser Arbeit weisen zudem höhere Donordichten als $N_D = 10^{16}$ cm⁻³ auf, was bedeutet dass die tatsächlichen Raumladungszonen noch kleiner sind. Aus diesem Grund ist der Einfluss der Bandverbiegung an der Metall-Halbleiter-Grenzfläche auf die Ladungsträgerseparierung als eher gering einzuschätzen.¹⁸⁷ Lediglich im Fall der WO₃/FTO-Photoelektrode kann die geringe Potentialbarriere an der Metall-Halbleiter-Grenzfläche (OHM'scher Kontakt) aufgrund der geringen Filmdicke der mögliche Grund für die geringere photoelektrochemische Aktivität im Vergleich zur WO₃/Ti-Photoelektrode sein.

Entscheidend für die Separation der photogenerierten Ladungsträger in einer photoelektrochemischen Zelle ist das elektrische Feld durch die angelegte Spannung. Die entsprechenden Energiediagramme für eine WO₃/Ti-Photoelektrode unter dem Einfluss eines externen Potentials sind schematisch in Abbildung 56 dargestellt.

Abbildung 56: Vereinfachte Energiediagramme für WO₃/Ti-Photoelektroden unter Beleuchtung von Metall, Halbleiter und Elektrolyt. Links ist die energetische Situation für eine angelegte Rückwärts- oder Sperrvorspannung gezeigt. Rechts ist die energetische Situation für eine angelegte Vorwärts- oder Durchlassspannung gezeigt. Der gelbe Pfeil zeigt die anodische (links) bzw. kathodische (rechts) Hauptflussrichtung des elektrischen Stroms (e^{-}) an. V_{Zelle} ist das angelegte Potential in der photoelektrochemischen Zelle. A ist ein Elektronenakzeptor. Es ist nur das Verhalten der photogenerierten Elektronen gezeigt.

Unter einem anodischen Potential, welches in den meisten Messungen in dieser Arbeit verwendet wurde, ist die Lage des Flachbandpotentials des Halbleiters erniedrigt. Als Folge bewegen sich die photogenerierten Elektronen aus der Photoelektrode von der Halbleiter-Elektrolyt-Grenzfläche zum Metallrückkontakt und über die externen Leitungen zur Platin-Gegenelektrode (linkes Schema in Abbildung 56). An der Halbleiteroberfläche oxidieren die photogenerierten Löcher Donormoleküle. Unter einem externen kathodischen Potential dreht sich die Richtung des Stromflusses um und an der Photoelektrodenoberfläche findet die Reduktionsreaktion statt, falls entsprechende Elektronenakzeptoren in der Lösung vorhanden sind (rechtes Schema in Abbildung 56). Das Flachbandpotential des Halbleiters ist erhöht. In beiden Fällen läuft der Stromfluss über die Metall-Halbleiter-Grenzfläche der WO₃/Ti-Elektrode.

Ein Problem der kaltgasgespritzten WO₃-Photoanoden ist, dass sie in vielen Elektrolyten instabil sind und nur in passenden Systemen eingesetzt werden können. So findet in schwefelsaurem Elektrolyten bei Durchlassspannung bzw. kathodischen Potentialen kein Ladungstransfer der photogenerierten Elektronen auf eine reduzierbare Spezies im Elektrolyten statt (vergl. Abbildung 56 rechts).¹⁸⁸ Stattdessen wird das W⁶⁺ aus dem WO₃ zu W⁵⁺ reduziert, was mit einer Auflösung des WO₃-Films einhergeht.¹⁶⁴ Häufig kann die Reduktion des WO₃ dabei analog zum TiO₂ an einer Blaufärbung des Halbleiterfilms beobachtet werden.¹⁸⁸ Eine Rückoxidation des W⁵⁺ zu W⁶⁺ ist zwar unter Spervorspannung möglich, findet aber nur unvollständig statt (siehe Abbildung 29). Daher wird sich der WO₃-Film unter diesen Bedingungen mit der Zeit weiter auflösen. Besonders stark ist die Auflösung des WO₃-Films vor allem bei pH-Werten > 4 und in Cl⁻haltigen Lösungen.^{37,164,165} In dem hier untersuchten System mit 0,5 M H₂SO₄ und Methanol-Zusatz (10 Vol.-%) sind die WO₃-Photoelektroden während der anodischen Photooxidation (bei positiven Potentialen) von Methanol allerdings stabil (siehe Abbildung 30).

Aus energetischer Sicht befindet sich an der Metall-Halbleiter-Grenzfläche der WO₃/Ti-Elektrode, wie bereits erwähnt, ein SCHOTTKY-Kontakt mit einer Potentialbarriere von $\Delta \phi \approx 0.8$ eV. Unter angelegtem anodischen Potential verhindert diese Barriere eine Migration der Ladungsträger vom Metall zurück in den Halbleiter, was für die Aktivität der Photoelektrode von Vorteil ist. Aus mechanischer Sicht spielt die verwendete

Beschichtungstechnik eine große Rolle, weil sie einen Einfluss auf die Bindung zwischen Halbleiterpartikel und Substrat hat. In dieser Arbeit wurden sowohl das Siebdruckverfahren als auch das Kaltgasspritzen für die Herstellung von Halbleiterfilmen verwendet. Beim Siebdruck wird das dispergierte Halbleiterpulver homogen auf der Oberfläche eines Substrates verteilt. Dafür können bei diesem Verfahren neben auch FTO-Substrate verwendet werden. Die Nanostruktur Titanmetall der Siebdruckfilme erhöht zwar die elektrochemisch aktive Oberfläche der Halbleiterschicht durch ihre Porosität,^{38,122} aber gleichzeitig ermöglicht die Nanostruktur es auch dem flüssigen Elektrolyten den Film bis zum Substrat zu durchdringen und ihn einfacher vom Substrat zu lösen. Beim Kaltgasspritzen werden die Halbleiterpartikel in einem Stickstoffstrom auf sehr hohe Geschwindigkeiten beschleunigt. Wenn sie auf das Titanmetall treffen, durchschlagen sie dessen dünne TiO2-Passivierungsschicht und werden mit dem Titanmetall verschweißt.^{38,189} Auf diese Weise wird ohne den Einsatz eines Bindemittels nach HERRMANN-GEPPERT et al. ein verbesserter elektrischer Kontakt zwischen dem Halbleiter und dem Metall hergestellt.^{30,31} Der schematische Ablauf der Kontaktausbildung zwischen Halbleiterpartikel und Metallsubstrat ist in Abbildung 57 dargestellt.

Abbildung 57: Schema des Aufpralls eines kaltgasgespritzten WO₃-Partikels (weiß) auf das verwendete Ti-Metall Substrat (grau). Die Halbleiterpartikel deformieren sich bei dem Aufschlag und bekommen Risse in ihrer sphärischen Struktur. Auch das Metallsubstrat wird plastisch verformt und mit dem Halbleiterpartikel verschweißt. Als Resultat sind die WO₃-Partikel ohne Additive oder Binder mit dem Ti-Metall verbunden.³⁸

Um die Resultate von HERRMANN-GEPPERT *et al.* zu überprüfen und den Einfluss eines Titanmetallsubstrats unabhängig von der Beschichtungsmethode zu untersuchen,^{30,31} wurden (zusätzlich zu den Siebdruck-TiO₂/FTO-Photoelektroden und den Kaltgas-TiO₂/Ti-Photoelektroden) siebgedruckte TiO₂-Filme auf Titanmetall hergestellt und die photoelektrochemischen Effizienzen dieser Elektroden überprüft. Die IPCE-Ergebnisse aus Abbildung 38 stimmen dabei in ihren grundsätzlichen Aussagen mit den Resultaten von HERRMANN-GEPPERT *et al.* überein.^{30,31} Gerakelte Halbleiterfilme weisen auf Titanmetallsubstraten geringere IPCE-Werte als kaltgasgespritzte Halbleiterfilme auf. Die Effizienzen der Siebdruck-TiO₂/Ti-Photoelektroden (cyanblaue Kurve in Abbildung 38) sind von allen untersuchten Elektroden die niedrigsten für die Methanoloxidation.

Ein Grund für die geringe photoelektrochemische Effizienz der Siebdruck-TiO₂/Ti-Photoelektroden könnte die natürlich vorkommende TiO₂-Schicht auf dem Ti-Substrat sein. Diese bildet sich an der Luft und weißt üblicherweise Dicken von 1,5 - 10 nm auf.¹⁵² Mithilfe von XRD-Messungen konnte gezeigt werden, dass es sich bei der TiO₂-Passivierungsschicht am wahrscheinlichsten um TiO₂ in der photokatalytisch weniger aktiven Rutil-Modifikation handelt (Abbildung 19). Der TiO₂ P25/20-Film besteht hingegen nur zu 20 % aus Rutil und zu 80 % aus Anatas und weist eine völlig andere
auf.^{38,147} Morphologie als die Passivierungsschicht Daher lassen die photoelektrochemischen Ergebnisse im Vergleich zu den Kaltgas-TiO2/Ti und Siebdruck-TiO₂/FTO-Photoelektroden vermuten, dass die Rutil-Passivierungsschicht verantwortlich für die geringere Aktivität ist. Es ist zwar möglich die Passivierungsschicht des Titanmetalls elektrochemisch zu reduzieren, allerdings bildet sie sich innerhalb kürzester Zeit (0, 1 - 0, 3 ms) neu aus.^{155,190} Für das Siebdruckverfahren wird ein deutlich längerer Zeitraum veranschlagt (ca. 10 Minuten) als der Aufbau der dünnen TiO₂-Passivierungsschicht an der Atmosphäre benötigt.

Im Fall der kaltgasgespritzten Elektroden von WO₃ und TiO₂ auf Titanmetall kann der Einfluss der dünnen Oxidschicht vernachlässigt werden, da die Halbleiterpartikel beim Kaltgasspritzen die Passivierungsschicht durchschlagen.^{30,31} Ein besserer Halbleiterpartikel-Metallsubstrat-Kontakt könnte die Erklärung für die höhere Effizienz TiO₂-Photoelektrode Titanmetall kaltgasgespritzten auf gegenüber der der siebgedruckten TiO₂-Photoelektrode auf Titanmetall sein, wie es auch von HERRMANN-GEPPERT et al. vermutet wird.^{30,31} Für diese Annahme spricht der Vergleich der beiden genannten Photoelektroden mit der Siebdruck-TiO2/FTO-Photoelektrode. Die FTO-Elektrode weist die höchsten IPCE-Werte von allen untersuchten TiO₂-Photoelektroden auf (Abbildung 37). Dadurch kann ausgeschlossen werden, dass die geringe Effektivität der siebgedruckten TiO₂/Ti-Photoelektrode auf das Beschichtungsverfahren zurückzuführen ist. Auch für die WO₃-Photoelektroden liefern die Halbleiterfilme aus dem Kaltgasspritzen und dem Siebdruck vergleichbare IPCE-Werte (Abbildung 37).

5.2.2 Einfluss des Metallsubstrats auf die Eigenschaften der Photoelektroden

Ein zusätzlicher Effekt, der durch die Verwendung von Titanmetallsubstraten bei den Photoelektroden von WO₃ und TiO₂ auftritt, ist der BURSTEIN-MOSS-Effekt, welcher in Abbildung 58 schematisch dargestellt ist.^{191,192} Im Vergleich zu den Halbleiterpulvern weisen die WO₃/Ti- und die TiO₂/Ti-Photoelektroden um 8.08 % bzw. um 4.33 % erhöhte optische Bandlücken auf. Zudem haben sich die Farben der Halbleitermaterialien nach dem Kaltgasspritzen verändert. Die Farbe des WO_3 hat sich z.B. von einem grün-gelbem Pulver zu einem dunkelgrauen Film auf der Photoelektrode verändert (Abbildung 23). Die Aufweitung der optischen Bandlücke und die Farbänderung können auf eine erhöhte Dichte an Sauerstoffleerstellen zurückgeführt werden (Tabelle 5). Dieses Phänomen, welches als BURSTEIN-MOSS-Effekt bekannt ist, tritt in dotierten Halbleitersystemen dann auf, wenn die unteren Leitungsbandniveaus durch freie Ladungsträger besetzt sind.^{191,192} Diese hohe Ladungsträgerdichte ist durch die Hochtemperaturbehandlungen beim Kaltgasspritzen und anschließender Kalzinierung der Elektroden zustande gekommen. Als Resultat sind die Absorptionskanten der Halbleiterfilme von WO₃ und TiO₂ zu kleineren Wellenlängen verschoben, was nach dem BURSTEIN-MOSS-Effekt zu der Aufweitung der optischen Bandlücken führt.^{191,192} So weisen z.B. die siebgedruckten WO₃/FTO-Photoelektroden mit $N_D = 8.25 \times 10^{19} \text{ cm}^{-3}$ eine deutlich geringere Donordichte als die kaltgasgespritzten WO₃/Ti-Photoelektroden ($N_D = 3.34 \times 10^{22}$ cm⁻³) auf. Für die Optimierung des SCHOTTKY-Kontakts an der WO₃/Ti-Phasengrenze ist eine hohe Donordichte vor allem dann von Nachteil, wenn sich eine Vielzahl von Sauerstofffehlstellen in der Nähe der Phasengrenze befindet. ALLEN und DURBIN untersuchten verschiedene SCHOTTKY-Kontakte an der Grenzfläche von Metallen zu ZnO, einem Halbleiter, der eine ähnliche Bandlücke und Bandpositionen zu TiO₂ aufweist.^{11,193} Diese Untersuchungen haben gezeigt, dass eine große Anzahl von Sauerstofffehlstellen in der Nähe der Phasengrenze dafür sorgt, dass das FERMI-Niveau im Halbleiter in der Nähe des Defekt-Niveaus der Sauerstofffehlstellen festgesetzt wird und sich dadurch nur eine dünne Raumladungszone an der Metall-Halbleiter-Phasengrenze ausbildet.¹⁹³ Aufgrund dieses negativen Effektes für den SCHOTTKY-Kontakt sollten hohe Konzentrationen an Sauerstofffehlstellen in der Nähe der Metall-Halbleiter-Grenzfläche vermieden werden.

Abbildung 58: Schematische Darstellung der elektronischen Strukturen von undotiertem (links) und dotiertem (rechts) WO₃. Das Schema zeigt die Vergrößerung der optischen Bandlücke $E_{BL,optisch}$ durch den BURSTEIN-MOSS-Effekt. Dargestellt sind die Energien der Bandkanten E_{LB} für das Leitungsband und E_{VB} für das Valenzband. E_{LUMO} ist das niedrigste unbesetzte Energieniveau im Halbleitermaterial.

Die Dotierung von Photokatalysatoren an sich ist ebenfalls ein wichtiger Faktor, welcher die Aktivität und die Eigenschaften des Halbleiters beeinflusst.^{194–197} Üblicherweise wird eine Dotierung verwendet, um eine bessere Ladungsträgertrennung in einem Photokatalysator Fehlstellen im Halbleitergitter z.B. zu erreichen. wie Sauerstoffleerstellen oder Dotieratome stellen dann Fangstellen (engl.: "traps") für Elektronen und Löcher dar. Diese Fangstellen immobilisieren die Ladungsträger und senken dadurch die Rekombinationsrate.¹⁹⁸ Für eine n-Halbleiter Photoelektrode hat die Dotierung bzw. Donordichte noch einen weiteren wichtigen Einfluss, da sie proportional zur Leitfähigkeit des Halbleiterfilms und damit wichtig für den Stromfluss ist. Allerdings können Fehlstellen in hoher Zahl ebenfalls als Rekombinationszentren für die photogenerierten Ladungsträger dienen.¹⁹⁸ Dieses Verhalten führt dazu, dass es in Abhängigkeit von der Struktur des Halbleiters einen optimalen Dotiergrad gibt, in dem die positiven Effekte der Fehlstellen nicht von den Nachteilen überwiegt werden.¹⁹⁷ Während die TiO₂-Photoelektroden vergleichbare Donordichten aufweisen, gibt es eine große Differenz zwischen den Donordichten der WO₃/Ti ($N_D = 3.34 \times 10^{22}$ cm⁻³) und WO₃/FTO ($N_D = 8,25 \times 10^{19}$ cm⁻³) Photoelektroden. Diese Unterschiede können auf eine unterschiedliche Anzahl an Sauerstoffleerstellen zurückgeführt werden, da keine

Fremdatome in den Röntgendiffraktogrammen der Elektroden gefunden wurden (Kapitel 4.2.1). Da beide WO₃-Photoelektroden vergleichbare photoelektrochemische Aktivitäten zeigen, können anhand der gewonnen Daten keine Aussagen über eine optimale Donordichte für die WO₃-Filme getroffen werden.

5.3 Bewertung und Vergleich der Aktivität der WO₃-Photoelektroden

Der Fokus dieser Arbeit liegt auf der photoelektrochemischen Charakterisierung von kaltgasgespritzten WO₃-Photoelektroden. Um die Aktivität und die Effizienz dieser Elektroden besser einordnen zu können, wurden zusätzliche Photoelektroden mithilfe des Siebdruckverfahrens als Vergleichsmethode zur Beschichtung von Substraten hergestellt. Außerdem wurden Photoelektroden mit dem kommerziellen Photokatalysator TiO₂ P25/20 als Vergleichsmaterial untersucht. Die Messergebnisse für alle untersuchten Elektroden sind in Kapitel 4 gezeigt. In diesem Kapitel werden die erhaltenen Ergebnisse unter anderem mit den Daten aus der Literatur verglichen und diskutiert.

5.3.1 Vergleich mit Titandioxid-Photoelektroden

Die photoelektrochemischen Untersuchungen zum Methanolabbau wurden in dieser Arbeit mit Photoelektroden von WO₃ und TiO₂ durchgeführt. Die Ergebnisse aus diesen Untersuchungen zeigen, dass WO₃ ein vielversprechendes Material für die Anwendung als mögliche Photoanode unter Bestrahlung mit Sonnenlicht ist. Die IPCE-Messungen (Abbildung 37) zeigen, dass die WO₃-Photoelektroden in der Lage sind, Sonnenlicht ab einer Wellenlänge von ≤ 475 nm für die photoelektrochemische Oxidation zu nutzten. Mithilfe einer externen Spannung von 1,6 V *vs.* NHE konnten im Vergleich zu TiO₂ P25/20 viermal so hohe Photoströme für die Methanoloxidation auf den WO₃-Elektroden erreicht werden (Abbildung 31). Bei externen Spannungen unterhalb von 0,6 V *vs.* NHE sind allerdings die TiO₂-Photoelektroden aktiver. Der Grund dafür ist eine starke Abhängigkeit der WO₃-Photoelektroden von dem angelegten externen Potential, wie auch die Messungen der Hydroxylradikalbildung als aktive Spezies zeigen. Eine solche Abhängigkeit wurde für die TiO₂-Photoelektroden weder bei der Methanoloxidation, noch bei der Hydroxylradikalbildung beobachtet. Die Ursache dafür liegt vor allem in der Energie der photogenerierten Elektronen der beiden Halbleiter begründet.

Die Abbildung 59 zeigt die Bandpositionen der Photoelektroden von TiO₂ und WO₃. Während die Valenzbandkanten in einem vergleichbaren (hohen) Energieniveau liegen, unterscheiden sich die Lagen der Leitungsbandkanten teilweise um über 0,5 V in einem Energiebereich in dem viele wichtige Redoxpotentiale liegen. Aus den unterschiedlichen Lagen der Leitungsbandkanten und der daraus folgenden unterschiedlichen Energien der photogenerierten Elektronen lassen sich eine Reihe von Ergebnissen der TiO₂-Photoelektroden erklären.

Abbildung 59: Schematische Darstellung der Bandpositionen der untersuchten Halbleitermaterialien. Die Leitungsbandkanten (rot dargestellt) wurden über das Flachbandpotential aus MOTT-SCHOTTKY-Messungen bestimmt. Die Valenzbandkanten (schwarz dargestellt) wurden mithilfe der optischen Bandlücken berechnet. Alle Potentialangaben beziehen sich auf die Normal-Wasserstoffelektrode (NHE) und den pH-Wert 0. Die Redoxpotentiale wurden aus der Literatur entnommen und auf den pH-Wert 0 umgerechnet.^{55,83,134,199}

Die photoelektrochemischen Ergebnisse dieser Arbeit zeigen (Abbildung 31), dass es mit dem System aus TiO2-Photoanode und Platinkathode möglich wäre, den Methanolabbau und die gleichzeitige Wasserstofferzeugung ohne externes Potential zu realisieren.¹⁷ Dazu passen die Ergebnisse zur photokatalytischen Aktivität von TiO2-Pulvern zum Schadstoffabbau aus Suspensionen.^{17,18,28} Werden TiO₂-P25-Nanopartikel zum photokatalytischen Methanolabbau verwendet, benötigen die photogenerierten Elektronen und Löcher im TiO₂ im Gegensatz zum WO₃ kein externes (chemisches) Schadstoffabbau.^{18,79} Ladungsträgerseparation und zum Potential Die zur photogenerierten Löcher im TiO₂ oxidieren Methanol und die photogenerierten Elektronen im TiO₂ werden auf der Halbleiteroberfläche als Ti³⁺ eingefangen (Gleichung 11). Wird ein Co-Katalysator wie Platin auf der TiO₂-Anatas-Oberfläche abgeschieden, kann mithilfe der Katalysatorpartikel auch reduktiv Wasserstoff mit den photogenerierten Elektronen erzeugt werden.⁷⁹ Im Fall von WO₃-Partikeln konnte nachgewiesen werden, dass eine Oxidation von Schadstoffen wie Acetat oder Methanol bei verschiedenen pH-Werten ohne Zugabe eines Elektronenakzeptors wie Eisen(III)-Nitrat nicht möglich ist. Aufgrund der Potentiallage des Leitungsbandes des WO3 ist die Ein-Elektronen-Reduktion von Sauerstoff mit einem Redoxpotential von – 0.33 V vs. NHE nicht möglich (Abbildung 59).⁸³ Alternative Reaktionen wie die reduktive Wasserstofferzeugung (0 V vs. NHE) können von den photogenerierten WO₃-Elektronen ebenfalls nicht eingegangen werden (Abbildung 59), weshalb sie mit den photogenerierten Löchern rekombinieren. Die in dieser Arbeit eingesetzten WO3-Elektroden benötigen daher ein externes (elektrisches) Potential, um organische Verbindungen wie Methanol abzubauen.

Die beiden Systeme (photokatalytisch und photoelektrochemisch) unterscheiden sich insbesondere darin, dass die Reduktionsreaktion der Elektronen im WO₃, im Fall der Verwendung als Photoanode, nicht auf der Photokatalysatoroberfläche, sondern an der Gegenelektrode stattfindet. Wird dafür eine Platinelektrode eingesetzt, ist es

wahrscheinlich, dass die Elektronen dort vor allem die HER (Gleichung 55) anstatt der Sauerstoffreduktion eingehen (siehe Abbildung 59):

$$2 \operatorname{H}^{+} + 2 e^{-} \to \operatorname{H}_{2}$$
^[55]

Die entsprechenden Experimente zur H₂-Bildung (Kapitel 4.4) konnten dies bestätigen. Durch eine externe Spannung werden die photogenerierten Elektronen vom WO₃ zur Platingegenelektrode geleitet, auf das notwendige Potential angehoben und können dann dort im Anschluss die HER eingehen.

Die erhöhte Reaktivität der photogenerierten Elektronen im TiO₂ kann auch einen Einfluss auf den "*remote photocatalysis*"-Effekt haben. Dieser Effekt beruht darauf, dass das Oxidationspotential eines Photokatalysators durch die Bildung von aktiven Sauerstoffspezies nicht nur auf die Halbleiteroberfläche beschränkt ist. Die reaktiven Spezies können von der Oberfläche weg diffundieren und Redoxreaktionen im Elektrolyten auslösen. Im WO₃ sind nur die Valenzbandlöcher in der Lage diese reaktiven Spezies wie z.B. H₂O₂ zu bilden. Die Energie der Leitungsbandelektronen reicht nicht aus, um den vorhandenen Sauerstoff zu Superoxidradikalen zu reduzieren. Dies gilt jedoch nicht für die Leitungsbandelektronen im TiO₂, an dessen Grenzfläche die in Abbildung 60 gezeigten Reaktionen zur Bildung von starken Oxidationsmitteln führen könnten.⁷⁵

Abbildung 60: Schematische Darstellung der $e^{-induzierten}$ Reaktionen bei der Photokatalyse an TiO₂-Partikeln. Redoxreaktionen sind nicht nur direkt an der Halbleiteroberfläche möglich, sondern können auch über aktive Sauerstoffspezies vermittelt, im umgebenden Medium stattfinden. *A* steht für einen Elektronenakzeptor und *D* für einen Elektronendonor. Abbildung adaptiert nach BLOH.¹⁹⁷

Die Bildung von H_2O_2 in einem wässrigen System zur photokatalytischen Methanoloxidation mithilfe von TiO₂ P25 konnte in der Arbeit von MELCHER bestätigt werden.¹³⁹ Die Entstehung von H_2O_2 in der photoelektrochemischen Zelle kann auch über die Sauerstoffreduktionsreaktion am Platin (Reaktionsgleichung 56) oder die Zwei-Elektronen-Oxidation von Wasser zu H_2O_2 entsprechend Gleichung 57 stattfinden.⁷⁵

$$O_2 + 2 H^+ + 2 e^- \rightarrow H_2O_2$$
[56]

$$2 H_2O \to H_2O_2 + 2 H^+ + 2 e^-$$
[57]

Wenn diese reaktiven Sauerstoffspezies im Elektrolyten ebenfalls an der Methanoloxidation teilnehmen (Methanol ist ein mögliches Donormolekül D) ist es möglich, dass die Ausbeute an Oxidationsprodukten wie Formaldehyd steigt, obwohl kein zusätzlicher Photostrom gemessen wird. Die (thermodynamischen) Redoxpotentiale der entsprechenden aktiven Sauerstoffspezies gegen NHE lauten wie folgt: H2O2/H2O 1,76 V, 'OH/H₂O 2,73 V und 'OH₂/H₂O₂ 0,90 V.^{134,199,200} Allerdings kann anhand der thermodynamischen Redoxpotentiale von Radikalen nicht zwangsläufig vorausgesagt werden, ob eine Redoxreaktion auch ablaufen würde. RAO und HAYON fanden experimentell mithilfe verschiedener, genau definierter Standard-Redoxpaare für das 'OH₂/H₂O₂-Redoxpaar beispielsweise ein "kinetisches" Redoxpotential von $E_k \ge 0.36$ V vs. NHE.²⁰⁰ Das kinetische Redoxpotential bedeutet in diesem Fall, dass 50 % des Elektronentransfers in der Redoxreaktion stattgefunden haben. Zusätzlich kann die Ausbeute an Formaldehyd auch ohne zusätzlichen Photostrom steigen, wenn im Elektrolyten gelöster Sauerstoff das Methanol ohne Halbleitereinwirkung zu Formaldehyd oxidiert.¹³⁹ Auf diese Weise könnten die hohen Ausbeuten und FARADAY'schen Effizienzen von Formaldehyd beim Methanolabbau unter Luftsättigung erklärt werden (Kapitel 4.3.4). In diesen Experimenten zeigte die TiO₂/Ti-Photoelektrode mit dem negativsten Flachbandpotential die höchsten FARADAY'schen Effizienzen mit über 100 % ($\eta_{FE} = 105$ %) für die Bildung von Formaldehyd aus Methanol (Abbildung 40). Eine mögliche Erklärung für diese Effizienz wäre die Entstehung von H₂O₂ in der photoelektrochemischen Einkammer-Zelle mit anschließend auftretendem "remote photocatalysis"-Effekt zur Oxidation von Methanol durch H₂O₂.^{74,75} Zum Vergleich lag die η_{FE} der WO₃/Ti-Photoelektrode bei dieser Messung "nur" bei 93 %. Dieses Ergebnis ließe sich auch dadurch erklären, dass TiO2 nach den DFT-Berechnungen von NØRSKOV et al. eine höhere Tendenz für die Zwei-Elektronenreaktion von Wasser zu H₂O₂ hat als WO₃.⁷⁴

Im Kapitel 4.4.2 wurden die gasförmigen Produkte der Methanoloxidation unter O₂-Ausschluss in CA-Experimenten bei einem angelegten Potential von 1 V *vs.* NHE untersucht. Dabei wurden unter stärkerer UV-Bestrahlung trotz einer höheren Gesamtstromdichte bei der TiO₂/Ti-Photoelektrode weniger Sauerstoff und Wasserstoff im Vergleich zur WO₃/Ti-Elektrode gemessen. Daraus folgten hohe Unterschiede in der FARADAY'schen Effizienz. Nur die Gasausbeuten an CO₂ waren bei beiden Experimenten mit 8,0 µmol (WO₃) und 8,5 µmol (TiO₂) vergleichbar. Ein möglicher Grund für eine geringe Effizienz für O₂ und H₂ könnten die Sauerstoffreduktionsreaktionen (ORR; engl.: "*Oxygen Reduction Reaction"*) entsprechend den Reaktionsgleichungen 56 und 58 sein:

$$O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$$
 [58]

Die Zwei-Elektronen-Reduktion von O_2 zu H_2O_2 hat ein Redoxpotential von 0,7 V vs. NHE und die Vier-Elektronen-Reduktion von O_2 zu H_2O hat ein Redoxpotential von 1,23 V vs. NHE.²⁰¹ Diese Reaktionen können neben der H_2 -Entwicklungsreaktion an der Platin-Gegenelektrode stattfinden und hätten somit einen möglichen Einfluss auf die

Bildungsraten von Sauerstoff und Wasserstoff, würden aber die Bildung von CO₂ an der Photoelektrode nicht beeinflussen. Allerdings werden für die ORR auf Platin kinetisch bedingte Überspannungen benötigt.²⁰² Die nötige Reduktionsüberspannung könnte jedoch am ehesten von den photogenerierten Elektronen im TiO₂ bereitgestellt werden, da das Leitungsband von TiO₂ im Vergleich zum WO₃ über 0,5 V negativer lokalisiert ist (siehe Abbildung 59). Dementsprechend könnte der auf der TiO₂/Ti-Photoelektrode gebildete Sauerstoff auf der Platin-Gegenelektrode wieder reduziert werden, was die Gasausbeute verringern würde. Auch für die Wasserstofferzeugung würde dann eine geringe Ausbeute erwartet werden, da mit den ORR alternative Reduktionsreaktionen für die photogenerierten Elektronen am Platin hinzukommen.

5.3.2 Vergleich mit Wolframtrioxid-Photoelektroden aus der Literatur

Grundlegende Untersuchungen zu der Aktivität von einkristallinen WO₃-Elektroden für die photoelektrochemische Wasserspaltung wurden bereits 1977 von BUTLER durchgeführt.²⁴ In diesen Experimenten wurde auch die Quantenausbeute von WO₃ bei monochromatischer Bestrahlung (327 nm) in Abhängigkeit vom angelegten Potential bestimmt. Bei 1 V vs. NHE beobachtete BUTLER eine Quantenausbeute von ca. 50 % in 1 M Natriumacetat-Lösung.²⁴ Diese liegt damit in einer ähnlichen Größenordnung wie die IPCE-Werte der WO₃-Photoanoden aus dieser Arbeit in 0,5 M H₂SO₄ + 10 Vol.-% Methanol (ca. 45 % IPCE). Vergleichbare photoelektrochemische Aktivitäten haben BISWAS und BAEG mit kristallinen WO₃-Photoanoden in 0,5 M H₂SO₄ für die Wasseroxidation ohne Methanol-Zusatz gemessen.²⁰³ Allerdings muss hierbei beachtet werden, dass die Effizienzen aufgrund des "current doubling"-Effekts in einem System mit Schwefelsäure und Methanol höher sein sollten.⁷⁹ AUGUSTYNSKI et al. haben die photoelektrochemischen Effizienzen von 2 µm dünnen WO₃/FTO-Photoelektroden unter vergleichbaren Bedingungen untersucht. Für die Dünnschichtelektroden aus dem Sol-Gel-Prozess wurden IPCE-Werte von bis zu 65 % (bei 400 nm) für die Wasseroxidation in 1 M H₂SO₄ bei 1,5 V vs. NHE gemessen.²⁰⁴ Die Photostromeffizienzen von WO₃/FTO-Photoelektroden aus der Rotationsbeschichtung erreichen ähnliche IPCE-Werte in 0,1 M H₂SO₄ bei 1,74 V vs. NHE (bei 360 nm).²⁰⁵ Für die Sauerstoffentwicklung aus einem wässrigen Elektrolyten konnten 2016 LABERTY-ROBERT et al. mesoporöse WO3-Photoelektroden herstellen, die in 1 M H₂SO₄ bei 1,23 V vs. NHE Quantenausbeuten für die OER von über 90 % (bei 300 – 330 nm) erreichten.¹⁶⁹ Obwohl NIEDERBERGER et al. für die OER nur FARADAY'sche Effizienzen von 8 % fanden, sind die berichteten Stromdichten ohne ein Opferreagenz wie z.B. Methanol von über 3 mA/cm² ab einem externen Potential von 1,1 V vs. NHE in 1 M H₂SO₄ relativ hoch.¹¹⁹

Die vergleichsweise geringeren Stromdichten und photoelektrochemischen Effizienzen der WO₃/Ti-Elektroden aus dieser Arbeit können wahrscheinlich auf die kaltgasgespritzten Halbleiterschichten zurückgeführt werden. Diese sind im Vergleich zu den Literaturelektroden sehr dick und weisen keine Porosität auf, was mithilfe von REM-Aufnahmen gezeigt wurde.³⁸ Vor allem durch die fehlende innere Oberfläche bieten die Kaltgaselektroden dadurch weniger Adsorptionsplätze für die katalytischen Reaktionen. Die kaltgasgespritzten WO₃/Ti-Photoelektroden bieten allerdings auch Vorteile

gegenüber den WO₃-Elektroden aus nasschemischen Beschichtungstechniken für die Anwendung in einer photoelektrochemischen Zelle. Dabei sind vor allem die mechanische Stabilität der Photoelektroden und ihrer Halbleiterfilme, sowie eine gute Skalierbarkeit große Vorteile gegenüber den herkömmlichen WO₃-Elektroden aus dem Labormaßstab.^{30,31,189}

Ein Nachteil von WO₃-Photoelektroden gegenüber anderen Materialien ist der begrenzte Stabilitätsbereich in wässriger Lösung. Vor allem im Vergleich zu TiO₂, welches bei jedem pH-Wert für die Photokatalyse eingesetzt werden kann, sollte WO₃ vor allem im sauren Medium bei pH \leq 4 eingesetzt werden (siehe POURBAIX-Diagramm in Abbildung 2).³⁷ Außerdem eignet sich WO₃ nur als Katalysator für Photooxidationen und nicht für Photoreduktionen, da unter reduktiven Bedingungen W⁶⁺ teilweise irreversibel zu W⁵⁺ oxidiert wird (siehe Abbildung 29).¹⁶⁴

5.3.3 Effizienzen für die solare Wasserstoffproduktion

Als weiteres Halbleitermaterial, welches unter sichtbarem Licht eine photokatalytische Aktivität zeigt, wird Hämatit (α-Fe₂O₃) häufig als Photoanode untersucht. Durch seine geringe Bandlücke von 2,1 eV eignet sich Hämatit theoretisch am besten für den Einsatz in der Photoelektrochemie unter Sonnenlicht.¹¹ CHEN et al. haben 2013 die theoretisch maximal erreichbaren STH-Effizienzen (engl.: "Solar to Hydrogen"), also die Effizienzen der Umwandlung von Sonnenlicht in den Energieträger Wasserstoff für typische Photoanodenmaterialien berechnet.¹⁴ Das Ergebnis auf Grundlage der AM 1.5G-Strahlung zeigt, dass mit TiO₂ in der Anatas-Modifikation als Photoanodenmaterial nur maximal 1 % STH-Effizienz erreicht werden können, da der Photostrom der TiO2-Elektroden stark durch die Lichtintensität limitiert ist. Die berechneten Maxima für WO₃ und α-Fe₂O₃ lagen bei 6 % bzw. 15 % STH-Umwandlungseffizienz. Dennoch sind nach aktuellem Stand der Technik TiO2- und WO3-Photoanoden in der Praxis aktiver, weshalb immer noch an allen drei Systemen geforscht wird. Im Vergleich zu dem Eisenoxid bieten z.B. WO₃-Photoelektroden den Vorteil, dass sie ein geringeres Photostrombenötigen.¹⁶⁸ Anfangspotential Zudem haben Untersuchungen der Ladungsträgerdynamiken ergeben, dass die Lebensdauer der photogenerierten Löcher von α-Fe₂O₃ stark von dem angelegten Potential in der Zelle abhängen.^{21,206} Es muss eine hohe externe Spannung angelegt werden, damit die Löcher nicht sofort rekombinieren und eine Oxidationsreaktion an der Halbleiteroberfläche auslösen können. Ein weiteres Problem des α -Fe₂O₃ ist, dass eine Passivierung der Elektroden notwendig ist, da sich Hämatit ansonsten nach Gleichung 59 im Elektrolyten auflöst:

$$\mathrm{Fe}^{3+} + e^{-} \to \mathrm{Fe}^{2+}_{aq}$$
^[59]

Diese Abhängigkeit der photogenerierten Löcher vom externen Potential wurde für WO₃ nicht beobachtet.²⁰⁵ Die Notwendigkeit für das Anlegen einer externen Spannung in Systemen mit WO₃-Photoanoden liegt nur in dem geringen Potential der Leitungsbandelektronen von WO₃ begründet.

Neben den Untersuchungen für den Schadstoffabbau am Beispiel von Methanol ist im Rahmen dieser Arbeit auch die Wasserstoffproduktionsrate der photoelektrochemischen Zelle untersucht wurden. In der Literatur wird diesem Anwendungsgebiet eine besondere Bedeutung zugewiesen, da photokatalytisch produzierter Wasserstoff das Potential besitzt, fossile Treibstoffe zu einem Teil zu ersetzen.¹ Der auf diese Weise produzierte Wasserstoff wird englisch *"solar fuel"* genannt. Die Untersuchungen von photoelektrochemischen Zellen auf ihre Aktivitäten für die photoelektrochemische Wasserspaltung zielen vor allem die Produktion von Wasserstoff als *"solar fuel"* ab, da die photoelektrochemische Sauerstoffproduktion wirtschaftlich keine Rolle spielt. Die Effizienz einer photoelektrochemischen Zelle für die Produktion von *"solar fuel"* wird üblicherweise mit der bereits erwähnten STH-Effizienz angegeben.^{1,14} Die STH-Effizienz liefert allerdings nur für 2-Elektrodensysteme ohne eine zusätzliche Referenzelektrode verlässliche Ergebnisse. Eine weitere Einschränkung ist, dass die Berechnung aus einer photoelektrochemischen Messung ohne ein externes Potential durchgeführt werden muss. Damit können für die WO₃-Photoelektroden aus dieser Arbeit keine STH-Werte berechnet werden, da die Elektroden keine Photoströme ohne angelegtes Potential liefern.

CHEN *et al.* haben mit der ABPE (engl.: "Applied Bias Photon to Current Efficiency") eine alternative Effizienz vorgeschlagen, falls ein externes Potential für die Photoelektrolyse nötig ist.²⁰⁷ Die ABPE liefert eine vergleichbare Effizienz zur STH, berücksichtigt allerdings noch den Einfluss der angelegten Spannung. Die ABPE wurde in dieser Arbeit nach Gleichung 60 berechnet:

$$ABPE (\%) = \frac{j_{Ph} \left(\frac{mA}{cm^2}\right) \times (1,23 - V_{ex} (V)) \times \eta_{FE}}{P_{Solar, AM1.5G} (mW/cm^2)} \times 100\%$$
[60]

 j_{Ph} = gemessene Photostromdichte, V_{ex} = angelegte (externe) Spannung, η_{FE} = FARADAY'sche Effizienz, P_{Solar} = Leistung des Sonnensimulators unter AM 1.5G-Strahlung.

Für die Berechnung der ABPE wurden die photoelektrochemischen Messungen aus Kapitel 4 herangezogen. Die Leistung der verwendeten Bestrahlungseinheit (Solarsimulator) betrug 67,8 mW/cm² in dem Wellenlängenbereich von 280 – 1000 nm. Die FARADAY'schen Effizienzen für die HER wurden aus den Kurzzeitmessungen aus Kapitel 4.4.2 entnommen. Für WO₃/Ti wurde eine Effizienz für die HER von $\eta_{FE} = 172$ % und für TiO₂/Ti eine Effizienz von $\eta_{FE} = 113$ % veranschlagt. Somit können die ABPE aus dieser Arbeit nur bedingt mit der Literatur verglichen werden, da in diesem Fall nicht Wasser sondern Methanol an der Photoanode oxidiert worden ist. Durch den "current doubling"-Effekt bei der Methanoloxidation können so höhere ABPE-Werte erreicht werden. Für die WO₃/Ti-Photoelektroden beträgt die ABPE nach den CA-Ergebnissen aus Abbildung 51 (2-Elektroden-Messung, Vollzelle) bei einem externen Potential von 1 V vs. Pt ungefähr ABPE = 0.2 %. Für die entsprechende CA-Messung mit der TiO₂/Ti-Photoelektrode wurde ein Wert von 0,08 % ABPE bei 1 V externem Potential gefunden. Diese geringen ABPE-Werte kommen vor allem durch die großen Verluste in der Photostromdichte bei der Verwendung der Zweikammer-Photoelektrolysezelle mit dazwischenliegender Membran zu Stande. Werden die Photostromdichten der Methanoloxidation im Einkammersystem aus Abbildung 31 (3-Elektroden-Messung, Halbzelle) für die Berechnung der ABPE herangezogen, könnten theoretisch Effizienzen von ABPE = 1,41 % (WO₃/Ti) bzw. ABPE = 0,23 % (TiO₂/Ti) erreicht werden.

Im Jahr 2011 haben ZHENG et al. ABPE-Effizienzen für verschiedene nanostrukturierte TiO2-Photoelektroden veröffentlicht. Dabei wurden unter der Annahme einer FARADAY'schen Effizienz von $\eta_{FE} \approx 1$ in einem alkalischen Elektrolyten ABPE-Werte von bis zu 0,5 % erreicht (bei 0,6 V vs. Pt).²⁰⁸ Bei einem externen Potential von 1 V vs. Pt werden mit der aktivsten TiO2-Elektrode, bestehend aus verzweigten Nanoröhren, jedoch nur noch ca. 0,3 % ABPE erreicht. Allerdings reichen diese photoelektrochemischen Effizienzen eine Anwendung zur für technischen Wasserstoffproduktion als "solar fuel" bei weitem nicht aus. Um mit einem System aus Solarzelle und angeschlossener PEM-Wasserelektrolysezelle für die Wasserstoffproduktion konkurrieren zu können, werden mindestens STH = 16 % oder vergleichbare ABPE-Effizienzen benötigt.¹

6. Zusammenfassung und Ausblick

Das Ziel der vorliegenden Arbeit war es, zu ermitteln, ob kaltgasgespritzte Photoanoden von Wolframtrioxid eine potentielle Anwendung in photoelektrochemischen Zellen finden können. In diesen Zellen sollen mithilfe von photogenerierten Ladungsträgern im Anodenraum organische Schadstoffe wie Methanol aus Abwässern abgebaut und parallel im Kathodenraum Wasserstoff als Energieträger gewonnen werden. Dazu wurden neben der Evaluierung der WO₃-Photoelektroden im Vergleich zum Benchmark-Material TiO₂ auch mechanistische Studien angefertigt, um die ablaufenden Prozesse im Halbleiter während der photoelektrochemischen Reaktion besser verstehen zu können. Das Verständnis dieser Mechanismen soll dabei helfen, in Zukunft noch effizientere Photoelektroden zu entwickeln. Zu diesem Zweck sind neben den kaltgasgespritzten WO₃/Ti-Photoelektroden (WO₃-Film auf Titanmetall) auch kaltgasgespritzte TiO₂/Ti-Photoelektroden und Siebdruckelektroden auf FTO-Glassubstraten von beiden Halbleitermaterialien untersucht wurden. Ein zusammenfassendes Schaubild der photoelektrochemischen Zelle und ihrer Prozesse ist in Abbildung 61 gezeigt.

Abbildung 61: Zusammenfassende Darstellung der photoelektrochemischen Zelle mit einer WO₃/Ti-Photoanode und einer Platinkathode. Es sind die unter Belichtung ablaufenden Prozesse schematisch dargestellt. Die photogenerierten h^+ im WO₃ oxidieren an der Oberfläche Methanol und Wasser. Die photogenerierten e^- des WO₃ werden auf das Pt übertragen und reduzieren dort Protonen. Die beiden Halbzellen sind durch eine Nafion-Membran voneinander getrennt. Rot dargestellt sind mit CO₂, O₂ und H₂ die beobachteten gasförmigen (End-)Produkte des Methanolabbaus in schwefelsaurem Elektrolyten.

In dem ersten Teil der Arbeit wurden die physikalischen und optischen Eigenschaften des Halbleiters WO_3 untersucht und mit dem Benchmark-Photokatalysator TiO₂ P25/20 verglichen. Dabei konnte gezeigt werden, dass sich das reine kommerzielle WO₃-Pulver

der Firma Merck (USA) in seinem unbehandelten Zustand aufgrund von sehr kleinen spezifischen Oberflächen von rund $2,20 \text{ m}^2/\text{g}$ eher weniger als partikulärer Photokatalysator eignet. Als Bandlückenenergie wurde für WO₃ ein Wert von 2,60 eV gefunden, was bedeutet, dass die Absorptionskante von WO₃ im Vergleich zu TiO₂ (3,02 eV) um ca. 70 nm rotverschoben ist. Wie in Abbildung 62 zu sehen ist, kann unter Verwendung der Sonnenstrahlung somit ungefähr doppelt so viel Licht (unabhängig von der Energie der Photonen) von WO₃ verwendet werden.

Abbildung 62: Die Spektralverteilung der Lichtintensität der Sonnenstrahlung (AM 1.5G) für den Wellenlängenbereich 250 - 2000 nm. Die grau unterlegte Fläche zeigt das mit TiO₂-Photoanoden nutzbare Licht (120 mW nm/cm²) und die graue plus die grün unterlegte Fläche das mit WO₃-Photoanoden nutzbare Licht (240 mW nm/cm²) der Sonnenstrahlung. Die Lichtintensität im Bereich von 476 – 4000 nm (weißstrukturierter Bereich) ist mit den untersuchten Halbleitermaterialien nicht nutzbar.

Mithilfe von IPCE-Messungen konnte bestätigt werden, dass die WO₃-Photoelektroden in der Lage sind, sichtbares Licht (VIS) ab einer Wellenlänge von ca. 475 nm (entspricht einer Energie von ungefähr 2,6 eV) für die photoelektrochemische Oxidation von Methanol zu nutzen, obwohl die UV/VIS-Messungen an den kaltgasgespritzten Elektroden eine Aufweitung der optischen Bandlücke um 8 % auf 2,81 eV (≈ 441 nm) zeigten. Dieses Phänomen konnte jedoch auf den BURSTEIN-MOSS-Effekt durch eine hohe Sauerstofffehlstellendichte im Gitter des WO₃-Films zurückgeführt werden. Verantwortlich für diesen Effekt, ist die Tatsache, dass mit steigender Ladungsträgerzahl zunehmend die unteren Energieniveaus des Leitungsbands besetzt werden. Damit verschiebt sich das unterste unbesetzte Energieniveau im Leitungsband (LUMO) des Halbleiters zu höheren Energien. Bei einer Anregung von Licht werden die erzeugten Ladungsträger nun nicht mehr direkt in das Grundniveau des Leitungsbandes, sondern in höhere Energielagen angeregt, was eine größere Photonenenergie erfordert. Dies äußert sich im Rahmen von optischen Absorptions- bzw. Reflexionsmessungen in der Aufweitung der optischen Bandlücke.

Nach HERRMANN-GEPPERT *et al.* eignet sich die Methode des Kaltgasspritzens sehr gut zur Herstellung von Photoelektroden.^{30,31} Diese Beschichtungstechnik ermöglicht es, Halbleiterfilme ohne die Verwendung von Bindemitteln mit dem Metallrückkontakt zu

verschweißen. Auf diese Weise kann durch einen verbesserten elektrischen Halbleiterpartikel-Substrat-Kontakt eine bessere Filmstabilität und eine höhere photoelektrochemische Aktivität im Vergleich zu anderen Beschichtungstechniken ermöglicht werden.^{30,31} Diese Ergebnisse aus der Literatur konnten mit der Charakterisierung der Photoelektroden in dieser Arbeit bestätigt werden. Mithilfe der Röntgendiffraktometrie wurde gezeigt, dass die dünne TiO₂-Schicht auf den Titanmetallelektroden unabhängig vom Halbleiterfilm vorhanden ist.³⁸ Der Vorteil des besteht darin, dass bei dieser Beschichtungstechnik Kaltgasspritzens Passivierungsschicht auf dem Titanmetall sehr wahrscheinlich durchstoßen wird, wie eine Analyse der Morphologie der kaltgasgespritzten WO₃-Schichten mithilfe von Querschnitts-REM-Aufnahmen zeigte. Eine Langzeitmessung zur Methanoloxidation über 10 Stunden bestätigte, dass die WO₃/Ti-Photoelektroden im Elektrolyten stabil sind und nach ca. 6 Stunden eine konstante anodische Stromdichte für die Methanoloxidation von ca. 2.3 mA/cm² bei 1 V vs. NHE liefern.

Im Rahmen dieser Arbeit gelang es mit Siebdruckelektroden auf FTO-Substraten vergleichbare (WO₃/FTO) oder sogar höhere (TiO₂/FTO) photoelektrochemische CLV-Aktivitäten im Vergleich zu den Kaltgaselektroden zu erreichen. Die entsprechenden Strom-Spannungs-Kennlinien zur Methanoloxidation zeigen außerdem, dass WO₃-Photoelektroden eine externe Hilfsspannung von ca. 0,3 V vs. NHE benötigen bevor ein anodischer Photostrom erzeugt werden kann. Die TiO2-Photoelektroden sind im Gegensatz dazu in der Lage photokatalytische Reaktionen, wie die Erzeugung von Hydroxylradikalen oder die Methanoloxidation, ohne externes Potential und nur mit Solarbestrahlung durchzuführen. Die Ursache dafür liegt in der Energie der photogenerierten Elektronen im Leitungsband begründet. Nach den MOTT-SCHOTTKY-Messungen aus dieser Arbeit haben die WO₃-Photoelektroden ein Flachbandpotential (entspricht ungefähr der Leitungsbandposition des n-Halbleiters) von 0,24 V vs. NHE bei einem pH-Wert von 7. Das Flachbandpotential der TiO₂/Ti-Photoelektroden wurde mit -0.35 V vs. NHE (pH 7) bestimmt. Damit ist die Wasserstoffentwicklungsreaktion mit keiner der untersuchten Photoelektroden ohne ein externes Hilfspotential möglich. Die photogenerierten Elektronen im TiO₂ sind im Gegensatz zu den Elektronen im WO₃ in der Lage die Ein-Elektronen-Reduktion von Sauerstoff einzugehen.⁷⁵ Diese Möglichkeit besteht für die photogenerierten Elektronen im WO3 nicht, weshalb sie mit den Löchern rekombinieren und photokatalytische Oxidationsreaktionen unter den gegebenen Bedingungen ohne eine Hilfsspannung unmöglich machen.

Insgesamt können mit WO₃-Photoelektroden unter Solarlicht höhere Aktivitäten für die Methanoloxidation erreicht werden als für die TiO₂-Photoelektroden. Der Vorteil der kaltgasgespritzten WO₃-Filme ist, dass selbst bei einem externen Potential von 1,6 V *vs*. NHE noch keine Limitierung des Photostroms eintritt. Bei den TiO₂-Elektroden ist der Photostrom hingegen schon ab Potentialen von 0,1 V *vs*. NHE konstant, weil die Lichtintensität höhere Stromdichten verhindert. Die kritische Zellspannung, bei der die photoelektrochemische Aktivität der WO₃-Filme diejenige der TiO₂-Filme übersteigt, liegt bei einem externen Potential von 0,6 V *vs*. NHE. Da der Photostrom der WO₃/Ti-Photoelektrode über den gesamten Potentialbereich immer weiter ansteigt, ist die Aktivität der WO₃-Elektrode bei einem externen Potential von 1,6 V *vs*. NHE ungefähr viermal so hoch (ca. 3 mA/cm²) wie bei den TiO₂-Elektroden (ca. 0,7 mA/cm²).

Neben der photoelektrochemischen Charakterisierung war aufgrund der Ergebnisse von NIEDERBERGER et al. die Untersuchung der Produkte der photoelektrochemischen Reaktionen einer der weiteren Kernpunkte dieser Arbeit.¹¹⁹ Die Autoren fanden 2016 heraus, dass in einem System zur photoelektrochemischen Wassersspaltung (in H₂ und O₂), bestehend aus WO₃-Photoanode und Pt-Gegenelektrode in schwefelsaurem Elektrolyten, nur ca. 8 % des gemessenen Photostroms auf die erwünschte Oxidation von Wasser zu Sauerstoff zurückgeführt werden konnten (FARADAY'sche Effizienz). Der restliche Photostrom kam durch die Oxidation der Sulfat-Ionen des Elektrolyten zu Peroxodisulfat-Ionen zustande. Aus diesem Grund wurden im Rahmen dieser Arbeit Formaldehyd-Bestimmung neben der auch die gasförmigen Produkte des Methanolabbaus untersucht. Eine Zusammenfassung der Produktbildung beim Methanolabbau an kaltgasgespritzten WO₃/Ti-Photoelektroden ist in Abbildung 63 dargestellt.

Abbildung 63: Produkte des Methanolabbaus (FARADAY'sche Effizienzen) an einer WO₃/Ti-Photoanode in einer photoelektrochemischen Halbzelle mit Pt als Gegenelektrode in 0,5 M H₂SO₄ mit 10 Vol.-% Methanol. Es sind die Stromausbeuten für die Oxidation und Reduktion nach einer 3-stündigen Chronoamperometrie-Messung bei einem Potential von 1 V vs. NHE unter Bestrahlung mit einem 300 W Sonnensimulator (AM 1.5G) gezeigt. Aufgrund des "*current doubling*"-Effekts wurde eine Stromausbeute von über 100 % für die Wasserstoffbildung erreicht.

Zur Formaldehyd-Bestimmung wurde die Konzentration im Elektrolyten direkt nach der photoelektrochemischen Reaktion ($I_{250} - I_{500} = 14 \text{ mW/cm}^2$) mithilfe des NASH-Reagenz und der Fluoreszenzspektroskopie untersucht.^{136,137} Dabei konnten für Messzeiten von 10 – 20 Minuten bei der Methanoloxidation im luftgesättigten System im Schnitt ungefähr 94 % der Stromdichten auf die Reaktion von Methanol zu Formaldehyd zurückgeführt werden. Wird dieselbe Reaktion unter Luftausschluss durchgeführt, sinken die FARADAY'schen Effizienzen auf ca. 87 % für die WO₃-Photoelektroden. Diese Beobachtung kann damit erklärt werden, dass ohne Sauerstoff im System einer von zwei möglichen Reaktionspfaden des Hydroxymethyl-Intermediates zu Formaldehyd nicht mehr zur Verfügung steht. Die gasförmigen Produkte des Methanolabbaus wurden ebenfalls unter Luftausschluss im Argon-gesättigten System untersucht. Allerdings musste für diese PEC/MS-Messungen ein anderer Reaktionsaufbau verwendet werden. Die photoelektrochemische Zelle wurde mit einem Massenspektrometer verbunden und eine 450 W Xenon-Lampe wurde als Bestrahlungseinheit ($I_{250} - I_{500} = 33 \text{ mW/cm}^2$) verwendet. Durch die höhere Bestrahlungsintensität wurden bei diesen Experimenten für die TiO₂-Photoelektroden höhere Stromdichten (ca. 6 mA/cm²) als bei den WO₃-Elektroden (ca. 4,6 mA/cm²) gemessen.

In einem 15-minütigen PEC/MS-Experiment konnten bei der WO₃/Ti-Photoelektrode Wasserstoff ($\eta_{FE} = 172$ %), Kohlenstoffdioxid ($\eta_{FE} = 40$ %) und Sauerstoff ($\eta_{FE} = 17$ %) als gasförmige Produkte der photoelektrochemischen Methanoloxidation ausgemacht werden. Die hohe FARADAY'sche Effizienz für die Wasserstoffbildung kann darauf zurückgeführt werden, dass H₂ das einzige Reduktionsprodukt (an der Platinelektrode) der kompletten Mineralisierung von Methanol zu CO₂ (an der Photoanode) ist. Zudem tritt bei dieser Reaktion unter Luftausschluss der "*current doubling*"-Effekt auf. Dieser Effekt beruht darauf, dass das aus Methanol entstandene Hydroxymethyl-Intermediat in Abwesenheit von Sauerstoff ausschließlich über die Injektion eines Elektrons in das Leitungsband des Halbleiters oxidiert werden kann:

$$CH_2OH \rightarrow HCHO + H^+ + e^-_{LB}$$
 [61]

Dieses zusätzliche Elektron, welches aus dem oxidativen Pfad des Methanolabbaus stammt, wird nun ebenfalls für die reduktive Wasserstoffentwicklungsreaktion an der Platinkathode verwendet. Dadurch kann die FARADAY'sche Effizienz für die H₂-Entwicklung auf über 100 % ansteigen. Auf der Seite der Oxidationsprodukte konnten insgesamt 57 % der Stromdichte den auf der WO₃/Ti-Photoelektrode entstandenen gasförmigen Produkten zugeordnet werden.

Eine PEC/MS-Langzeituntersuchung der WO₃/Ti-Photoelektrode für 3 h Reaktionszeit (dargestellt in Abbildung 63) bestätigte, dass die Ausbeute an gasförmigen Reaktionsprodukten mit der Zeit steigt. Während die FARADAY'sche Effizienz für die H2-Entwicklung geringfügig auf 166 % zurückging, stieg die Effizienz für die Bildung von CO_2 ($\eta_{FE} = 65$ %) an, was auf eine fortschreitende Oxidation von Methanol zurückgeführt werden kann. Für Sauerstoff wurde eine FARADAY'sche Effizienz von 29 % gefunden, was den Ergebnissen von NIEDERBERGER et al. zur Wasseroxidation an WO3-Photoelektroden ($\eta_{FE} = 8$ %) widerspricht.¹¹⁹ Auf diese Weise konnte gezeigt werden, dass die Oxidation von Wasser als Nebenreaktion des photoelektrochemischen Methanolabbaus ebenfalls signifikante Stromdichten erzeugt. Zusätzlich wurden bei dem Langzeitexperiment auch die Bildungen von Formaldehyd und Ameisensäure mit dem Massenspektrometer verfolgt. Dabei zeigte sich, dass der Argon-Gasstrom von 5 mL/min durch die Zelle diese beiden Produkte ebenfalls aus dem Elektrolyten austreibt. Mithilfe der Massenspektrometrie wurde gefunden, dass die Bildungsrate von Ameisensäure im Gegensatz zu Formaldehyd erst ab einer Reaktionszeit von 30 Minuten stark zu steigen beginnt. So konnten bei diesem photoelektrochemischen Experiment alle erwarteten Produkte des Methanolabbaus qualitativ nachgewiesen werden.

Zum Abschluss dieser Arbeit wurde der photoelektrochemische Methanolabbau in einer prototypischen Zweikammer-Photoelektrolysezelle mit dazwischen liegender Nafion-Membran vorgestellt. Bei der 2-Elektronen-Messung wurden die kaltgasgespritzten Photoelektroden von WO₃ und TiO₂ als Anoden getestet und eine Platinelektrode als Kathode verwendet. Bei diesen Messungen wurden aufgrund der veränderten Elektrodengeometrie, eines höheren elektrischen Widerstands durch die Membran und des OHM'schen Spannungsverlustes der 2-Elektroden-Messung deutlich geringe Stromdichten für beide Systeme mit WO₃ und TiO₂ gefunden. Die Stromdichten gingen

im Vergleich zur 3-Elektroden-Messung in der PEC-Einkammer-Zelle um ca. 84 % (WO₃/Ti) bzw. um ca. 58 % (TiO₂/Ti) zurück. Zwar konnte mithilfe von CA-Langzeitmessungen über 2,5 h gezeigt werden, dass das System WO₃/Ti + Pt einen stationären Zustand (d.h. konstante Stromwerte) erreicht, allerdings sind die damit erreichten ABPE-Werte (engl.: "*Applied Bias Photon to Current Efficiency*")¹⁴ von 0,2 % für eine technische Produktion von Wasserstoff als "*solar fuel*" noch zu gering. Um mit einem System aus Solarzelle kombiniert mit Wasserelektrolyse konkurrieren zu können, müssten nach PETER mindestens 16 % "*Solar to Hydrogen*"-Effizienz (STH) oder vergleichbare ABPE-Werte erreicht werden.¹

Die Inhalte dieser Forschungsarbeit lassen sich an unterschiedlichen Stellen sinnvoll erweitern. Für zukünftige Messungen wäre es zum Beispiel interessant die WO3-Photoelektroden für den Abbau weiterer Modellschadstoffe zu testen, da ein reales Abwasser meist eine Ansammlung verschiedenster organischer Substanzen und Salzen ist. Literaturbekannte Beispiele für Modellschadstoffe wären Acetat, 4-Chlorophenol oder Harnstoff.^{6,209} Alternativ könnte die photoelektrochemische Wassereinigung testweise auch direkt an realen Abwässern durchgeführt werden, um das Anwendungspotential noch besser abschätzten zu können. Auf jeden Fall wäre es für die Realisierung des vorgeschlagenen Konzepts zur Aufreinigung von Abwässern mit simultaner Wasserstoffproduktion wichtig, die photoelektrochemischen Aktivitäten aus der Halbzellen-Messung auf die 2-Elektroden-Vollzelle, bestehend aus Anode und Kathode, zu übertragen. Ebenfalls förderlich für eine photoelektrochemische Anwendung wäre die Verwendung einer Tandem-Zelle, bestehend aus n-typischer Photoanode und ptypischer Photokathode, mit deren Hilfe eine externe Spannungsquelle möglicherweise überflüssig werden würde. Die für die WO3-Photoanode notwendige Hilfsspannung würde dann von der p-typischen Photokathode bereitgestellt werden. Zwar gibt es auch schon Beispiele für photoelektrochemische Tandemzellen,^{106,116} aber Probleme mit der Photokorrosion der p-dotierten Halbleiterfilme (Bsp. Cadmiumsulfid) haben eine Anwendung bisher verhindert.²¹⁰

7. Literaturverzeichnis

- 1. Peter LM. Photoelectrochemical Water Splitting. A Status Assessment. *Electroanalysis*. 2015;27(4):864-871. doi:10.1002/elan.201400587.
- 2. Arrhenius S. XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. *Philos Mag Ser 5*. 1896;41(251):237-276. doi:10.1080/14786449608620846.
- 3. British Petroleum. BP Energy Outlook 2035.; 2015.
- 4. Lewis NS, Nocera DG. Powering the planet: Chemical challenges in solar energy utilization. *Proc Natl Acad Sci.* 2006;103(43):15729-15735. doi:10.1073/pnas.0603395103.
- Hanjra MA, Qureshi ME. Global water crisis and future food security in an era of climate change. *Food Policy*. 2010;35(5):365-377. doi:10.1016/j.foodpol.2010.05.006.
- 6. Kim J, Monllor-Satoca D, Choi W. Simultaneous production of hydrogen with the degradation of organic pollutants using TiO₂ photocatalyst modified with dual surface components. *Energy Environ Sci.* 2012;5(6):7647-7656. doi:10.1039/C2EE21310A.
- 7. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. *Nature*. 1972;238(5358):37-38. doi:10.1038/238037a0.
- 8. Nozik AJ. Electrode materials for photoelectrochemical devices. *J Cryst Growth*. 1977;39(1):200-209. doi:10.1016/0022-0248(77)90166-X.
- 9. Memming R. Kinetics of charge transfer reactions in photoelectrochemical cells. *J Chem Sci.* 1993;105(6):463-474. doi:10.1007/BF03040818.
- 10. Bicelli LP. A review of photoelectrochemical methods for the utilization of solar energy. *Surf Technol.* 1983;20(4):357-381. doi:10.1016/0376-4583(83)90115-2.
- 11. Grätzel M. Photoelectrochemical cells. *Nature*. 2001;414(6861):338-344. doi:10.1038/35104607.
- 12. Peter LM, Upul Wijayantha KG. Photoelectrochemical water splitting at semiconductor electrodes: Fundamental problems and new perspectives. *ChemPhysChem.* 2014;15(10):1983-1995. doi:10.1002/cphc.201402024.
- Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. *Chem Soc Rev.* 2014;43(22):7520-7535. doi:10.1039/C3CS60378D.
- 14. Chen Z, Dinh HN, Miller E. *Photoelectrochemical Water Splitting*.; 2013. doi:10.1007/978-1-4614-8298-7.
- 15. Osterloh FE. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. *Chem Soc Rev.* 2013;42(6):2294-2320. doi:10.1039/c2cs35266d.
- 16. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J Photochem

Photobiol C Photochem Rev. 2000;1(1):1-21. doi:10.1016/S1389-5567(00)00002-2.

- 17. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental Applications of Semiconductor Photocatalysis. *Chem Rev.* 1995;95(1):69-96. doi:10.1021/cr00033a004.
- Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO₂ Photocatalysis : Mechanisms and Materials. *Chem Rev.* 2014;114(19):9919-9986. doi:10.1021/cr5001892.
- Upul Wijayantha KG, Saremi-Yarahmadi S, Peter LM. Kinetics of oxygen evolution at α-Fe₂O₃ photoanodes: a study by photoelectrochemical impedance spectroscopy. *Phys Chem Chem Phys.* 2011;13(12):5264-5270. doi:10.1039/c0cp02408b.
- 20. Pendlebury SR, Wang X, Le Formal F, et al. Ultrafast charge carrier recombination and trapping in hematite photoanodes under applied bias. *J Am Chem Soc*. 2014;136(28):9854-9857. doi:10.1021/ja504473e.
- Pendlebury SR, Barroso M, Cowan AJ, et al. Dynamics of photogenerated holes in nanocrystalline α-Fe₂O₃ electrodes for water oxidation probed by transient absorption spectroscopy. *Chem Commun (Camb)*. 2011;47(2):716-718. doi:10.1039/c0cc03627g.
- 22. Hodes G, Cahen D, Manassen J. Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC). *Nature*. 1976;260(5549):312-313. doi:10.1038/260312a0.
- 23. Butler MA, Nasby RD, Quinn RK. Tungsten trioxide as an electrode for photoelectrolysis of water. *Solid State Commun.* 1976;19(10):1011-1014. doi:10.1016/0038-1098(76)90642-6.
- 24. Butler MA. Photoelectrolysis and physical properties of the semiconducting electrode WO₃. *J Appl Phys.* 1977;48(5):1914-1920. doi:10.1063/1.323948.
- 25. Cristino V, Caramori S, Argazzi R, Meda L, Marra GL, Bignozzi CA. Efficient photoelectrochemical water splitting by anodically grown WO₃ electrodes. *Langmuir*. 2011;27(11):7276-7284. doi:10.1021/la200595x.
- 26. Santato C, Ulmann M, Augustynski J. Photoelectrochemical properties of nanostructured tungsten trioxide films. *J Phys Chem B*. 2001;105(5):936-940. doi:10.1021/jp002232q.
- 27. Santato C, Ulmann M, Augustynski J. Enhanced visible light conversion efficiency using nanocrystalline WO₃ films. *Adv Mater*. 2001;13(7):511-514. doi:10.1002/1521-4095(200104)13:7<511::AID-ADMA511>3.0.CO;2-W.
- 28. Bahnemann DW. Solare Abwasserentgiftung. *Nachr Chem Tech Lab.* 1994;42(4):378-388. doi:10.1002/nadc.19940420413.
- 29. Anpo M. Photocatalysis on titanium oxide catalysts Approaches in achieving highly efficient reactions and realizing the use of visible light. *Catal Surv from Japan*. 1997;1(2):169-179. doi:10.1023/A:1019024913274.
- 30. Herrmann-Geppert I, Bogdanoff P, Gutzmann H, et al. Cold Gas Sprayed TiO₂-

based Electrodes for the Photo-Induced Water Oxidation. *ECS Trans*. 2014;58(30):21-30. doi:10.1149/05830.0021ecst.

- 31. Herrmann-Geppert I, Bogdanoff P, Emmler T, et al. Cold gas spraying A promising technique for photoelectrodes: The example TiO₂. *Catal Today*. 2016;260:140-147. doi:10.1016/j.cattod.2015.06.007.
- González-Borrero PP, Sato F, Medina AN, et al. Optical band-gap determination of nanostructured WO₃ film. *Appl Phys Lett.* 2010;96(6):10-13. doi:10.1063/1.3313945.
- 33. Lassner E, Schubert W. *Tungsten: Properties, Chemistry, Technology of the Elements, Alloys, and Chemical Compounds.*; 1999. doi:10.1007/978-1-4615-4907-9.
- 34. Riedel J. Anorganische Chemie.; 2011. doi:10.1007/978-3-540-69865-4.
- 35. Woodward PM, Sleight AW, Vogt T. Structure refinement of triclinic tungsten trioxide. *J Phys Chem Solids*. 1995;56(10):1305-1315. doi:10.1016/0022-3697(95)00063-1.
- Johansson MB, Kristiansen PT, Duda L, Niklasson GA, Österlund L. Band gap states in nanocrystalline WO₃ thin films studied by soft x-ray spectroscopy and optical spectrophotometry. *J Phys Condens Matter*. 2016;28(47):475802. doi:10.1088/0953-8984/28/47/475802.
- Zhu T, Chong MN, Chan ES. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: A review. *ChemSusChem*. 2014;7(11):2974-2997. doi:10.1002/cssc.201402089.
- Haisch C, Schneider J, Fleisch M, Gutzmann H, Klassen T, Bahnemann DW. Cold sprayed WO₃ and TiO₂ electrodes for photoelectrochemical water and methanol oxidation in renewable energy applications. *Dalt Trans*. 2017;46(38):12811-12823. doi:10.1039/C7DT02063E.
- 39. Sikka VK, Rosa CJ. The oxidation kinetics of tungsten and the determination of oxygen diffusion coefficient in tungsten trioxide. *Corros Sci.* 1980;20(November 1979):1201-1219. doi:10.1016/0010-938X(80)90092-X.
- 40. Enesca A, Duta A, Schoonman J. Study of photoactivity of tungsten trioxide (WO₃) for water splitting. *Thin Solid Films*. 2007;515(16 SPEC. ISS.):6371-6374. doi:10.1016/j.tsf.2006.11.135.
- 41. Fujishima A, Zhang X, Tryk DA. TiO₂ photocatalysis and related surface phenomena. *Surf Sci Rep.* 2008;63(12):515-582. doi:10.1016/j.surfrep.2008.10.001.
- 42. Sze SM, Ng KK. *Physics of Semiconductor Devices*.; 2007. doi:10.1049/ep.1970.0039.
- 43. Muller RS, Kamins TI, Chan M. *Device Electronics for Integrated Circuits*.; 2002.
- 44. Lide DR. *The 84th Edition of the CRC Handbook of Chemistry and Physics*.; 2004. doi:10.1136/oem.53.7.504.
- 45. Butler MA, Ginley DS. Prediction of Flatband Potentials at Semiconductor-

Electrolyte Interfaces from Atomic Electronegativities. *J Electrochem Soc*. 1978;125(2):228-232. doi:10.1149/1.2131419.

- 46. Gerischer H. The impact of semiconductors on the concepts of electrochemistry. *Electrochim Acta*. 1990;35(11-12):1677-1699. doi:10.1016/0013-4686(90)87067-C.
- 47. Meissner D, Reineke R. Photoelektrochemische Solarenergienutzung. *Nachr Chem Tech Lab.* 1990;38(12):1490-1498. doi:10.1002/nadc.19900381205.
- 48. Bard AJ, Memming R, Miller B. Terminology in semiconductor electrochemistry and photoelectrochemical energy conversion. *Pure Appl Chem.* 1991;63(4):569-596. doi:10.1351/pac199163040569.
- Pan L, Zhang X, Wang L, Zou J-J, Xu X-T. Rational Design and Construction of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen Evolution: A Comprehensive Review. *Adv Sci.* 2018;6(2):1801505. doi:10.1002/advs.201801505.
- 50. Wrighton MS. Photoelectrochemistry: Inorganic Photochemistry at Semiconductor Electrodes. *J Chem Educ*. 1983;60(10):877-881. doi:10.1021/ed060p877.
- 51. Gelderman K, Lee L, Donne SW. Flat-Band Potential of a Semiconductor: Using the Mott–Schottky Equation. *J Chem Educ*. 2007;84(4):685-688. doi:10.1021/ed084p685.
- 52. Mott NF. The Theory of Crystal Rectifiers. *Proc R Soc A Math Phys Eng Sci*. 1939;171(944). doi:10.1098/rspa.1939.0051.
- 53. Schottky W. Zur Halbleitertheorie der Sperrschicht- und Spitzengleichrichter. Z *Phys.* 1939;113(5-6):367-414. doi:10.1007/BF01774216.
- 54. Schottky W. Vereinfachte und erweiterte Theorie der Randschicht-gleichrichter. *Z Phys.* 1942;118(9-10):539-592. doi:10.1007/BF01329843.
- 55. Hamann CH, Hamnett A, Vielstich W. *Electrochemistry*.; 2007. doi:10.1002/9783527616978.
- 56. Becquerel AE. Memoire sur les effects d'electriques produits sous l'influence des rayons solaires. *Acad des Sci.* 1839;9:561-567.
- 57. Kisch H. Semiconductor Photocatalysis: Principles and Applications.; 2015. doi:10.1002/9783527673315.
- Rosseler O, Shankar M V., Du MK-L, Schmidlin L, Keller N, Keller V. Solar light photocatalytic hydrogen production from water over Pt and Au/TiO₂ (anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion. *J Catal.* 2010;269(1):179-190. doi:10.1016/j.jcat.2009.11.006.
- 59. Acket GA, Volger J. Hall-measurements on slightly reduced rutile (TiO₂). *Phys Lett.* 1964;8(4):244-246. doi:10.1016/S0031-9163(64)91249-1.
- 60. Mills A, Le Hunte S. An overview of semiconductor photocatalysis. *J Photochem Photobiol A Chem.* 1997;108(1):1-35. doi:10.1016/S1010-6030(97)00118-4.
- 61. Nosaka Y, Daimon T, Nosaka AY, Murakami Y. Singlet oxygen formation in

photocatalytic TiO₂ aqueous suspension. *Phys Chem Chem Phys*. 2004;6(11):2917-2918. doi:10.1039/b405084c.

- 62. Bahnemann D. Photocatalytic water treatment: Solar energy applications. *Sol Energy*. 2004;77(5):445-459. doi:10.1016/j.solener.2004.03.031.
- 63. Mohamed HH, Dillert R, Bahnemann DW. TiO₂ nanoparticles as electron pools: Single- and multi-step electron transfer processes. *J Photochem Photobiol A Chem.* 2012;245:9-17. doi:10.1016/j.jphotochem.2012.06.022.
- Mohamed HH, Mendive CB, Dillert R, Bahnemann DW. Kinetic and mechanistic investigations of multielectron transfer reactions induced by stored electrons in TiO₂ nanoparticles: A stopped flow study. *J Phys Chem A*. 2011;115(11):2139-2147. doi:10.1021/jp108958w.
- 65. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS₂ nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. *J Am Chem Soc.* 2011;133:7296-7299. doi:10.1021/ja201269b.
- 66. Choi W, Lee J, Kim S, Hwang S, Lee MC, Lee TK. Nano Pt particles on TiO₂ and their effects on photocatalytic reactivity. *J Ind Eng Chem.* 2003;9(1):96-101.
- 67. Hwang S, Lee MC, Choi W. Highly enhanced photocatalytic oxidation of CO on titania deposited with Pt nanoparticles: Kinetics and mechanism. *Appl Catal B Environ*. 2003;46(1):49-63. doi:10.1016/S0926-3373(03)00162-0.
- 68. Tang J, Durrant JR, Klug DR. Mechanism of photocatalytic water splitting in TiO₂. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. *J Am Chem Soc*. 2008;130(42):13885-13891. doi:10.1021/ja8034637.
- Tang J, Cowan AJ, Durrant JR, Klug DR. Mechanism of O₂ Production from Water Splitting: Nature of Charge Carriers in Nitrogen Doped Nanocrystalline TiO₂ Films and Factors Limiting O₂ Production. *J Phys Chem C*. 2011;115(7):3143-3150. doi:10.1021/jp1080093.
- Young ER, Costi R, Paydavosi S, Nocera DG, Bulović V. Photo-assisted water oxidation with cobalt-based catalyst formed from thin-film cobalt metal on silicon photoanodes. *Energy Environ Sci.* 2011;4(6):2058-2061. doi:10.1039/c1ee01209f.
- Kanan MW, Nocera DG. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co²⁺. *Science*. 2008;321(5892):1072-1075. doi:10.1126/science.1162018.
- Youngblood WJ, Anna Lee SH, Maeda K, Mallouk TE. Visible light water splitting using dye-sensitized oxide semiconductors. *Acc Chem Res*. 2009;42(12):1966-1973. doi:10.1021/ar9002398.
- Abe T, Suzuki E, Nagoshi K, Miyashita K, Kaneko M. Electron Source in Photoinduced Hydrogen Production on Pt-supported TiO₂ Particles. *J Phys Chem B*. 1999;103(7):1119-1123. doi:10.1021/jp983265x.
- Siahrostami S, Li GL, Viswanathan V, Nørskov JK. One- or Two-Electron Water Oxidation, Hydroxyl Radical, or H₂O₂ Evolution. *J Phys Chem Lett*. 2017;8(6):1157-1160. doi:10.1021/acs.jpclett.6b02924.

- 75. Burek BO, Bahnemann DW, Bloh JZ. Modeling and Optimization of the Photocatalytic Reduction of Molecular Oxygen to Hydrogen Peroxide over Titanium Dioxide. *ACS Catal*. 2019;9(1):25-37. doi:10.1021/acscatal.8b03638.
- 76. Kanan MW, Surendranath Y, Nocera DG. Cobalt-phosphate oxygen-evolving compound. *Chem Soc Rev.* 2009;38(1):109-114. doi:10.1039/b802885k.
- 77. Zhong DK, Sun J, Inumaru H, Gamelin DR. Solar water oxidation by composite catalyst/α-Fe₂O₃ photoanodes. *J Am Chem Soc*. 2009;131(17):6086-6087. doi:10.1021/ja9016478.
- Jeon MK, Park JW, Kang M. Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase and rutile forms of Cu-TiO₂. *J Ind Eng Chem.* 2007;13(1):84-91. doi:DOI: 10.1016/0038-1098(90)90273-E.
- 79. Schneider J, Bahnemann DW. Undesired role of sacrificial reagents in photocatalysis. *J Phys Chem Lett*. 2013;4(20):3479-3483. doi:10.1021/jz4018199.
- 80. Thiruvenkatachari R, Vigneswaran S, Moon IS. A review on UV/TiO₂ photocatalytic oxidation process. *Korean J Chem Eng.* 2008;25(1):64-72. doi:10.1007/s11814-008-0011-8.
- Dillert R, Siemon U, Bahnemann D. Photokatalytische Desinfektion eines kommunalen Abwassers. *Chemie Ing Tech*. 1998;70(3):310-314. doi:10.1002/cite.330700320.
- 82. Kawai T, Sakata T. Photocatalytic hydrogen production from liquid methanol and water. *J Chem Soc Chem Commun*. 1980;80(15):694-695. doi:10.1039/c39800000694.
- Wang CY, Pagel R, Bahnemann DW, Dohrmann JK. Quantum yield of formaldehyde formation in the presence of colloidal TiO₂-based photocatalysts: Effect of intermittent illumination, platinization, and deoxygenation. *J Phys Chem B*. 2004;108(37):14082-14092. doi:10.1021/jp048046s.
- 84. Zhang J, Nosaka Y. Photocatalytic oxidation mechanism of methanol and the other reactants in irradiated TiO₂ aqueous suspension investigated by OH radical detection. *Appl Catal B Environ*. 2015;166-167:32-36. doi:10.1016/j.apcatb.2014.11.006.
- 85. Chen J, Ollis DF, Rulkens WH, Bruning H. Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO₂ and metallized TiO₂ suspensions. Part (II): Photocatalytic mechanisms. *Water Res.* 1999;33(3):669-676. doi:10.1016/S0043-1354(98)00262-0.
- 86. Wang C yi, Rabani J, Bahnemann DW, Dohrmann JK. Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO₂ photocatalysts. *J Photochem Photobiol A Chem.* 2002;148(1-3):169-176. doi:10.1016/S1010-6030(02)00087-4.
- 87. Wang C yi, Groenzin H, Shultz MJ. Direct Observation of Competitive Adsorption between Methanol and Water on TiO₂: An in Situ Sum-Frequency Generation Study. *J Am Chem Soc.* 2004;126(26):8094-8095.

doi:10.1021/ja0481651.

- Salvador P. On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO₂ aqueous suspensions: A revision in the light of the electronic structure of adsorbed water. *J Phys Chem C*. 2007;111(45):17038-17043. doi:10.1021/jp074451i.
- 89. Lee MC, Choi W. Solid phase photocatalytic reaction on the Soot/TiO₂ interface: The role of migrating OH radicals. *J Phys Chem B*. 2002;106(45):11818-11822. doi:10.1021/jp026617f.
- 90. Kawahara K, Ohko Y, Tatsuma T, Fujishima A. Surface diffusion behavior of photo-generated active species or holes on TiO₂ photocatalysts. *Phys Chem Chem Phys.* 2003;5(21):4764-4766. doi:10.1039/b311230f.
- 91. Tatsuma T, Tachibana SI, Fujishima A. Remote oxidation of organic compounds by UV-irradiated TiO₂ via the gas phase. *J Phys Chem B*. 2001;105(29):6987-6992. doi:10.1021/jp011108j.
- 92. Park JS, Choi W. Remote Photocatalytic Oxidation Mediated by Active Oxygen Species Penetrating and Diffusing through Polymer Membrane over Surface Fluorinated TiO₂. *Chem Lett.* 2005;34(12):1630-1631. doi:10.1246/cl.2005.1630.
- 93. Kikuchi Y, Sunada K, Iyoda T, Hashimoto K, Fujishima A. Photocatalytic bactericidal effect of TiO₂ thin films: dynamic view of the active oxygen species responsible for the effect. *J Photochem Photobiol A Chem.* 1997;106(1-3):51-56. doi:10.1016/S1010-6030(97)00038-5.
- Hykaway N, Sears WM, Morisaki H, Morrison SR. Current-doubling reactions on titanium dioxide photoanodes. *J Phys Chem.* 1986;90(25):6663-6667. doi:10.1021/j100283a014.
- 95. Memming R. Photoinduced Charge Transfer Processes at Semiconductor Electrodes and Particles. *Top Curr Chem.* 1994;169:105-181. doi:10.1007/3-540-57565-0_75.
- Nogami G. Investigation of "Current Doubling" Mechanism of Organic Compounds by the Rotating Ring Disk Electrode Technique. *J Electrochem Soc.* 1989;136(9):2583-2588. doi:10.1149/1.2097485.
- 97. Villarreal TL, Gómez R, Neumann-Spallart M, Alonso-Vante N, Salvador P. Semiconductor photooxidation of pollutants dissolved in water: A kinetic model for distinguishing between direct and indirect interfacial hole transfer. *J Phys Chem B*. 2004;108(39):15172-15181. doi:10.1021/jp049447a.
- 98. Shen PK. Anodic Oxidation of Methanol on Pt/WO₃ in Acidic Media. *J Electrochem Soc.* 1994;141(11):3082-3090. doi:10.1149/1.2059282.
- Shen PK, Syedd-Bokhari J, Tseung CC. The Performance of Electrochromic Tungsten Trioxide Films Doped with Cobalt or Nickel. *J Electrochem Soc*. 1991;138(9):2778-2783. doi:10.1149/1.2086054.
- Chen KY, Shen PK, Tseung ACC. Anodic-oxidation of formic acid on electrodeposited Pt/WO₃ electrodes at room-temperature. *J Electrochem Soc*. 1995;142(4):L54-L56. doi:10.1149/1.2044181.

- 101. Shen PK, Chen KY, Tseung ACC. Performance of CO-electrodeposited Pt-Ru/WO₃ electrodes for the electrooxidation of formic acid at room temperature. *J Electroanal Chem.* 1995;389(1-2):223-225. doi:10.1016/0022-0728(95)03974-L.
- 102. Zhang X, Chan K-Y, Tseung ACC. Electrochemical oxidation of glucose by Pt/WO₃ electrode. *J Electroanal Chem.* 1995;386:241-243. doi:10.1016/S0022-0728(97)00138-1.
- Habazaki H. Characterization of electrodeposited WO₃ films and its application to electrochemical wastewater treatment. *Electrochim Acta*. 2002;47(26):4181-4188. doi:10.1016/S0013-4686(02)00435-8.
- 104. Minggu LJ, Wan Daud WR, Kassim MB. An overview of photocells and photoreactors for photoelectrochemical water splitting. *Int J Hydrogen Energy*. 2010;35(11):5233-5244. doi:10.1016/j.ijhydene.2010.02.133.
- 105. Lin Y, Yuan G, Liu R, Zhou S, Sheehan SW, Wang D. Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review. *Chem Phys Lett.* 2011;507(4-6):209-215. doi:10.1016/j.cplett.2011.03.074.
- 106. Prévot MS, Sivula K. Photoelectrochemical tandem cells for solar water splitting. *J Phys Chem C*. 2013;117(35):17879-17893. doi:10.1021/jp405291g.
- 107. Augustynski J, Solarska R, Hagemann H, Santato C. Nanostructured thin-film tungsten trioxide photoanodes for solar water and sea-water splitting. *Proc SPIE*. 2006;6340:1-9. doi:10.1117/12.680667.
- 108. Abe R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. *J Photochem Photobiol C*. 2010;11(4):179-209. doi:10.1016/j.jphotochemrev.2011.02.003.
- Bahnemann D, Bockelmann D, Goslich R. Mechanistic studies of water detoxification in illuminated TiO₂ suspensions. *Sol Energy Mater*. 1991;24(1-4):564-583. doi:10.1016/0165-1633(91)90091-X.
- 110. Chong MN, Jin B, Chow CWK, Saint C. Recent developments in photocatalytic water treatment technology: A review. *Water Res.* 2010;44(10):2997-3027. doi:10.1016/j.watres.2010.02.039.
- 111. Herrmann JM. Heterogeneous photocatalysis: State of the art and present applications. *Top Catal*. 2005;34(1-4):49-65. doi:10.1007/s11244-005-3788-2.
- 112. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. *Catal Today*. 2009;147(1):1-59. doi:10.1016/j.cattod.2009.06.018.
- 113. Kositzi M, Poulios I, Malato S, Caceres J, Campos A. Solar photocatalytic treatment of synthetic municipal wastewater. *Water Res.* 2004;38(5):1147-1154. doi:10.1016/j.watres.2003.11.024.
- 114. Abe R, Takami H, Murakami N, Ohtani B. Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. *J Am Chem Soc*. 2008;130(25):7780-7781. doi:10.1021/ja800835q.

- 115. Joshi UA, Darwent JR, Yiu HHP, Rosseinsky MJ. The effect of platinum on the performance of WO₃ nanocrystal photocatalysts for the oxidation of Methyl Orange and iso-propanol. *J Chem Technol Biotechnol*. 2011;86(8):1018-1023. doi:10.1002/jctb.2612.
- 116. Kim JH, Kaneko H, Minegishi T, Kubota J, Domen K, Lee JS. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight. *ChemSusChem.* 2016;9(1):61-66. doi:10.1002/cssc.201501401.
- 117. Spichiger-Ulmann M, Augustynski J. Aging effects in n-type semiconducting WO₃ films. *J Appl Phys.* 1983;54(10):6061-6064. doi:10.1063/1.331756.
- 118. Santato C, Odziemkowski M, Ulmann M, Augustynski J. Crystallographically oriented mesoporous WO₃ films: Synthesis, characterization, and applications. *J Am Chem Soc.* 2001;123(43):10639-10649. doi:10.1021/ja011315x.
- Reinhard S, Rechberger F, Niederberger M. Commercially Available WO₃ Nanopowders for Photoelectrochemical Water Splitting: Photocurrent versus Oxygen Evolution. *Chempluschem*. 2016;81(9):935-940. doi:10.1002/cplu.201600241.
- 120. Suzuki H, Tomita O, Higashi M, Abe R. Tungstic acids H₂WO₄ and H₄WO₅ as stable photocatalysts for water oxidation under visible light. *J Mater Chem A*. 2017;5(21):10280-10288. doi:10.1039/c7ta01228d.
- 121. Fleisch M. Entwicklung eines Photovoltaik-Dachziegel-Moduls auf Basis der Farbstoffsolarzellentechnologie. *Dissertation*. 2016:Universität Hannover.
- 122. Ito S, Chen P, Comte P, et al. Fabrication of screen-printing pastes from TiO₂ powders for dye-sensitised solar cells. *Prog Photovoltaics Res Appl.* 2007;15(7):603-612. doi:10.1002/pip.768.
- 123. Bragg WH, Bragg WL. The reflection of X-rays by crystals. *Proc R Soc London Ser A*. 1913;88(605):428-438. doi:10.1098/rspa.1913.0040.
- 124. Brunauer S, Emmett PH, Teller E. Adsorption of Gases in Multimolecular Layers. *J Am Chem Soc.* 1938;60(2):309-319. doi:10.1021/ja01269a023.
- 125. Kubelka P, Munk F. An article on optics of paint layers. *Z Tech Phys*. 1931;12(1930):593–601.
- Tauc J, Grigorovici R, Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium. *Phys Status Solidi*. 1966;15(2):627-637. doi:10.1002/pssb.19660150224.
- Tauc J. Optical Properties and Electronic Structure of Amorphous Semiconductors. In: Nudelman S, Mitra SS, eds. *Materials Research Bulletin.*; 1968:37-46. doi:10.1016/0025-5408(68)90023-8.
- 128. Bard AJ, Faulkner LR. *Electrochemical Methods: Fundamentals and Applications.*; 2001. doi:10.1016/B978-0-08-098353-0.00003-8.
- Schmitt R, Mccann D, Marquis B. Dielectric relaxation of WO₃ thick films from 10 Hz to 1.8 GHz. *J Appl Phys.* 2002;6775(May):2002-2004. doi:10.1063/1.1468276.
- 130. Harrington SP, Devine TM. Analysis of Electrodes Displaying Frequency

Dispersion in Mott-Schottky Tests. *J Electrochem Soc*. 2008;155(8):C381-C386. doi:10.1149/1.2929819.

- Harrington SP, Devine TM. Relation Between the Semiconducting Properties of a Passive Film and Reduction Reaction Rates. *J Electrochem Soc.* 2009;156(4):C154-C159. doi:10.1149/1.3077576.
- 132. Cámara OR, de Pauli CP, Vaschetto ME, et al. Semiconducting properties of TiO₂ films thermally formed at 400° C. *J Appl Electrochem*. 1995;25(3):247-251. doi:10.1007/BF00262963.
- 133. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. *Chem Soc Rev.* 2009;38(1):253-278. doi:10.1039/b800489g.
- 134. Wardman P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. *J Phys Chem Ref Data*. 1989;18(4):1637-1753. doi:10.1063/1.555843.
- 135. Ishibashi KI, Fujishima A, Watanabe T, Hashimoto K. Detection of active oxidative species in TiO₂ photocatalysis using the fluorescence technique. *Electrochem commun.* 2000;2(3):207-210. doi:10.1016/S1388-2481(00)00006-0.
- 136. Nash T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. *Biochem J.* 1953;55(3):416-421. doi:10.1042/bj0550416.
- 137. Belman S. The fluorimetric determination of formaldehyde. *Anal Chim Acta*. 1963;29(C):120-126. doi:10.1016/S0003-2670(00)88591-8.
- Hantzsch A. Zur Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniaken. Ber Dtsch Chem Ges. 1883;16(2). doi:10.1002/cber.18830160284.
- 139. Melcher JW. Photokatalytische Oxidation niedermolekularer Alkohole. *Dissertation*. 2016:Universität Hannover.
- 140. Aubry E, Ghazzal MN, Demange V, Chaoui N, Robert D, Billard A. Poisoning prevention of TiO₂ photocatalyst coatings sputtered on soda-lime glass by intercalation of SiN_x diffusion barriers. *Surf Coatings Technol.* 2007;201(18):7706-7712. doi:10.1016/j.surfcoat.2007.03.003.
- 141. Di Paola A, Marcı G, Palmisano L, et al. Instructions for use Preparation of Polycrystalline TiO₂ Photocatalysts Impregnated with Various Transition Metal Ions : Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol. J Phys Chem C. 2001;106:637-645. doi:10.1021/jp0130741.
- 142. Loopstra BO, Rietveld HM. Further refinement of the structure of WO₃. *Acta Cryst B*. 1969;25(7):1420-1421. doi:10.1107/S0567740869004146.
- 143. Hu WH, Han GQ, Dong B, Liu CG. Facile synthesis of highly dispersed WO₃·H₂O and WO₃ nanoplates for electrocatalytic hydrogen evolution. J Nanomater. 2015;2015:1-6. doi:10.1155/2015/346086.
- 144. Viswanathan B, Raj KJA. Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile. *Indian J Chem Sect A Inorganic, Phys Theor Anal Chem.* 2009;48(10):1378-1382.
- 145. Yong X, Schoonen MAA, Xu Y, et al. The absolute energy positions of

conduction and valence bands of selected semiconducting minerals. *Am Mineral*. 2000;85(3-4):543-556. doi:10.2138/am-2000-0416.

- 146. Hamid S. Stoichiometry of the Photocatalytic Fuel Production by the Reformation of Aqueous Acetic Acid. *Dissertation*. 2018:Universität Hannover.
- 147. Ohtani B, Prieto-Mahaney OO, Li D, Abe R. What is Degussa (Evonic) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. *J Photochem Photobiol A Chem.* 2010;216(2-3):179-182. doi:10.1016/j.jphotochem.2010.07.024.
- Zhang H, Lv X, Li Y, Wang Y, Li J. P25-graphene composite as a high performance photocatalyst. *ACS Nano*. 2010;4(1):380-386. doi:10.1021/nn901221k.
- 149. Hao F, Wang X, Zhou C, et al. Efficient light harvesting and charge collection of dye-sensitized solar cells with (001) faceted single crystalline anatase nanoparticles. *J Phys Chem C*. 2012;116(36):19164-19172. doi:10.1021/jp3053967.
- 150. Carbajo J, Tolosana-Moranchel A, Casas JA, Faraldos M, Bahamonde A. Analysis of photoefficiency in TiO₂ aqueous suspensions: Effect of titania hydrodynamic particle size and catalyst loading on their optical properties. *Appl Catal B Environ.* 2018;221(August 2017):1-8. doi:10.1016/j.apcatb.2017.08.032.
- 151. Menthe E. Bildung, Struktur und Eigenschaften der Randschicht von austenitischen Stählen nach dem Plasmanitrieren. *Dissertation*. 1999:Technische Universität Braunschweig.
- 152. Sul YT, Johansson CB, Jeong Y, Albrektsson T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. *Med Eng Phys.* 2001;23(5):329-346. doi:10.1016/S1350-4533(01)00050-9.
- 153. Cullity BD, Stock SR. *Elements of X-Ray Diffraction*.; 2014. doi:10.1107/S0567739479000917.
- 154. Petschick R. Röntgendiffraktometrie in der Sedimentologie (K5). Sediment Schriftenr Dtsch Geol Ges. 2002;18:99-118.
- 155. Freitag J. Einfluss des Metall-Halbleiter Rückkontaktes auf die Photokatalytische Aktivität von Hocheffizienten Titandioxid Schichten. *Dissertation*. 2015:Universität Hannover.
- 156. Liu TX, Liu Y, Zhang ZJ, Li FB, Li XZ. Comparison of aqueous photoreactions with TiO₂ in its hydrosol solution and powdery suspension for light utilization. *Ind Eng Chem Res.* 2011;50(13):7841-7848. doi:10.1021/ie102584j.
- 157. Kliemann JO, Gutzmann H, Gärtner F, Hübner H, Borchers C, Klassen T. Formation of cold-sprayed ceramic titanium dioxide layers on metal surfaces. *J Therm Spray Technol.* 2011;20(1-2):292-298. doi:10.1007/s11666-010-9563-3.
- 158. Kavan L, Grätzel M. Highly efficient semiconducting TiO₂ photoelectrodes prepared by aerosol pyrolysis. *Electrochim Acta*. 1995;40(5):643-652. doi:10.1016/0013-4686(95)90400-W.
- 159. Rakhshani AE, Makdisi Y, Ramazaniyan HA. Electronic and optical properties

of fluorine-doped tin oxide films. *J Appl Phys.* 1998;83(2):1049-1057. doi:10.1063/1.366796.

- 160. Schiavello M. Photoelectrochemistry, Photocatalysis and Photoreactors Fundamentals and Developments.; 2013. doi:10.1007/978-94-015-7725-0.
- 161. Berak JM, Sienko MJ. Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. *J Solid State Chem*. 1970;2(1):109-133. doi:10.1016/0022-4596(70)90040-X.
- 162. Kayser M. Elektrochemische Metallisierung organischer Schichten auf Metallund Halbleiterelektroden. *Dissertation*. 2010:Universität Ulm.
- 163. Thompson L, DuBow J, Rajeshwar K. Photoelectrochemical Generation of Chlorine on Catalytically Modified n-Silicon/Indium Tin Oxide Anodes. J Electrochem Soc. 1982;129(9):1934-1935. doi:10.1149/1.2124327.
- 164. Lemasson P, Peslerbe G, Baticle AM, Vennereau P. Electrochemical study of the tungsten trioxide single crystal electrode with various redox couples growth of ternary compounds on the surfaces of these electrodes. *J Electroanal Chem Interfacial Electrochem*. 1978;86(2):395-406. doi:https://doi.org/10.1016/S0022-0728(78)80013-8.
- 165. Wesolowski D, Ohmoto H, Drummond SE, Mesmer RE. Hydrolysis Equilibria of Tungsten(VI) in Aqueous Sodium Chloride Solutions to 300 °C. *Inorg Chem*. 1984;23(8):1120-1132. doi:10.1021/ic00176a022.
- 166. Schwarzenbach G, Meier J. Formation and investigation of unstable protonation and deprotonation products of complexes in aqueous solution. *J Inorg Nucl Chem.* 1958;8(C):302-312. doi:10.1016/0022-1902(58)80195-5.
- 167. Drew K, Girishkumar G, Vinodgopal K, Kamat P V. Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt-Ru hybrid catalyst for methanol oxidation. *J Phys Chem B*. 2005;109(24):11851-11857. doi:10.1021/jp051073d.
- Sivula K, Le Formal F, Grätzel M. Solar water splitting: Progress using hematite (alpha-Fe₂O₃) photoelectrodes. *ChemSusChem*. 2011;4(4):432-449. doi:10.1002/cssc.201000416.
- 169. Hilliard S, Baldinozzi G, Friedrich D, et al. Mesoporous thin film WO₃ photoanode for photoelectrochemical water splitting: a sol–gel dip coating approach. *Sustain Energy Fuels*. 2017:7-11. doi:10.1039/C6SE00001K.
- 170. Emeline A, Salinaro A, Serpone N. Spectral dependence and wavelength selectivity in heterogeneous photocatalysis. I. Experimental evidence from the photocatalyzed transformation of phenols. *J Phys Chem B*. 2000;104(47):11202-11210. doi:10.1021/jp0019270.
- 171. Beden B, Lamy C, Bewick A, Kunimatsu K. Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed co species. J Electroanal Chem. 1981;121(C):343-347. doi:10.1016/S0022-0728(81)80590-6.
- 172. Xia XH, Iwasita T, Ge F, Vielstich W. Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum. *Electrochim Acta*. 1996;41(5 SPEC. ISS.):711-718. doi:10.1016/0013-4686(95)00360-6.

- Gasteiger HA, Markovic N, Ross PN, Cairns EJ. Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys. *J Phys Chem*. 1993;97(46):12020-12029. doi:10.1021/j100148a030.
- 174. Christensen PA, Hamnett A, Troughton GL. The role of morphology in the methanol electro-oxidation reaction. *J Electroanal Chem.* 1993;362(1-2):207-218. doi:10.1016/0022-0728(93)80023-B.
- 175. Kim J, Lee CW, Choi W. Platinized WO₃ as an Environmental Photocatalyst that Generates OH Radicals under Visible Light. *Environ Sci Technol*. 2010;44(17):6849-6854. doi:10.1021/es101981r.
- 176. Tschapek M, Wasowski C, Torres Sanchez RM. The p.z.c. and i.e.p. of γ-Al₂O₃ and TiO₂. *J Electroanal Chem.* 1976;74(2):167-176. doi:10.1016/S0022-0728(76)80232-X.
- 177. Bendjabeur S, Zouaghi R, Kaabeche ON., Sehili T. Parameters Affecting Adsorption and Photocatalytic Degradation Behavior of Gentian Violet under UV Irradiation with Several Kinds of TiO₂ as a Photocatalyst. *Int J Chem React Eng.* 2017;15(4). doi:10.1515/ijcre-2016-0206.
- 178. Ota K-I, Nakagawa Y, Takahashi M. Reaction products of anodic oxidation of methanol in sulfuric acid solution. *J Electroanal Chem Interfacial Electrochem*. 1984;179(1):179-186. doi:10.1016/S0022-0728(84)80286-7.
- Bahnemann DW, Hilgendorff M, Memming R. Charge carrier dynamics at TiO₂ particles: reactivity of free and trapped holes. *J Phys Chem B*. 1997;101(21):4265-4275. doi:10.1021/jp9639915.
- Zhang Z, Yates JT. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. *Chem Rev.* 2012;112(10):5520-5551. doi:10.1021/cr3000626.
- 181. Helander MG, Greiner MT, Wang ZB, Tang WM, Lu ZH. Work function of fluorine doped tin oxide. J Vac Sci Technol A. 2011;29(1):011019-1-4. doi:10.1116/1.3525641.
- Wang C, Yin L, Zhang L, Gao R. Ti/TiO₂ nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. *J Phys Chem C*. 2010;114(10):4408-4413. doi:10.1021/jp912232p.
- 183. Mini PA, Sherine A, Shalumon KT, Balakrishnan A, Nair S V., Subramanian KR V. Current voltage analysis and band diagram of Ti/TiO₂ nanotubes Schottky junction. *Appl Phys A Mater Sci Process*. 2012;108(2):393-400. doi:10.1007/s00339-012-6898-2.
- 184. Dai W, Wang X, Liu P, Xu Y, Li G, Fu X. Effects of electron transfer between TiO₂ films and conducting substrates on the photocatalytic oxidation of organic pollutants. *J Phys Chem B*. 2006;110(27):13470-13476. doi:10.1021/jp061483h.
- Freitag J, Bahnemann DW. Influence of the Metal Work Function on the Photocatalytic Properties of TiO₂ Layers on Metals. *ChemPhysChem*. 2015;16(12):2670-2679. doi:10.1002/cphc.201500281.
- 186. Kormann C, Bahnemann DW, Hoffmann MR. Preparation and characterization of quantum-size titanium dioxide. *J Phys Chem.* 1988;92(18):5196-5201.

doi:10.1021/j100329a027.

- 187. Yazawa K, Kamogawa H, Morisaki H. Semiconducting TiO₂ films for photoelectrolysis of water. *Int J Hydrogen Energy*. 1979;4(3):205-209. doi:10.1016/0360-3199(79)90025-9.
- 188. Shen PK, Tseung ACC. Study of electrodeposited tungsten trioxide thin films. *J Mater Chem.* 1992;2(11):1141-1147. doi:10.1039/jm9920201141.
- 189. Emmler T, Gutzmann H, Hillebrand P, et al. Cold gas spraying of semiconductor coatings for the photooxidation of water. *Proc SPIE*. 2013;8822:1-12. doi:10.1117/12.2026391.
- 190. Peters M, Hemptenmacher J, Kumpfert J, Leyens C. *Titan Und Titanlegierungen: Struktur, Gefüge, Eigenschaften.*; 2002. doi:10.1002/9783527611089.ch1.
- 191. Burstein E. Anomalous optical absorption limit in InSb. *Phys Rev.* 1954;93(3):632-633. doi:10.1103/PhysRev.93.632.
- 192. Moss TS. The interpretation of the properties of indium antimonide. *Proc Phys Soc London*. 1954;67B(10):775-782. doi:10.1088/0370-1301/67/10/306.
- 193. Allen MW, Durbin SM. Influence of oxygen vacancies on Schottky contacts to ZnO. *Appl Phys Lett.* 2008;92(12):21-24. doi:10.1063/1.2894568.
- 194. Yang K, Dai Y, Huang B. Study of the nitrogen concentration influence on Ndoped TiO₂ anatase from first-principles calculations. *J Phys Chem C*. 2007;111(32):12086-12090. doi:10.1021/jp067491f.
- 195. Irie H, Watanabe Y, Hashimoto K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO_{2-x} N_x Powders. *J Phys Chem B*. 2003;107(23):5483-5486. doi:10.1021/jp030133h.
- 196. Yin S, Yamaki H, Komatsu M, et al. Synthesis of visible-light reactive TiO_{2-x} N_y photocatalyst by mechanochemical doping. *Solid State Sci.* 2005;7(12):1479-1485. doi:10.1016/j.solidstatesciences.2005.07.004.
- 197. Bloh JZ. Entwicklung von Zinkoxid-Photokatalysatoren für den Abbau von Luftschadstoffen. *Dissertation*. 2012:Universität Hannover.
- 198. Choi W, Termin A, Hoffmann MR. The role of metal ion dopants in quantumsized TiO₂: Correlation between photoreactivity and charge carrier recombination dynamics. *J Phys Chem.* 1994;98(51):13669-13679. doi:10.1021/j100102a038.
- 199. Adzic RR, Anson FC, Kinoshita K. Proceedings of the Symposium on Oxygen Electrochemistry.; 1996.
- 200. Rao PS, Hayon E. Redox Potentials of Free Radicals. *J Am Chem Soc.* 1974;96(4):1295-1300. doi:10.1021/j100571a021.
- 201. Vanýsek P. CRC Handbook of Chemistry and Physics, 91th Edition.; 1978. doi:10.1136/oem.53.7.504.
- 202. Marković NM, Schmidt TJ, Stamenković V, Ross PN. Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. *Fuel Cells*. 2001;1(2):105-116. doi:10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.3.CO;2-0.

- 203. Biswas SK, Baeg JO. A facile one-step synthesis of single crystalline hierarchical WO₃ with enhanced activity for photoelectrochemical solar water oxidation. *Int J Hydrogen Energy*. 2013;38(8):3177-3188. doi:10.1016/j.ijhydene.2012.12.114.
- 204. Solarska R, Królikowska A, Augustyński J. Silver nanoparticle induced photocurrent enhancement at WO₃ Photoanodes. *Angew Chemie Int Ed.* 2010;49(43):7980-7983. doi:10.1002/anie.201002173.
- 205. Cristino V, Marinello S, Molinari A, et al. Some aspects of the charge transfer dynamics in nanostructured WO₃ films. *J Mater Chem A*. 2016;4(8):1-12. doi:10.1039/C5TA06887H.
- 206. Haisch C, Nunes BN, Schneider J, Bahnemann D, Patrocinio AOT. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems. *Zeitschrift fur Phys Chemie*. 2018;232(9-11):1-25. doi:10.1515/zpch-2018-1137.
- 207. Chen Z, Jaramillo TF, Deutsch TG, et al. Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. *J Mater Res.* 2010;25(1):3-16. doi:10.1557/jmr.2010.0020.
- Cho IS, Chen Z, Forman AJ, et al. Branched TiO₂ nanorods for photoelectrochemical hydrogen production. *Nano Lett.* 2011;11(11):4978-4984. doi:10.1021/nl2029392.
- 209. Hamid S, Ivanova I, Jeon TH, Dillert R, Choi W, Bahnemann DW. Photocatalytic conversion of acetate into molecular hydrogen and hydrocarbons over Pt/TiO₂: pH dependent formation of Kolbe and Hofer-Moest products. J Catal. 2017;349:128-135. doi:10.1016/j.jcat.2017.02.033.
- Meissner D, Memming R, Kastening B, Bahnemann D. Fundamental problems of water splitting at cadmium sulfide. *Chem Phys Lett.* 1986;127(5):419-423. doi:10.1016/0009-2614(86)80583-8.

8. Anhang

Stoff	Reinheit	CAS-Nummer	Bezugsquelle
Acetylaceton	$\geq 98~\%$	123-54-6	Carl Roth
Ameisensäure	\geq 95 %	64-18-6	Merck
Ammoniumacetat	\geq 96 %	631-61-8	Carl Roth
Essigsäure	\geq 99 %	64-19-7	Merck
Ethanol	≥99,8 %	64-17-5	Carl Roth
Ethylcellulose		9004-57-3	Merck
Formaldehyd	30 %	50-00-0	Carl Roth
FTO-Glas			Merck
2-Hydroxyterephthalsäure	$\geq 97~\%$	636-94-2	Merck
Kaliumchlorid	≥99,5 %	7447-40-7	Carl Roth
Methanol	\geq 99,9 %	67-56-1	Carl Roth
Natriumhydroxid	98 %	1310-73-2	Merck
Schwefelsäure	96 %	7664-93-9	Carl Roth
Terephthalsäure	\geq 98 %	100-21-0	Merck
Terpineol (Isomerengemisch)	\geq 95 %	8000-41-7	Merck
Titan-Blech			ThyssenKrupp
			Schulte
VP Aeroperl P25/20 (TiO ₂)	80 % A, 20 % R	13463-67-7	Evonik
Wolframtrioxid	≥99,9 %	1314-35-8	Merck

Tabelle 6: Übersicht der verwendeten Chemikalien.

Abbildung 64: Die Spektralverteilung der Lichtintensität des Solarsimulators für den Wellenlängenbereich 250 – 1000 nm. Die Bestrahlungseinheit ist eine 300 Watt Xe-Bogenlampe mit AM 1.5G-Filter. Die Bestrahlungsintensität in dem Spektralbereich von 250 – 1000 nm beträgt 68 mW/cm². Die Bestrahlungsintensität in dem von den Photoelektroden nutzbarem Teil des Lichtes beträgt $I_{250} - I_{500} = 14 \text{ mW/cm^2}$. Die grau unterlegte Fläche zeigt das AM 1.5G-Sonnenspektrum. Die Bestrahlungsintensität des Sonnenspektrums (AM 1.5G) in dem Spektralbereich von 250 – 1000 nm beträgt 74 mW/cm².

Abbildung 65: Die Spektralverteilung der Lichtintensität der Xe-Bogenlampe für den Wellenlängenbereich 200 – 700 nm. Die Bestrahlungseinheit ist eine 450 Watt Xe-Bogenlampe mit Wasserfilter. Die Bestrahlungsintensität in dem von den Photoelektroden nutzbarem Teil des Lichtes beträgt $I_{250} - I_{500} = 33$ mW/cm².

Abbildung 66: Kalibrationsgerade von 2-Hydroxyterephthalsäure (2-HTA). Es ist die Fläche des Fluoreszenzsignals mit dem Maximum bei 425 nm gegen die Konzentration von 2-HTA aufgetragen. Die Regressionsgerade hat die Gleichung y = $28887, 6 \times x + 7445, 1$ ($R^2 = 0.9998$).

Abbildung 67: Kalibrationsgerade von Diacetyldihydrolutidin (DDL). Es ist die Fläche des Fluoreszenzsignals mit dem Maximum bei 510 nm gegen die Konzentration von DDL aufgetragen. Die Regressionsgerade hat die Gleichung y = $248,94 \times x + 41684,94$ ($R^2 = 0,9967$). Der Wert bei 0 μ M DDL kommt aus einer Messung der Basislinie der Fluoreszenzbande bei 510 nm.

Abbildung 68: MOTT-SCHOTTKY-Auftragung eines FTO-Glas Substrats bei einer Frequenz von 100 Hz und einem pH-Wert von 7. Die Messung wurde in 0,1 M KCl als Elektrolyt durchgeführt. Dargestellt sind die aufgezeichneten Messwerte (schwarze Kurve) und die angelegte Regressionsgerade (rote Linie). Das gezeigte Potential ist das Flachbandpotential E_{FB} der Elektrode.

Abbildung 69: MOTT-SCHOTTKY-Auftragung einer siebgedruckten WO₃/FTO-Elektrode bei einer Frequenz von 100 Hz und einem pH-Wert von 7. Die Messung wurde in 0,1 M KCl als Elektrolyt durchgeführt. Dargestellt sind die aufgezeichneten Messwerte (schwarze Kurve) und die angelegte Regressionsgerade (rote Linie). Das gezeigte Potential ist das Flachbandpotential E_{FB} der Elektrode.

Abbildung 70: MOTT-SCHOTTKY-Auftragung einer siebgedruckten TiO₂/FTO-Elektrode bei einer Frequenz von 100 Hz und einem pH-Wert von 7. Die Messung wurde in 0,1 M KCl als Elektrolyt durchgeführt. Dargestellt sind die aufgezeichneten Messwerte (schwarze Kurve) und die angelegte Regressionsgerade (rote Linie). Das gezeigte Potential ist das Flachbandpotential E_{FB} der Elektrode.

Abbildung 71: MOTT-SCHOTTKY-Auftragung eines Titan-Metallsubstrats bei einer Frequenz von 100 Hz und einem pH-Wert von 7. Die Messung wurde in 0,1 M KCl als Elektrolyt durchgeführt. Dargestellt sind die aufgezeichneten Messwerte (schwarze Kurve) und die angelegte Regressionsgerade (rote Linie). Das gezeigte Potential ist das Flachbandpotential E_{FB} der Elektrode.

Abbildung 72: MOTT-SCHOTTKY-Auftragung einer kaltgasgespritzten TiO_2/Ti -Elektrode bei einer Frequenz von 100 Hz und einem pH-Wert von 7. Die Messung wurde in 0,1 M KCl als Elektrolyt durchgeführt. Dargestellt sind die aufgezeichneten Messwerte (schwarze Kurve) und die angelegte Regressionsgerade (rote Linie). Das gezeigte Potential ist das Flachbandpotential E_{FB} der Elektrode.

Abbildung 73: Strom-Zeit-Kurven einer WO₃/Ti Photoelektrode unter Beleuchtung mit einer Xenon-Lampe (300 W) mit AM 1.5G-Filter. Es sind unabhängige CA-Messungen bei nach oben hin steigenden Potentialen in 0,1 V-Schritten von -0,1 V bis 0,4 V vs. NHE gezeigt. Die 10-minütigen Messungen wurden in 1 mM NaOH-Lösung mit 0,4 mM Terephthalsäure (pH 11) durchgeführt.

Abbildung 74: Strom-Zeit-Kurven einer TiO₂/Ti Photoelektrode unter Beleuchtung mit einer Xenon-Lampe (300 W) mit AM 1.5G-Filter. Es sind unabhängige CA-Messungen bei 0 V vs. NHE (schwarze Kurve) und 0,4 V vs. NHE (rote Kurve) gezeigt. Die 10-minütigen Messungen wurden in 1 mM NaOH-Lösung mit 0,4 mM Terephthalsäure (pH 11) durchgeführt.

Abbildung 75: Zwei fotografische Aufnahmen von einem unbeschichtetem Titanmetall-Substrat vor dem Kaltgasspritzen (links) und von einer Siebdruck-TiO₂/Ti-Photoelektrode (rechts). Die rechte Photoelektrode besteht aus einem Siebdruckfilm von TiO₂ auf Titanmetall als Substrat.

9. Publikationsliste

Wissenschaftliche Publikationen

C. HAISCH, J. SCHNEIDER, M. FLEISCH, H. GUTZMANN, T. KLASSEN, D.W. BAHNEMANN, Cold sprayed WO₃ and TiO₂ electrodes for photoelectrochemical water and methanol oxidation in renewable energy applications, *Dalton Transactions* **2017**, DOI: 10.1039/c7dt02063e.

C. HAISCH, B.N. NUNES, J. SCHNEIDER, D.W. BAHNEMANN, A.O.T. PATROCINIO, Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems, *Zeitschrift für physikalische Chemie* **2018**, DOI:10.1515/zpch-2018-1137.

C. HAISCH, C. GÜNNEMANN, S. MELCHERS, M. FLEISCH, J. SCHNEIDER, A.V. EMELINE, D.W. BAHNEMANN, Irreversible surface changes upon n-type doping – A photoelectrochemical study on rutile single crystals, *Electrochimica Acta* **2018**, DOI: 10.1016/j.electacta.2018.05.105.

B.N. NUNES, C. HAISCH, A.V. EMELINE, D.W. BAHNEMANN, A.O.T. PATROCINIO, Photocatalytic properties of Layer-by-layer thin films of hexaniobate nanoscrolls, *Catalysis Today* **2018**, DOI: 10.1016/j.cattod.2018.06.029.

C. GÜNNEMANN, C. HAISCH, M. FLEISCH, J. SCHNEIDER, A.V. EMELINE, D.W. BAHNEMANN, Insights into different photocatalytic oxidation activities of anatase, brookite, and rutile single-crystal facets, *ACS Catalysis* **2019**, DOI: 10.1021/acscatal.8b04115.

T. HAISCH, F. KUBANNEK, C. HAISCH, D.W. BAHNEMANN, U. KREWER, Quantification of formaldehyde production during alkaline methanol electrooxidation, eingereicht.

<u>Vorträge</u>

C. HAISCH, P. PACIOK, D. STOLTEN, Novel Catalysts for the Hydrogen Evolution Reaction in PEM Electrolysis, *Third Russian-German Workshop*, **16.06.2015**, St. Petersburg, Russland.

C. HAISCH, I. IVANOVA, D.W. BAHNEMANN, Photoelectrochemical Degradation of Organic Pollutants on WO₃ Electrodes for Environmental Waste Water Purification, *First International Conference on New Photocatalytic Materials for Environment, Energy and Sustainability* (NPM-1), **08.06.2016**, Göttingen, Deutschland.

C. HAISCH, S. HAMID, M. FLEISCH, D.W. BAHNEMANN, WO₃ – A Solar Light Active Photoanode Material for Water Purification, *Fifth Russian-German Workshop*, **17.10.2017**, St. Petersburg, Russland.

Posterpräsentationen

C. HAISCH, I. IVANOVA, D.W. BAHNEMANN, Estimation of the Valence and Conduction Band Positions of Semiconductor Electrodes, *NanoDay des Laboratorium für Nano- und* *Quantenerngineering der Leibniz Universität Hannover*, **01.10.2015**, Hannover, Deutschland.

C. HAISCH, I. IVANOVA, D.W. BAHNEMANN, Photoelectrochemical Degradation of Organic Pollutants on WO₃ Electrodes for Environmental Waste Water Purification, 21st International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-21), 26.07.2016, St. Petersburg, Russland.

C. HAISCH, J. SCHNEIDER, M. FLEISCH, D.W. BAHNEMANN, Water Splitting Activity of Cold Sprayed Tungsten Oxide Photoanodes, *NanoDay des Laboratorium für Nano- und Quantenerngineering der Leibniz Universität Hannover*, **29.09.2016**, Hannover, Deutschland.

10. Lebenslauf

Akademischer und beruflicher Werdegang

Seit 11/2018	DECHEMA Forschungsinstitut, Frankfurt am Main
	Wissenschaftlicher Mitarbeiter im Arbeitskreis Elektrochemie
02/2015 - 06/2018	Gottfried Wilhelm Leibniz Universität, Hannover
	Wissenschaftlicher Mitarbeiter am Institut für Technische Chemie
06/2014 - 12/2014	Forschungszentrum Jülich, Jülich
	Masterarbeit am Institut für Energie- und Klimaforschung in der Elektrochemischen Verfahrenstechnik
10/2012 - 12/2014	Westfälische Wilhelms-Universität, Münster
	Abschluss Master of Science in Chemie
10/2009 - 09/2012	Martin-Luther-Universität, Halle-Wittenberg
	Abschluss Bachelor of Science in Chemie
08/2008 - 04/2009	Gustav-Brandt'sche Stiftung, Hannover
	Zivildienst
09/2001 - 06/2008	Elsa-Brändström Gymnasium, Hannover
	Abitur (allgemeine Hochschulreife)