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Abstract

In this study, we employ a coupled hydromechanical model to study the hydraulic fracture propagation path in porous media under
the influence of existing pressurized voids. The hydraulic fracturing field study reveals that the existing natural voids and cracks alter the
local properties of the porous media and influence the fracture propagation pattern. We incorporate these phenomena into the presented
hydromechanical model, which is constructed from the mass and momentum balance equations for saturated porous media. The
extended finite element method (XFEM) is applied for modeling the fluid flow through discrete cracks. The nonlinear hydromechanical
equations are solved by the Newton—Raphson scheme with an implicit time integration procedure. Finally, numerical examples are pre-
sented and compared with experimental results. It is found that the fracture propagation path is significantly influenced by the existing
pressurized voids and essential properties of the porous media; that is, the crack trends to propagate towards the pressurized voids.
© 2018 Tongji University and Tongji University Press. Production and hosting by Elsevier B.V. on behalf of Owner. This is an open access article
under the CC BY-NC-ND license (http:/creativecommons.org/licenses/by-nc-nd/4.0/).
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1 Introduction

Hydraulic fracturing is used extensively in the extraction
of shell gas in the oil industry. In order to gain an improved
understanding of hydraulic fracturing, it is of utmost
importance to consider the fluid flow through the propa-
gating fracture network (Bazant, 1984). At present, several
numerical approaches are available that are capable of
modeling hydraulic fracturing. These methods generally
employ enrichment, remeshing or a meshless technique.
For methods equipped with the enrichment technique,
the extended finite element method (XFEM) (Belytschko
& Black, 1999; Dolbow & Belytschko, 1999a,b) is one of
the common approaches for modeling fractures. XFEM
was developed in 1999 in order to model crack growth
without remeshing. It is capable of modeling fluid-
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structure interaction (Gerstenberger & Wall, 2008; Wang
& Belytschko, 2009) and fluid flow through cracks
(Rabczuk, Gracie, Song, & Belytschko, 2010; Rabczuk,
Zi, Bordas, & Nguyen-Xuan, 2010; Rethore, Borst, &
Abellan, 2007). Other than XFEM, the phantom node
method (Hansbo & Hansbo, 2004; Song, Areias, &
Belytschko, 2006) introduces additional nodes to form
overlapping elements for describing discontinuities
(Rabczuk & Zi, 2007; Vu-Bac et al., 2013). However, the
original phantom node method encounters difficulties when
cracks do not penetrate the entire element. A special crack
tip element has been proposed to address this issue and
thereby allow for complex crack patterns (Chau-Dinh, Zi,
Lee, Rabczuk, & Song, 2012; Rabczuk, Zi, Bordas, &
Nguyen-Xuan, 2008; Rabczuk, Zi, & Gerstenberger, &
Wall, 2008). Methods employing remeshing techniques
(Areias, Dias-da-Costa, Sargado, & Rabczuk, 2013;
Areias & Rabczuk, 2013; Areias, Rabczuk, & Camanho,
2013; Areias, Rabczuk, & Camanho, 2014; Areias,
Rabczuk, & DiasdaCosta, 2013) are strong competitors

2467-9674/© 2018 Tongji University and Tongji University Press. Production and hosting by Elsevier B.V. on behalf of Owner.
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to the enriched method. These methods benefit from the
rapid improvements in remeshing techniques over the past
several decades, and methods with remeshing techniques
avoid modification of the stiffness matrix owing to enrich-
ments, as in the XFEM or phantom node method. Further-
more, remeshing has been used in cohesive element
approaches (Ortiz & Pandolfi, 1999; Remmers, Borst, &
Needleman, 2003) for dynamic fractures. The meshless
method (Belytschko, Guo, Kam Liu, & Ping Xiao, 2000;
Belytschko, Krongauz, Organ, Fleming, & Krysl, 1996;
Dolbow & Belytschko, 1999a,b; Nguyen, Rabczuk,
Bordas, & Duflot, 2008) is ideal for problems requiring a
higher order continuity than C' and could avoid element
distortion under large deformation, which is a common
case in the standard FEM approach. Meshless approaches
capture discrete cracks using techniques such as the visibil-
ity criterion (Belytschko & Tabbara, 1996), diffraction cri-
terion (Organ, Fleming, Terry, & Belytschko, 1996), and
transparency criterion (Organ et al., 1996). Newer
approaches also exploit the concept of enrichment
(Amiri, Anitescu, Arroyo, Bordas, & Rabczuk, 2014;
Rabczuk & Areias, 2006; Rabczuk, Areias, & Belytschko,
2007; Rabczuk & Zi, 2007; Zi, Rabczuk, & Wall, 2007).
Furthermore, meshless methods have been extended to
highly complex 3D fractures (Bordas, Rabczuk, & Zi,
2008; Rabczuk, Bordas, & Zi, 2007a; Rabczuk, Zi,
Bordas, et al., 2008; Rabczuk, Zi, & Gerstenberger, et al.,
2008), including fractures owing to fluid-structure interac-
tion (Rabczuk, Robert, et al., 2010). However, the compu-
tational costs for meshless methods are considerably higher
than those of enriched or remeshing methods.

In addition to the above-mentioned methods, recently
developed approaches such as phase field techniques
(Areias, Msekh, & Rabczuk, 2016; Miehe, Welschinger,
& Hofacker, 2010) and the cracking particles method
(Rabczuk & Belytschko, 2004; Rabczuk, Bordas, & Zi,
2007b; Rabcezuk, Zi, Bordas, et al., 2010b) are alternatives
for modeling fractures. However, the phase field
approaches smear the crack with a predefined width and
thus cannot model the fluid flow in the cavity accurately.
Meanwhile, the cracking particles method uses cracked
nodes to describe the cracking and is therefore also not
suitable for modeling the fluid flow inside the cavity. An
interesting fracture method is peridynamics (PD) (Ren,
Zhuang, Cai, & Rabczuk, 2016; Ren, Zhuang, &
Rabczuk, 2016; Ren, Zhuang, & Rabczuk, 2017; Silling,
Epton, Weckner, Xu, & Askari, 2007), which is a non-
local theory that elegantly unifies continuous and discon-
tinuous deformations; hence, fracturing is part of the solu-
tion and not the problem. However, modeling the fluid
flow through discrete cracks is somewhat challenging in
PD. In the shell gas extraction process, a field study
(Gale, Reed, & Holder, 2007) demonstrated that the exist-
ing natural voids and fractures alter the local properties of
porous media and make the fracturing process difficult to
predict. Hence, it is crucial to consider the existing voids

Solid
O Pore fluid

Open crack

Fig. 1. Schematic illustration of fluid flow in fractured, deforming porous
medium.

or fractures when characterizing the hydraulic fracture
process.

In this study, we present an extended finite element for-
mulation for fluid flow in porous media (see Fig. 1). On the
foundation of the model by (Rethore et al., 2007), we
extended the model to include crack propagation. We val-
idated the extended model by reproducing the experimental
setup of (Bruno & Nakagawa, 1991) for the presented
model. The comparison between the numerical and exper-
imental results demonstrate that the extended model can
accurately predict the crack propagation development in
porous media under the influence of the pressurized zone.
Furthermore, we found that the existing fluid pressure
and essential properties of porous media are critical for
determining the crack propagation path.

The remaining of this paper is organized as follows. We
present the governing equations in their strong and weak
form in Section 2. The XFEM formulation and discrete
system of equations are presented in Sections 3 and 4.
Subsequently, we present the computational results in
Section 5, before concluding the manuscript in Section 6.

2 Governing equations for bulk
2.1 Strong form

2.1.1 Momentum balance

We assume a small displacement theory, no mass trans-
fer between constituents, and isothermal conditions
(Abellan & Borst, 2006). Hence, the momentum balance
equation for a two-phase material is expressed as:

(py¥z)
ot

where the subscripts m =s,f denote the solid and fluid
phase, respectively; p represents the density, v the absolute
velocity, and ¢ the stress of the constituents. Furthermore,
P represents the momentum source from the other con-
stituent, which accounts for the load drag between the solid

V'O'n +ﬁ1‘[+prcg: +V'(pnvﬂ?®vﬂ)7 (1)
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and fluid phase. For a closed system, the momentum
source must fulfill the following:

b +pr=0. (2)

Neglecting the body forces and inertia terms, Eq. (1) is
reduced to

V-e,+p.=0. (3)

2.1.2 Mass balance
For a two-phase medium, the continuity equation is
expressed by (Lewis & Schrefler, 1987):

P
ot

where p is the mass density and v is the absolute velocity.
The volume ratios of the solid and fluid phases n, and n¢,
respectively, must fulfill the following equation:

ng+nr=1. (5)

+v'(pnvﬂ)_grad'pn'vﬂ:07 (4)

The apparent mass density for each constituent is obtained
by
Pr = Nx X Pr, (6)

where p is the absolute mass density. Substituting Eq. (6)
into Eq. (4) yields:

1 dps _
nsv'vs"'_i 81 _07 (7)
1 Opy
an'Vf'FEE—O. (8)
Combining Eq. (5) with Egs. (7) and (8) results in:
1 aps 1 apf _
Voevg+mV- (ve —v) + oot o o =0. 9)

For a compressible solid, the time derivative of the solid
phase density is obtained from the mass conservation equa-
tion (Lewis & Schrefler, 1987):

d(psvs)
ot

From the entropy inequality (Hassanizadeh & Gray, 1990)
for unsaturated flow accounting for the interfaces, the pres-
sure in the solid phase is:

= 0. (10)

Ds = Py X nt. (11)
Assuming that the solid density is a function of the pres-
sure p, and temperature yields the following:

19 1av, 1 dp, 0T,
ps 10w _ pbﬂ),sﬁ’

p. Ot v 0r K, Or

where K designates the solid phase bulk modulus, f is the
thermal expansion coefficient, and T is the temperature.
As the entire process takes place under isothermal condi-
tions, the final item can be omitted:
1 dpg 1 ovy 1 Op,

ps o

(12)

v, Ot :Ks ot (13)

We define the Biot constant (Lewis & Schrefler, 1987) as
l—a=— (14)

where Kt is the overall bulk modulus of the two-phase
medium and « is the Biot coefficient. The change in the
solid mass density is related to its volume change by

K ng Op

iy = — > =S 15
v KT Ps ot ( )
Substituting Eq. (14) into Eq. (15) results in

ns Op
1— Ly = — 2 16
1=V vy =22 (16)

S

For the fluid phase, the relationship between the incremen-
tal change in fluid density and fluid pressure is expressed as:

1
0

with the compressibility modulus

dp = dp;, (17)
Pr

1 o—n np

0 K K¢

where K, is the fluid phase bulk modulus. Inserting Eqgs.

(17) and (18) into Eq. (9) yields the mass balance equation:
1 op

OCV'VS—anV'(Vf_vs)‘i‘éE:O. (19)

(18)

2.1.3 Kinematic relation
Assuming a linear elastic solid, the kinematic relation
for the small strain theory is expressed as:

e = Vi, (20)

where ¢, and ug are the linear strain tensor and displace-
ment field, respectively, of the solid phase.

2.1.4 Constitutive relation
The effective stress increment de, in the solid is
expressed as:

_ day

UN

de’

S

(21)

The incremental stress-strain relationship for the solid
media is:

dos = D : de;, (22)

where D is the fourth-order elasticity tensor.
2.2 Boundary conditions

The boundary conditions for the two-phase media (see
Fig. 2) are expressed by

nr-6=t, ond; wu=u, onodQ,, (23)

where the von Neumann and Dirichlet boundaries 00,
0Q,, and 0Q = 0Q, U 0Q,, while #, and u, describe the
traction and displacement, respectively. According to
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3

Ip

Iq

Fig. 2. Schematic illustration of boundary conditions.

Darcy’s law (Darcy 1856) for isotropic media, the fluid
velocity (v) is related to the Darcy flux (¢) by the porosity

().
ov=g¢q (24)

On the complementary part of the boundary, 92, and
09, with 0Q = 9Q, U 02, hold:

n(ve —vs) -np = q, - np ondQq; p=p, onoQ,, (25)

where ¢, - ny and p describe the outflow of the pore fluid
and pressure, respectively.

2.3 Weak form and coupling

In order to derive the weak form from the strong form,
we multiply the momentum balance equation (3) and mass
balance equation (19) with kinematically admissible test
functions for the displacements and pressure. Integrating
by parts and the Gauss divergence theorem, and applying
Darcy’s law, finally leads to the well-known weak form:

J,(V-n)-eda + frd[["]] co-npd0|= [0 t,d0
(26)

— [ @&V v,d + [ keVE - Vpdd — [, §Q71 pd

+ fpd nr, - [Ene(ve —v)]dl | = [ §ny - q,dQ°

(27)

where p:g—’; denotes the time derivatives. The traction
force on I'y is induced by the flow pressure inside the cav-
ity. Owing to the presence of discontinuity inside the
domain, the traction force ¢ -nr, on I'y and fluid flux
[&ns(ve — vs)] through the discontinuity face are essential
parts of the weak form. As the cavity length-to-width ratio
is considerably large, one could assume that the traction
forces on each side of the cavity are equal. Because of the

continuity from the bulk to the cavity, this yields
on I'y. (28)

0Ny = —pnr,

Substituting Eq. (28) into Eq. (26), the final weak form of
the momentum balance equation is expressed by

/Q(V-t])-adQ—/rd [n]-pnr,dQ2 = /rt;-tde. (29)

Darcy’s law is expressed by

q
v=—, 30
" (30)
where ¢ is the bulk porosity and v = vy — v, is the velocity.
The pressure values for both cavity faces are identical,
which leads to the following coupling term of the weak

form for the mass balance equation:
[ - Lemto = vlar = [ com, [ - vlar
Iy Iq

= Enpy - qqdl, (31)

Iq

where ¢, is the flow flux through the discontinuity.
2.4 Fluid flow inside cavity
Assuming that the fluid flow inside the cavity is a New-

tonian fluid, the general momentum balance equation reads
as follows (Bachelor 1967):

Ou

— 4+ @-Vu—uwNu= —Vw + g , (32
ot ——— =~ ~—~— ~—

v .'f Convection  Diffusion Internal source  External source

ariation

where p is the fluid viscosity and u is the fluid velocity.

Assuming small displacements and no mass exchange,
and neglecting the body and inertia forces, the momentum
balance equation is simplified to:

—uVu= —Vw . (33)
—— ~—~—
Diffusion Internal source

In the two-phase medium, the interface pressure on the
two sides of the cavity serves as an internal momentum
source, which results in the final momentum balance
equation:

uVve = Vp, (34

)
where v; denotes the fluid flow velocity and the subscript f
denotes the fluid inside the cavity.
Owing to the high length-to-cross-section ratio (Fig. 3),
the fluid flow inside the cavity can be considered as a quasi
1D flow, expressed by

Fig. 3. Schematic illustration of cavity geometry.
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8 -

PP _ 0 (35)
dy

in the normal direction ny,, and in the tangential direction
of tr,:

opr 5’21)f
K #8—j}27
where x and y are coordinates with respect to the normal
and tangent cavity directions, respectively. In the normal
direction nr, of the cavity, the pressure p; is constant
through the cavity cross-section; for continuity restriction,
pr must be equal to p.

=0 (37)

In order to derive the axial velocity, Eq. (36) is integrated
twice with regard to the y-coordinate:

h h a h h 820’
[ ] e
—h J—n OX —h J—h 'y
yielding
1 op
v(y) = 7 a*(

where vy = v; - #r, serves as the essential boundary condi-
tion on both sides of the cavity.Under the assumption of
smaller concentration changes, the mass balance for fluid
inside the cavity is expressed as:

dp

—+pV -u; = 0. 40

o +p T (40)
Assuming that the fluid inside the cavity is mono-phase
(with no mass transfer between the cavity and bulk), the
mass balance equation is simplified to

Vu =0. (41)

(36)

— 1) + oy, (39)

Obviously, the flow velocity inside the cavity is significantly
higher than in the bulk. The mass balance equation can be
rewritten:

ov n ow
ox Oy
where w = v; - nr, denotes the normal velocity of the fluid
flow inside the cavity.

The mass balance equation is averaged over the cavity
width:

LT b ow
—dy
_p Oy y=

The difference in the fluid flow between the two sides of the

cavity is given by
ol = wih) —wih) = [ Zas (44)
Substituting Eq. (39) into Eq. (44) yields:

} 2 0 (0p 5 dvg
bl =3, 5% (afch> 2h s (45)

=0, (42)

0. (43)

This equation describes the total amount of fluid
attracted in the tangential flow. It can be included in the
weak form for the mass coupling, which ensures coupling
between the fluid inside the cavity and that in the bulk.
Indeed, the coupling term n¢nr, - [vf — v5] can be expressed
as:

vs] = ne[wp — ws]
2 0 (op JE Ovy  ,Oh
- —oaZE
(3,u ox ((%c ) " ox 5‘t)

where w; is the normal velocity of the solid skeleton, and
the difference between the two sides of the cavity gives:

ngnr, - [[Uf -

(46)

ah
s 47
wy=2o (47)
Following Darcy’s law, the tangential velocity reads:
k
vp = (vs - pr) “tr,. (48)
ne

3 Discretization
3.1 Approximation of primary fields

The crack (or cavity) leads to a discontinuous displace-
ment field, while the pressure field across the cavity is con-
tinuous. Moreover, the spatial derivatives of the pressure
orthogonal to the cracks are also discontinuous. Hence,
the displacement field discretization is expressed by

=Y Ni@m+ > Ni(x)Rp, (x

ieEN i€Ncut

+ YD N ()i, (49)

i€Npje(l 4]

where N, are the standard finite element shape functions,
and u;, i;, and u; are the nodal parameters. Moreover,
the Heaviside function is defined by

0 ifp(x) <0
Ny, () =<4 1 ifp(x) >0, (50)

where ¢(x) is the level-set function.
For the node set Ny, we include the well-known crack
tip enrichment functions in ‘¥;:

0 (x) = Vrsing, (51)
Wo(x) = \/?singsine, (52)
a(x) = Vieos (5)
() = Vicos Jsinf) (54)
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These functions depend on the local coordinate system (r,
0) illustrated in Fig. 4. Equation (49) can be rewritten as

u, = NU, (55)

where the matrix N contains the standard and enriched
shape functions. Accordingly, the array U includes the dis-
placement for the standard and enriched degrees of free-
dom u;,i;, and ;.

For the pressure discretization, the node set Ny is
enriched with the signed distance function Dy,. The
enriched distance function Dy, is continuous to discontin-
uous, but its normal derivative is discontinuous.

—d ifp(x) <0
DFd (x) - { . ( ) )
d ifpx) >0
where d is the absolute distance to the discontinuity.
The node set N includes the nodes affected by the

crack. Hence, the pressure field discretization can be
expressed as

p(x) =Y Hi(x)pi+ Y Hi(x)Dr,(x)p, (57)

ieEN i€N pres

(56)

where H; is the standard FE shape function for the pres-
sure. We can also rewrite this expression in matrix-vector
form as

p=HP, (58)

where H contains the standard and enriched shape func-
tions, and P contains the degrees of freedom for the pres-
sures p; and p;. The order of the shape function N; and
H,; should be adequate for fulfilling the modeling require-
ments. For the consideration of the momentum balance
equation consistency, the order of the displacement shape
function N; should be greater than or equal to that of the
pressure shape function H;. This study uses the quadrilat-
eral elements equipped with linear shape functions.

4 Discrete equations

The vectors of the external force F. and external fluid
flux Q,,, are given by:

Foi = / N't,dr, (59)
I
Y X
™\ o
U >0
¢>O
L =0

¢p<o Crack

Fig. 4. Local coordinates (r, 0) at tip element.

0. = / HTntquF. (60)
r

Using backward finite difference approximation:s

0- _ i i
(a)r v (61

where Ax is the time increment, and -; and -,_; denote the
unknowns at time steps i and i — 1, respectively.

The coupling force vector Fying (0n the crack bound-
ary) is derived from Eq. (29):

F coupling = — (/rd ['I]T"rdH) P. (62)

Integrating Eq. (31) along I'; yields the internal fluid flux

0.075 m

0.25 m

0.075 m

(a) Geometry and boundary condition
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(b) Mesh configuration

Fig. 5. (a) Domain geometry and boundary condition of the example; and
(b) mesh configuration of the example.
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Qcoupling :/F HTn;dqddFd- (63>
d

The internal fluid flux Q. formation is nonlinear;
hence, an iteration procedure must be conducted at each
time step Az in order to control the resolution accuracy.
The iteration residual vector R’ at thei, iteration is defined

as:
e |0 0 (AU)"+ [Kuu K., (U)"
= T (1 )
K, K, |\AP 0 MK |\P
i
i ([ Domine) <F°’“ ) (64)
Qcoupling Qext
with the following stiffness matrix:
K. = / B"D""BdQ (65)
Q
Ky =— / aB"mHdQ (66)
Q
ay _ 1T

K\ = /Q 0"'H"HdQ (67)
Table 1
Material properties.
Name Symbol Value
Fluid volume fraction ne 0.3
Density (solid) Ds 2000 kg/m?
Density (fluid) Or 1000 kg/m?
Young’s modulus E 5 GPa
Poisson ratio v 0.4
Fluid dynamic viscosity . 1073 N/m?
Biot modulus o 10" GPa
Fluid viscosity u 1073N/(m? - 5)

(a) Experiment results (Bruno and Nakagawa 1991)

K} =-— /Q kyVH'VHAQ, (68)
where m = [1,1,0] for a 2D problem.

In the Newtown-Raphson algorithm, the iteration
matrix K’ is derived from:

_or
=0
where f and e denote the residual function and unknowns,

respectively. In this study, the iteration matrix K' takes the
following form:

K (69)

aFcou in;
K K. K., + =55 (70)
Koy + A KO+ MK e

where all items are evaluated at iteration i.
The coupling terms Feoupling and Qe cause the Jaco-

bian matrix of the residual R’ to become asymmetric; in
order to regain the symmetry, the coupling terms are omit-
ted in the Jacobian matrix. This may decrease the conver-
gence rate of the Newton—-Raphson algorithm. However,
the symmetric matrix allows for flexible implementation
as well as an improved condition of the matrix structure.
The simplified Jacobian matrix is expressed as:

OF, coupling
o[ e

. (71)
T 1) @)
Kup Kpp + Athp

5 Example calculation

In this section, we present an example based on the
experimental setup of (Bruno & Nakagawa, 1991). Figure 5
illustrates the boundary conditions, geometries, and mesh
configuration of the studied sample. Details regarding the
example are presented in the following paragraphs.
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(b) Simulation results

Fig. 6. Crack propagation path.
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Fig. 7. Displacement (m) plot of porous media with intrinsic permeabilities: (a) k1 = 2.78 x 107'® m?; (b) k2 =1.52 x 1077 m?; (c) k3 =2.78 x 1077 m?
and (d) to (f): stress (Pa) plots in cylinder coordinates.

Bruno and Nakagawa (Bruno & Nakagawa, 1991) con- tary rock. Their experimental setup can be summarized
ducted an experiment to demonstrate the tensile fracture  as follows. A square sample (Fig. 5) with two ports and
propagation path influenced by pore pressure in sedimen-  high pore pressure is introduced to the lower port region
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by injecting pressurized fluid and the pressure is main-
tained. Hereafter, a wedge is driven into the pre-shaped
concave edge to induce fracturing and fracture propaga-
tion, following which the crack propagation path is identi-
fied. We reproduce this exact experimental setup with the
presented model. The difference between our numerical
setup and the original experiment is that displacement
velocities are applied to the concave surface in our model,
instead of a driving wedge, which requires modeling a
solid-to-solid contact effect that is beyond the scope this
manuscript. Based on the experimental setup, the material
parameters used in the presented model are listed in
Table 1. Furthermore, three different intrinsic porous
media permeabilities are selected (k; = 2.78 x 10™"¥m?;
ky =152%x10"m?% k3 =278 x 107""m?) to study its
impact on the crack propagation path. The injection fluid
flux Q,, = 10 *m/s is applied at a lower port and main-
tained during the simulation. Opposite displacement veloc-
ities ¥ = 10 *m/s and —V = —10"*m/s are applied on the
upper and lower edges of the concave surface, respectively.
The simulation ends when the propagated crack reaches
the opposite boundary. Figure 6 illustrates the crack prop-
agation path from the experimental and numerical simula-
tions. It is clearly indicated that the present model exhibits
strong agreement with the experiment in terms of the crack
propagation path, and the model is capable of predicting
the crack propagation direction even under the influence
of existing pore pressure. The fracture development path,
domain displacement, and stress profiles are displayed in
Fig. 7 for porous medias (under identical loading) with dif-
ferent intrinsic permeabilities (ki, k», k3). Figure 7(d)—(f)
clearly demonstrate that the fracture paths are attracted
to the fluid-pressurized port. Furthermore, under identical
injection rates, porous media with a lower permeability
(e.g. k) will induce a higher stress/pressure state around
the injection port compared to porous media with a higher
permeability (e.g. k3), which in turn influences the fracture
propagation direction.

6 Conclusion

In this study, we present an XFEM for hydraulic frac-
ture under the influence of pressurized voids. The crack is
described by the level-set method, and an abs-enrichment
is adopted to describe the discontinuous pressure field.
The fluid phase is assumed as an incompressible Newto-
nian fluid, whereas the solid phase is assumed as isotropic
and linear-elastic. The nonlinear equation is solved by
means of the Newton—-Raphson method with a backward
integration scheme. The numerical examples in this study
are based on and validated by an experimental setup. We
observe that the fracture propagation path is attracted to
the pressurized zone, and the essential properties (such as
permeability) of the porous media have a significant impact
on the fracture propagation direction. This study demon-
strates that the presented model is capable of capturing

the fracture propagation path under existing fluid pressure,
and suggests that, during the hydraulic fracture process, it
is essential to consider the geographical conditions.
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Appendix A Crack propagation criteria

Consider an arbitrary counterclockwise path (I") around
the crack tip part. The well-known path-independent J-
integral (Cherepanov 1979) is expressed by:

J:/ (wdyTiamds),
r Ox

where
w = strain energy density;
T, = traction vector components;
u; = displacement vector components;
ds = length increment along contour I

(A1)

The strain energy density is

€ij
w = / U[jdﬁ[j,
0

where ¢; and o;; are the strain and stress tensors, respec-
tively. The traction vector components are given by

(A.2)

T = ayn;.

(A.3)

The J-integral coincides with the energy release rate G at
the crack tip; that is, G = J, for isotropic material under
plain-strain conditions. The energy release rate is related
to the stress intensity factors by

o- (k. + k) (=0
IC (@ E ’

where I and II represent models I and II, respectively, v is
the Poisson ratio, and E is the Young’s modulus.

In order to extract the individual stress intensity factors
K and Ky, we consider two states: state 1 corresponds to
the actual state of interest, while state 2 is an auxiliary state
serving as the asymptotic field for models I and 1I.

The J4 integral for the sum of the two states is as
follows:

Ju+2) — g +J(2) _~_]\/1(1+2)7

(A4)

(A.5)
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where M is the interaction integral of the two states.

() (1)
MO+ — / WD dy — TI(I) Ou; n Tz@ Ou; ds.
A Ox Ox
(A.6)
where W2 is the interaction strain energy.
2 (1
w2 — ) O~ _ 7@ Ou; (A7)

oox boox
Combining the relationships = J, G =G + G?, and
Egs. (A.5) and (A.6), the interaction integral of the two
states gives:

2(1=v2) (e 1) 2
M0 = 22 (kUK + KK ). (A8)

The stress intensity factor of the actual state of model I is:
E
2(1 —v?)
with the auxiliary state as the model I asymptotic field

(K =1, Ky =0).
The stress intensity factor of the actual state of model 11
is:

K§1) — M(l,model I)7

(A9)

E
1 _ (1,model )
Ko 21 —v2)M ’

with the auxiliary state as the model II asymptotic field
2 2
(K =0, Ky = D).
The effective stress intensity factor for a mixed-model
crack propagation situation is expressed as:

K (0) = Kycos® <% 0) — 3Kysin (% 0) cos’ (% 0) . (A0

It is postulated that crack growth will occur when
max K (0) = Kci,

(A.10)

(A.12)

with K¢ as the critical stress intensity factor.
The direction of the propagation is given by the angle
0%, which maximizes K (0):

Ky — /K7 + 8K},

0F =2 A.13
arctan Ve ( )
Inserting Eq. (A.13) into Eq. (A.11), we obtain
42K, (KI +3,/K? + 8K§I>
s = Keii- (A.14)

2
(Kf + 12K3, — K1/ K} + 8K§I>
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