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We present here a new method to predict cloud concentration five minutes in advance from all-sky images using the Artificial
Neural Networks (ANN). An autoregressive neural network with backpropagation (Ar-BP) was created and trained with four
years of all-sky images as inputs. The pictures were taken with a hemispheric sky imager fixed on the roof at the Institute of
Meteorology and Climatology (IMUK) of the Leibniz Universität Hannover, Hannover, Germany. Firstly, a statistical method is
presented to obtain key information of the pictures. Secondly, a new image-processing algorithm is suggested to optimize the
cloud detection process starting with the Haze Index. Finally, the cloud concentration five minutes in advance at the IMUK is
forecasted using machine learning methods. A persistence model forecast to provide a reference for comparison was generated.
The results are quantified in terms of the root mean square error (RMSE) and the mean absolute error (MAE). The new
algorithm reduced both the RMSE and the MAE of the prediction by approximately 30% compared to the reference persistence
model under diverse cloud conditions. The new algorithm could be used as a tool for the stable maintenance of the network for
the transmission system operators, i.e., the primary control reserve (within 30 seconds) and the secondary control reserve
(within 5 minutes).

1. Introduction

Changes in the solar irradiance dynamic are significantly
impacted by clouds, which makes it difficult to achieve accu-
rate PV power forecasting [1, 2]. With a reliable cloud perfor-
mance forecast, uncertainty in the solar irradiance prediction
can be minimized and optimized. Increased electricity
demand requires balancing energy. In this case, the grid
operator needs additional power supply to his grid at short
notice. The prequalification requirements in German mar-
kets provide that a complete deployment of primary control
reserve has been completed within 30 seconds and the sec-
ondary control energy must be available in full within five
minutes [3]. Quaschning [4] shows the importance of the
energy control for the first 15 seconds, 30 seconds, 1 minute,
5 minutes, 15 minutes, and 60 minutes when, for example,
the current reserve is running low. Thus, a prediction of the
cloud concentration for the next five minutes, for solar radi-
ation forecast, makes an important contribution to the

efficient and economical application for many areas of solar
energy use. Solar irradiance is the key factor for solar photo-
voltaic (PV) generation. The International Energy Agency
estimates that after 2060, solar energy could cover up to a
third of the world’s energy consumption. Therefore, the solar
energy use is likely to grow by a double digit rate throughout
the world and for decades.

Thus, solar power will be an important contributor to the
future power supply technologies, influencing the planning,
profitability, and operation of power systems. For stabilizing
the fluctuations in the energy output of PV plants, the impact
of clouds must be considered to achieve a sustainable, afford-
able, and reliable electricity supply [5].

All-sky images have already been proven to achieve an
efficient observation from the ground delivering a compre-
hensive view for kilometers [6]. The application of this tech-
nique is mainly used in the solar forecasting for cloud
identification, cloud movement, and cloud forecast [7]. Many
authors use algorithms based on a red/blue threshold of the
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RGB channels of all-sky images for cloud classification [8].
However, this method is unable to detect thin clouds near
the horizon [9].

Additionally, several studies report different ways for
identifying clouds and predicting their future movements
in a more objective manner. Many authors report methods
in cloud identification using a threshold and segmentation
of the pictures. Liu et al. [10] developed an automatic cloud
detection algorithm using superpixel segmentation calculat-
ing the local threshold for each superpixel and then deter-
mining the threshold matrix for whole images. Scolari et al.
[11] developed a cloud motion identification algorithm
based on all-sky images for prediction horizons in the range
1 to 10 minutes.

More recently, Crisosto et al. [12] developed an algorithm
to predict the global horizontal irradiance (GHI) one hour in
advance from all-sky images using the ANN. This study
reduced both the RMSE and the MAE of the one-hour pre-
diction by approximately 40% of the forecast prediction com-
pared to the reference persistence model subdividing the all-
sky images into concentric circles to be able to simulate more
accurately the GHI.

Different methodologies utilizing two ANN have already
been employed. Kamadinata et al. [13] developed and com-
pared two different ANN to first forecast cloud movement
direction where the output of this ANN is utilized as input
for the second ANN for predicting the GHI. The results of
this study show a reduction of the computational effort cap-
turing the trend of the GHI very well. Zhen et al. [14] pro-
posed a cloud image forecasting method from all-sky
images using genetic algorithms tracking both the displace-
ment and deformation of cloud reducing the Euclidean dis-
tance in comparison with other methods.

Therefore, in order to support accurate solar irradiance
forecasts, we propose a cloud concentration forecast algo-
rithm using the artificial neural networks (ANN), which
can be later used as a tool for solar energy forecasts.
Section 2 briefly describes the data and image acquisition.
Section 3 describes the methodologies necessary for this
study. The forecasting results are given in Section 4.
Finally, in section 5, the conclusions and future work will
be discussed.

2. Data

The main component of solar power output is the solar irra-
diance, which under the presence of clouds is extremely
affected. Thus, cloud motion becomes the key element of
solar power output.

2.1. Image Acquisition. The camera system is installed inside
a weatherproof housing on the roof of the Institute of Mete-
orology and Climatology (IMUK) of the Leibniz Universität
Hannover, Hannover, Germany. The pictures were recorded
with a Canon EOS 700D equipped with a Dörr DHG fisheye
lens providing a 183° field of view. The exposure time of the
pictures was 1000/s. All time hours are expressed in coordi-
nated universal time (UTC).

3. Methodology

We developed an algorithm to forecast cloud concentra-
tion five minutes in advance from all-sky images using
the ANN. We can divide the new algorithm in two main
steps. The first part highlights the image-processing algo-
rithm for extracting parameters from all-sky images. The
second step comprises the ANN method. Figure 1 shows
the cloud recognition and cloud concentration forecast
with ANN.

3.1. Cloud Pixel Identification. Clear sky is characterized by
high blue pixel intensity and low red pixel intensity, while
thick cloud pixels are characterized by high intensity in both
channels. Thus, the cloud identification algorithm deter-
mines if a pixel corresponds to a cloudy point or clear sky.
To surpass the limitations of using only the blue and red
RGB channels, we used a cloud identification method which
also uses green. This color discrimination method is simple
and distinguishes cloud from blue sky by the ratio of the
counts of red, green, and blue color in each pixel. Using the
Sky Index (equation 1) method by Yamashita et al. [15] and
refining its uncertainties, we calculated the Haze Index
(equation 2) as detailed by Schrempf [16] to expand (1) for
a better cloud identification.

Sky Index = countblue − countred
countblue + countred

, 1

Haze Index =
countred + countblue /2 − countgreen
countred + countblue /2 + countgreen

2

The total cloud area was then calculated by the sepa-
ration of cloud and sky done by the Haze Index in the
all-sky image. To avoid oversaturated pixels, the percent-
age of clear sky and cloud cover is obtained without con-
sidering the sun’s circumference. The extraction of the
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Figure 1: Cloud movement process with ANN.
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statistical information from all pictures was limited to the
sun’s zenith angle of 70°. Figure 2 shows the Haze Index
image processing.

3.2. Setup of the ANN. The algorithm used seven inputs and
one output. For the final configuration of the ANN see
Table 1. The inputs xj flow through the next layer multiply-
ing their values by a weight wi,j, while the resulting product
is used as argument for a transfer function f giving the out-
put yi. i represents the presynaptic neuron and j the post-
synaptic neuron, see equation 3 and equation 4. The
quantity of hidden neurons per single hidden layer was cal-
culated by (5).

ui = 〠
n

j=1
wi,jxj , 3

yi = f ui + bi , 4

where xj is the input, wi is the synaptic weight, ui is the lin-
ear combination of the inputs, bi is the bias, f is the activa-
tion function, and yi is the output.

m = n + l ± α, 5

where n is the number of inputs and l is the number of out-
put neurons. α is a constant 1 < α < 10

The build of neural networks has shown that in addition
to the number of neurons and layers, the configuration of the
initially chosen weights has a significant influence on the net-
work. Thus, different neural network structures were config-
ured to carry out this job. Each one differs in its construction
form, initial values, and learning algorithm.

The selection of the “best” network was extremely dif-
ficult. For this reason, the technique used in all the net-
works built was to add hidden layers and in these to
add neurons. The idea is to achieve the desired result with
the least possible number of hidden layers and neurons in
each of these layers.

The interaction of the data decides the quality of the test.
The criteria for choosing a network was that both the RMSE
and the MAE were minimized as much as possible.

3.3. Cloud Concentration Forecasting. To accurately follow
cloud concentrations five minutes in advance, we created
the ring program, see Figure 3. The ring program divides
the pictures in concentric rings with the sun as their center.
We can see in the picture the subdivision of n concentric
rings. Each of these rings represents a temporal resolution.
The width depends on the distance from the horizon to
the center of the sun due to the equidistant projection.
Figure 3(a) shows the number of circles on 22nd June
2014 at 12:51 over the original picture, and Figure 3(b)
shows the rings at the same time over the Haze Index image.
The number of circles in this moment of the day was n = 10
that corresponds to approximately 10 minutes of future
information, i.e., the time that the clouds could take to reach
the center of the sun. In addition, the wind speed is also
measured at the IMUK, and each picture is stored with the
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Figure 2: (a) Cropped black area and coverage of the sun from the original picture. (b) Haze Index image.

Table 1: The neural network structure occupied in this
investigation.

Input
Hidden
layers

Neurons in the
first hidden layer

Neurons in the
second hidden layer

Output

7 2 4 2 1
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corresponding wind speed to estimate how many circles
there should be in each picture.

In the training phase of the ANN, we used the percentage
of cloud in each ring, the sun zenith angle (SZA) and the
mathematical standard deviation, mode, median, and aver-
age of the RGB channels of each ring at the time t as input
parameters. One-minute ahead cloud cover fraction of the
next ring at t + 1 of the next picture is the output of the pro-
gram. Now, to predict the cloud concentration at time t + 2,
we take all inputs from the time t with exception of the cloud
cover; this input is taken at time t + 1.

For example, on 22nd June 2014, the simulation started
at 12:51 (t) and estimated the cloud cover fraction of the
next ring of the next picture at 12:52 (t + 1) (Figures 4(a)
and 4(b)). Subsequently, to forecast the cloud cover fraction
of the next ring at 12:53 (t + 2), we used all input parame-
ters of the circle at 12:51 (t) with exception of the input
cloud cover, which was taken from the forecasted cloud
cover of 12:52 (t + 1). The idea is to use the information
of only one picture to forecast the cloud cover from 1-5
minutes ahead, completing all 5 rings.

Therefore, the ANN analyzed the actual cloud concentra-
tion at the current ring in order to know if one minute in
advance, the next ring will have the same, larger, or smaller
cloud concentration. This information could be important
to know the most likely cloud concentration near the sun at
the next minutes, in order to know how variable the solar
irradiance will be in this time frame.

4. Results

To evaluate the proposed method, the first five minutes
from 50 images with different cloud concentrations and

sun positions were manually selected and analyzed. The
selected days represent high cloud variability, i.e., a high
variability of solar irradiance. The RMSE (6), the MAE
(7), and the coefficient of determination (R2) (8) were used
to evaluate the performance of the new model for these
five minutes. To finally validate our model, the statistical
sampling (9) was utilized and the results are presented as
a boxplot. The mathematical definitions of the statistical
procedure are expressed as follows:

RMSE = 〠
N

i=1

yi − xi
N

, 6

MAE = ∑N
i=1 yi − xi

N
, 7

R2 = ∑N
i=1 yi − y xi − x

∑N
i=1 yi − y 2 ∑N

i=1 xi − x 2 1/2 , 8

where yi was the forecast value, xi was the measured value,
and N was the number of samples. Additionally, x =∑N

i=1xi
and y =∑N

i=1yi.

x = Z2Npq

e2 N − 1 Z2pq
, 9

(a) (b)

Figure 3: (a) shows the 10 circles on 22nd June 2014 at 12:51 on the original image. (b) shows 10 circles on 22nd June 2014 at 12:51 on the
Haze Index image.
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Figure 4: Observation of all-sky images on 22nd June 2014. The red circle in (a) corresponds at 12:51. (b) at 12:52. (c) at 12:53. (d) at 12:54. (e)
at 12:55. (f) at 12:56.
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whereN was the total of the set,p = 0 95,q = 0 05, andZ = 1 96
(this value corresponds to the confidence level of 95%).

The new algorithm was compared with the benchmark
algorithm, the persistence model. This model is the
simplest forecasting model and can be remarkably good
for short-term horizons [17]. This model is the most

common reference model for short forecasting term of
solar irradiance [18].

4.1. Analysis of a Case on 22nd June 2014.Now, we present an
example of the simulated results on 22nd June 2014 from
12:52 until 12:56 using the new algorithm. The deviation
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Figure 6: Deviation between the simulated cloud cover of the newmodel and the persistence model on 22nd June 2014 from 12:52 until 12:56.
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Figure 5: Comparison between the measured and simulated cloud cover on 22nd June 2014 from 12:52 until 12:56.
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between the measured cloud concentration at time t + 1 and
the simulated cloud concentration at time t + 1 was calcu-
lated according to equations 6 and 7. The new algorithm pro-
duced a high-quality forecast compared to the reference
persistence model.

The measured cloud concentration at 12:52 was 84.2%,
and our algorithm simulated 75.8%, i.e., a difference of
8.4%, while the persistence model had a difference of
11.7%. For the next minute simulation (at 12:53), our model
simulated 79.2% of the total cloud concentration and the
measured value was 70.0% resulting in a deviation of 9.2%.
Here, the persistence model difference is 13.9%. Figure 5
shows the measured cloud concentration of the first five
minutes and the simulated cloud concentration for the new
algorithm and the persistence model.

It is also worth mentioning that forecasting with images
completely covered with gray and dark gray clouds is of
minor relevance for solar energy forecast. Hence, images
with a solar global irradiance smaller than 100W/m2 were
not used in this work. Figure 6 shows the total deviation of
both models.

Table 2 presents a comparison between the results of the
different methods. Over 5 months of validation periods, we
got 240 valid cases. However, not every picture was consid-
ered for validation. Full cloudy pictures (stratus cloud) and
when the clouds did not have a form (shape) to be followed
were not considered. Thus, only pictures with defined clouds
(cumulus cloud) were considered for validation. To validate
our algorithm, we applied statistical samplings. Therefore,

taking into consideration a confidence level of 95%, with a
margin of error of 6%, our simulated cases were 145.

Therefore, applying the new ANN model to the 145
pictures, the presented model achieved an average of
30% for all sky conditions compared with the persistence
model. Unfortunately, direct comparisons with other
methods are difficult due to different time horizons and
regional weather conditions.

Figure 7 shows the relative deviations as boxplots. The
results suggest that the newmodel (Figure 7(a)) shows a sym-
metrical approach for the 50% sample rate. In addition,
Figure 7(b) shows an asymmetrical distribution of outliers
and a decreasing number of outliers, which leads to higher
uncertainties. In conclusion, the uncertainty of the new
model increased, but not as abruptly as with the persistence
model, when more simulated data are introduced.

5. Conclusions

A new algorithm to forecast cloud distribution five minutes
in advance has been presented. The model presented here
combines all-sky images and an Ar-BP ANN. The cloud
pixels were identified with the help of the Haze Index. The
methodology described here only needs one all-sky image
for predicting cloud concentration one minute ahead.
According to the simulation results, our model makes a sig-
nificant progress to predict cloud concentration five minutes
in advance using a machine learning method, outperforming
the persistence model. This method has already been

Table 2: Statistic indicator comparison between the new ANN forecast model and the persistence forecast model for the 50 manually selected
pictures.

Simulation’s time Model RMSE (cloud amount) MAE (cloud amount) R2

5 minutes (from 145 different pictures)
ANN 51 43 0.96

Persistence 70 61 0.79
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Figure 7: Relative deviation as boxplot for the first five minutes. (a) corresponds to the new ANN. Here, we can see that the deviations are
narrower concentrated in the middle interquartile ranges. (b) corresponds to the persistence model. 50% of the deviations are not exactly
located in the middle. In addition, the 25% and 75% of the deviation is higher than in (a).
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successfully tested as a tool as an important step for pre-
dicting the GHI one hour in advance [12]. The horizon
time prediction of the new forecasting model can play an
important role in German markets and within the Euro-
pean Union as well.

Future work will expand this methodology for forecasting
the full image for longer periods, maybe using satellite infor-
mation. In addition, the idea is to extend the proposed meth-
odology to collect universally high-quality data giving a more
robust validation.
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