Disentangling shallow–water bulk carbonate carbon isotope archives with evidence for multi–stage diagenesis: An in–depth component specific petrographic and geochemical study from...
Disentangling shallow-water bulk carbonate carbon isotope archives with evidence for multi-stage diagenesis: An in-depth component-specific petrographic and geochemical study from Oman (mid-Cretaceous)

STEFAN HUCK*, STEPHAN WOHLWEND†, RUTE COIMBRA‡, § NICOLAS CHRIST¶ and HELMUT WEISSERT†

*Institut für Geologie, Leibniz Universität Hannover, Callinstraße 30, D-30167 Hannover, Germany (E-mail: huck@geowi.uni-hannover.de)
†Geological Institute, ETH Zürich, CH-8093 Zürich, Switzerland
‡Department of Geosciences, GeoBioTec, University of Aveiro, PT-3810-199 Aveiro, Portugal
§Earth Sciences Department, MARE, University of Coimbra, PT-3030-790 Coimbra, Portugal
¶Institute of Earth and Environmental Science, University of Potsdam, K.-Liebknecht-Str. 24, D-14476 Potsdam-Golm, Germany

Keywords
Arabian carbonate platform, Barremian–Aptian, multi-stage diagenesis, shallow-water chemostratigraphy.

ABSTRACT
Disentangling shallow-water bulk carbonate carbon isotope archives into primary and diagenetic components is a notoriously difficult task and even diagenetically screened records often provide chemostratigraphic patterns that significantly differ from global signals. This is mainly caused by the polygenetic nature of shallow-water carbonate substrates, local carbon cycle processes causing considerable neritic–pelagic isotope gradients and the presence of hiatal surfaces resulting in extremely low carbonate preservation rates. Provided here is an in-depth petrographic and geochemical evaluation of different carbonate phases of a mid-Cretaceous (Barremian–Aptian) shallow-water limestone succession (Jabal Madar section) deposited on the tropical Arabian carbonate platform in Oman. The superposition of stable isotope signatures of identified carbonate phases causes a complex and often noisy bulk carbon isotope pattern. Blocky sparite cements filling intergranular pores and bioclastic voids evidence intermediate to (arguably) deep burial diagenetic conditions during their formation, owing to different timing or differential faulting promoting the circulation of fluids from variable sources. In contrast, sparite cements filling sub-vertical veins reveal a rock-buffered diagenetic fluid composition with an intriguing moderate enrichment in 13C, probably due to fractionation during pressure release in the context of the Miocene exhumation of the carbonate platform under study. The presence of abundant, replacive dedolomite in mud-supported limestone samples forced negative carbon and oxygen isotope changes that are either associated with the thermal breakdown of organic matter in the deep burial realm or the expulsion of buried meteoric water in the intermediate burial realm. Notwithstanding the documented stratigraphically variable and often facies-related impact of different diagenetic fluids on the bulk-rock stable isotope signature, the identification of diagenetic end-members defined δ^{13}C and δ^{18}O threshold values that allowed the most reliable ‘primary’ bulk carbon isotope signatures to be extracted. Most importantly, this approach exemplifies how to place regional shallow-water stable isotope patterns with evidence for a complex multi-stage diagenetic history into a supraregional or even global context.
INTRODUCTION

Shallow-water carbon isotope variations recorded by bulk carbonate material have been proven to provide well-defined tie points for the correlation of deep-time carbonate platform sections and has further been used to stratigraphically link major changes in biosedimentation (biotic turnovers, carbonate platform demise and drowning) to climate and palaeoenvironmental changes associated with major carbon cycle perturbations (Föllmi et al., 1994, 2006; Ferreri et al., 1997; Grötsch et al., 1998; Wissler et al., 2002; Immenhauser et al., 2005; Parente et al., 2007; Burla et al., 2008; Frijia & Parente, 2008; Elrick et al., 2009; Millán et al., 2009, 2011; El-Sabbagh et al., 2011; Huck et al., 2011, 2013, 2014; Di Lucia et al., 2012; Krencker et al., 2014; Bodin et al., 2015; Wohlwend et al., 2016). Unfortunately, the carbon isotope-based stratigraphic refinement of biostratigraphically poorly constrained shallow-water sections is often afflicted with large uncertainties unless additional stratigraphic methods such as strontium isotope stratigraphy (SIS) are applied (Huck et al., 2010, 2011; Horikx et al., 2014; Frijia et al., 2015; Huck & Heimhofer, 2015; Bover-Arnal et al., 2016). Without a proper SIS framework, shallow-water carbon isotope stratigraphy is solely based on the correlation of similar fluctuations (‘wiggle matching’) within a dating uncertainty (Weissert et al., 2008). This is particularly problematic, as the shallow-water carbon isotope pool of dissolved inorganic carbon (DIC) is affected to varying degrees by (i) local carbon cycle processes, (ii) syndepositional diagenesis and (ii) fractionation effects associated with varying contributions of aragonite, low-magnesium and high-magnesium calcite (Immenhauser et al., 2002, 2008). Moreover, the shape of shallow-water carbon isotope curves is strongly modulated by sea-level fluctuations, as subaerial exposure and re-flooding of the platform causes phases of non-deposition, erosion, reworking and bypass of sediments. As a consequence, up to 90% of the carbon isotope signal may be lost in discontinuity surfaces or condensed in thin sedimentary layers (Strasser, 2015) and thus ‘wiggle matching’ between carbon isotope curves with locally different absolute values, amplitudes and gradients of excursions will allow multiple stratigraphic interpretations (Weissert et al., 2008).

The current study aims at exemplifying how to extract stratigraphically meaningful global carbon cycle fluctuations out of shallow-water bulk carbonate carbon isotope archives that show evidence for a complex multi-stage diagenetic alteration. Therefore, a detailed sedimentological, petrographic and geochemical approach has been applied to a mid-Cretaceous southern Tethyan Arabian carbonate platform section (Jabal Madar) in Oman (Fig. 1A). The Jabal Madar section has been chosen as an ideal case study, as numerous biostratigraphic and sequence stratigraphic tie points are available (van Buchem et al., 2002; Pittet et al., 2002; Schröder et al., 2010), but the stratigraphic resolution, in particular with respect to the Barremian interval, is rather low. Owing to previous work (van Buchem et al., 2002; Pittet et al., 2002), the studied limestone succession exposed at the Jabal Madar dome evidently suffered strong multi-stage diagenetic alteration in the eogenetic, mesogenetic and telogenetic realms (mud cracks, rhizoliths, stylolites, dolomite). Notably, the (compacted) carbonate ‘preservation rate’ sensu Strasser (2015) for the Barremian portion of the Jabal Madar section (calculated from Pittet et al., 2002) is low (0.012 mm y⁻¹), an observation that clearly highlights the dominance of phases of sediment starvation and/or removal.

The overall aim of this study is thus to disentangle the local bulk carbonate carbon and oxygen isotope pattern, that is, to evaluate the influence of (i) local carbon cycling processes and (ii) syn to post-depositional diagenesis on the δ¹³Cbulk record. Therefore, a component-specific comparison of carbon and oxygen isotope values is applied in order to define isotopic end-members representing specific diagenetic realms. In combination with an in-depth sedimentological, petrographic and elemental geochemistry inspection, a precise evaluation of the chemostatigraphic potential of the carbon isotope record is possible (Fig. 2). This will in turn allow a more objective correlation of the Jabal Madar δ¹³Cbulk record with local carbon isotope patterns representing different settings of the Arabian carbonate platform and thus, the integration of valuable stratigraphic information on a platform-wide scale. Based on this integrated chemostratigraphic, sequence stratigraphic and biostratigraphic framework, the Jabal Madar section can be placed against stratigraphically well-constrained Tethyan neritic and pelagic sections. The outcome of this study will help to better attribute Tethyan-wide major steps in carbonate platform evolution (e.g. orbitolinid mass occurrences) to their corresponding palaeoenvironmental and palaeoceanographic forcing mechanisms.

GEOLOGICAL SETTING

The Jabal Madar dome is located in the Adam Foothills of northern Oman, about 140 km south of Muscat and about 5 km east of ‘Uyun (Fig. 1B). The base of the studied Jabal Madar section is situated in the eastern part of the dome (22°23′14.79″N/58°10′03.65″E). The section comprises Barremian to Aptian carbonate platform deposits belonging to the Lekhwair, Kharaib and Shu’aiba
Fig. 1. (A) Aptian palaeogeography of the Tethyan realm with localities of considered pelagic (Angles, Gorgo a Cerbara) and neritic (Jabal Madar, Cluses) sections. Map is modified after Masse et al. (1998b). (B) Simplified geological map of north-eastern Oman showing the geographic position of the studied Jabal Madar section in the Adam Foothills and the Wadi Mu’aydin section at Jabal Akhtar. Adapted from Glennie et al. (1974) and modified after Wohlwend et al. (2017).

Fig. 2. Flow chart illustrating the here applied diagenetic screening protocol that builds on a component-specific petrographic and geochemical approach. This approach allows shallow-water bulk carbonate carbon isotope records with evidence for a multi-stage diagenetic alteration to be evaluated.
formations (Wilson, 1969; Glennie et al., 1974; Pittet et al., 2002). The latter have been deposited in very shallow lagoonal environments on the Arabian carbonate platform in a tropical southern Tethyan setting (ca 19°S: van Hinsbergen et al., 2015) and belong to the so-called autochthonous Mesozoic carbonate successions of the Arabian Plate (Glennie et al., 1974; Simmons & Hart, 1987). During Late Cretaceous ophiolite obduction, the mid-Cretaceous deposits of the Adam foothills experienced burial depths of up to 4 km (Hanna, 1990; Mozafari et al., 2015). Miocene uplift and deformation processes caused the exhumation of the Lower Cretaceous succession (Beurrier et al., 1986; Le Metour et al., 1986; Hanna, 1990; Fournier et al., 2006).

In the Oman Mountains, the 65 to 120 m thick, medium to thickly bedded Shu’aiba Formation is characterized by bioclastic wackestones and packstones and intercalated intraclastic and oolitic grainstones and packstones (Simmons & Hart, 1987; Simmons, 1990). Common sedimentary features include cross-bedding, channel structures, tempestites, cryptalgal laminates and (often dolomitized) burrows. The fossil content comprises allochthonous macrofauna (oysters, rudists, gastropods and subordinately large corals and stromatoporoids) as well as abundant dasycladacean algae and larger foraminifera (Simmons & Hart, 1987; Simmons, 1990). The 40 to 120 m thick Kharaib Formation is characterized by a cyclic alternation of massive wackestone–packstone–grainstone and argillaceous orbitolinid–rich wackestone–packstone units, which grade upwards into burrowed mudstones (Simmons, 1990; van Buchem et al., 2002; Pittet et al., 2002; Hillgartner et al., 2003). In general, bioturbation and stylolitization is common. Besides the transient mass occurrence of the orbitolinid foraminifera Palorbitolina lenticularis, calcareous algae, other benthic foraminifers, corals, rudists and other molluscs are occasionally present (Simmons & Hart, 1987; Simmons, 1990; Masse et al., 1998b). The up to 100 m thick, massively bedded Shu’aiba Formation (Witt & Gökdağ, 1994; Masse et al., 1998a,b; Sharland et al., 2001; van Buchem et al., 2002; Rameil et al., 2012) comprises bioclastic, often bioturbated mudstones and wackestones, foraminiferal–peloidal packstones–grainstones as well as floatstones and boundstones dominated by Lithocodium–Bacinella microencrusters. Caprinid rudist biostromes are a diagnostic feature of the upper part of the formation (Simmons & Hart, 1987; Simmons, 1990; Masse et al., 1998a).

A detailed sedimentological, sequence stratigraphic and cyclostratigraphic study of the Lekhwair, Kharaib and Shu’aiba formations exposed at the Jabal Madar dome is presented in Pittet et al. (2002).

FIELD APPROACHES AND LABORATORY METHODS

The working approach used for sedimentological characterization of the 74 m thick Jabal Madar section involved an outcrop-based carbonate facies description, supported by the petrographic analysis of 73 thin sections. Microfacies analysis followed the limestone classification scheme of Dunham (1962), including the modifications by Embry & Klovani (1971), and is based on a component analysis (including biostratigraphically meaningful microfossils) and on textural and diagenetic features. The percentage of individual carbonate phases including sparite cements and dolomite rhombs present in selected thin sections (i.e. microphotographs) was estimated by applying the pixel counting method sensu Coimbra & Olóriz (2012a). Samples for geochemical investigations were taken at a spacing of 0.3 to 1.5 m (mean: 0.7 m). Higher sample densities were applied across facies boundaries and discontinuity surfaces.

Carbonate powders were extracted from carbonate slabs by means of a hand-held PROXXON IBS/E drill equipped with tungsten drill bits (maximum speed: 8000 rpm). In order to evaluate the intra-sample variability in the bulk carbonate carbon and oxygen isotope composition (Fig. 2), several subsamples were drilled from about 50% (n = 52) of all collected hand specimens (n = 115). In addition, sampling focused on the extraction of powders from the main carbonate phases identified at thin section scale. These include (i) diagenetic (dedolomitized limestone; sparite cement filling intergranular pore space, veinlets and voids) as well as (ii) near-primary carbonate phases (matrix micrite sensu stricto, low-Mg calcite bivalve shell fragments). In total, carbon and oxygen isotope analysis of 383 carbonate powder samples (bulk: n = 202; matrix micrite: n = 43; dedolomitized limestone: n = 36; sparite cement: n = 87; bivalves: n = 15) was performed at the isotope laboratories of the Institute of Geology at Leibniz University Hannover (LUH), Germany (Tables SI-1/2). Stable isotope analysis was conducted using a Thermo Fisher Scientific Gasbench II carbonate device connected to a Thermo Fisher Scientific Delta-V Advantage isotope ratio mass spectrometer. Aliquots of the samples (200 ± 30 µg) were treated with viscous water-free (98 g mol⁻¹) orthophosphoric acid at 72°C to release CO₂. In order to ensure that samples containing variable amounts of dolomite have proper equilibration times (>2 h) with the acid, the latter is injected manually before the start of the measurement. Repeated analyses of certified carbonate standards (NBS 19, NBS-18, IAEA CO-1) show an external reproducibility of ≤0.06‰ for δ¹³C and 0.08‰ for δ¹⁸O. All isotope results are reported in per
Component-specific shallow-water geochemistry 5

mil ($\delta^{13}C$) relative to the Vienna-Pee Dee Formation belemnite (V-PDB) standard in the conventional manner. For chemostratigraphic correlation, a three-point moving average was calculated. Oxygen isotope ratios, plotted against carbon isotope ratios, are used as proxy for the impact of diagenetic alteration.

At the isotope laboratory of the Institute of Geology, Mineralogy and Geophysics at Ruhr-University Bochum (RUB), Germany, aliquots (1·35 to 1·65 mg) of 26 powdered subsamples (matrix micrite: $n = 10$; grainstone bulk carbonate: $n = 5$; sparite cement: $n = 6$; dedolomite-rich limestones: $n = 3$; bivalves: $n = 3$) were analysed for their major and trace elemental composition (calcium, magnesium, strontium, iron and manganese) using inductively coupled plasma-atomic emission spectrometry (ICP-AES). Strontium isotope ratios of selected subsamples (matrix micrite: $n = 4$; bivalve: 1) were measured at RUB by means of a thermal ionization mass spectrometer (Finnigan MAT 262) in dynamic mode. Corrections of measured strontium isotope ratios to a USGS EN-1 value of 0·709175 were done following the procedure of Howarth & McArthur (1997). For more details on the analytical procedure please refer to Huck et al. (2011).

In addition, cathodoluminescence (CL) examination of 12 thin sections was carried out with a "hot cathode" CL microscope (type HC1-LM) at Potsdam University. The acceleration voltage of the electron beam is 14 kV and the beam current is set to a level gaining a current density of ca 9 μA mm$^{-2}$ on the sample surface. Refer to Christ et al. (2012) for details on the analytical procedure.

LITHOSTRATIGRAPHY AND MICROFACIES OF THE JABAL MADAR SECTION

The studied 74 m thick Barremian portion of the shallow-water Jabal Madar section (total thickness: 111·6 m; Pittet et al., 2002; Sattler et al., 2005) is dominated by restricted to open lagoonal fine-grained limestones with intercalations of coarse-grained partly cross-bedded, as well as slightly argillaceous orbitolinid-rich levels (Figs 3A and 4, Table 1). Dedolomitization is rather common and predominantly affects matrix micrites, burrow-infills and, to a lesser extent, cement-filled veinlets, micro-stylolites and voids. At thin section scale, dedolomitized samples mainly exhibit planar-euhedral, planar-subhedral and planar-porphyrotopic textures (calcified rhombs: 45 to 85 μm in diameter; Fig. 3C) and subordinately microcrystalline non-planar anhedral or macrocrystalline void-filling irregular textures. Pixel counting applied to microphotographs (Coimbra & Olóriz, 2012a) revealed dedolomite contents ranging from 5% to 95% (Table SI-3). Drusy calcite filling voids and fractures is a common feature of the lower two-third of the section (0 to 49 m), whereas the upper part (53 to 74 m) is characterized by whitish, mud-dominated limestones with a chalky (microporous) appearance.

The lowermost part of the section (0 to 16 m; Fig. 4) is composed of an alternation of peloidal–foraminiferal packstones and grainstones (microfacies type MFT-1) and yellowish-brownish to dark grey mudstones and wackestones containing variable but overall minor proportions of gastropods, ostracods, sponge spicules, echinoderms, benthic foraminifers, dasycladacean algae and peloids (MFT-4/5). Stratigraphic marker levels include two reddish-weathering dedolomite beds with a thickness of up to 0·5 m (4·7 m; 11·1 m; MFT-8; Fig. 3B) and a thin burrowed firmground (8 m; Fig. 3D). A succession of often cross-bedded grainstones, rudstones and subordinate peloidal packstones characterizes the overlying deposits (16 to 24 m; MFT-1/2), which contain various allochems including partly silicified bivalve fragments (e.g. rudists), intraclasts, faecal pellets, benthic foraminifers and green algae (e.g. Coptocamipylodon lineolatus and calcitic Hensonella dinarica). Upsection, this calcarenitic unit is truncated by a succession of alternating gastropod–echinoderm-argillal mudstones and wackestones and subordinate peloidal packstones (24 to 40 m; MFT-1/4/5). Stratigraphic marker levels include decimetre-thick reddish-weathering dedolomite beds (26 m; 30·3 m; 36·1 m; MFT-8), a 2 m thick nodular level capped by a hardground (34·2 m; Fig. 3E) and an interval characterized by abundant partly dolomitized Thalassinoides burrows (36 to 40 m).

The following lithostratigraphic unit is composed of peloidal–foraminiferal to bioclastic packstones and grainstones to rudstones (40 to 43 m; MFT-1/2). These high-energy deposits are overlain by a succession (43 to 53 m) of slightly argillaceous wackestones and packstones bearing abundant orbitolinids (P. lenticularis, Eopolarbitolina transiens) and echinoderm fragments (Fig. 3F; MFT-6/7) and bioclastic mudstones/wackestones and packstones; MF-type 4), the latter being characterized by yellowish dolomitized Thalassinoides burrows (e.g. 45·9 m; Fig. 3G). A decimetre-thick grainstone to rudstone interval containing bacinelloid oncoids (51 m; MFT-3, cf. Huck et al., 2012) is intercalated in the topmost considerably bioturbated (Thalassinoides) part of this unit (51 to 53 m). The following whitish-weathering ‘chalky’ unit (53 to 74 m) comprises often bioturbated echinoderm-orbitolinid mudstones and mudstones/wackestones (with Montseciella arabica and P. lenticularis; MFT-7) characterized by a stratigraphically limited moderate to strong intraparticle porosity (dissolution of dedolomite rhombs) and a centimetre-thick brecciated mudstone level at 68·8 m. The upper boundary of the
studied portion of the Jabal Madar section (74 m) is marked by a level of layered chert nodules (<5 to 10 cm in diameter; Fig. 3H) at the base of sequence I and orbitolinid-rich slightly argillaceous limestones at the base of sequence II and III (Hawar Member). Following Sattler et al. (2005), a prominent composite surface (CS1; Fig. 4) marks the transition into the slightly argillaceous orbitolinid-rich limestones (80.5 to 101 m) referred to as the Hawar Member (van Buchem et al., 2002; Pittet et al., 2002), which are overlain by Lithocodium-Bacinella grainstones and floatstones of the Lower Shu’aiba Formation (101 to 111.6 m). For more details on the microfacies and fossil content of Jabal Madar samples please refer to Table 1.

GEOCHEMICAL AND PETROGRAPHIC RESULTS

Bulk carbonate carbon and oxygen isotope stratigraphy

The bulk carbonate carbon isotope ($\delta^{13}C_{\text{bulk}}$) record of the Jabal Madar section (Fig. 4) is characterized by numerous alternating negative and positive changes, with $\delta^{13}C_{\text{bulk}}$ values ranging between $-2.8\%_o$ and $3.6\%_o$ (mean: $1.2\%_o$; SD: $1.4\%_o$). In general, the lower part of the section (0 to 37.4 m) shows stronger oscillations and overall lowered $\delta^{13}C_{\text{bulk}}$ values (mean: $0.4\%_o$; SD: $1.3\%_o$).
Fig. 4. Lithostratigraphy including identified microfacies types (MFT-1 to MFT-8) and main fossil constituents and carbon and oxygen isotope stratigraphy of the Jabal Madar section, complemented with data from Pittet et al. (2002) and Sattler et al. (2005). Sequence stratigraphic interpretation after Pittet et al. (2002). At first glance, the low covariance between \(\delta^{13}C \) and \(\delta^{18}O \) values \((r^2 = 0.12) \) of all analysed bulk carbonate samples (0 to 74 m) points to the absence of major diagenetic alteration of isotope ratios. Splitting the data into two stratigraphic groups (A/B), however, provides \(r^2 \)-values that are indicative of a moderate (0 to 48.8 m: \(r^2 = 0.41 \)) to strong correlation (49.6 to 74 m: \(r^2 = 0.65 \)) of carbon and oxygen isotope values.
when compared to the upper part (38.9 to 74 m; mean: 2.2\%/oo; SD: 0.6\%/oo). The mean intra-sample $\delta^{13}C_{\text{bulk}}$ variability is in the order of 0.4\%/oo (SD: 0.6\%/oo).

Considering 3-point running mean values, deposits of the lower part of the section (0 to 11 m) record a positive $\delta^{13}C_{\text{bulk}}$ excursion with an amplitude of about 2.4\%/oo which is followed by a prolonged second positive 2.1\%/oo carbon isotope excursion (11 to 30-3 m). The latter excursion is terminated by a negative $\delta^{13}C_{\text{bulk}}$ spike representing the lowest values of the carbon isotope record (−2.8\%/oo). Background $\delta^{13}C_{\text{bulk}}$ values are in the order of about −0.5\%/oo. Upsection, the carbon isotope curve exhibits a prominent stepwise change (30.3 to 37.4 m) towards a maximum carbon isotope value of 3.6\%/oo (37.4 m). The subsequent chemostratigraphic segment (37.4 to 74 m) is characterized by sinusoidal $\delta^{13}C_{\text{bulk}}$ changes (amplitude: 1.5\%/oo), which oscillate around a background value of about 2.2\%/oo.

Bulk carbonate oxygen isotope ($\delta^{18}O_{\text{bulk}}$) values range between −11.1\%/oo and −1.0\%/oo (mean: −6.5\%/oo; SD: 1.9\%/oo). The mean intra-sample $\delta^{18}O_{\text{bulk}}$ variability is in the order of 0.6\%/oo (SD: 0.7\%/oo). Strong $\delta^{18}O_{\text{bulk}}$ oscillations characterize the lower part of the oxygen isotope curve (0 to 30.3 m; mean −6.9\%/oo; SD: 1.9\%/oo), superimposed by a

Table 1. Principal carbonate microfacies types including biostratigraphically meaningful fossils based on thin section criteria (Jabal Madar section)

<table>
<thead>
<tr>
<th>MFT Description</th>
<th>Facies</th>
<th>Samples</th>
<th>Key biota or aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peloidal (bioclastic) pack-/grainstone</td>
<td>JM0.0, JM0.5, JM1.3, JM2, JM3.3, JM4.7, JM10.6, JM22.9, JM24, JM27.1, JM40.5, JM41.7, JM42.2, JM42.8</td>
<td>Often very fine grained and densely packed, various bioclasts: for example, benthic foraminifers (e.g. miliolids, Praechrysalidina infracreatae), dasyycladacean algae (including Coptocampylodon lineolatus and calcitic Hensonella dinarica), rare rudist fragments</td>
<td></td>
</tr>
<tr>
<td>Intraclastic mollusc grain-/rudstone</td>
<td>JM16.1, JM18.6</td>
<td>Large well-rounded mollusc shells (incl. rudists) & intraclasts, faecal pellets, benthic foraminifers, peloids and dasyycladacean algae</td>
<td></td>
</tr>
<tr>
<td>Faecal pellet-mollusc packstone/ grainstone</td>
<td>JM19.1, JM19.6, JM21, JM21.9, JM41.2</td>
<td>Pseudo lamination, w-clasts, large faecal pellets, micritized and partly silicified mollusc shell fragments, benthic foraminifers, H. dinarica</td>
<td></td>
</tr>
<tr>
<td>Bacinelloid rudstone</td>
<td>JM51.1</td>
<td>Bacinelloid nodules in micritic to micropeloidal matrix, large faecal pellets, orbitoloids, echinoderm debris, altered rudist fragments</td>
<td></td>
</tr>
<tr>
<td>Open lagoonal biodiverse mudstone/wackestone</td>
<td>JM36.4, JM38.9, JM43.3, JM45.5, JM45.9, JM46.6, JM47.2, JM74</td>
<td>Varying abundance of echinoderms (syntaxial cements), calcareous algae (Permocalculus inopinatus, H. dinarica), fine spartic mollusc debris, foraminifers (e.g. Crochiatella decipiens) and small (often micritized) bioclasts, rare small oyster & rudist fragments, bioclastic-faecal pellet grainstone burrows</td>
<td></td>
</tr>
<tr>
<td>Intertidal restricted mudstone/wackestone</td>
<td>JM6.3, JM7.1, JM7.6, JM10, JM11.7, JM14, JM28.2, JM30.2, JM32.8, JM35.5, JM68.8</td>
<td>Often laminated or clotted peloidal texture, intercalated thin monospecies levels (e.g. ostracods, gastropods, sponge spicules, H. dinarica), sparte-filled root casts, mud brecciation, mud cracks</td>
<td></td>
</tr>
<tr>
<td>Orbitolinid-echinoderm wackestone/packstone</td>
<td>JM43.8, JM44.3, JM47.7, JM48.2, JM48.4, JM49.6, JM52.1, JM52.6</td>
<td>Abundant/dominant low-conical orbitoloids, common echinoderm debris, dark elongated mudstone clasts, faecal pellets, peloids, benthic foraminifers, spartic shell debris (gastropods?), rare H. dinarica, partly argillaceous</td>
<td></td>
</tr>
<tr>
<td>Protected lagoonal echinoderm-orbitolinid mudstone/wackestone</td>
<td>JM53.7, JM54.3, JM54.9, JM55.5, JM56.1, JM56.7, JM57.3, JM59.2, JM60.4, JM63.4, JM65.4</td>
<td>Fine-grained echinoderm debris, rare to common orbitoloids, very rare benthic foraminifers</td>
<td></td>
</tr>
<tr>
<td>Protected to restricted echinoderm mudstone</td>
<td>JM50.6, JM53.1, JM59.8, JM61.6, JM65.4, JM66.2, JM67.5, JM71.8, JM72.4</td>
<td>Fine-grained sparse echinoderm debris, very rare contributions of additional allochones, low to strong intraparticle micro-porosity (dissolved dolomite rhombs and small bioclasts), partly argillaceous</td>
<td></td>
</tr>
<tr>
<td>Dedolomite</td>
<td>JM8.6, JM11.1, JM26.1, JM30.3</td>
<td>Microcrystalline euhedral porphyrotopic or anhedral calcified dolomite, masking of primary texture</td>
<td></td>
</tr>
</tbody>
</table>
moderate trend to lower values (30.3 m: −11.1‰). Upsection, the oxygen isotope curve exhibits a prominent positive trend (30.3 to 31.8 m) that reaches a first plateau (31.8 to 48.4 m; mean: −4.1‰; SD: 1.0‰), and finally a negative change (48.4 to 53.7 m) reaching a second plateau (53.7 to 74 m; mean: −7.6‰; SD: 0.4‰). The latter plateau is characterized by low-amplitude sinusoidal changes in δ18Obulk.

Cross-plots of bulk carbonate carbon and oxygen isotope data (Fig. 4) reveal a low covariance if all data are considered (0 to 74 m: $r^2 = 0.16$). Based on petrographic (change towards mud-dominated ‘chalky’ limestones) and stable isotope features (lowering of δ18Obulk background values), as observed in the upper part of the Jabal Madar section, two different stratigraphic groups of bulk carbonate samples (A/B) might be distinguished. Splitting the stable isotope data into these groups provides r^2-values that are indicative of a moderate (A: 0 to 48.8 m: $r^2 = 0.41$) to strong correlation (B: 49.6 to 74 m: $r^2 = 0.65$) of carbon and oxygen isotope values.

Component-specific carbon and oxygen isotope variability

Carbon and oxygen isotope results of component-specific carbonate phases (matrix micrite, dedolomite, sparry cement, bivalve shell material) of selected samples derived from the Jabal Madar section are plotted in Figs 5 and 6.

The majority of matrix micrite sensu stricto subsamples provide rather positive carbon (0–9‰ to 3–2‰ mean: 2.1‰) and oxygen isotope values (−7.8‰ to −0.8‰ mean: −5.2‰). Bivalve subsamples largely overlap the range of these matrix micrite values, with carbon isotope values between 1–3‰ and 2–1‰ (mean: 2.1‰) and oxygen isotope values between −7–5‰ and −3–9‰ (mean: −5.8‰). A limited number of matrix micrite samples ($n = 8$) show lowered δ13C values (−1.5‰ to 0–7‰ mean: −0.3‰) along with less variable δ18O values (−5–2‰ to −4–1‰ mean: −4–8‰).

Strongly dedolomitized subsamples (dedolomite 75 to 95%) provide carbon isotope values ranging between −5–5‰ and 0–9‰ (mean: −2–0‰) and oxygen isotope values ranging between −12.3‰ and −7–6‰ (mean: −9.7‰). In contrast, moderately to weakly dolomitized samples (dedolomite 5 to 40%) record considerably less negative δ13C (−0–5‰ to 1–9‰ mean: 0–8‰) and δ18O values (−8–2‰ to −4–4‰ mean: −6–5‰).

Sampled cement phases are represented by drusy calcitic sparite that either fills bioclastic voids and intergranular pore space (spA) or fractures and voids (spB). In general, the distinguished cement generations bear clearly different isotopic signatures. SpB samples provide the most positive δ13C (2–6‰ to 4–0‰ mean: 3–3‰) and δ18O values (−3–9‰ to −2–2‰ mean: −3–2‰) of all sampled carbonate phases. In contrast, spA samples record a significantly wider range of both carbon (mean: −0–1‰; SD: 2–3‰) and oxygen isotope values (mean: −9.6‰; SD: 1–7‰). A cross-plot of δ13C and δ18O values (Fig. 6) allows two different groups of spA cements (spA-1, spA-2) to be distinguished. While spA-1 cements are moderately to strongly depleted in 13C (−5–7‰ to −0–4‰ mean: −2–7‰) and 18O (−7–9‰ to −14–1‰ mean: −10–8‰), spA-2 cements provide positive δ13C values (0–4‰ to 2–4‰ mean: 1–2‰) along with less variable δ18O values (−9–9‰ to −7–5‰ mean: 8–9‰).

Due to the often small size of cement-filled pore space, carbon (mean: 1–8‰; SD: 0–7‰) and oxygen isotope results (mean: −5–8‰; SD: 0–9‰) of a relatively large number ($n = 25$) of cement subsamples were discarded from further interpretations as they presumably represent a mixture of isotopic end-member compositions of spA and spB (Figs 5 and 6, see also Table SI-2), as will be further discussed.

Cathode luminescence characteristics, elemental geochemistry and strontium isotope analysis

The objective of CL microscopy (Fig. 7A–F) combined with elemental geochemistry and strontium isotope analysis (Fig. 7G) is to provide independent evidence for the stable isotope-based interpretation of diagenetic realms, in which certain carbonate phases were formed. If combined with a (semi-)quantitative assessment of identified diagenetic products (i.e. dedolomite, sparry cements) at thin section scale, this approach allows the impact of the latter on the stable isotope signature of mud-supported and grain-supported bulk carbonate material to be evaluated. Component-specific elemental concentrations (Mg, Sr, Fe, Mn: normalized to a calcium content of 39.7% for stoichiometric calcite), element/calcium and strontium isotope ratios are shown in Table 2. Only the most significant differences and similarities of analysed carbonate phases are reported here.

Cathode luminescence microscopy of matrix micrite reveals a commonly dull to moderately bright luminescence (Fig. 7A, B, and E). Dedolomite, often in the form of dolomite rhombs, has a bright orange luminescence, contrasting with the duller surrounding matrix (Fig. 7C). SpA cements luminesce moderately to very bright orange to yellow and are characterized by a strongly zonal pattern (Fig. 7A and B). SpB cements mainly inhabit fractures that clearly truncate grains and previous spA cements (Fig. 7D) and reveal a luminescence ranging from predominantly dull to moderately bright orange. In contrast to spA, spB cements are far less subjected to

© 2017 The Authors. The Depositional Record published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologists.
zoning. Both spA and spB cements frequently display partial alteration, expressed under CL by subordinate contributions of non-luminescent calcite and neomorphic microspar (Fig. 7B and E) or by intra-crystalline micropores producing a spotted bright orange luminescence pattern (Fig. 7A and D). Depending on the degree of recrystallization, bivalve fragments show a dull to dark luminescence (Fig. 7F).

Mudstone (matrix micrite) and grainstone (bulk) samples provide a wide range of elemental contents, but micrite values are considerably more variable (e.g. Fe(micrite): 27 to 962 p.p.m. vs. Fe (bulk): 136 to 465 p.p.m.). Notably, a cluster of matrix micrite samples showing largely invariant δ18O values provide enhanced Fe/Ca ratios. Moreover, elemental and stable isotope analyses reveal that one matrix micrite sample (JM7.1D) is in fact composed of (early) dolomite (Ca/Mg: 2). In comparison with all other carbonate phases, the latter sample provides considerably enhanced (Mn/Ca)/(Sr/Ca) ratios and δ18O and δ13C values. Matrix micrite δ18O values, plotted against (Mn/Ca)/(Sr/Ca) ratios, reveal a low correlation ($r^2 = 0.2$). Strontium isotope ratios of a limited number of matrix micrite samples ($n = 4$) range from 0-707923 to 0-708947 (SD: ±5/6 × 10−6) and show a strong inverse correlation both with Sr/Ca ratios and δ18O values. In

Fig. 5. Stratigraphic evolution of component-specific (sparite cements spA-1/2 and spB, calcitic/dolomitic micrite, low-Mg calcite bivalves, dedolomitized limestone) versus bulk carbonate carbon and oxygen isotope ratios (stippled line). Note the clearly different and rather uniform stable isotope signature of spB cements and the stratigraphic limited occurrence of matrix micrite samples recording meteorically induced negative carbon isotope changes. The component-specific approach reveals that the noisy carbon isotope pattern of bulk samples representing group A (0 to 48-8 m) is mainly caused by variable contributions of sparite cements and dedolomite. Please refer to the legend of Fig. 4 for information on symbols used in the rock column.

Fig. 6. Cross-plot of carbon and oxygen isotope ratios showing characteristic end-member compositions of identified carbonate phases (spA-2, spB, dolomitic micrite) and a clear covariant negative trend associated with variable contributions of dedolomite and spA-1 cements. Note an isotopic cluster representing the mixing of spA and spB signatures and a small cluster of micrite samples plotting along the meteoric calcite line of Lohmann (1988). The white rectangle marks the range of δ13C and δ18O values for Barremian open marine sea water (Jenkyns, 1995; Weissert & Erba, 2004; Godet et al., 2006; Sprovieri et al., 2006; Prokoph et al., 2008; Bodin et al., 2009; Wohlwend et al., 2017). Here, established threshold values both for δ13C and δ18O are indicated by red triangles. The grey shaded area marks the range of ‘filtered’ bulk carbonate stable isotope signatures used for chemostratigraphic and palaeoenvironmental interpretations.
contrast, the best-preserved bivalve sample, JM46.6B, provides a considerably less radiogenic strontium isotope ratio (0.707556) along with enhanced strontium (710 p.p.m.) and very low iron (9 p.p.m.) and manganese (6 p.p.m.) contents.

Identified sparite cements (spA-1, spA-2, spB) show different elemental characteristics: mean magnesium and iron contents of spA-2 (Mg: 3385 p.p.m.; Fe: 370 p.p.m.) are enriched with respect to spB (Mg: 2525 p.p.m.; Fe: 14 p.p.m.), while the average strontium content of spA-2 (185 p.p.m.) is lower than those of spB (312 p.p.m.). Similar to matrix micrite and grainstone (bulk) samples, elemental contents of strongly dedolomitized limestone subsamples are highly variable (Table 1). Notably, sample JM11.1-DD provides similar elemental (high (Mn/Ca)/ (Sr/Ca) ratios) and stable isotope properties (low δ18O and δ13C values) to spA-1 sample JM29.9.

DISCUSSION

Reliability of Jabal Madar bulk carbonate carbon and oxygen isotope data

At first glance, the Jabal Madar section exhibits a rather well-expressed bulk carbonate carbon isotope pattern (Fig. 4) that seems to allow for chemostratigraphic correlation purposes. Moreover, the low covariance between δ13C and δ18O values (r² = 0.16) of all bulk carbonate samples points to the absence of major diagenetic alteration of isotope ratios. This prediction is obviously too simplistic, as the δ13Cbulk and δ18Obulk cross-plot displays two different groups, each showing covariation between these proxies (Fig. 3). These groups comprise samples derived from the lower mixed mud-supported to grain-supported portion (0 to 48.8 m: group A, r² = 0.41) and the whitish-weathering predominantly mud-supported upper portion (49.6 to 74 m: group B, r² = 0.65) of the studied section. The observed difference of groups A and B is most likely related to primary contrasts in depositional setting (restricted vs. open lagoon; Pittet et al., 2002) resulting in a variable sedimentary contribution from marine and terrestrial sources, which ultimately promote textural differences such as the size, amount and distribution of initially available pore space (among others). These in turn influence hydraulic conductivity, accounting for differential susceptibility to early and/or later diagenetic processes. As for the covariant trends depicted for bulk samples (groups A and B), two lines of reasoning can be brought forward: (i) the geochemical record was severely affected by mixing-zone diagenesis and obtained results no longer reflect original palaeoenvironmental conditions; (ii) sampling different generations of carbonate materials (matrix micrite, cements, dedolomite) may also produce such covariation, by which the original signal is still recorded at least in some carbonate phases (Allan & Matthews, 1982). In either case, differential diagenetic pathways must be explored in order to provide a clear understanding of the obtained bulk carbon and oxygen isotope patterns and determine if further interpretations based on the stratigraphic evolution of δ13Cbulk should be pursued. In particular, the occurrence of dedolomite and sparite cement phases requires an in-depth evaluation as to their relative contribution to the bulk carbonate stable isotope archive. By means of a component-specific petrographic, elemental and stable isotope analysis, quantitative arguments can be used to extract an objectively reliable near-primary (shallow marine) carbon isotope signal which will allow a refined integrated stratigraphic framework to be established.

Component-specific geochemical and petrographic properties

It is widely accepted and demonstrated that δ13C records are generally less affected by diagenetic overprint than the more sensitive δ18O signal, as carbon isotopes are less vulnerable to changes in the water-rock ratio and suffer only minor alteration towards lower δ13C values with increasing burial depth and associated increasing temperatures (Emrich et al., 1970; Marshall, 1992). Diagenesis is thus often conservative when carbon isotopes are concerned, from sustaining absolute original values, to at least preserving the original trends along a studied time frame (Frank & Lohmann, 1996). In both cases, δ13C records reflect original fluctuations in response to palaeoenvironmental conditions. Here, well preserved bulk carbon isotope signals were identified by focusing on the geochemical and petrographic properties of component-specific diageneric products and eliminating their potential contribution to the obtained bulk δ13C curve.

Both a stratigraphic and a cross-plot of carbon and oxygen isotope values illustrate the high variability in component-specific stable isotope signatures (Fig. 6). Although the elemental and isotopic composition of biogenic hard parts (Immenhauser et al., 2008; Schöne, 2008) are known to severely depend on metabolic processes, previous studies have shown that bivalve shells might act as a suitable archive for mid-Cretaceous secular carbon isotope changes (Huck et al., 2012; Huck & Heimhofer, 2015). Unfortunately, the petrographic inspection of bivalve shell fragments derived from the Jabal Madar section provides clear evidence for a moderate recrystallization and partial silification of the fibrous low-Mg calcite ultrastructure. The majority of bivalve and matrix micrite carbon isotope values, in contrast to the highly variable bulk carbonate values, are close to the
expected Barremian mean open marine $\delta^{13}C$ value of about 1 to $3_{\%}$ as recorded in Tethyan and Pacific pelagic sections (Weisett et al., 1985; Jenkyns, 1995; Weisett & Erba, 2004; Godet et al., 2006; Sprovieri et al., 2006; Prokoph et al., 2008; Bodin et al., 2009; Wohlwend et al., 2017). At first glance, this would imply that the most fine-grained portions of the Jabal Madar section escaped considerable overprint of their $\delta^{13}C$ signal by diagenetic fluids and thus, might be regarded as a suitable archive for secular carbon isotope trends of dissolved inorganic carbon (DIC). As stated by Immenhauser et al. (2008), however, neritic ooze ‘cannot be considered to be free of diagenetic artefacts’, as this polygenetic and therefore partly metastable material is expected to be prone to at least syn-depositional (pore-water) diagenesis (Patterson & Walter, 1994; Sanders, 2003; Walter et al., 2007; Coimbra & Olóriz, 2012b). But such effects may result in only subtle changes to the original geochemical signals, thus even stabilized carbonates can provide reliable palaeoenvironmental records (Coimbra et al., 2009; Vincent et al.,...
Table 2. Analytical results (major and trace elements, strontium isotopes) of selected carbonate phases from the Jabal Madar section including bulk carbonate (grainstones), matrix micrite, sparite cements (spA-1, spA-2, spB) and strongly dedolomitized limestone.

<table>
<thead>
<tr>
<th>JM sample</th>
<th>δ^{13}C</th>
<th>δ^{18}O</th>
<th>Mg (p.p.m.)*</th>
<th>Sr (p.p.m.)*</th>
<th>Fe (p.p.m.)*</th>
<th>Mn (p.p.m.)*</th>
<th>Sr/Ca (x1000)</th>
<th>Fe/Ca (x1000)</th>
<th>Mn/Ca (x1000)</th>
<th>Mn/Ca/V</th>
<th>δ^{87}Sr/δ^{86}Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grainstones</td>
<td></td>
</tr>
<tr>
<td>0.0G</td>
<td>-2.25</td>
<td>-8.66</td>
<td>1186</td>
<td>158</td>
<td>136</td>
<td>44</td>
<td>0.40</td>
<td>0.34</td>
<td>0.11</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>0.5G</td>
<td>-0.41</td>
<td>-7.94</td>
<td>1707</td>
<td>202</td>
<td>100</td>
<td>41</td>
<td>0.51</td>
<td>0.25</td>
<td>0.10</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>11.7G</td>
<td>-0.95</td>
<td>-7.32</td>
<td>1955</td>
<td>285</td>
<td>166</td>
<td>75</td>
<td>0.72</td>
<td>0.42</td>
<td>0.19</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>19.6G</td>
<td>-0.39</td>
<td>-3.23</td>
<td>4121</td>
<td>308</td>
<td>465</td>
<td>35</td>
<td>0.78</td>
<td>1.17</td>
<td>0.09</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>41.7G</td>
<td>0.69</td>
<td>-6.67</td>
<td>2335</td>
<td>242</td>
<td>151</td>
<td>42</td>
<td>0.61</td>
<td>0.38</td>
<td>0.11</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Matrix micrite</td>
<td></td>
</tr>
<tr>
<td>7.1D</td>
<td>3.05</td>
<td>-0.84</td>
<td>1140</td>
<td>164</td>
<td>391</td>
<td>87</td>
<td>0.72</td>
<td>0.98</td>
<td>0.38</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>10M</td>
<td>0.14</td>
<td>-4.54</td>
<td>3587</td>
<td>466</td>
<td>444</td>
<td>94</td>
<td>1.17</td>
<td>1.12</td>
<td>0.24</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>14M</td>
<td>1.14</td>
<td>-5.88</td>
<td>2032</td>
<td>207</td>
<td>64</td>
<td>50</td>
<td>0.52</td>
<td>0.16</td>
<td>0.13</td>
<td>0.24</td>
<td>0.708712</td>
</tr>
<tr>
<td>27.1M</td>
<td>1.93</td>
<td>-3.35</td>
<td>3791</td>
<td>387</td>
<td>93</td>
<td>31</td>
<td>0.97</td>
<td>0.24</td>
<td>0.08</td>
<td>0.08</td>
<td>0.707923</td>
</tr>
<tr>
<td>28.2M</td>
<td>0.27</td>
<td>-5.14</td>
<td>3444</td>
<td>289</td>
<td>962</td>
<td>51</td>
<td>0.68</td>
<td>2.30</td>
<td>0.12</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>30.2M</td>
<td>-1.01</td>
<td>-4.94</td>
<td>2609</td>
<td>398</td>
<td>300</td>
<td>53</td>
<td>1.00</td>
<td>0.76</td>
<td>0.13</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>35.5M</td>
<td>-0.14</td>
<td>-4.11</td>
<td>3865</td>
<td>532</td>
<td>662</td>
<td>78</td>
<td>1.27</td>
<td>1.60</td>
<td>0.19</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>52.6M</td>
<td>2.89</td>
<td>-6.00</td>
<td>1997</td>
<td>200</td>
<td>77</td>
<td>26</td>
<td>0.50</td>
<td>0.19</td>
<td>0.07</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>62.2M</td>
<td>2.56</td>
<td>-7.34</td>
<td>1127</td>
<td>159</td>
<td>27</td>
<td>27</td>
<td>0.40</td>
<td>0.07</td>
<td>0.07</td>
<td>0.17</td>
<td>0.708925</td>
</tr>
<tr>
<td>73.6M</td>
<td>2.30</td>
<td>-7.71</td>
<td>1173</td>
<td>170</td>
<td>28</td>
<td>33</td>
<td>0.43</td>
<td>0.07</td>
<td>0.08</td>
<td>0.19</td>
<td>0.708947</td>
</tr>
<tr>
<td>Dedolomite (75%)</td>
<td></td>
</tr>
<tr>
<td>11.1DD</td>
<td>-3.69</td>
<td>-10.59</td>
<td>2515</td>
<td>136</td>
<td>410</td>
<td>132</td>
<td>0.34</td>
<td>1.03</td>
<td>0.33</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>47.7DD</td>
<td>0.28</td>
<td>-8.37</td>
<td>4339</td>
<td>395</td>
<td>555</td>
<td>57</td>
<td>0.99</td>
<td>1.40</td>
<td>0.14</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>72.4DD</td>
<td>0.22</td>
<td>-8.17</td>
<td>1091</td>
<td>210</td>
<td>239</td>
<td>39</td>
<td>0.53</td>
<td>0.60</td>
<td>0.10</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Sparite A</td>
<td></td>
</tr>
<tr>
<td>29.95PA-1</td>
<td>5.04</td>
<td>-13.42</td>
<td>1001</td>
<td>151</td>
<td>161</td>
<td>139</td>
<td>0.38</td>
<td>0.41</td>
<td>0.35</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>33.75PA-2</td>
<td>0.71</td>
<td>-8.98</td>
<td>3604</td>
<td>183</td>
<td>134</td>
<td>61</td>
<td>0.46</td>
<td>0.34</td>
<td>0.15</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>43.35PA-2</td>
<td>1.51</td>
<td>-9.15</td>
<td>3213</td>
<td>190</td>
<td>614</td>
<td>68</td>
<td>0.48</td>
<td>1.55</td>
<td>0.17</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Sparite B</td>
<td></td>
</tr>
<tr>
<td>4.75PB</td>
<td>2.79</td>
<td>-3.42</td>
<td>3265</td>
<td>242</td>
<td>43</td>
<td>61</td>
<td>0.61</td>
<td>0.11</td>
<td>0.15</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>19.15PB</td>
<td>3.45</td>
<td>-3.55</td>
<td>2363</td>
<td>366</td>
<td>14</td>
<td>68</td>
<td>0.92</td>
<td>0.04</td>
<td>0.17</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>40.55PB</td>
<td>3.87</td>
<td>-3.21</td>
<td>2721</td>
<td>293</td>
<td>14</td>
<td>80</td>
<td>0.74</td>
<td>0.04</td>
<td>0.20</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Bivalves</td>
<td></td>
</tr>
<tr>
<td>17.1B</td>
<td>2.05</td>
<td>-5.51</td>
<td>2121</td>
<td>336</td>
<td>17</td>
<td>32</td>
<td>0.85</td>
<td>0.04</td>
<td>0.08</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>18.6B</td>
<td>1.77</td>
<td>-7.03</td>
<td>1603</td>
<td>267</td>
<td>12</td>
<td>23</td>
<td>0.67</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>46.6B</td>
<td>2.22</td>
<td>-4.51</td>
<td>1224</td>
<td>708</td>
<td>9</td>
<td>6</td>
<td>1.78</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.707556</td>
</tr>
</tbody>
</table>

*Normalized to a calcium content of 39-7% for stoichiometric calcite (except dolomitic micrite sample 7.1D).

2017). This possibility was tested by comparing carbon and oxygen isotope values, elemental contents and Cl characteristics of matrix micrite (sensu stricto) with those of all other carbonate components identified in samples from the Jabal Madar section (Fig. 6), aiming to extract a highly detailed diagenetic evolution of the carbonate materials under study. Matrix micrite, in most of the thin sections, appears dull to moderately bright under CL. This often documented luminescence pattern mirrors the diagenetic stabilization of matrix micrite soon after deposition, either close to the sediment/water interface (Coimbra et al., 2009) or in the shallow burial diagenetic domain. This interpretation is in line with the majority of matrix micrite δ^{13}C and δ^{18}O signatures, which are in the range of penecontemporaneous sea water isotope values (Coimbra et al., 2009) or only slightly deviated towards (more negative) burial diagenetic signatures (Christ et al., 2012).

Processes affecting carbon isotope signals

In line with sedimentological evidence for a restriction from the open marine realm and transient episodes of subaerial exposure (root traces, laminated mudstones with desiccation cracks or single-species (ostracod) assemblages), the stable isotope pattern (‘inverted J’) of a small cluster of bulk and matrix micrite samples ($n = 8$) documents the stratigraphically limited influence of mild meteoric diagenesis (Allan & Matthews, 1982; Meyers & Lohmann, 1985; Lohmann, 1988; Figs 5 and 6). The lack of a distinct and more profound exposure-related stable isotope pattern (strong decrease in δ^{13}C values related to
meteoric fluids bearing 12C-enriched soil-gas CO$_2$ might be explained by (i) the initial palaeogeographic and climatic setting, (ii) transient exposure periods inhibiting the formation of thick soil horizons, (iii) the erosion of the meteorically altered sediment pile during subsequent transgression and/or (iv) post-depositional dissolution–precipitation processes that might have masked the meteoric precursor signals (cf. Coimbra et al., 2016; Godet et al., 2016).

Subsamples with abundant microcrystalline replacive dedolomite (≥75%) as well as a cluster of sparite A subsamples (spA-1) provide the most negative carbon (and oxygen) isotope values. The impact of the latter diagenetic products on the bulk stable isotope composition is clearly related to their abundance, since samples with the lowest dedolomite contents (5 to 10%) record carbon (and oxygen) isotope values overlapping the isotope range of the best-preserved matrix micrite samples. This observation clearly reflects the mixing of the isotope signatures of the dedolomite end-member and the host rock, accounting for the fair correlation of both dedolomite subsamples and bulk samples of group A (Fig. 4; see also Table SI-3). Moreover, the observed (recent?) selective dissolution of replacive very small dedolomite crystals, although less abundant, appears to be associated with cyclic positive carbon isotope changes and thus results in rather strong correlation of isotope signatures of ‘chalky’ samples representing group B (Fig. 4). As carbon isotope values of dedolomite-rich samples are considerably depleted (down to −5.5‰), involved burial fluids might have been sourced by 12C derived from the thermal breakdown of buried organic matter that escaped decomposition in the predominantly fine-grained portions of the Jabal Madar section. The alternative of early diagenetic meteoric fluids charged with soil-zone CO$_2$ that might have acted as donor of isotopically light carbon seems at first glance less likely. This alternative would imply the development of thick soil horizons and related mature karst features during a time (Late Barremian) of predominantly arid climate (Ruffell & Batten, 1990; Godet et al., 2008; Föllmi, 2012; Amodio & Weissert, 2017). But even if erosion of former soil horizons occurred, the predicted oxygen isotope composition of meteoric waters in low latitudinal coastal settings contradicts this possibility (as further discussed).

Sparite A (spA) cements reveal two different carbon isotope signatures, from strongly to only slightly lowered values when compared to the range of presumed well-preserved marine signals. This feature reveals the influence of different sources of fault fluids, which may relate to multi-stage faulting events or merely to different directions of faulting (bed normal, parallel or oblique veins) promoting the circulation of different fluids (Agosta et al., 2008).

The least 13C-depleted set of samples (spA-2) is characterized by a well-expressed zoned luminescence and low strontium contents (mean: 185 p.p.m.), and thus corresponds to shallow burial conditions, while the major departure from the expected marine δ18O signal (Weissert et al., 1985; Jenkyns, 1995; Weissert & Erba, 2004; Godet et al., 2006; Sprovieri et al., 2006; Prokoph et al., 2008; Bodin et al., 2009; Wohlwend et al., 2017) recorded by spA-1 cements is at first glance consistent with deep burial fluids, as previously discussed.

Sparite B (spB) samples provide enigmatic, considerably higher carbon isotope signatures (up to 4‰) when compared to any other carbonate material and to the expected Barremian (shallow-) marine signal (Fig. 6). The timing of late veining and concomitant infill of available pore space of spB cements is hard to establish, but major spB veins cross-cut most of the remaining diagenetic features, so their origin is probably related to fluids circulating during or after sub-recent exhumation (and creation of secondary pore space due to dissolution processes) of the Cretaceous succession during the Miocene (Fig. 8). Due to similar carbon and oxygen isotope compositions of all spB cements and their encasing matrix micrite (not influenced by meteoric alteration), the influence of rock-buffered fluids is envisaged, but the clear increase in carbon isotope values merits attention (Fig. 5). The persistently higher carbon isotope signature is not abrupt enough to consider processes related to fermentation of organic acids, CO$_2$ reduction or excessive evaporation (Clayton, 1994). Alternatively, a slight carbon isotope fractionation is here proposed, owing to lowered pCO$_2$ in fluids circulating at shallow depth, which is reasonable during pressure release phenomena (Shemesh et al., 1992; Hassan, 2011). Several reports of slightly heavier δ13C values along late diagenetic calcite and even dolomite veins show a similar pattern (Morad et al., 2010; Vandeginste et al., 2013; Arndt et al., 2014; Balsamo et al., 2016). In any case, these cements are mostly well-expressed with respect to their textural (predominantly cross-cutting thick veins), CL (dull) and elemental characteristics (low Fe and Mn contents) (Figs 7 and 8). Bulk samples, in particular if mud-supported, are thus unlikely to be influenced by the geochemical signal of spB. As mentioned earlier, however, CL indicates that a limited number of cement-rich, grain-supported samples host interfingering sparite cements of spA and spB and/or provide evidence for sparite cement diminution by neomorphic microsparite patches (Fig. 7F). Carbon isotope values of the corresponding cements indeed reflect a mixture of spA and spB end-member compositions (Fig. 5). Consequently, the variable contribution of spB cements and microsparite might shift the bulk carbon isotope signature towards higher values.
Processes affecting oxygen isotope signals

Regarding oxygen isotope values, the least depleted carbonate materials are matrix micrite, spB cements, selected bivalve shells and very weakly dedolomitized samples (Fig. 6). These partially overlap the expected marine signal, tailing towards the uppermost range of spA-2 cements. Selected bivalve shells showing partly preserved growth increments display rather low δ18O values (−7.0 to −4.5‰) and strontium concentrations (336 to 708 p.p.m.), both geochemical signatures pointing to the alteration of shells in the shallow burial realm by marine fluids, despite their rather low iron (mean: 12 p.p.m.) and manganese (mean: 20 p.p.m.) concentrations. In line with considerably lowered δ18O values of spA-2 cements, this confirms the progressive influence of fluids with elevated temperature in a rock-buffered system (Moore, 1983; Choquette & James, 1987; Allan & Wiggins, 1993; van der Kooij et al., 2009), generating more depleted δ18O values in carbonate phases precipitating from marine fluids in the intermediate burial realm.

Notably, a specific group of sparite cements (spA-1) and carbonates with a high abundance of dedolomite are strongly depleted in oxygen isotope values (down to −14‰), along with also very negative δ13C values (down to −6‰). Perhaps the best explanation for the observed strongly depleted carbon and oxygen isotope values, as opposed to the thermal breakdown of buried organic matter in the deep burial realm, is the burial and subsequent expulsion of soil-zone CO2-enriched meteoric waters (de Caritat & Baker, 1992; Moss & Tucker, 1995; Hendry, 2002; Frazer et al., 2014). A precursor meteoric δ18O signature of −5‰ would then translate into a maximal burial depth of 1-9 km, well within the range of a previously estimated intermediate burial depth of 1 to 4 km for Cretaceous deposits exposed along the Adam foothills at Jabal Madar and Jabal Qusaybah (Hanna, 1990; Mozafari et al., 2015). This alternative is also favoured against the contribution of thick former soil horizons, because the recorded shift in oxygen isotope ratios of meteoric waters towards values of up to −14‰ is incompatible with the minimal effect of isotopic fractionation during evaporation – precipitation (Rayleigh Effect) at low latitudinal coastal settings (Dansgaard, 1964; Anderson & Arthur, 1983; Lohmann, 1988).

Establishing isotopic threshold signals

Although the contribution of burial-related diagenetic processes evidently influenced the oxygen isotope signature of Jebel Madar bulk carbonate, they are generally not believed to have a major impact on carbon isotope geochemistry (Banner & Hanson, 1990; Veizer et al., 1999), in particular if cements are volumetrically of low importance. In fact, even bulk carbon isotope values recorded by cement-rich (spA-2) grain-supported samples largely resemble those of matrix micrite samples (1 to 3‰) and, more importantly, of selected best-preserved bivalve shells. However, the evaluation of component-specific isotope signatures (bulk vs. spA-2) revealed that enhanced spA-2 contents in the order of about 25% (sample JM40.5) result in a lowering of the δ13Cbulk value by about 0.7‰ (Fig. 7D; Table SI-2). At limited stratigraphic intervals, this lowering of δ13Cbulk values is counteracted by the partial replacement of spA-2 cements by a later diagenetic cement (spB) bearing considerably higher carbon (and oxygen) isotope values.

In order to provide solid evidence for the usefulness of bulk carbonate isotope values and overall stratigraphic trends for further chemostratigraphic and palaeoenvironmental interpretations, critical thresholds established by the in-depth analysis of component-specific samples have to be applied. In particular, the stable isotope signatures of mud-supported, often dedolomite-rich (≥75%), and cement-rich grain-supported portions (group A) of the Jabal Madar section merit attention. These samples either experienced mild early meteoric diagenesis (10 to 12 m, 28 to 36 m; Fig. 5) or severe diagenetic alteration by buried meteoric waters during the mesogenetic stage (Fig. 5). It is therefore concluded that the variable contribution of dedolomite and sparite A largely dictates the diagenetic trends obtained for bulk carbonate samples. In order to confidently establish a carbon isotope threshold that is not affected by either of these cement phases, bulk stable isotope signatures overlapping with those provided by meteorically altered samples, strongly dedolomitized samples and spA-1 samples (δ18O < −7.8‰, δ13C < −0.9‰) are discarded from further stratigraphic and palaeoenvironmental interpretations. Moreover, the possible influence of spB cements on the bulk carbonate record is lowered by excluding samples with δ13C values above 3.1‰. Notably, the filtered bulk carbonate samples (107 out of 202 samples) fall within matrix micrite sensu stricto (not influenced by meteoric fluids) and selected bivalve shell isotope signals.

In summary, the in-depth component-specific petrographic and geochemical approach presented here allows the Jabal Madar shallow-water bulk carbonate carbon isotope archive to be critically assessed. The resulting ‘cleaned’ carbon isotope record is expected to have preserved a near-primary pattern of superimposed global δ13C trends and inflexion points.

Integrated Barremian–Aptian shallow-water stratigraphy of Northern Oman

The Barremian–Lower Aptian portion of the Jabal Madar section shows a characteristic sedimentary stacking pattern, which is easily recognizable in the field as repeated
alteration of (i) predominantly thin bedded partly argillaceous (upper Lower Kharaib and Hawar members) and (ii) more massive and partly cross-beded intervals (lower Lower Kharaib, Upper Kharaib and Lower Shu’aiba; Fig. 3A). The latter depositional cycles are well-documented throughout the Arabian platform both in outcrops and in the subsurface and referred to as third-order sequences I (AP Bar1), II (AP Bar2) and III (AP Apt1-4) (Harris et al., 1984; Hughes-Clarke, 1988; Sharland et al., 2001; Pittet et al., 2002; van Buchem et al., 2002; Strohmenger et al., 2006; van Buchem et al., 2010). Following a revised Barremian–Aptian orbitolinid biostratigraphic zonation of the eastern Arabian Plate (Schröder et al., 2010), the occurrence of the short range index fossils M. arabica (see also Simmons, 1994) and E. transiens in the transgressive deposits of the upper Lower Kharaib Member at Jabal Madar (sequence II) is indicative of an early to middle Late Barremian age, whereas the mass occurrence of P. lenticularis in the early transgressive Hawar Member points to an early Early Aptian age.

The ‘filtered’ bulk carbonate carbon isotope stratigraphic record established here (complemented with data from Sattler et al., 2005) allows for a chemostratigraphic characterization of the combined biostratigraphic–sequence stratigraphic scheme (Pittet et al., 2002; Schröder et al., 2010). Initially, carbon isotope stratigraphy is applied to correlate sequences I to III on a regional (Oman) scale. Unfortunately, continuous Barremian–Aptian shallow-water carbon isotope records are scarce throughout the Arabian platform. Two exceptions are the uppermost Barremian–Lower Aptian Wadi Mu’aydin δ13C record from the southern rim of the Jebel Akhdar dome in northern Oman (Wilson, 1969; Glennie et al., 1974; Simmons & Hart, 1987; Simmons, 1990; van Buchem et al., 2002) and the Upper Barremian–Lower Aptian Huqf δ13C record (section S018) from south-eastern Oman (Immenhauser et al., 2004; Sattler et al., 2005).

In the Huqf area (Fig. 9), partly dolomitized tidal flat deposits representing the highstand of sequence I display lowered and strongly fluctuating carbon isotope values. This pattern has been associated with local water mass ‘ageing’ and superimposed repeated subaerial exposure events in the intertidal realm (Sattler et al., 2005). In the relatively more distal Jabal Madar section, a limited number of matrix micrite subsamples within transgressive and early highstand deposits of sequence I also record meteorically induced negative carbon isotope changes in the order of up to 3‰. The arguable meteoric origin of these negative δ13C excursions is supported by enhanced iron (mean: 641 p.p.m.) contents recorded by micrite samples and the occurrence of delicate spar-filled root casts and thin laminated mudstone layers (Table 2; Figs 7 and 9).

The overlying largely grain-supported high-energy deposits representing the late highstand of sequence I, in contrast, lack clear isotopic and petrographic evidence for a substantial overprint by meteoric fluids. Considering CL characteristics (showing dominance of spA-2 cements), this might be explained by burial-related dissolution–precipitation processes.

Chemostratigraphically, sequence II both at Jabal Madar and Huqf is represented by cyclic carbon isotope fluctuations superimposed on a broad positive δ13C bulge. At all considered localities including Wadi Mu’aydin, sequence II is terminated by a prominent negative incursion immediately beneath the onset of the overlying Palorbitolina lenticularis–rich Hawar Member. At Jabal Madar and Huqf, this change is associated with laterally extensive composite surfaces (CS) that bear evidence for both a subaerial exposure and a marine hardground stage (Sattler et al., 2005). This observation supports the notion of a major sea-level fall and subsequent long-lasting exposure (105 years) of the Arabian carbonate platform at the Barremian–Aptian transition (van Buchem et al., 2002; Al-Husseini & Matthews, 2010).

At Jabal Madar and Wadi Mu’aydin, the transgressive deposits of sequence III record gradually increasing carbon isotope values (Huqf Member), which are again capped by an abrupt negative 2‰ change in δ13C at the transition towards the Lithocodium–Bacinella bearing deposits of the Lower Shu’aiba Member. Following previous work in Oman (van Buchem et al., 2002; Sattler et al., 2005; Huck et al., 2010), the observed prominent negative δ13C spike represents the chemostratigraphic segment C3 sensu Menegatti et al. (1998), which precedes oceanic anoxic event (OAE) 1a. The Huqf section provides a rather similar pattern, but due to the restricted intertidal conditions, δ13C values of the Hawar Member...
are strongly overprinted by meteoric carbon isotope signatures (Sattler et al., 2005).

In contrast to the rather well-established, integrated stratigraphic framework for the Upper Barremian–Lower Aptian carbonate platform deposits exposed at Jabal Madar, Wadi Mu’aydin and the Huqf area, the long range of the Hauterivian-Early Barremian *Permocalculus inopinatus* biozone (Simmons, 1994) hampers a precise carbon isotope-based age assignment for the Upper Lekhwair Formation and Lower Kharaib Member at Jebel Madar, in particular, as additional carbon isotope stratigraphic results from Wadi Mu’aydin and the Huqf area are presently not available.

Since the petrographic and geochemical properties of certain carbonate phases clearly indicate a rather complex multi-stage diagenetic alteration of the considered interval at Jabal Madar (Fig. 8), the aim is to establish a best-fit chemostratigraphic framework by considering Tethyan-wide neritic and pelagic major carbon isotope and biosedimentation changes (Fig. 10). The Northern Tethyan Cluses section serves as a chemostratigraphic shallow-water reference, as the Barremian–Aptian carbon and strontium isotope pattern recorded at this locality allowed precise correlation with well-dated pelagic sections (Angles, Gorgo a Cerbara) in the Vocontian and Umbria Marche basins (Busnardo, 1965; Godet et al., 2006; Sprovieri et al., 2006; Bodin et al., 2009; Huck et al., 2011, 2013; Stein et al., 2011). An age-calibrated carbon and strontium isotope reference frame (Huck & Heimhofer, 2015) builds on this platform-to-basin correlation, providing a well-constrained Barremian pattern with distinct chemostratigraphic tie points including (i) a positive change in pelagic $\delta^{13}C$ background values known as the Mid-Barremian Event (MBE), (ii) a Late Barremian gradual (pelagic) positive carbon isotope bulge, and (iii) the above-mentioned negative variation in $\delta^{13}C$ at the Barremian–Aptian boundary.

The MBE has been arguably associated with a relative increase in the basinward export of platform-derived aragonitic detritus (Föllmi *et al.*, 2006; Godet *et al.*,...
2006) in the Northern Tethyan realm, although sedimentological evidence seems to promote enhanced black-shale formation in the Boreal (Lower Saxony Basin: Malko & Mutterlose, 2010) and central Tethyan realms (Umbria Marche Basin: Sprovieri et al., 2006) as a potential driver of this change in pelagic carbon isotope values. In shallow-water sections, the MBE is generally less well-constrained due to the overall large variability in δ13C, which is in particular related to the exposure-related meteoric overprint of deposits in the prelude and aftermath of the MBE (Di Lucia et al., 2012; Huck et al., 2013). At all considered reference sections, however, the chemostratigraphic pattern beneath the MBE-positive values is characterized by a two-fold negative δ13C excursion, the latter linked to a major subaerial exposure event in the Northern Tethyan realm (Huck et al., 2013).

Notably, a similar pattern of transient (meteorically induced) negative values and a subsequent prominent positive excursion in δ13C is recorded at Jabal Madar (30 to 38 m; Fig. 9).

The onset of the gradual positive carbon isotope bulge in the Umbria Marche Basin coincides with the onset of rhythmic black-shale deposition (Sprovieri et al., 2006). At Cluses, this positive trend appears to be attenuated by local carbon cycling processes that shift the carbon isotope record towards more negative values. There, a return to more open marine conditions is documented by a rapid and prominent δ13C shift within transgressive Palorbitolina lenticularis-rich deposits ascribed to the Hemihoplites feraudianus ammonite zone. Due to the influence of platform-derived carbonate detritus, the adjacent hemipelagic Angles section in the Vocontian provides a similar carbon isotope pattern (Follmi et al., 2006). The stepwise positive carbon isotope trend as displayed by the shallow-water Jabal Madar record shares similarities with the Umbria Marche δ13C pattern. In contrast to the Cluses section, slightly argillaceous Palorbitolina-rich deposits occur at Jabal Madar already at the onset of the positive carbon isotope bulge (~Heinzia Sayni ammonite zone). An oyster fragment derived from this interval at Jabal Madar provided a strontium isotope value (0/707556) that slightly deviates from the expected range of 87Sr/86Sr values (0/707450 to 0/707500) for Barremian sea water (McArthur et al., 2001; Huck et al.,

Fig. 10. Carbon isotope based correlation of the ‘filtered’ Jabal Madar record with age-calibrated neritic (Cluses) and basinal (Angles, Gorgo a Cerbara) reference records (Godet et al., 2006; Sprovieri et al., 2006; Huck et al., 2011; Stein et al., 2011; Huck & Heimhofer, 2015). Note extremely low Barremian carbonate preservation rates as calculated from the Jabal Madar section. Thick grey lines represent 3-point moving average curves. Dashed red lines highlight a positive shift in pelagic (and arguably neritic) δ13C background levels at the onset of the Late Barremian. The stratigraphic position of major discontinuity surfaces (CS) and orbitolinid-rich levels are indicated.
2011). Given the observed increased shedding of clay in the upper Lower Kharai Member at Jabal Madar, as well as the clear radiogenic strontium isotope signature as recorded by matrix micrite samples (0-707923 to 0-708947, Fig. 7), the observed shift towards more positive values is interpreted to reflect the influence of riverine input of radiogenic strontium related to continental silicate weathering. In accordance with previous SIS studies based on oyster shells in Cretaceous coastal settings (Burla et al., 2009; Heimhofer et al., 2012; Horikx et al., 2014), a moderate radiogenic impact on the 87Sr/86Sr signature (ca 5×10^{-6}) of the best-preserved shell selected here is assumed. The measured value might therefore support an early Late Barremian age. Without additional strontium isotope samples that might record secular trends of radiogenically influenced shallow marine 87Sr/86Sr, however, this age assignment remains tentative.

In summary, the integration of sequence stratigraphic and biostratigraphic data (Pittet et al., 2002 and this study) with the evaluated bulk carbonate δ^{13}C record enables a chemostatigraphic characterization of the Jabal Madar section. Considering this integrated stratigraphic framework, the diachronous nature of Late Barremian orbitolinid mass occurrences as recorded by matrix micrite samples (0-707923 to 0-708947, Fig. 7) that allowed the diagenetically least altered samples of the best-preserved shell selected at Jabal Madar locality is lost in discontinuity surfaces. The platform-wide assessment of component-specific carbon isotope records, however, has the potential to solve these stratigraphic uncertainties, in particular if combined with SIS, which focuses on secular rather than short-term changes in marine 87Sr/86Sr.

CONCLUSIONS

- Bulk carbonate stable isotope signatures recorded by a tropical mid-Cretaceous (Barremian–Aptian) shallow-water limestone succession (Jabal Madar section, Oman) provide evidence for a differential multi-stage diagenetic alteration. This is revealed by two stratigraphic clusters of samples providing significant correlations of carbon and oxygen isotopes.
- An in-depth petrographic (CL microscopy) and geochemical evaluation (C, O, Sr isotopes, trace elements) of different carbonate phases shows evidence for a stratigraphically variable and often facies-related impact of different diagenetic fluids on the bulk-rock stable isotope signature.
- The presence of abundant replacive dedolomite in mud-supported limestone samples forced negative carbon and oxygen isotope changes that are either associated with the thermal breakdown of organic matter in the deep burial realm or the expulsion of buried meteoric water in the intermediate burial realm.
- Sparite cements filling intergranular pores, bioclastic voids and fractures (spA) evidence intermediate to (arguably) deep burial diagenetic conditions during their formation, owing to different timing or differential faulting promoting the circulation of fluids from different sources. In contrast, a second group of sub-vertical vein-filling sparite cements (spB) reveal a rock-buffered diagenetic fluid composition with an intriguing slight enrichment in carbon isotope values, probably due to fractionation during pressure release in the context of the Miocene exhumation of the carbonate platform deposits under study.
- The superposition of stable isotope signatures of identified carbonate phases causes a complex and often noisy bulk carbon isotope pattern that offers multiple chemostatigraphic interpretations due to the low-resolution of biostratigraphic constraints. The component-specific isotopic and petrographic approach defined threshold values for δ^{13}C ($>0.9\%_\text{oo}, <3.2\%_\text{oo}$) and δ^{18}O ($>-7.8\%_\text{oo}$) that allowed the diagenetically least altered samples to be extracted and thus identify the most reliable ‘primary’ bulk carbon isotope signatures.
- The integration of the ‘filtered’ carbon isotope curve with lithostratigraphic, sequence stratigraphic and biostratigraphic data allows the Jabal Madar section to be compared with two (regional) Upper Barremian–Lower Aptian shallow-water sections in Northern (Wadi Mu’aydin) and southern Oman (Huqf). Although extremely low carbonate preservation rates at all considered localities reveal that most of the carbon isotope signal is lost in discontinuity surfaces, characteristic long-term trends as observed in the Jabal Madar record allow for a (tentative) chemostatigraphic correlation with stratigraphically well-constrained Tethyan reference carbon isotope curves. Chemostatigraphic tie points include (i) a positive shift in pelagic and neritic background δ^{13}C values referred to as the Mid-Barremian Event, (ii) a long-lasting Late Barremian-positive
carbon isotope bulge and finally (iii) two distinct negative δ13C values marking major palaeoceanographic changes at the Barremian–Aptian boundary and at the onset of the Early Aptian Oceanic Anoxic Event 1a.

ACKNOWLEDGEMENTS

We thank Christiane Wenske (LUH) for laboratory assistance and Katharina Müller (LUH) for thin section preparation. Financial support from SNF project IM44/2-1 is gratefully acknowledged. R. Coimbra is supported by the Post-Doctoral Fellowship SFRH/BPD/92376/2013 (Fundaçao para a Ciência e Tecnologia – FCT, Portugal) and the research units GeoBiotec-UID/GEO/04035/2013 and MARE-UID/MAR/04292/2013. The insightful comments by Alexis Godet and two anonymous reviewers are gratefully appreciated.

References

Geosci. Can., 14, 3–35.

Sed. Geol., 219, 332–348.

Palaeogeogr. Palaeoclimatol. Palaeoecol., 446, 308–325.

Tellus, 16, 436–468.

Dunham, R.J. (1962) Classification of carbonate rocks according to their depositional texture. In:
Classification of Carbonate Rocks (Eds W.E. Ham), AAPG Mem., 1, 108–121.

Terra Nova, 9, 57–61.

Palaeoceanography, 21, 4211–4216. PA4211.

This study exemplifies how to extract stratigraphically meaningful global carbon cycle fluctuations out of deep-time shallow-water bulk carbonate carbon isotope archives that show evidence for a complex multi-stage diagenetic alteration. Based on a detailed sedimentological, petrographic (CL microscopy) and geochemical ($\delta^{13}C$, $\delta^{18}O$, $^{87}Sr/^{86}Sr$, major and trace elements) approach, $\delta^{13}C$ and $\delta^{18}O$ threshold values are defined, which in turn allowed filtering the diagenetically least altered and thus most reliable ‘primary’ bulk carbon isotope signatures.