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optimal control of the transport 
of Bose-einstein condensates with 
atom chips
s. Amri1,2, R. Corgier1,2, D. sugny3, E. M. Rasel2, N. Gaaloul2 & e. Charron1

Using Optimal Control Theory (OCT), we design fast ramps for the controlled transport of Bose-Einstein 
condensates with atom chips’ magnetic traps. these ramps are engineered in the context of precision 
atom interferometry experiments and support transport over large distances, typically of the order of 
1 mm, i.e. about 1,000 times the size of the atomic clouds, yet with durations not exceeding 200 ms. 
We show that with such transport durations of the order of the trap period, one can recover the ground 
state of the final trap at the end of the transport. The performance of the OCT procedure is compared to 
that of a shortcut-to-Adiabaticity (stA) protocol and the respective advantages/disadvantages of the 
oCt treatment over the stA one are discussed.

The measurement’s outcome of a phase-sensitive sensor probing forces exerted on neutral atoms by inertial, mate-
rial or electromagnetic sources depends dramatically on the initial conditions, i.e. on the position, velocity and 
size of the input matter-wave. A lack of knowledge or scattering in these initial properties inevitably leads to 
systematic effects or statistical errors harming the sensor’s performance. An example of the degree of control 
needed can be grasped if one considers making a test of the Universality of Free Fall (UFF) with two different 
atomic species to put bounds on a possible violation of the UFF at the femto-level in the Eötvös ratio1, level at 
which state-of-the-art experiments perform with material test masses2. Such a precise experiment requires that 
the initial positions, center-of-mass velocities and expansion rates are defined at a level better than 1 μm, 1 μm/s 
and 100 μm/s (35 pK in 3D), respectively3.

To meet these stringent requirements, the temperatures of the atomic ensembles have to be drastically reduced 
(down to a sub-nK level) and their size must remain compact (not exceeding a few mm after several seconds of free 
expansion) clearly indicating the necessity of using Bose-Einstein Condensates (BEC). Such a direction is taken by 
several metrology groups worldwide4–10, including the QUANTUS11 and MAIUS12 consortia, which reached impor-
tant milestones in controlling quantum gases dynamics in microgravity conditions using atom chips13,14.

In a recent work15, we considered an approach based on Shortcut-To-Adiabaticity (STA) protocols to obtain 
analytic solutions for the transport of the BEC in an atom chip setup with realistic anharmonic and rotating 
trapping potentials. This approach based on the reverse engineering technique allows for a full control of the 
translational degrees of freedom of the BEC. It is, however, exciting several collective modes of the quantum gas, 
an effect which could eventually compromise the expected metrological gain if such a source is used without any 
precaution as an input of an atom interferometer. It is in this context that the use of optimal control theory (OCT) 
can reveal an unchallenged potential of targeting a given final state in timescales shorter than the trivial adiabatic 
manipulation, which is of no practical use in the metrology context since it is associated with poor cycling rates.

The aim of optimal control theory is to bring a dynamical system from one state to another, while minimizing 
a cost functional, such as the control time or the energy of the pulse used. The modern version of OCT is born 
with the Pontryagin’s Maximum Principle (PMP) in the late 1950s16,17. Originally applied to problems of space 
dynamics, OCT is nowadays a key tool to study a large spectrum of applications both in classical18,19 and quantum 
physics20–22. In the Pontryagin formulation, solving an optimal control problem is equivalent to finding extremal 
trajectories which are solutions of a generalized Hamiltonian system. These trajectories satisfy the maximiza-
tion condition of the PMP as well as specific boundary conditions18–20. The implementation of the PMP is far 
from being trivial and numerical control algorithms have been developed to approximate the optimal solution23. 
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Among others, we can mention the gradient19,24 and the Krotov23,25 algorithms, which are nowadays standard 
tools in physics.

OCT has been applied with success to quantum systems since the 1980s in domains extending from molec-
ular physics and nuclear magnetic resonance to quantum information science (see refs22,26, for recent reviews, 
and references therein). The application of OCT to BEC dynamics has also been explored in different contexts. 
Using the Gross-Pitaevskii equation, the optimal coherent manipulation of an atomic BEC has been investigated 
in a series of studies (see refs27–33 to cite a few, and references therein). The transport of cold atoms has also been 
optimized for simple models in combination with invariant-based inverse methods15,34–37. It should be mentioned 
here that OCT and STA are usually compatible in the sense that an OCT methodology can be built on top of a 
basic STA frame of solutions34,38–42. One can also note that recently, new methods have been tested successfully 
to bridge the gap between an ideal STA and a realistic experimental implementation for the optical transfer of a 
degenerate gas, demonstrating fast highly non-adiabatic transfer with almost no residual sloshing using corrected 
STA trajectories43.

In this paper, we discuss the application of optimal control theory for the fast transport of Bose-Einstein con-
densates with atom chips while simultaneously controlling the quantum degrees of freedom of the problem to 
target the ground state of the final trap as the optimization result. The article is organized as follows: We describe 
in the next section the chip model used to transport the BEC. The chosen cost functional and the associated 
transport ramp are presented in the next section, which is followed by a comparison of our findings to the results 
of the STA technique applied in a similar context15. We finally illustrate the impact of the OCT ramp duration on 
the internal degrees of freedom of the final BEC state. We conclude by discussing the limits of the methodology 
we have developed, and by mentioning potential experimental implementations.

Chip model
We consider the case of a Z-shaped chip configuration used to trap and manipulate cold Rb atoms in micro-gravity 
(See reference15 for a detailed description of the numerical model and reference44 for the description of an exper-
imental implementation). The three spatial dimensions are denoted by the three coordinates X, Y and z. z is the 
direction perpendicular to the chip. X and Y are two orthogonal directions in the plane of the chip. The trap 
is naturally rotating in the (XY) plane when the physical parameters governing the trap potential change. The 
diagonalization of the associated Hessian matrix allows to define two new eigen-coordinates x and y of the trap, 
rotated compared to the fixed X and Y coordinates15. The physical parameters which govern the trap potential 
are the chip intensity Iw and the bias magnetic field Bbias. For the present study, Iw is fixed at 5 A and the control 
parameter for the implementation of the transport ramp is the time-dependent bias magnetic field Bbias(t), which 
varies between Bbias(0) = Bi = 21.5 G at the initial time t = 0 and Bbias(tf) = Bf = 4.5 G at the end of the transport 
corresponding to t = tf  .

In such a configuration already described in our previous study15, the minimum of the trap is at the origin in 
x and y, and it is located at a distance z0(t) from the chip surface. At t = 0 we have .z (0) 0 450  mm and at the end 
of the transport .z t( ) 1 65f0  mm. If we limit ourselves, in a first approximation, to the simplest case of a 
time-dependent harmonic trap, the center-of-mass of the condensate zA(t) in the direction normal to the surface 
follows Newton’s equations of motion

ω= = − − z t v t v t t z t z t( ) ( ) and ( ) ( )[ ( ) ( )], (1)A A A z A
2

0

where ωz(t) denotes the frequency of the trapping potential along z at time t. Moreover, in the Thomas-Fermi 
approximation45, the evolution of the size of the BEC is accurately described by a scaling approach46,47. The size 
of the BEC is defined by the three time-dependent radii rx(t), ry(t) and rz(t) of the paraboloid associated with the 
BEC wave function, with
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It was shown46,47 that the time-dependent scaling factors λx(t), λy(t) and λz(t) obey the three coupled second 
order differential equations
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where ωx(t) and ωy(t) denote the frequencies of the trapping potential along x and y at time t. The full behavior of the 
trapping frequencies as a function of the control parameter Bbias can be found in15. Initially the trapping frequencies are 
ω π ⋅(0) 2 15 Hzx  and ω ω π ⋅ (0) (0) 2 616 Hzy z . At the end of the transport ω π ⋅t( ) 2 10 Hzx f  and 
ω ω π ⋅ t t( ) ( ) 2 32 Hzy f z f . The largest time scale associated with the trap is therefore of the order of 100 ms. An 
adiabatic transport would thus require transport durations larger than 1 s. Here we want to design a simple, fast and 
efficient transport ramp for the BEC. The OCT technique being very powerful, we have decided to optimize a single 
control parameter, Bbias(t), in order to control the final position of the BEC zA(tf), its final speed vA(tf), and its final size 
defined by the three final scaling factors λx(tf), λy(tf) and λz(tf). We also wish to control the final expansion rates given 
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by λ t( )x f , λ t( )y f  and λ t( )z f . Finally, since we want the harmonic approximation to hold during the entire transport, we 
also wish to limit the time-dependent offset between the position of the center of mass of the BEC and the center of the 
trap |zA(t) − z0(t)| as well as the the time-dependent offset between their respective speeds | − |v t z t( ) ( )A 0 . To be com-
patible with metrology applications with an integration over thousands of experimental cycles, we want this transport 
to be realized quickly, i.e. in a duration of the order of the largest time scale associated with the trap, that is of the order 
of 100 ms with the present chip configuration.

Cost functional
To implement such an optimal control scheme, we first introduce the “classical” point-wise translational energy 
of the condensate in the reference frame of the trap

ω= − + − E t m z z v z( )
2

( [ ] [ ] ), (4)cl z A A
2

0
2

0
2

as well as the “quantum” energy associated with the 3D Thomas-Fermi wave function
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where π=g a m4 /s
2  is the scattering amplitude, as is the s-wave scattering length of Rb-87 and N = 105 denotes 

the number of condensed atoms. The first term in Eq. (5) describes the potential energy associated with the finite 
size of the condensate, the second term is the kinetic energy associated with the size dynamics, and the third and 
last term is the average mean-field interaction energy between the atoms of the condensate. The numerical factors 
(1/14) and (15/28) seen in Eq. (5) come from the specific definition given in Eq. (2) of the size of the condensate 
using a Thomas-Fermi expression for the probability density.

The goal we want to achieve is the minimization of a total cost functional Ctot, defined by the sum

= +C C C (6)tot term run

of a terminal cost
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The terminal cost was designed to insure the formation of the ground state of the trap at time tf  . It imposes the 
minimization of the total energy of the condensate at the end of the transport. The running cost is introduced in 
order to limit the transient excitation of the condensate in the moving harmonic trap. Here we fix λ1 = 1 and the 
two other dimensionless parameters λ2 and λ3 are chosen to express the relative weights between the three terms 
of the cost functional. Changing the values of λ2 and λ3 affects the progress of the optimization procedure by 
changing the path it takes during optimization. This can lead in practice to different final transport ramps, which 
will take into account the relative weight assigned to each of the terms of the cost functional.

transport ramp
The initial and final traps are defined by the initial and final values Bi = 21.5 G and Bf = 4.5 G of the bias magnetic 
field Bbias(t). Since in experiments one can be limited by the switch on/off speed of the magnetic field we circum-
vent this problem by insuring a smooth variation of Bbias(t) at t = 0 and at t = tf  . For this reason we have chosen 
to impose
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where u(t) is a continuous function of time, with u0 = u(0) and uf = u(tf). This definition allows to impose the 
following boundary conditions for the bias magnetic field

= =
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Note that a consequence of these boundary conditions imposed on Bbias(t) is that similar relations hold for all trap 
parameters such has the trap position z0(t) and the trap frequencies in all directions ωx(t), ωy(t) and ωz(t). The 
optimization procedure we have adopted is therefore using the dimensionless control function u(t), from which 
we can calculate the optimal bias magnetic field using Eq. (9).
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optimal control
We now reformulate our optimization problem in the framework of optimal control theory. We refer the inter-
ested reader to standard textbooks for details18–21. The state of the system is described by a state vector x, with

λ λ λ

λ λ λ

= = = =

= = = =  

x z t x t x t x t

x v t x t x t x t
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As suggested by Eqs (1) and (3), the time evolution of all components of the state vector x is governed by a set 
of coupled first order differential equations controlled by u(t) through the time dependence of the trap position 
and frequencies. Once u(t) is chosen and for well defined initial conditions at t = 0, these equations are easily 
solved using a Runge-Kutta algorithm48,49 or the Verlet method50, for instance.

According to the Pontryagin maximum principle16,17, the extremal solutions of the problem, candidates to be 
optimal, satisfy the equations of Hamiltonian
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where p is the adjoint state vector and where the Pontryagin Hamiltonian of the system is defined by
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From Eq. (12), it can be easily shown that the dynamics of the adjoint state is governed by the following set of 
coupled first order differential equations
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In addition, the transversality conditions for the adjoint state read

λ λ= −




∂
∂






−





∂

∂






= =

p t E
x

E
x

( )
(15)

n f
cl

n t t

qu

n t t
1 2

f f

thus leading to the following boundary conditions at time t = tf
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We use a standard first-order gradient algorithm which is adapted to the control problem under study. The 
optimization procedure proceeds as follows:

 (i) First we fix an initial control ramp u(t) arbitrarily, such as the linear ramp u(t) = t/tf for instance, or the 
STA ramp obtained from ref.15.

 (ii) We then compute the magnetic field Bbias(t) using Eq. (9) and we deduce the trap dynamics by calculating 
the trap motion z0(t) and the trap frequencies ωx(t), ωy(t) and ωz(t);

 (iii) Using the Verlet method50, we then solve Eqs (1) and (3) to simulate the condensate dynamics in the 
Thomas-Fermi regime from the initial time t = 0 to the final time t = tf  ;

 (iv) We calculate the adjoint state p(tf) at the end of the transport using Eq. (16) and we propagate p(t) back-
ward in time until t = 0 using Eq. (14);

 (v) Finally, we add a first order correction to the control ramp by replacing the control function u(t) by 
[u(t) + δu(t)], where δu(t) = ε(∂Hp/∂u), ε being a small positive constant.

This procedure is repeated until convergence is reached.

Convergence
Figure 1 shows a typical example of convergence of this algorithm. The condensate is assumed to be initially at rest 
in the ground state of the initial trap. The initial control ramp is the shortcut-to-adiabaticity solution (see ref.15 for 
details). The weight parameters are λ1 = 1, λ2 = 5.105 and λ3 = 0.001. We have chosen in this example a large value 
for λ2 in order to impose a fast convergence for the control of the final size of the condensate. In practice the cor-
rection parameter ε has to be chosen small enough to insure the convergence of the optimization algorithm. Since 
the correction to the control ramp is introduced at first order only, decreasing the value of ε beyond a reasonable 
limit does not improve the accuracy of the optimization procedure but it slows down the convergence. In the 
present example we have chosen ε = 10−11. In Fig. 1, panel (a) shows the classical energy Ecl(tf) of the condensate 
at the end of the transport (tf = 150 ms in this case) as a function of the optimal control theory iteration number 
(logarithmic scaling). Panel (b) shows the quantum energy Equ(tf) of the condensate at the end of the transport as 
a function of the iteration number. Panel (c) shows the average classical energy ∫ E t dt( )

t
t

cl
1

0f

f  of the condensate 
during the transport as a function of the iteration number.

Since the total cost functional given in Eq. (6) is characterized by a very large weight λ2 associated with the 
final quantum energy, we see that Equ(tf) is very quickly minimized, in about 1,000 iterations. This limit of 1,000 
iterations is emphasized in Fig. 1 with a vertical dashed red line. Once this convergence is reached, the final 3D 
size of the condensate adopts the size of the ground state of the final trap and the size dynamics of the BEC is 
frozen. This convergence was obtained at the cost of a transient degradation of the final classical energy, which 
reaches a maximum of about 20 nK after about 60 iterations, but the final classical energy is then minimized 
very quickly to reach a near-zero value in about 1000 iterations. It is only when this first stage of convergence 
is reached (iteration number >1000) that the last cost functional, associated with a smaller weight λ3, starts to 
decrease. One can note that the convergence of the average classical energy during the transport [in panel (c)] 
is rather slow since it requires more than 107 iterations before it starts to stabilize at values close to 30 nK. This 
value can be compared with the energy of the condensate in the initial trap, which is close to 120 nK, and with the 
energy of the condensate in the final trap, close to 10 nK. The transient excitation during the transport is therefore 
relatively limited.
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Comparison of different optimization procedures
In Fig. 2 the Shortcut-To-Adiabaticity (STA) transport ramp obtained in ref.15 (dotted blue line) is compared with 
two results obtained with the present optimal control technique (OCT). Note that strictly speaking, these two 
methods assume slightly different constraints and that, in principle, STA can be combined with the minimization 
of a cost functional. However, a quantitative study on this specific point is beyond the scope of this article where 
we concentrate mainly on developing the transport method with the OCT protocol. The correction parameter is 
ε = 10−10. The dashed green line labeled as “cl-OCT” shows the result obtained for the weight factors λ1 = 1, λ2 = 0 
and λ3 = 5.510−4. The solid red line labeled as “qu-OCT” is for λ1 = 1, λ2 = 3.3 and λ3 = 5.510−4. The difference 
between these two OCT results lies in the fact that qu-OCT takes into account the influence of the finite size of 
the BEC in the cost functional, while cl-OCT considers the BEC as a classical point-wise particle. The BEC model 
used for cl-OCT is therefore similar to the model used in STA and these two approaches can be compared directly. 
The optimized time variation of the bias magnetic field Bbias(t) is shown as a function of time in the first panel (a). 
The duration of the transport is tf = 150 ms, and all results are plotted from t = 0 to t = 250 ms i.e. up to 100 ms 
after the end of the transport. This time interval was chosen in order to detect the eventual presence of a residual 
excitation at the end of the transport. The position [zA(t) − z0(t)] and velocity − v t z t[ ( ) ( )]A 0  offsets are shown in 
panels (b) and (c). Finally, Panels (d), (e) and (f) present the condensate size dynamics Δα(t) along the three 
coordinates α ≡ x, y or z, where αΔ = αt r t( ) ( )/ 7 represents the width (standard deviation) of the Thomas-Fermi 
condensate wave function in the directions α ≡ x, y or z.

We see in panels (b) and (c) that the three methods are very efficient for the control of the final average posi-
tion and velocity of the BEC since the condensate is fully at rest in the center of the trap at the end of the transport 
and for all times t > tf = 150 ms. In addition, the transient position and velocity offsets during the transport reach 
similar values using these three different optimization methods. One can note in panels (b) and (c) that in terms 
of maximum transient offset in position and speed, from the two methods that we can compare directly, cl-OCT 
is a little better than STA (maximum offsets of 4.5 μm vs. 5.3 μm in position and 14 μm/ms vs. 22 μm/ms in speed) 
but this difference is not very significant in practice. The transient offsets of the qu-OCT approach are slightly 
larger than those of the cl-OCT method (with maximum offsets of 6.2 μm in position and 15 μm/ms in speed). 
Again this increase would be very benign in a practical implementation. Note finally that the three control fields 
Bbias(t) shown in panel (a) are relatively similar, with a fast initial decrease during the first half of the ramp, before 
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Figure 1. Example of convergence of the different cost functionals as a function of the optimal control theory 
iteration number: (a) Final classical energy in nK, (b) Final quantum energy in nK, (c) Average classical energy 
in nK. See text for details.
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75 ms, followed by a much slower decrease afterward. A first conclusion of this study is therefore that, if one is 
mainly interested in the control of the average translational degree of freedom of the BEC, the STA approach, 
whose numerical implementation is much simpler than OCT, is sufficient.

It is in the size dynamics shown in panels (d), (e) and (f) that there is a striking difference between qu-OCT 
and the two other optimization methods. In terms of size dynamics, cl-OCT and STA give very similar results 
which consist in a persistent size excitation of the condensate after the transport. This result was already seen in 
ref.15 where it was shown that it was mainly the first quadrupole mode Q1 which was excited, thus explaining that 
the size oscillation along x, y and z is almost periodic after the transport. The qu-OCT approach is able to suppress 
efficiently this quadrupole-mode excitation and, at the end of the transport, the sizes Δx, Δy and Δz remain con-
stant. We can therefore conclude that the introduction of a minimization goal for the quantum energy associated 
with the finite size dynamics of the condensate allows the qu-OCT transport ramp to prepare the true ground 
state of the final trap at t = tf  . When the size dynamics is not accounted for, as in the STA and cl-OCT approaches, 
it is impossible to insure the preparation of the lowest energy state in the final trap using short transport ramps.

The optimized OCT transport ramps were obtained using a Thomas-Fermi approximation in a 3D harmonic 
trap. We have therefore verified, by solving the 3D mean-field time-dependent Gross-Pitaevskii equation for the 
evolution of the time-dependent macroscopic condensate wave function ψ(x, y, z, t), that this control is robust 
when taking into account the anharmonicities and the rotation of the trap. The numerical method used for this 
calculation is described in ref.15. This result is illustrated in Fig. 3, showing the time evolution of the average 
atomic densities

∫ ∫ ψ= | |
−∞

∞

−∞

∞
P x t dy dz x y z t( , ) ( , , , ) (17a)x

2

∫ ∫ ψ= | |
−∞

∞

−∞

∞
P y t dx dz x y z t( , ) ( , , , ) (17b)y

2

Figure 2. Comparison of different optimization procedures. Shortcut-to-adiabaticity (STA): dotted blue line, 
classical optimal control (cl-OCT): dashed green line, quantum optimal control (qu-OCT): solid red line. (a) 
Bias magnetic field in Gauss as a function of time, (b) Position offset [zA(t) − z0(t)] in μm as a function of time, 
(c) Velocity offset − v t z t[ ( ) ( )]A 0  in μm/ms as a function of time, (d–f) Size dynamics of the condensate along 
the three coordinates x, y and z in μm as a function of time. The duration of the transport is tf = 150 ms. See text 
for details.
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∫ ∫ ψ= | |
−∞

∞

−∞

∞
P z t dx dy x y z t( , ) ( , , , ) (17c)z

2

along x, y and z. In each panel the black dashed line shows the expected center of mass trajectory obtained by 
solving Newton’s equations of motion (1). Similarly, the dotted blue lines highlight the expected widths obtained 
by solving the scaling equation (3). The condensate wave function follows clearly these predicted positions and 
widths. It is therefore clear from Fig. 3 that the controls predicted by the cl-OCT and qu-OCT methods are robust 
with respect to the anharmonicities and with respect to the inherent rotation of the trap in this realistic atom chip 
setup. In addition, the control of collective excitations using the qu-OCT approach appears clearly when compar-
ing the lower line (qu-OCT ramp) of Fig. 3 with the upper line (cl-OCT ramp) of the same Figure.

Influence of the transport duration
What remains to be seen is the efficiency of these various optimization procedures for different transport dura-
tions. Figure 4 shows in panel (a), for the three optimized ramps, the variation of the average translational energy

∫〈 〉 =E
t

E t dt1 ( )
(18)

cl
f

t
cl

0

f

as a function of the ramp duration tf  . Panel (b) shows, in the same conditions, the maximum position offset 
Max|zA(t) − z0(t)| during the transport. We see here that whatever the transport duration STA and cl-OCT are 
characterized by a very similar performance in terms of transient excitations. This confirms the advantage of the 
STA protocol in practical implementations, due to its overall simplicity when compared to cl-OCT. We also see 
that, on one hand, when the transport duration is larger than 140 ms (i.e. about 1.4 times the largest time scale 
associated with the trap), the transient excitations realized by the improved qu-OCT procedure are very close 
to the ones of cl-OCT and STA. On the other hand, for transport durations smaller than 140 ms larger transient 
excitations are obtained when using qu-OCT.

We could however verify that for all transport durations in the range 100 ms ≤ tf ≤ 200 ms, the qu-OCT 
method is able to minimize very efficiently the residual size excitations after the transport, a goal which is not 
achievable with the STA or cl-OCT procedures. This can be seen in Fig. 5, which shows the residual oscillation 
amplitudes

α α αΔ =




 Δ − Δ





> >

1
2

Max( ) Min( )
(19)t t t t

res
f f

Figure 3. Condensate dynamics in the x, y and z directions using the cl-OCT ramp (upper line) and the qu-
OCT ramp (lower line) shown in Fig. 2. The transport duration is tf = 150 ms. The average atomic density, 
solution of the time-dependent Gross-Pitaevskii equation, is shown as a function of time and position: (a) and 
(d) Px(x, t), (b) and (e) Py(y, t), (c) and (f) Pz(z, t). The black dashed lines show the expected center of mass 
trajectory. The dotted blue lines highlight the expected width dynamics according to the scaling approach. The 
dotted vertical white lines mark the time of the end of the transport. The total atom number is N = 105. See text 
for details.
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of the size of the condensate Δα (standard deviation of the Thomas-Fermi condensate wave function) after the 
transport, for α ≡ x [panel (a)], α ≡ y [panel (b)], and α ≡ z [panel (c)]. The results shown in Figs 4 and 5 demon-
strate that for tf ≥ 140 ms the residual size excitations of the condensate can be limited efficiently by optimal con-
trol and that this limitation does not introduce any detrimental effect on the transient excitation of the BEC. The 
same result can also be obtained by optimal control with shorter transport ramps, but at the cost of an increased 
transient excitation of the condensate.

Conclusion
In conclusion, we engineered optimal control theory protocols allowing for the fast, excitation-less transport of 
BECs over large distances compatible with a precision atom interferometric use. The ramps presented in this work 
relied on a single-parameter (bias magnetic field) optimization to shift the trap minimum position of the atom 
chip, promising a straightforward experimental implementation. The results of the OCT procedure relied on a 
scaling approach assuming a harmonic trapping. Real-life implementations on atom chips come with anharmonic 
corrections, mainly cubic in the direction of the transport, that scale with the position offset between the atoms 
and the trap minimum during the transport and with an inherent rotation of the trap. We demonstrated in this 
study, by solving 3D Gross-Pitaevskii equations for typical anharmonic and rotating chip traps, that the proposed 
OCT protocol does not compromise the target state solution even for very competitive ramp times of 150 ms. 
This also suggests a successful transfer to experiments. Moreover, we indicated by studying the impact of different 
transport durations, the methodology to follow in order to device the shortest ramps possible. Indeed, by quan-
tifying the maximum offset induced by each ramp duration, every experimental implementation would be char-
acterized by an anharmonicity range explored according to the specific trap configuration considered. This range 
determines, ultimately, the success of the ramp in reaching the ground state of the final trap. The positive outcome 
of this study suggests a natural generalization to the dual-species transport case. For this latter, no analytic neither 
intuitive solutions do exist. The STA approach generally fails since the two species experience different potential 
frequencies due their mass difference. A comparable OCT approach to the one adopted in this study, based on 

Figure 4. Influence of the transport duration tf on: (a) the average translational energy 〈Ecl〉 of the condensate 
and (b) the maximum position offset |zA − z0| during the transport. Shortcut-to-adiabaticity (STA): dotted blue 
line, classical optimal control (cl-OCT): dashed green line, quantum optimal control (qu-OCT): solid red line. 
The weight parameters λ1, λ2 and λ3 are the same as those used in Fig. 2. See text for details.

Figure 5. Residual oscillation amplitudes in the size dynamics after transport in the (a) x, (b) y and (c) z 
directions, as a function of the transport duration tf  . Shortcut-to-adiabaticity (STA): dotted blue line, classical 
optimal control (cl-OCT): dashed green line, quantum optimal control (qu-OCT): solid red line. The weight 
parameters λ1, λ2 and λ3 are the same as those used in Fig. 2. See text for details.

https://doi.org/10.1038/s41598-019-41784-z


1 0Scientific RepoRts |          (2019) 9:5346  | https://doi.org/10.1038/s41598-019-41784-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

a pair of coupled mean-field equations, would allow to find trap trajectories that bring a quantum mixture to a 
target position in its ground state. Such a source will allow for precision interferometric measurements such as 
equivalence principle tests.
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