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Abstract

We consider a U(2) Yang–Mills theory on M × S2
F

where M is a Riemannian manifold and S2
F

is the
fuzzy sphere. Using essentially the representation theory of SU(2) we determine the most general SU(2)-
equivariant gauge field on M ×S2

F
. This allows us to reduce the Yang–Mills theory on M ×S2

F
down to an

Abelian Higgs-type model over M. Depending on the enforcement (or non-enforcement) of a “constraint”
term, the latter may (or may not) lead to the standard critically-coupled Abelian Higgs model in the com-
mutative limit, S2

F
→ S2. For M = R

2, we find that the Abelian Higgs-type model admits vortex solutions
corresponding to instantons in the original Yang–Mills theory. Vortices are in general no longer BPS, but
may attract or repel according to the values of parameters.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

It is commonplace in modern physics to consider field theories defined on manifolds of the
form M ×X, where M represents physical space and X is some compact manifold. One popular
example is to consider pure Yang–Mills theory, with X a coset space G/H . In this case the group
G acts naturally on its coset; by requiring the gauge fields to be invariant under the action of G
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D. Harland, S. Kürkçüoǧlu / Nuclear Physics B 821 (2009) 380–398 381
up to a gauge transformation, one obtains a new gauge theory on M. In this way a relatively
complicated theory on M is obtained from a relatively simple theory on M × X. We shall call
such a process “equivariant reduction”.

The first example of equivariant reduction was due to Witten [1]. He showed that Yang–Mills
theory on R

4 reduces under SU(2)-equivariance to an Abelian Higgs model on a 2-dimensional
hyperbolic space H

2, and thereby constructed the first instantons with charge greater than 1.
The space H

2 emerges naturally in this example, because R
4\R

2 is conformal to H
2 × S2, and

Yang–Mills theory is conformally invariant in four dimensions.
In subsequent years two major formalisms have been developed to perform more exotic equiv-

ariant reductions. Historically, the first was “coset space dimensional reduction” (CSDR) [2,3],
which uses intrinsic coordinates on the coset space, and is generally used as a method to try to
obtain the standard model on the Minkowski space M = M4 starting from a Yang–Mills–Dirac
theory on the higher dimensional space M4 × G/H . The second is the “quiver” approach [4–7],
which uses a more sophisticated language of equivariant vector bundles, and has the interesting
feature of reducing self-dual instantons on M × X to BPS vortices on M. The two approaches
seem on the whole to be equivalent, but tend to emphasise different features of equivariant re-
duction. In particular, Witten’s example is the basic one in both approaches.

The quiver approach has also been applied to the case where M is a non-commutative man-
ifold (the 2d-dimensional Moyal space R

2d
θ ) and with some success: the dimensionally reduced

Bogomolny equations are, for appropriate choice of parameters, integrable [4]. So it is natural to
ask: what happens when the coset space X, instead of the physical space M, is non-commutative,
or both spaces are non-commutative? In particular, does the reduced theory still have vortices,
and are they BPS? In this paper, we will focus on the case, where only the coset space X is
non-commutative.

A particular class of non-commutative coset spaces have been known for quite some time in
the literature. Namely, these are the “fuzzy spaces”, of which the simplest and the most famous
example is the fuzzy sphere, S2

F [8,9]. Gauge theory has been formulated on S2
F [10–12] and

the group SU(2) acts naturally on it, so it seems well-suited for equivariant reduction. Actually,
equivariant reduction over fuzzy spaces has already been discussed in the literature, using the
CSDR approach [13]. However, only very simple examples have been studied so far, and not in
great detail, so it seems important to try to perform an equivariant reduction in full. In particular,
one should compare equivariant reduction over fuzzy spaces with reduction over normal coset
spaces to see what new features emerge. It is worth mentioning that the fuzzy sphere appears in
other gauge-theoretic contexts, such as the Aharony–Bergman–Jafferis–Maldacena model [14].
Equivariant reduction might prove a useful tool for constructing solutions to such models, per-
haps along the lines of [15].

With these motivations in mind, in this paper we present the fuzzy generalisation of Witten’s
equivariant reduction over M × S2. To this end, we start from a U(2) Yang–Mills theory on

M ×S2
F and using essentially the representation theory of SU(2) we determine the most general

SU(2)-equivariant gauge field on M × S2
F . This allows us to compute the reduced action in full.

The latter appears to be an Abelian Higgs-type model over M. Specializing to a concrete and a
simple case by selecting M = R

2, we demonstrate that this model admits classical vortices and
present their numerical solutions.

An outline of the rest of this paper is as follows: in Section 2 we will review gauge theory on
M × S2

F , in particular emphasising the approach in which it can be dynamically generated by a
gauge theory on M with a larger gauge group. In Section 3 we will review equivariant reduction
over the fuzzy sphere, and give an explicit parametrisation of the equivariant gauge fields. In
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Section 4 we will carry out the reduction procedure, and give the reduced action explicitly. Sec-
tion 5 collects our analysis on the vacuum structure of the reduced theory, and Section 6 collects
our results on its vortex solutions. We summarise and comment on our results and mention some
directions for future work in Section 7.

2. Yang–Mills theory on M × S2
F

In this section, we collect the essential features of gauge theory on M × S2
F . Actually, pure

Yang–Mills theory on this space naturally appears as an effective description of a particular gauge
theory with scalars on M, as was recently pointed out in [16].

We start by defining a gauge theory on M. Let yμ be coordinates on M, let Aμ be su(N )

valued anti-Hermitian gauge fields and let φa (a = 1,2,3) be 3 anti-Hermitian scalar fields trans-
forming in the adjoint of SU(N ). We introduce an action,

(2.1)S =
∫

M

ddy TrN

(
1

4g2
F †

μνFμν + (Dμφa)
†(Dμφa)

)
+ 1

g̃2
V1(φ) + a2V2(φ),

(2.2)V1(φ) = TrN
(
F

†
abFab

)
, V2(φ) = TrN

(
(φaφa + b̃)2).

Here a, b̃, g and g̃ are constants and TrN = N −1 Tr denotes a normalised trace. In V (φ) we have
used the definition

(2.3)Fab := [φa,φb] − εabcφc,

whose purpose will become evident shortly.
It is useful to note that φa transform in the vector representation of an additional global SO(3)

symmetry, and that V1 and V2 are invariant under this symmetry.
This theory spontaneously develops extra dimensions in the form of fuzzy spheres as formu-

lated in detail in [16]. Let us very briefly see how this actually comes about. We observe that the
potential g̃−2V1 + a2V2 is positive definite, and that solutions of

(2.4)Fab = [φa,φb] − εabcφc = 0, −φaφa = b̃

are evidently a global minima. A solution to these equations may be obtained by taking the value
of b̃ as the quadratic Casimir of an irreducible representation of SU(2) labeled by �: b̃ = �(�+1)

with 2� ∈ Z. If we further assume that the dimension N of the matrices φa is (2� + 1)n, then
(2.4) is solved by the configurations of the form

(2.5)φa = X(2�+1)
a ⊗ 1n,

where X
(2�+1)
a are the (anti-Hermitian) generators of SU(2) in the irreducible representation �,

which has dimension 2� + 1. Here we have implicitly used the isomorphism u((2� + 1)n) ∼=
u(2� + 1) ⊗ u(n). We observe that this vacuum configuration spontaneously breaks the SU(N )

down to U(n) which is the commutant of φa in (2.5). Fluctuations about this vacuum are de-
scribed by a gauge theory on M × S2

F , as we shall shortly see.
We also wish to note that the most general solution to the equations in (2.4) is not known.

However, a large class of solutions to these equations exist. They are given by the block diagonal
matrices

(2.6)φa = diag
(
α1(2�1 + 1) ⊗ 1n1, . . . , αk(2�k + 1) ⊗ 1nk

)
,
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such that N = n1(2�1 + 1) + · · · + nk(2�k + 1) and for some suitably chosen constants αi . For
instance, for k = 2, this vacuum configuration leads to spontaneous breaking of SU(N ) down to
SU(n1) × SU(n2) × U(1). It turns out that for k = 1 and k = 2, SU(n) and SU(n1) × SU(n2) ×
U(1) are the effective low-energy gauge groups of the reduced theories on M, respectively.

For details of these results, and a discussion on another type of solution to the equations in
(2.4) with off-diagonal corrections, we refer the reader to the original article in [16]. Hereafter
we will focus our attention on the vacuum configuration given in (2.5).

The fuzzy sphere at level � is defined to be the algebra of (2� + 1) × (2� + 1) matrices
Mat(2� + 1). The three Hermitian “coordinate functions”

(2.7)x̂a := i√
�(� + 1)

X(2�+1)
a

satisfy

(2.8)[x̂a, x̂b] = i√
�(� + 1)

εabcx̂c, x̂ax̂a = 1,

and generate the full matrix algebra Mat(2�+1). There are three natural derivations of functions,
defined by the adjoint action of su(2) on S2

F :

(2.9)f → adX(2�+1)
a f := [

X(2�+1)
a , f

]
, f ∈ Mat(2� + 1).

In the limit � → ∞, the functions x̂a are identified with the standard coordinates xa on R
3,

restricted to the unit sphere and the infinite-dimensional algebra C∞(S2) of functions on the
sphere is recovered. Also in this limit, the derivations [X(2�+1)

a , ·] become the vector fields
−iLa = εabcxa∂b induced by the usual action of SO(3).

Fluctuations about the vacuum (2.5) may be written

(2.10)φa = Xa + Aa,

where Aa ∈ u(2�+1)⊗u(n) and we have abbreviated X
(2�+1)
a ⊗1n =: Xa . Then Aa , a = 1,2,3,

may be interpreted as three components of a U(n) gauge field on the fuzzy sphere. Thus, φa are
the “covariant coordinates” on S2

F and (2.3) defines the associated curvature Fab . The latter may
be expressed in terms of the gauge fields Aa as:

(2.11)Fab = [Xa,Ab] − [Xb,Aa] + [Aa,Ab] − εabcAc.

The term V1 is the obvious analog on the fuzzy sphere of the Yang–Mills action on the sphere.
However, with this term alone, gauge theory on the sphere is not recovered in the commutative
limit, since the fuzzy gauge field has three components rather than two. Rather, one obtains gauge
theory with an additional scalar; the scalar is more precisely the component of the gauge field
pointing in the radial direction when S2 is embedded in R

3.
The purpose of the term V2 in the action is to suppress this scalar. To see how this works,

observe that

i
(
�(� + 1)

)−1/2(
(Xa + Aa)(Xa + Aa) + �(� + 1)

)
(2.12)= {x̂a,Aa} + i

(
�(� + 1)

)−1/2
A2

a−−−→
�→∞ 2xaAa.

The term xaAa is precisely the component of the gauge field on the sphere associated with the
radial direction, so the term a2V2 gives a mass a

√
�(� + 1) to this component.
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It is possible to understand the origin of this mass term from the results of [16] in a non-trivial
manner. In the expansion of the scalar fields φa into modes, there is a mode corresponding to the
fluctuations of the radius of S2

F . This is in fact the Higgs which acquires a positive mass after
the spontaneous breaking of SU(N ) to SU(n). From the V2 term in the potential this mass is
determined to be a

√
�(� + 1), which is consistent with the predictions obtained from the � → ∞

limit above.
To summarise, with (2.10) the action in (2.2) takes the form of a U(n) gauge theory on M ×

S2
F (2� + 1) with the gauge field components AM(y) = (Aμ(y),Aa(y)) ∈ u(n) ⊗ u(2� + 1) and

field strength tensor

Fμν = ∂μAν − ∂νAμ + [Aμ,Aν],
Fμa = Dμφa = ∂μφa + [Aμ,φa],

(2.13)Fab = [φa,φb] − εabcφc.

It is important to note that this gauge theory can only be considered “standard” Yang–Mills
theory when the coefficients g, g̃ satisfy gg̃ = 1, for it is only in this case that the action takes the
form of an L2 norm of FMN . It is worth mentioning that even Abelian gauge theory on the fuzzy
sphere (the case n = 1) is described by the non-Abelian action (2.2), as was emphasised in [13].

For future use we note that,

(2.14)TrN = 1

n(2� + 1)
TrMat(2�+1) ⊗TrMat(n)

where Mat(k) denotes the algebra of k × k matrices.
In the following section we will focus on the case of a U(2) gauge theory on M × S2

F , and
explicitly construct the most general SU(2)-equivariant gauge field on S2

F using essentially the
representation theory of SU(2). Subsequently, this will allows us to dimensionally reduce the
gauge theory on M ×S2

F to a U(1) Abelian Higgs-type model on M. We find that the latter may
deviate from an Abelian Higgs model on M which descends from dimensionally reducing the
Yang–Mills theory on M × S2.

3. Finding the SU(2)-equivariant gauge field

Equivariant dimensional reduction of gauge theories on coset spaces G/H was first formu-
lated by Forgacs and Manton [2], see [3] for a review. The group G acts naturally on the manifold
M × G/H ; the basic idea of Forgacs and Manton is to require that gauge fields are invari-
ant under this action, up to a gauge transformation. In this way, a gauge theory on M × G/H

can be reduced to a gauge theory on M. Their treatment formalized an earlier result obtained
by Witten [1], whereby Yang–Mills theory on R

4 was reduced to an Abelian Higgs model on
2-dimensional hyperbolic space.

In recent times a general prescription for equivariant reduction of gauge fields on M ×S2
F has

been described in [13,16]. In this article, we shall follow these articles’ formalism, but choose a
different action of the group SU(2). We shall see later that our example reduces to Witten’s ansatz
in the commutative limit. In this section, we shall outline the equivariant reduction formalism,
and determine the most general SU(2)-equivariant gauge field on M × S2

F under our chosen
action of SU(2).
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In all its generality, to carry out the SU(2)-equivariant reduction scheme, one chooses three el-
ements ωa ∈ u(2)⊗u(2�+1) (for a = 1,2,3), and imposes the following symmetry constraints,

(3.1)[ωa,Aμ] = 0,

(3.2)[ωa,ϕb] = εabcϕc,

on the gauge field. These constraints are consistent only if ωa satisfies:

(3.3)[ωa,ωb] = εabcωc.

Apart from this restriction, we are free to select ωa arbitrarily. In what follows, we shall
choose

(3.4)ωa = X(2�+1)
a ⊗ 12 − 12�+1 ⊗ iσ a

2
.

These ωa are the generators of the representation 1/2 ⊗ � of SU(2), where by m we denote
the spin m representation of SU(2), of dimension 2m + 1. The two terms which make up ωa

generate rotations and gauge transformations, so imposing ω-equivariance amounts to requiring
that rotations can be compensated by gauge transformations. There are certainly more possible
choices for ωa ; for example ωa = X

(2�+1)
a ⊗ 12 was studied in [13,16].

In order to study the dynamics of gauge fields subject to the constraints (3.1), (3.2), we shall
first find a way to parametrise their most general solution. Once found, this parametrisation will
be substituted into the Yang–Mills action and by tracing over S2

F a reduced action on M will
be obtained. We also note that, by the principle of symmetry criticality [20], the equations of
motion obtained from the reduced action will be the same as the equations of motion that would
have obtained by substituting the parametrisation into the equations of motion of the original
Yang–Mills action.

Therefore, we will construct the most general solution of the symmetry constraints, beginning
with (3.1). The left-hand side of this equation tells us that Aμ transforms under the adjoint action
of ωa , or equivalently, in the representation (1/2 ⊗ � ) ⊗ (1/2 ⊗ � ) of su(2). The right-hand
side tells us that Aμ belongs to a trivial sub-representation of this representation. It is a simple
application of the Clebsch–Gordan formula to find the trivial sub-representations: for � > 1/2,
we find

(1/2 ⊗ � ) ⊗ (1/2 ⊗ � )

= (� + 1/2 ⊕ � − 1/2) ⊗ (� + 1/2 ⊕ � − 1/2)

= (� + 1/2 ⊗ � + 1/2) ⊕ 2(� + 1/2 ⊗ � − 1/2) ⊕ (� − 1/2 ⊗ � − 1/2)

(3.5)= 20 ⊕ 41 ⊕ · · · .
Thus, the set of solutions to (3.1) is 2-dimensional and a convenient parametrisation is

(3.6)Aμ = 1

2
Qaμ(y) + 1

2
ibμ(y).

In (3.6) we have introduced the Hermitian U(1) gauge fields on M:

(3.7)a†
μ = aμ, b†

μ = bμ,



386 D. Harland, S. Kürkçüoǧlu / Nuclear Physics B 821 (2009) 380–398
and the anti-Hermitian, “idempotent”1 Q:

(3.8)Q := Xa ⊗ σa − i/2

� + 1/2
, Q† = −Q, Q2 = −12(2�+1).

Indeed, Q is the fuzzy version of q := iσ ·x and converges to it in the � → ∞ limit. ±iQ appears
also in the context of monopoles and fermions over S2

F where in the former it is the idempotent
associated with the projector describing the rank 1 monopole bundle over S2

F , while in the latter
it serves as the chirality operator associated with the Dirac operator on S2

F . For further details on
these topics we refer to the literature [9,17,18].

We now proceed similarly with the constraint (3.2). This equation tells us that the vector φa

belongs to a 1 sub-representation of the representation (1/2 ⊗ � ) ⊗ (1/2 ⊗ � ). Our calculation
above shows that the space of solutions has dimension 4; an explicit parametrisation is

φa = Xa + Aa,

(3.9)

Aa = 1

2
ϕ1(y)[Xa,Q] + 1

2

(
ϕ2(y) − 1

)
Q[Xa,Q] + i

1

2
ϕ3(y)

1

2
{X̂a,Q} + 1

2
ϕ4(y)ω̂a.

Here ϕi are real scalar fields over M, the curly brackets denote anti-commutators throughout,
and we have further introduced

(3.10)X̂a := 1

� + 1/2
Xa, ω̂a := 1

� + 1/2
ωa.

It is worthwhile to remark that, in the commutative limit, (3.9) becomes

(3.11)Aa−−−→
�→∞ i

1

2
ϕ1(y)Laq + i

1

2

(
ϕ2(y) − 1

)
qLaq + 1

2
ϕ3(y)xaq + 1

2
ϕ4(y)xa.

In this limit, the component of Aa normal to S2 can be killed by imposing the constraint xaAa = 0
on the gauge field. This constraint is satisfied if and only if we take ϕ3 = 0, ϕ4 = 0, as is easily
observed from the above expression. Thus, we recover then the well-known expression for the
spherically symmetric gauge field over M × S2 [1,2].

4. Dimensional reduction of the Yang–Mills action

We are now in a position to substitute the SU(2)-equivariant gauge field determined in the
previous section into the Yang–Mills action of Section 2 and then trace over the fuzzy sphere to
reduce it to an action on M. It is quite important to note the following identities

(4.1)
{
Q, [Xa,Q]} = 0,

{
Xa, [Xa,Q]} = 0 (sum over repeated a is implied),

(4.2)
[
Q, {Xa,Q}] = 0,

[
Xa, {Xa,Q}] = 0 (sum over repeated a is implied),

which significantly simplify the calculations, since they greatly reduce the number of traces to
be computed.

The reduced action has the form

(4.3)S =
∫

M

ddy LF + LG + 1

g̃2
V1 + a2V2.

These terms will be defined and explicitly evaluated below.

1 To be more accurate the idempotents are evidently ±iQ.
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4.1. The field strength term

The curvature term Fμν associated with the connection Aμ takes the form

Fμν = 1

2
(fμνQ + ihμν),

fμν = ∂μaν − ∂νaμ, hμν = ∂μbν − ∂νbμ,

(4.4)f †
μν = fμν, h†

μν = hμν.

We find

LF := 1

4g2
TrN

(
F †

μνFμν

)
(4.5)= 1

16g2

(
fμνf

μν + hμνh
μν + 1

� + 1
2

fμνh
μν

)
.

4.2. The gradient term

An easy calculation shows that

(4.6)Dμφa = 1

2
(Dμϕ1 + QDμϕ2)[Xa,Q] + i

4
∂μφ3{X̂a,Q} + 1

2
∂μϕ4ω̂a

where we have used Dμϕi = ∂μϕi + εjiaμϕj . This formula demonstrates why the choice of
parametrisation (3.11) is a good one: the identities (4.1), (4.2) imply that ϕ1 + iϕ2 is a complex
scalar belonging to the fundamental representation of the gauge group U(1), while ϕ3 and ϕ4 a
real scalars belonging to the trivial representation.

The gradient term in the action is then

LG := TrN
(
(Dμφa)

†(Dμφa)
)

= 1

2

�2 + �

(� + 1/2)2

(
(Dμϕ1)

2 + (Dμϕ2)
2) + 1

4

(�2 + �)(�2 + � − 1/4)

(� + 1/2)4
(∂μϕ3)

2

(4.7)+ 1

2

�2 + �

(� + 1/2)3
∂μϕ3∂μϕ4 + 1

4

�2 + � + 3/4

(� + 1/2)2
(∂μϕ4)

2.

4.3. The potential term

It is easier to work with dual of the curvature Fab given by

1

2
εabcFab = 1

2
εabc[φa,φb] − φc

(4.8)= 1

2
P1(ϕ1 + ϕ2Q)[Xc,Q] + i

4

(|ϕ|2 − P2
) {Xc,Q}
(� + 1/2)

+ 1

4
P3

ωc

(� + 1/2)2

where |ϕ|2 = ϕ2
1 + ϕ2

2 , and P1,2,3 are given in Appendix A.
The potential term in the action may then be expressed as

(4.9)V1 = (
Q1|ϕ|4 + Q2|ϕ|2 + Q3

)
.

The explicit expressions for Q1,2,3 are given in Appendix A.
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In the large � limit, we find

(4.10)V1 =
�→∞

1

2

(|ϕ|2 + ϕ3 − 1
)2 + ϕ2

3 |ϕ|2 + 1

2
ϕ2

4 .

4.4. The constraint term

Firstly, following the discussion around (2.4), we choose b̃ = �(�+ 1). With this input we can
write

(4.11)φaφa + �(� + 1) = R1 + R2iQ,

where R1 and R2 are given in Appendix A.
The constraint term in the action therefore takes the form

(4.12)V2 =
(

R2
1 + R2

2 + 1

(� + 1
2 )

R1R2

)
.

5. Vacua and topology

In order to obtain a better understanding of the reduced action found in the previous section,
we will analyse its vacua. The potential has two parts:

1

g̃2
V1 + a2V2.

Except in the case a = 0, any zero of the potential must be a zero of both V1 and V2. In order for
topological vortex solutions to exist, it is crucial that the set V of vacua is not simply connected;
we will see below that this is the case for the present situation.

V1 is the L2 norm of the curvature (2.3), so zeros of V1 coincide with zeros of the curvature.
It is more practical to find zeros of the quadratic curvature than of the quartic V1; accordingly,
we determine the zeros of V1 by solving the equations,

(5.1)0 = |ϕ|
(

�2 + � − 1/4

(� + 1/2)2
ϕ3 + 1

� + 1/2
ϕ4

)
,

(5.2)|ϕ|2 = (1 − ϕ3)

(
1 + ϕ4

� + 1/2
− ϕ3

2(� + 1/2)2

)
,

(5.3)0 = �2 + �

(� + 1/2)2

(
ϕ2

3 − 2ϕ3
) + ϕ2

4 + 2
�2 + � − 1/4

� + 1/2
ϕ4.

It is not difficult to solve these algebraic equations; their solution set is
⋃5

i=1 Vi , where

V1 = {|ϕ| = 1, ϕ3 = 0, ϕ4 = 0
}
,

V2 =
{
|ϕ| = 1, ϕ3 = 2, ϕ4 = −2

�2 + � − 1/4

� + 1/2

}
,

V3 =
{
|ϕ| = 0, ϕ3 = 1, ϕ4 = 1

2(� + 1/2)

}
,

V4 =
{
|ϕ| = 0, ϕ3 = 1, ϕ4 = −2

�2 + �
}
,

(� + 1/2)
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(5.4)V5 =
{
|ϕ| = 0, ϕ3 = 1 ± (� + 1/2), ϕ4 = −�2 + � − 1/4

� + 1/2
± 1

2

}
.

As a check on our calculations, we have substituted these values of ϕi into the ansatz (3.9) to
find the covariant derivative φa , making use of the identity

(5.5)Xa = 1

2
Q[Xa,Q] − i

4(� + 1
2 )

{Xa,Q} +
(

1 − 1

4(� + 1
2 )2

)
ωa.

We have found:

ϕi ∈ V1, φa = exp(αQ)Xa exp(−αQ), 0 � α < π,

ϕi ∈ V2, φa = exp(αQ)
(−iσ a/2

)
exp(−αQ), 0 � α < π,

ϕi ∈ V3, φa = ωa,

ϕi ∈ V4, φa = 0,

(5.6)ϕi ∈ V5, φa = 1

2
ωa ± 1

4

(
i{Xa,Q} + ωa

� + 1/2

)
.

We have checked that these φa solve [φa,φb]− εabcφc = 0, as they should. This is obvious in the
first four cases, in the fifth case the calculation is tricky but can be performed with some care.

Having determined the zeros of V1, it is straightforward to substitute them into V2 and hence
determine the full set of vacua. We find that V2 is zero only on the subset V1 of

⋃5
i=1 Vi , so

the set of vacua is V = V1. In particular π1(V ) = Z, so if M = R
2 for example, finite action

configurations are classified by an integer-valued topological charge, the winding number of
ϕa : S1∞ → V .

We remark here that, while we have shown that SU(2)-equivariant instantons on R
2 × S2

F

are classified by a single integer topological charge, there is no reason to expect that the same
holds for non-equivariant instantons, even when S2

F is replaced by S2. Indeed, it seems quite
likely that non-equivariant instantons on R

2 × S2 or R
2 × S2

F have fractional charge, for the
following reason. In general, the topological charge of an instanton is equal to the Chern–Simons
invariant of the connection induced on the manifold at infinity (which is usually flat). Since the
manifolds at infinity of R

2 × S2 and of R
3 × S1 are both S1 × S2, we expect instantons on both

of these spaces to have similar topological classifications. But instantons on R
3 × S1 can have

non-integer charge [19], therefore one expects the same to be true of instantons on R
2 × S2 or

R
2 × S2

F . However, we don’t know of any example of an instanton with non-integer charge on
these spaces.

6. Vortices

In this section we study vortex solutions to the Euler–Lagrange equations derived from the
dimensionally-reduced action. For simplicity, we restrict attention to the case M = R

2. We ul-
timately restrict attention to “standard” Yang–Mills theory, with coupling constants g = 1/

√
2,

g̃ = √
2. There is no canonical choice for the coefficient a2 of the fuzzy constraint term; here we

consider only the extreme cases of a2 = 0 and a2 = ∞, which correspond respectively to impos-
ing no constraint at all, and to imposing the constraint φaφa + �(� + 1) = 0 “by hand”. Finally,
we assume that � is large. In the case a = 0, we assume � = ∞ since this already constitutes a
novel model. In the a = ∞ theory we include only terms appearing at O(�−2).
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6.1. Case 1: No constraint

With a = 0 and � = ∞, the action reduces to

S =
∫
R2

d2y
1

16g2

(
fμνf

μν + hμνh
μν

) + 1

2
|Dμϕ|2 + 1

4

(
∂μϕ3)2 + 1

4

(
∂μϕ4)2

(6.1)+ 1

g̃2

(
1

2

(|ϕ|2 + ϕ3 − 1
)2 + |ϕ|2ϕ2

3 + 1

2
ϕ2

4

)
.

The fields ϕ4 and bμ decouple from the rest, and may consistently be set to zero.
For the remaining fields we make the standard rotationally symmetric ansatz [20]: we choose

a gauge so that ar = 0 and set ϕ = χ(r) exp(iNθ), ϕ3 = λ(r), a = aθ (r) dθ , where (y1, y2) =
r(cos θ, sin θ). The action reduces to,

S = 2π

∞∫
0

dr
1

8g2r
a′2
θ + r

2
χ ′2 + 1

2r
(N + aθ )

2χ2 + r

4
λ′2

(6.2)+ r

g̃2

(
1

2

(
χ2 + λ − 1

)2 + χ2λ2
)

.

The Euler–Lagrange equations obtained from this integral are

0 = χ ′′ + 1

r
χ ′ −

(
1

r2
(N + aθ )

2 + 2

g̃2

(
χ2 + λ − 1 + λ2))χ,

0 = a′′
θ − 1

r
a′
θ − 4g2(aθ + N)χ2,

(6.3)0 = λ′′ + 1

r
λ′ − 2

g̃2

(
χ2 + λ − 1 + 2χ2λ

)
.

We have not found any analytic solutions to these equations. However, as we shall see below,
they are amenable to the usual approximation methods: one can obtain approximate solutions in
the regions of small and large r , and one can solve the equations numerically.

Continuity of the fields implies that χ = O(r) and aθ = O(r2) as r → 0. Eqs. (6.3) imply
further that around r = 0 the following expansions hold for constants χ0, a0, λ0:

χ = χ0r
N + O

(
rN+2),

aθ = a0r
2 + O

(
r4),

(6.4)λ = λ0 + O
(
r2).

Finiteness of the action implies that χ(r) → 1, aθ (r) → −N , and λ(r) → 0 as r → ∞.
Accordingly, we set χ = 1 − δχ , and aθ = −N + δa. Under the assumption that (δa/r)2 is
subleading to δχ and λ, the Euler–Lagrange equations (6.3) have the following large r expan-
sions:

0 = δχ ′′ + 1

r
δχ ′ − 2

g̃2
(−λ + 2δχ),

0 = δa′′ − 1

r
δa′ − 4g2δa,

(6.5)0 = λ′′ + 1
λ′ − 2

2
(3λ − 2δχ).
r g̃
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Table 1
The value of the action S for vortices with a = 0 and N = 1,2, and constants associated with asymptotic expansions.

N S/π χ0 a0 λ0 C1 C3

1 0.894 0.657 0.399 0.402 1.38 3.17
2 1.618 0.212 0.330 0.666 5.53 14.5

These equation can be solved in terms of modified Bessel functions Kα and constants Ci :

δχ = C1K0

(√
2r

g̃

)
− C2K0

(
2
√

2r

g̃

)
,

δa = C3rK1(2gr),

(6.6)λ = C1K0

(√
2r

g̃

)
+ 2C2K0

(
2
√

2r

g̃

)
.

Of course, the terms with coefficient C2 can be ignored at large r since they are subleading.
Notice that our assumption that (δa/r)2 is subleading to δχ and λ is satisfied provided that
4g >

√
2/g̃. This holds for example when g = 1/

√
2 and g̃ = √

2. Notice also that the field
strength decays faster than the scalars for these values of the coupling constants. Since the field
strength and scalars are respectively responsible for repulsive and attractive forces between vor-
tices, this result indicates that vortices will attract in this model.

Finally, we present our numerical results. We have solved Eqs. (6.3) using the Runge–Kutta
order 4 method. The equations were studied on a finite interval of length L. The expansions
around r = 0 were used as initial data, and the constants χ0, a0, λ0 are determined by the re-
quirement that χ = 1, aθ = −N and λ = 0 at r = L. We have computed the action S of the
resulting fields, as well as the coefficients of the asymptotic expansions, for a few values of N .
The results were independent of the length L and the lattice spacing h, for sufficiently large L

and small h. The constant C1 was computed both from χ and λ, and the values obtained agreed.
Our results are summarised in Table 1 and the numerical solutions are displayed in Fig. 1.

The main result of the numerical computation is that the value of the ratio S/N is smaller
for a symmetric N = 2 vortex than for a symmetric N = 1 vortex, suggesting again that vortices
attract in this model. It seems plausible that the symmetric vortex is the minimum amongst N = 2
configurations, but this cannot be verified without further analysis.

We emphasise that the results in this section apply only to the case � = ∞. An obvious next
step would be to repeat this analysis look at the theory at O(1/�). We have written the 1/�

correction to the action in Appendix B; however, we haven’t attempted to perform any numerical
analysis on this theory, since we don’t expect its behaviour to differ qualitatively from the � = ∞
case.

6.2. Case 2: The constraint fully imposed

We observe that the fuzzy constraint φaφa + �(� + 1) = 0 is equivalent to the two algebraic
equations, R1 = 0, R2 = 0. These can be solved to obtain ϕ3 and ϕ4 in terms of ϕ1 and ϕ2.
Substituting back into the action yields an action with just one complex scalar field ϕ = ϕ1 + iϕ2.

When � = ∞, the solution to the constraint is simply ϕ3 = 0, ϕ4 = 0, and substituting these
into the action yields the standard critically coupled Ginzburg–Landau energy functional. When
� is large but finite, one can solve the constraint approximately by expanding about the � = ∞
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Fig. 1. The axially symmetric vortex with no constraint. Graphs show χ , λ, −aθ , and f12 = ∂raθ /r as functions of r ,
for N = 1 (solid) and N = 2 (dashed).

solution in powers of 1/�. To leading order, this approximate solution is

(6.7)ϕ3 = − 1

2�2

(
1 − |ϕ|2) + O

(
1

�3

)
, ϕ4 = 1

2�

(
1 − |ϕ|2) + O

(
1

�2

)
.

Taking now g = 1/
√

2 and g̃ = √
2 and substituting the approximate solution above into the

ansatz determines the leading order correction to the action:

S = 1

2

∫
R2

d2y
1

4

(
fμνf

μν + hμνh
μν + 1

�
hμνf

μν

)
+

(
1 − 1

4�2

)
|Dμϕ|2

(6.8)+ 1

8�2

(
∂μ|ϕ|2)2 + 1

2

(
1 + 1

2�2

)(
1 − |ϕ|2)2

.

The equation of motion for hμν is solved by hμν = −fμν/(2�), and substituting back gives

S = 1

2

∫
R2

d2y
1

4

(
1 − 1

4�2

)
fμνf

μν +
(

1 − 1

4�2

)
|Dμϕ|2

(6.9)+ 1

8�2

(
∂μ|ϕ|2)2 + 1

2

(
1 + 1

2�2

)(
1 − |ϕ|2)2

.

With � = ∞, the standard Ginzburg–Landau energy functional is recovered, as is evident from
(6.9). An interesting feature of the perturbed action is that the kinetic term for ϕ = ϕ1 + iϕ2 is
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non-linear. This arises simply because the fields ϕ1, ϕ2 take values in the curved 2-manifold of
solutions to the fuzzy constraint in R

4.
In order to look for vortex solutions, we again make a radial ansatz ar = 0, ϕ = χ(r) exp(iNθ),

a = aθ (r) dθ . Substituting into the action yields

S = π

∞∫
0

dr

(
1 − 1

4�2

)(
1

2r
a′2
θ + rχ ′2 + 1

r
(N + aθ )

2χ2
)

(6.10)+ r

2�2
χ2χ ′2 +

(
1 + 1

2�2

)
r

2

(
1 − χ2)2

.

The Euler–Lagrange equations for this functional are

0 =
(

1 − 1

4�2
+ χ2

2�2

)(
χ ′′ + 1

r
χ ′

)
+ 1

2�2
χ ′2χ

(6.11)−
((

1 − 1

4�2

)
1

r2
(N + aθ )

2 +
(

1 + 1

2�2

)(
χ2 − 1

))
χ,

(6.12)0 = a′′
θ − 1

r
a′
θ − 2(aθ + N)χ2.

The perturbative solution about r = 0 is

χ = χ0r
N + O

(
rN+2),

(6.13)aθ = a0r
2 + O

(
r4).

With χ = 1 − δχ , aθ = −N + δa, the large r expansion of the Euler–Lagrange equations is

0 =
(

1 + 1

4�2

)(
χ ′′ + 1

r
χ ′

)
− 2

(
1 + 1

2�2

)
δχ,

(6.14)0 = δa′′ − 1

r
δa′ − 2δa.

These equations are solved by

δχ = D1K0

(√
2

1 + 1/(2�2)

1 + 1/(4�2)
r

)
,

(6.15)δa = D2rK1(
√

2r).

Notice that, for 1/� �= 0, the scalar δχ decays faster than the field strength. Since the field strength
is responsible for a repulsive force, this indicates that vortices will repel in this model.

Finally, we have found numerical solutions to the Euler–Lagrange equations for a range of
values of 1/�, using the same method as in the previous subsection. With 1/� = 0 our data
agrees with established results [20]; in Table 2 we display the 1/� = 0 results, together with the
leading order correction. The numerical solutions are displayed in Fig. 2.

Notice that when 1/� �= 0, the value of the ratio S/N is larger for N = 2 than for N = 1,
suggesting that the axially symmetric 2-vortex is unstable. The simplest possible interpretation
of our numerical and analytical results is that the axially symmetric 2-vortex is unstable to decay
into two 1-vortices, which repel until they reach infinite separation. However, more complicated
behaviour is not ruled out – for example, the axially symmetric 2-vortex could be a local mini-
mum of the action, or it could decay into a stable non-symmetric configuration.
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Table 2
The value of the action S for vortices with a = ∞ and N = 1,2, and constants associated with asymptotic expansions.

N S/π χ0 a0 D1 D2

1 1.00 − 0.0406�−2 0.853 + 0.284�−2 0.500 + 0.128�−2 1.71 − 0.68�−2 2.42 − 0.48�−2

2 2.00 − 0.0147�−2 0.459 + 0.247�−2 0.500 + 0.145�−2 5.34 − 2.42�−2 7.55 − 2.62�−2

Fig. 2. The axially symmetric vortex with constraint fully imposed. The left column corresponds to N = 1, and the right
to N = 2. Graphs show χ , −aθ , and f12 = ∂raθ /r as functions of r , for �−2 = 0 (solid) and �−2 = 0.1 (dashed).

7. Conclusion

In this paper, following the fuzzy generalization of the CSDR scheme, we have first de-
termined the most general SU(2) equivariant gauge connection over M × S2

F and used it to
dimensionally reduce the Yang–Mills theory over this space to an Abelian Higgs-type theory
over M. Our results explicitly confirm that successful CSDR schemes can be implemented in
the fuzzy setting. The main difference in the fuzzy scheme compared with standard CSDR is that
additional degrees of freedom are present in the SU(2) equivariant gauge connection and they
contribute as additional real scalars in the reduced theory. We have seen that, this new feature
of the reduced theory can be successfully attributed to the fact that the gauge field on the fuzzy
sphere has three components rather than two. These new real scalars appearing in the reduced
action can be suppressed by including a constraint term in the Yang–Mills action, which gives
a mass to one component of the gauge field. If this mass is chosen very large, the reduced ac-
tion obtained from the fuzzy reduction is very similar to the reduced action obtained from the
standard CSDR.
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We have also found analytical and numerical evidence for vortices in the reduced theory
over R

2, which map back to instantons on R
2 × S2

F . However, the vortices obtained in the fuzzy
reduction are not BPS, unlike in the standard reduction. This fact can again be attributed to the
gauge field on the fuzzy sphere having three, rather than two, components. The self-dual equation
for instantons is intrinsically 4-dimensional, so it doesn’t make sense for a gauge field on R

2 ×S2
F

with 5 components to be self-dual. The fuzzy constraint, while removing one component of the
gauge field, still doesn’t seem to allow any BPS property.

Instead of being BPS, the vortices in the reduced model either attract or repel, according
to whether the parameter a is 0 or ∞. One might hope that for some intermediate value of a

critically coupled vortices exist; however, we doubt that this is the case, since we have not found a
natural self-dual equation on R

2 ×S2
F . We believe that the vortices in the reduced theories deserve

more study. Apart from a more rigorous analysis of their stability and interactions, it would
be interesting to see whether the additional scalars allow the existence of “super-conducting
strings” [21], or even more exotic solutions.

Much of our analysis has focused on the case where � is large, so it might prove fruitful to
study the same reduction from a small � point of view: for example, by fixing � and working
directly with matrices rather than algebraic identities. It is possible that other interesting new
features may emerge in this case. We also would like to mention briefly that vortices have also
recently been studied in the context of Yang–Mills theory on M × X, with X chosen to be
discrete 2-point space [22]. More work is necessary to reveal points of contact of this study with
present developments, if there are any.

There are several other interesting questions which remain to be studied. Recently, there has
been some new developments in incorporating fermions into fuzzy reduction schemes [7,23]
(see also [24] for related developments), so it would be definitely interesting to try to incor-
porate the fermions into the example presented here. It would also be worthwhile to perform
the dimensional reduction on M×S2

F where M too is a non-commutative manifold such as the
2d-dimensional Moyal space R

2d
θ and compare our results with those of Ref. [4] in which the

reduction over R
2d
θ × S2 is considered and non-commutative BPS vortices over R

2d
θ have been

found. Progress on these topics will be reported elsewhere.
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Appendix A. Explicit formulae

In this appendix, we list the explicit expressions for P1, P2, P3, Q1, Q2, Q3 and R1, R2 which
were introduced for brevity of notation in Section 5.

We have

(A.1)P1 = �2 + � − 1/4

(� + 1/2)2
ϕ3 + 1

� + 1/2
ϕ4,

(A.2)P2 = (1 − ϕ3)

(
1 + ϕ4 − ϕ3

2

)
,

� + 1/2 2(� + 1/2)
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(A.3)P3 = �2 + �

(� + 1/2)2

(
ϕ2

3 − 2ϕ3
) + ϕ2

4 + 2
�2 + � − 1/4

� + 1/2
ϕ4.

Q1,2,3 are given in terms of the above P1,2,3

(A.4)Q1 = 1

2

(�2 + �)(�2 + � − 1/4)

(� + 1/2)4
,

Q2 = �2 + �

(� + 1/2)2

(
P 2

1 − �2 + � − 1/4

(� + 1/2)2
P2 + 1

2(� + 1/2)2
P3

)

= − (�2 + �)(�2 + � − 1/4)

(� + 1/2)4
+ (�2 + �)(�2 + � − 3/4)

(� + 1/2)4
ϕ3

+ (�2 + �)((� + 1/2)4 − (� + 1/2)2 + 3/8)

(� + 1/2)6
ϕ2

3

(A.5)+ 3
(�2 + �)(�2 + � − 1/4)

(� + 1/2)5
ϕ3ϕ4 + 3

2

�2 + �

(� + 1/2)4
ϕ2

4 ,

(A.6)Q3 = 1

2

(�2 + �)(�2 + � − 1/4)

(� + 1/2)4
P 2

2 + 1

8

�2 + � + 3/4

(� + 1/2)4
P 2

3 − 1

2

�2 + �

(� + 1/2)4
P2P3.

For R1 and R2 we find

R1 = −1

2

(
ϕ2

1 + ϕ2
2 − 1

) − 1

4(� + 1
2 )2

ϕ3 −
((

� + 1

2

)
− 1

2(� + 1
2 )

)
ϕ4

(A.7)−
(

1

4
− 3

16(� + 1
2 )2

)
ϕ2

3 − 1

4(� + 1
2 )

ϕ3ϕ4 − 1

4
ϕ2

4,

R2 = 1

4(� + 1
2 )

(
ϕ2

1 + ϕ2
2 − 1

) −
((

� + 1

2

)
− 3

4(� + 1
2 )

)
ϕ3 − 1

2
ϕ4 − 1

16(� + 1
2 )3

ϕ2
3

(A.8)−
(

1

2
− 1

4(� + 1
2 )2

)
ϕ3ϕ4 − 1

4(� + 1
2 )

ϕ2
4 .

Appendix B. Reduced action at order 1
�

At order 1
�

the reduced action takes the form

S =
∫

M

ddy
1

16g2

(
fμνf

μν + hμνh
μν + 1

�
hμνf

μν

)
+ 1

2
|Dμϕ|2 + 1

4

(
1 − 1

�

)
(∂μϕ3)

2

(B.1)+ 1

4
(∂μϕ4)

2 + 1

2�
(∂μϕ3)(∂μϕ4) + V1| 1

�
+ V2| 1

�
+ O

(
1

�2

)
,

where

V1| 1
�

= 1

g̃2

(
1

2

(|ϕ|2 + ϕ3 − 1
)2 + ϕ2

3 |ϕ|2 + 1

2
ϕ2

4

)

(B.2)+ 1

�

(
3|ϕ|2ϕ3ϕ4 + 1

2
ϕ4

(
ϕ2

3 − 2ϕ3 + ϕ4
))
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and

V2| 1
�

= a2
((|ϕ|2 − 1

)2 + 1

16
ϕ4

3 + 1

4
ϕ3

3 +
((

� + 1

2

)2

− 3

2

)
ϕ2

3 + 1

16
ϕ4

4

+ 1

2

(
� + 1 + 3

4�

)
ϕ3

4 + �(� + 1)ϕ2
4 + (|ϕ|2 − 1

)2
(

1

4

(
ϕ2

3 + ϕ2
4

) + 1

4�
ϕ3ϕ4

+
(

� + 1

2
− 3

4�

)
ϕ4

)
+ 1

4�
ϕ3

3ϕ4 + 3

8
ϕ2

3ϕ2
4 +

(
3

2

(
� + 1

2

)
− 9

4�

)
ϕ2

3ϕ4

(B.3)+
(

2

(
� + 1

2

)
− 3

2�

)
ϕ3ϕ4 + 9

4
ϕ3ϕ

2
4 + 1

2�
ϕ3ϕ

3
4

)
.
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