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Abstract: In this paper we consider a special class of completely integrable systems that arise as transverse
Hilbert schemes of d points of a complex symplectic surface S projecting onto C via a surjective map p
which is a submersion outside a discrete subset of S. We explicitly endow the transverse Hilbert scheme
S[d]
p with a symplectic form and an endomorphism A of its tangent space with 2-dimensional eigenspaces

and such that its characteristic polynomial is the square of its minimum polynomial and show it has the
maximal number of commuting Hamiltonians. We then provide the inverse construction, starting from a 2d-
dimensional holomorphic integrable system W which has an endomorphism A : TW → TW satisfying the
above properties and recover our initial surface S withW ∼= S[d]

p .
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1 Introduction
As it is well-known (see [7]), a Hamiltonian system is called completely integrable if and only if it possesses the
maximal number of independent Poisson-commuting �rst integrals of motion. In the present article we shall
work in the holomorphic category and associate to a complex surface endowed with a holomorphic symplec-
tic form and a Hamiltonian function a holomorphic completely integrable system of complex dimension 2d.
Our aim is to describe such a construction and provide a full characterization of the completely integrable
systems that arise from it.

We will proceed according to the following plan.
In section 2 we start from a complex surface S holomorphically projecting onto C via a map p and recall

from [2] the de�nition of Hilbert scheme of d points transverse to p, which we denote by S[d]
p . We also recall

from [3] and [2], [5] that S[d]
p is an open subset of the full Hilbert scheme S[d] of length d 0-dimensional

subschemes of S, which is smooth and is of complex dimension 2d hence so is S[d]
p . Next, we show how p

induces anatural endomorphismA of the tangent bundle TS[d]
p such that at every point of S[d]

p its characteristic
polynomial is the square of its minimal polynomial and its eigenspaces all have complex dimension 2.

In section 3 (Proposition 3.2) we show how the eigenvalues and eigenspaces of A determine the geometry
of S and S[d]

p , meaning that, starting from a manifold W of complex dimension 2d endowed with an
endomorphism A of TW with the above properties, S is recovered as the leaf space of a foliation induced
by A andW is identi�ed with S[d]

p .
Section 4 is �nally devoted to the characterization of S[d]

p as a holomorphic completely integrable
system. Assuming that the surface S carries a holomorphic symplectic 2-form ω we recover Beauville’s
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264 | N. Lora Lamia Donin

result ([3]) and show that ω induces a symplectic structure on S[d]
p , for which we point out the existence of

d independent Poisson-commuting Hamiltonians, thus giving S[d]
p the structure of a completely integrable

system. The remainder of the section is then focused on reversing the construction: we start from a complex
2d-dimensional completely integrable system, endowed with the extra feature of an endomorphism A of its
tangent bundle with the aforementioned properties and show how, under some compatibility assumptions
between the symplectic form and A, W is recovered as the integrable system constructed as the transverse
Hilbert scheme of d points of a surface S with a projection p : S → C.

Remark 1.1. The motivation for this paper comes from the link between the theory of completely integrable
systems and the geometry of manifolds of higher degree curves in twistor spaces. As explained in [4], given a
holomorphic �bration Z

π
−−→ TP1

π1
−−−→ P1 such that Z has a real structure covering the antipodal map of P1 and

dimC Z = 3, the space Md of real “degree d" curves in Z satisfying appropriate conditions is a hyperkähler
manifold of real dimension 4d. When one complex structure Iζ among the S2 of possible complex structures is
�xed, there is a �nite unrami�ed covering map

ψ :
(
Md , Iζ

)
→
(
Z[d]
ζ

)
π

(1)

C 7→ Cζ , (2)

where, keeping the notation of [4],
(
Z[d]
ζ

)
π
is the Hilbert scheme of d points in Zζ := π̃−1(ζ ) transverse to the

projection π̃|Zζ = (π1 ◦ π) |Zζ , and Cζ = C ∩ Zζ .
Following the construction of Sections 3 and 4, an endomorphism A can be constructed on TCζ

(
Z[d]
ζ

)
π
for

every C ∈Md, which has the mentioned properties on the eigenspaces and characteristic polynomial, �tting the
above scenario to our description.

Examples of suchmanifolds are the ones obtained by the generalized Legendre transform such as themoduli
space Mk of charge k monopoles. As described by Atiyah and Hitchin in [2] we know that, once equipped with
one chosen complex structure,Mk is di�eomorphic to the space Rk of based rational maps of degree k, i.e.

Rk =
{
p(z)
q(z) | deg q = k, deg p = k − 1, q is monic and p(z) ̸= 0 if q(z) = 0

}
which, in turn, is equivalent to S[k]

p where S = C ×C* and p is the projection onto the �rst factor.

2 An endomorphism of the tangent space
Let S be a complex surface (for the moment being we do not assume it to be symplectic) with a surjective
holomorphic projection p : S → C which is a submersion outside a discrete subset B ⊂ S. We recall from [5]
the following de�nition of transverse Hilbert scheme of S of d points with respect to the projection p.

De�nition 2.1. The length d Hilbert scheme of S transverse to the projection p is the subset S[d]
p of the full length

d Hilbert scheme S[d] of S consisting of those 0-dimensional subschemes Z of length d such that p : Z → p(Z) is
an isomorphism onto the scheme-theoretic image.

Remark 2.2. It is clear from the de�nition that p induces a surjective holomorphic map p[d] : S[d]
p → C[d] ∼=

Sd(C), where Sd(C) stands for the d-th symmetric power of C.

Remark 2.3. A practical interpretation of the transversality condition is the following: taken Z ∈ S[d]
p , if z ∈

p(Z) ⊂ C is a point with multiplicity k, then it will correspond via p to a point s ∈ p−1(z) also of multiplicity k.
A scenario with points s1, . . . , sj of multiplicity k1, . . . , kj,

∑
i ki = k, all lying in p−1(z) is hence excluded.

On the tangent space to S[d]
p a natural endomorphism is de�ned as follows. Let q(z) be the monic polynomial

of degree d de�ning the image p(Z) of Z via p and observe that H0(Z,C) ∼= C[z]/(q(z)), where the generator
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z stands as a preferred element. Recall now that, for every Z ∈ S[d]
p , one has TZS[d]

p ∼= H0(Z, TS|Z) due to a
well-known theorem of Kodaira ([8]). Then we set AZ to be the map

H0(Z, TS|Z) −→ H0(Z, TS|Z)

σ(z) 7→ f (z)σ(z),
(3)

where we take f : Z → C to be the function z ∈ H0(Z,C).

Remark 2.4. If σ ∈ H0(Z, TS|Z) and p ∈ S is a point of Z with multiplicity one then (Aσ)(p) = z(p)σ(p). If,
instead, p has multiplicity k > 1, we recall from [1, Proposition 2.4] that the section σ is given as a power series
in (z − z(p)) truncated at order k, that is

σ(z) = σ(z(p)) + σ′(z(p))(z − z(p)) + · · · + σ(k)(z(p))
k! (z − z(p))k . (4)

Then Aσ will be give the truncated power series of zσ(z), that is

(z · σ)(z) = z(p)σ(z(p)) + (σ(z(p)) + z(p)σ′(z(p)))(z − z(p)) + . . . (5)

+ kσ(k−1)(z(p)) + z(p)σ(k)(z(p))
k! (z − z(p))k . (6)

Comparing (5) and (4) we deduce that the eigenspaces of A are of dimension 2. Also, the eigenvalues have even
multiplicity each one equal to the dimension of the relative power expansion space. These two observations
altogether yield, at each point of S[d]

p , the Jordan canonical form of A.

Example 2.5 (The space of rational maps). The machinery we have introduced so far allows us to build such
an endomorphism A on the tangent space to the space of based rational maps of degree d. As an example we
compute it for d = 2.
Let us de�ne the complex surface S = C × C* projecting onto C via p which we interpret as the moduli space of
charge 1 monopoles and let S[2]

p be its Hilbert scheme of points of length 2 transverse to p. We identify (see [2])
S[2]
p with the space of all based rational maps of degree 2, de�ned by

R2 =
{
p(z)
q(z) = a1z + a0

z2 − q1z − q0
| p(z) and q(z) have no common roots

}
. (7)

Observe that a tangent vector to R2 at a point (p(z), q(z)) is given as a couple of degree 1 polynomials
(q′(z), p′(z)) where we write q′(z) = q′1z + q′0 and p′(z) = p′1z + p′0. Applying the previous construction we
get an endomorphism A of the tangent bundle to R2 which on the tangent space to R2 at each point (p(z), q(z))
operates as multiplication by z modulo q(z). This means that

A(q(z),p(z)) : T(q(z),p(z))R2 −→ T(q(z),p(z))R2

(q′1z + q0, p′1z + p0) 7→ ((q1q′1 + q′0)z + q0q′1, (q1p′1 + p′0)z + q0p′1)

is represented at (p(z), q(z)) by the block-diagonal matrix

A(q(z),p(z)) :=


q1 1 0 0

q0 0 0 0

0 0 q1 1

0 0 q0 0

 (8)

where each block is the so-called companion matrix of the polynomial q(λ).
Let us now focus on the open dense subset of R2 consisting of all based degree 2 rational maps with simple

poles. If a map p(z)/q(z) has distinct poles, i.e. the roots of q are distinct, then it can be identi�ed with the
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266 | N. Lora Lamia Donin

point X =
(

(β1, p(β1), (β2, p(β2))
)
∈ S[2]

p , where the βi’s are the roots of q and p(z) is recovered by Lagrange
interpolation as the unique linear polynomial taking the values p(βi) at βi. The projection p : S −→ C induces
on every X ∈ S[2]

p a function f : X −→ C taking (βi , p(βi)) into βi ∈ C. Using the fact that TXS[2]
p ∼= H0(X, TS|X),

the function f induces an endomorphism H0(X, TS|X) −→ H0(X, TS|X) given by σ(x) −→ f (x)σ(x) for x ∈ X.
In the tangent frame provided by these coordinates, A at (βi , p(βi)) is represented by the diagonal matrix
diag(β1, β1, β2, β2). Since on this open subset q0 = −β1β2, q1 = β1 +β2, a computation shows that this diagonal
matrix actually is the Jordan canonical form of (8).

We observe also that, when q1 = 2β and q0 = −β2 i.e. the rational map has a double pole at z = β, then the
Jordan form of A is 

β 1 0 0

0 β 0 0

0 0 β 1

0 0 0 β

 (9)

Example 2.6. Let us consider the double cover of the Atiyah-Hitchin manifold. As described in [2] this is a
surface S ⊂ C3 de�ned by S =

{
(z, x, y)| x2 − zy2 = 1

}
. We can therefore consider the Hilbert scheme of d

points of S tranverse to the projection p onto the �rst coordinate. We recall from [5] that it can be described as
the set of triple of polynomials x(z), y(z), q(z) such that x(z) and y(z) have degree d − 1, q(z) is monic of degree
d and the equation x2(z) − zy2(z) = 1 modulo q(z) is veri�ed.

An alternative description (also explained in [5]), which we will use here, is obtained by considering the
quadratic extension z = u2. In this case the equation x2 − zy2 = 1 is rewritten as (x + uy)(x − uy) = 1 and we
observe that p(u) = x(u2) +uy(u2) is a polynomial of degree 2d−1 in u while q(u2) is a polynomial of degree 2d
in u which has no odd terms. The Hilbert scheme S[d]

p is then described as the set of all couples of polynomials
(p(u), q(u2)) such that p(u)p(−u) = 1 modulo q(u2). Similarly to the previous example, a tangent element in
T(p(u),q(u2))S[d]

p is given by a couple of polynomials of the form

p′(u) = p′0 + p′1u + · · · + p′2d−1u2d−1 (10)

q′(u2) = q′0 + q′1u2 + · · · + q′d−1u2d−1 (11)

such that

p′(u)p(−u) + p(u)p′(−u) = 0 modulo q(u2). (12)

We �nally produce the endomorphism A : T(p(u),q(u2))S[d]
p → T(p(u),q(u2))S[d]

p at every (p(u), q(u2)) ∈ S[d]
p as

multiplication by u2 modulo q(u2), after observing that it preserves the space of solutions to (12).

We now de�ne the manifold S̃[d]
p as the set of all (z, Z) ∈ C × S[d]

p such that z is eigenvalue of AZ and observe
that it comes with a double projection

S̃[d]
p

ρ

��

π

  
C S[d]

p

(13)
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Transverse Hilbert schemes and completely integrable systems | 267

where π is a branched d : 1 covering of S[d]
p . Also, for every X ∈ S[d]

p , one can lift AZ to an endomorphism
π*TZS[d]

p −→ π*TZS[d]
p . Hence we draw the following diagram

0

TVp S|Z

0 π*TZS[d]
p π*TZS[d]

p TS|Z 0

TC

0

z − AZ

(14)

Let β be the function de�ned by the dotted arrow. We see that Im(z − AZ) lies in the kernel of β. Also, one
has that elements of π*TZS[d]

p correspond to deformations of S[d]
p at Z and elements in TVρ S̃[d]

p correspond to
deformations �xing the eigenvalue. From this we get that ker β = TVρ S̃[d]

p and Im(z − A) ⊂ TVρ S̃[d]
p .

Remark 2.7. The holomorphic distribution D := Im(z − A) de�ned on S̃[d]
p is clearly involutive on the dense

subset of B̃ ⊂ S̃[d]
p consisting of all couples (z, Z) ∈ C × S[d]

p with Z a length d 0-dimensional subscheme of S
consisting of points that are all distinct, hence it is involutive on the whole S̃[d]

p .

Construct now the double �bration
Y

�� ��
S S[d]

p

(15)

the manifold Y being de�ned as Y =
{

(s, Z) ∈ S × S[d]
p | s ∈ Z

}
. So far we notice that

S̃[d]
p =

{
(z, Z) ∈ C × S[d]

p | z is eigenvalue of AZ
}

=
{

(z, Z) ∈ C × S[d]
p | z = p(x) for some x ∈ Z

}
∼=
{

(x, Z) ∈ S × S[d]
p | x ∈ Z

}
.

Hence we recover our initial surface as the space of leaves S = Y/D ∼= S̃[d]
p /D.

This suggests us the following inverse construction.

3 The inverse construction
Let us start with a complex manifold W of complex dimension 2d endowed with an endomorphism A :
TW → TW of its holomorphic tangent bundle TW with eigenvalues of even multiplicity and such that its
characteristic polynomial is the square of its minimal polynomial. Set now X := C[d] Hilbert scheme of d
points of C and de�ne a map µ : W −→ X which assigns to each point w ∈W the minimal polynomial of A at
w which we denote qw(λ). Assume now µ to be a surjective submersion and de�ne a vector �eld V ∈ X(W) to
be projectable for µ if, for every x ∈ X, dµw(Vw) does not depend of the choice of w in µ−1(x). If we suppose
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that A preserves the vertical vectors and the projectable vector �elds for the projection µ, then it descends to
a map Ā : TX −→ TX which makes the following diagram commute

TW

dµ
��

A // TW

dµ
��

TX
Ā
// TX.

(16)

De�nition 3.1. If an endomorphism A that satis�es the above conditions is such that none of its generalized
eigenspaces is fully contained in ker(dµ), then we will call it compatible with the projection µ de�ned by its
minimal polynomial.

For q(λ) ∈ X let us identify Tq(λ)X ∼= C[λ]/(q(λ)) and assume that A is compatible with µ. Then Ā is naturally
given by multiplication by λ modulo q(λ). Set alsoWz = {w ∈W| z ∈ SpecAw}, i.e.W = π−1(Xz) where Xz is
the set of all monic polynomials of degree d for which z is a root. With these de�nitions we see for a tangent
vector V that V ∈ TWz ⇐⇒ dµ(V) ∈ TXz, where the tangent space to Xz at q(λ) can be described as

TqXz =
{
p(λ)| deg p(λ) = d − 1 and p(z) = 0

}
. (17)

Take now a polynomial q′(λ) ∈ Tq(λ)X and z ∈ C: the de�nition of Ā implies that (z1−Ā)(q′(λ)) is a polynomial
of Tq(λ)X that vanishes at z that is, by the commutativity of the diagram, Im(z1 − A) ⊂ TWz.

De�ne now W̃ =
{

(z, w) ∈ C ×W| z is an eigenvalue of Aw
}
, which is a d : 1 covering of W, with two

projections
W̃

ρ
��

π

  
C W.

(18)

Then A can be lifted to an endomorphism of T(C × W), which we will still denote by A, preserving the
vertical subbundles of ρ and π. The previous observations imply that, at every point (z, w), A acts on the
vertical subbundle of π asmultiplication by z and that it descends to TW̃. Assuming now that the distribution
Im (z1 − A) is integrable, we see that it de�nes a subdistribution of the integral distribution ker dρ. We can
therefore recover our initial surface S as the leaf space

S := W̃

Im (z1 − A)
(19)

The surface S comeswith a natural projection p : S −→ Cde�ned as p([(z, w)]) = z, whichmakes the following
diagram commute

S

p
��

W̃
projoo

ρ
��

C

(20)

It is now su�cient to de�neU ⊂ S[d] asU =
{
proj(π−1(w))| w ∈W

}
and Z = Z(w) = proj(π−1(w)) ∈ U in order

to apply the previously exposed construction for getting AX : TXU −→ TXU i.e. once more our endomorphism
Aw : TwW −→ TwW for every point w ofW.

Hence, keeping the conventions that we have introduced so far, we have proven the following.

Proposition 3.2. LetW2d be a complex manifold of complex dimension 2d with the following properties.
(i) W comes with an endomorphism A : TW → TW such that at every point the eigenspaces have complex

dimension 2 and the characteristic polynomial is the square of the minimal polynomial
(ii) Assume that A is compatible with the induced projection µ : S → X := C[d], so that Diagram (16) is de�ned
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(iii) The distribution D := Im(z − A) is integrable on the incidence manifold W̃ =
{

(z, w) ∈ C ×W| z is an
eigenvalue of Aw}.

Then ρ : S := W̃/D → C is a surface projecting on C for which W is the length d Hilbert scheme of points
transverse to the projection.

4 A symplectic form
This section will be devoted to revising, in both directions, the previously exposed construction when we
assume our surface S to carry a symplectic form ω on its tangent bundle. From now on we shall also assume
that the projection p : S → C is submersion outside at most a discrete subset B ⊂ S.

As we have already pointed out in the Introduction, the results of Sections 3 and 4 show that the
transverse Hilbert scheme of points S[d]

p gets the structure of a holomorphic completely integrable system.
The importance of A in distinguished whether a given holomorphic integrable system arises as the Hilbert
scheme of points of a holomorphic symplectic surface is well motivated by the following example.

Example 4.1 (Motivational Example). Let us consider the complex 2d-dimensional manifoldC2d, with coordi-
nates (zi , ti), i = 1, . . . , d and endowed with the standard symplectic form Ω0 =

∑
i dzi ∧ dti, endowed with he

projection p0 : C2d → Cd given by p0(zi , ti) = (zi). Observe that the coordinates zi are d commutingHamiltonian
functions. Now, the projection p0 induces an endomorphism A : TC2d → TC2d given, at every point of C2d, by
the diagonal matrix diag(z1, z1, . . . , zd , zd). The eigenspaces of this endomorphism, however, show a jump in
dimension whenever two eigenvalues happen to coincide. As a result of this, although (C2d , Ω0, z1, . . . , zd) is a
holomorphic completely integrable system, it does not arise via a transverse Hilbert scheme construction as A
does not meet the necessary requirements.

Wenowconsider adi�erentC2d from the oneabove,with adi�erent projection.Namelywe take the space Xd
of all couples of polynomials

(
Q(λ), P(λ)

)
such that Q ismonic of degree d and T has degree d−1. If wewrite Q =

λd−
∑
Qjλj and t =

∑
Tiλi then (Qi , Ti) are global coordinates and X ∼= C2d. Now, on the open dense subsetV of

X consisting of couples (Q(λ), T(λ) such that Q has all distinct roots, we also have coordinates (βi , T(βi)) where
βi are the roots of Q and T(βi) the values of T on those roots. In these latter coordinates the form

∑
dβi ∧ T(βi)

is de�ned and it can uniquely extended to a holomorphic symplectic 2-form Ω on the whole of Xd. The functions
Q0, . . . , Qd−1 will then be d commuting Hamiltonians with respect to Ω: in fact, on the open dense subsetV they
are just the elementary symmetric polynomials in the roots βi, hence they commute with each other on V, so
on all Xd. We set then the projection p : Xd → Cd, p(Qi , Ti) = (Qi) and observe that (Xd , Ω, Q0, . . . , Qd−1) is a
holomorphic completely integrable system. The projection p de�nes here an endomorphism A of TXd which is
represented by CQ 0

0 CQ

 , (21)

where CQ is the so-called companion matrix of the polynomial Q(λ) and meets our requirements. Therefore,
thanks to our results of sections 3 and 4, we can recover the holomorphic completely integrable system
(Xd , Ω, Q0, . . . , Qd−1) as the Hilbert scheme of d points of the surface C × C transverse to the projection onto
the �rst coordinate.

In [3, Proposition 5] Beauville proves that the full Hilbert scheme S[d] of a complex symplectic surface (S, ω)
has a symplectic form induced by ω. In the following Lemma we will explicitly recover his result on the
transverse Hilbert scheme of d points S[d]

p , which we know to be an open subset of the full Hilbert scheme.We
remark that the existence of a symplectic form on the Hilbert scheme of d points in C × C* transverse for the
projection p : C ×C* → C onto the �rst coordinate was pointed out by Atiyah-Hitchin in [2, Chapter 2], where
an explicit formula is only given on the subset V ⊂ (C ×C*)[d]

p of d-tuples consisting of all distinct points.
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270 | N. Lora Lamia Donin

Lemma 4.2. Let p : S → C be a complex surface projecting ontoC and assume that p is a submersion outside a
discrete set B ⊂ S. Assume also that S possesses a holomorphic symplectic form ω Then ω induces a symplectic
form Ω on the Hilbert scheme S[d]

p of d points in S transverse to p.

Proof. We start by proving the Lemma in the case d = 2.
Fix d = 2 andde�neM =

(
S \ B

)[2]
p . LetV ⊂ S[2]

p be the set of all 0-dimensional subschemes of S consisting
of two distinct points. For every Z ∈ M∩V, i.e. consisting of two di�erent points p1, p2 of S, the isomorphism
TZM ∼= H0(Z, TS|Z) easily yields the symplectic form on M ∩ V:the map ψ : S × S → S[2]

p has no rami�cation
on V hence is a 2 to 1 covering. By breaking theS2-symmetry and choosing a sheet of ψ, that is ordering the
couple p1, p2, one splits H0(Z, TS|Z) ∼= Tp1S ⊕ Tp2S and de�nes ΩZ = ωp1 ⊕ ωp2 . Since the local coordinates
(z, t) on S \ B induce local coordinates (z1, t1, z2, t2) around each Z in M ∩ V simply by evaluating on the
points p1 and p2 of Z ∈ M ∩ V, we can locally write Ω = dz1 ∧ dt1 + dz2 ∧ dt2 on M ∩ V.

We now have to extend the form Ω to those elements W ∈ M which consist of one point s ∈ S \ B taken
with double multiplicity. In order to do so we adapt a construction by Bielawski, [5], in the following way.

LetW ∈ M be as above and observe that since p is a submersion on M, we can choose local coordinates
(z, t) on a neighbourhood U around s such that the �rst one is the base coordinate of C. Moreover, we can
choose them in such a way that ω = dz∧ dt: if this was not the case, i.e. ω = ω(z, t)dz∧ dt, we could de�ne a
Darboux coordinate chart (z, u) around s simply by choosing a new holomorphic �bre coordinate u such that
∂u/∂t = ω(z, t). Of course such a u can always be found as it amounts to �nding a primitive of a holomorphic
function on a simply connected domain. We then describe the open set (U)[2]

p ⊂ M as the set of couples of
polynomials (q(z), t(z)) such that q is monic of degree 2 and t is linear, that is q(z) = z2 − Q1z − Q0, t(z) =
T0 + T1z. On (U)[2]

p ∩ V, i.e. where q(z) has distinct roots z1 and z2 the polynomial t(z) can be recovered
by Lagrange interpolation from the values t1 = t(z1) and t2 = t(z2): this gives an equivalence between the
two sets of coordinates (z1, t1, z2, t2) and (Q0, Q1, T0, T1). At this point we observe that the form Ω can be
rewritten in the coordinates (Qi , Ti) as Ω = Q1dT1 ∧ dQ1 + dT1 ∧ dQ0 + dT0 ∧ dQ1, which is well de�ned,
closed and non degenerate on the whole U[2]

p . Since, as we will prove in the next Lemma, this construction
is independent of the choice of local coordinates ω induces a holomorphic symplectic form Ω on M. As B is
discrete in S then S[2]

p \M has codimension at least 2 in S[2]
p therefore Ω extends to the whole S[2]

p by Hartog’s
Theorem.

In the d > 2 case one proceeds exactly as above to get a formΩ de�ned on the set of all Z ∈ S[d]
p consisting

either of d distinct points or of (d − 2) distinct points and one point which is taken with double multiplicity.
Since the remaining subset has codimension greater than 2 in S[d]

p again the form Ω extends to the whole S[d]
p

by Hartog’s Theorem.

We now show that this construction does not depend of the choice of coordinates.

Lemma 4.3. The construction of Lemma 4.2 is independent of the choice of coordinates.

Proof. Again we start from the d = 2 case, keeping the notation of the previous lemma. Let (z, t) and (z, w) be
two sets of Darboux coordinates adapted to the projection p on (S, ω). Denote by φ the change of coordinates
between (z, t) and (z, w), so that ω′ = (φ−1)*ω is de�ned. The same observation as in Lemma 4.2 yields a
symplectic form Ω′ on M ∩ V and a change of coordinates Φ such that Ω′ = Φ*Ω.

Let now E ∈ M be an element of S[2]
p consisting of a point s ∈ S taken with double multiplicity and let U′

be a coordinate neighbourhood of s for the coordinates (z, w). The description of (U′)[2]
p is then

(U′)[2]
p = {(q(z), w(z))| deg q(z) = 2, degw(z) = 1,

q monic }

where

q(z) = z2 − Q1z − Q0

w(z) = W1z + W0.
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Observe that (Qi ,Wi) are local coordinates on (U′)[2]
p . By abuse of notation, we keep denoting byΦ the change

of coordinates between (Qi , Ti) of Lemma 4.2 and (Qi ,Wi) on the intersection (U)[2]
p ∩ (U′)[2]

p . Then (Φ−1)*Ω is
de�ned on all (U)[2]

p ∩(U′)[2]
p and coincideswithΩ′ on (U′)[2]

p ∩(U)[2]
p ∩V, therefore being its unique holomorphic

extension. We conclude by extending Ω′ = (Φ−1)*Ω to the whole S[2]
p via Hartog’s Theorem.

The generalization to greater d is again achieved by applying the d = 2 construction to the subset of all
elements in S[d]

p consisting of d distinct points or (d − 2) distinct points and one double point and then by
extension via Hartog’s Theorem.

Corollary 4.4. The endomorphism A and the symplectic form Ω satisfy the condition Ω(A·, ·) = Ω(·, A·).

Proof. It su�ces to show the claim on the open dense subset V ⊂ S[d]
p of elements consisting of all distinct

points. But there we can use coordinates that are both Darboux for Ω and diagonalizing A, so the assertion is
trivially veri�ed.

Corollary 4.5. The transverse Hilbert scheme of points S[d]
p is a holomorphic completely integrable system

Proof. This is an immediate consequence of Corollary 4.4: the coe�cients Qi of the minimal polynomial of A
are d Poisson-commuting functions for the Poisson structure associated to Ω on the dense subset V, hence
on all S[d]

p .

Example 4.6. A basic example summarizing what we have done is given by taking S = C ×C, p : C ×C → C
de�ned by (x, y) 7→ z = xy and ω = dx ∧ dy. Of course p is a submersion away from the origin and
{(0, 0)} is a codimension 2 subset of S. Hence on (C × C)\{(0,0)} = {x ̸= 0} ∪ {y ̸= 0} = U1 ∪ U2

we proceed exactly as in Example 2.5 and apply our construction taking coordinate (z, χ1) on U1 and
(z, χ2) on U2 where χ1 = − log(x) and χ2 = log(y). Observe that on U1 we write ω = dz ∧ dχ1 and
ω = dz ∧ dχ2 on U2 and that they agree on the overlap U1 ∩ U2. Each patch can be described as the set
{(q(z), p(z))| q is monic of deg d, p has deg d − 1 and p(0) ̸= 0 if q(0) = 0}. The construction now yields
the symplectic form Ω on

(
(C ×C) \ B

)[2]
p = {E ∈ (C × C)[2]

p | (0, 0) /∈ E}. Since the complementary set to(
(C ×C) \ B

)[2]
p has codimension 2, we get Ω on the whole (C ×C)[2]

p applying Hartog’s Theorem.

In the following proposition wework out the inverse construction in order to recover the holomorphic 2-form
initially given on the surface S starting from the induced completely integrable system.

Proposition 4.7. Let W be a complex manifold of complex dimension 2d endowed with an holomorphic
endomorphism of the tangent space TW as in Proposition 3.2. Assume also thatW possesses a symplectic form
Ω such that
(i) Ω(A·, ·) = Ω(·, A·)
(ii) Each �ber µ−1(x), for x ∈ X = C[d] is Lagrangian, i.e. the vertical subbundle ker(dµ) is maximal Ω-isotropic.
Then S = W̃/D has a symplectic form induced by ω

Proof. We will obtain a symplectic form on S = W̃/D by de�ning on W̃ a 2-form τ of the form τ = ρ*dz ∧ αz
in the notation of Diagram 18, with αz a 1-form on W̃z = ρ−1(z) = {(w, z) ∈ W̃| z is eigenvalue of Aw}, such
that τ(X, Y) = 0 for every X ∈ TW̃ and Y ∈ D.

By the commutativity of Diagram 18 and the surjectivity of dµ, ker(z1−A) maps surjectively onto ker(z1−
Ā). At this point we de�ne Wz = π(W̃z) and we observe that the restriction π|W̃z

: W̃z → Wz is obviously a
di�eomorphism for every z ∈ C thereforeWz comes comes with a manifold structure. We can then choose a
vector �eld vz on Xz = µ(Wz) such that vz ∈ ker(z1 − Ā) at every point of Xz and lift it to a vector Vz tangent
to Wz with Vz ∈ ker(z1 − A). This lift is not uniquely determined: if V′z ∈ ker(z1 − A) is a second such lift,
then Vz − V′z ∈ ker(z1 − A) ∩ ker dµ.

De�ne now the 1-form αz = ιVzΩ on TWz. This de�nition does not depend of the choice of Vz. In fact, at
every w ∈Wz, one can split the tangent space toWz as

TwWz ∼= Im(z1 − A)⊕ 〈L〉 (22)
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where L ∈ ker(z1 − A) ∩ ker(dµ). Now, since Ω(A·, ·) = Ω(·, A·) we have that ker(z1 − A) and Im(z1 − A)
are Ω-orthogonal. This implies ιVz−V′zΩ(X) = 0 for every X ∈ Im(z1 − A. Also, since ker(dµ) is Lagrangian by
assumption, we have ιVz−V′zΩ(L) = 0. Hence ιVz−V′zΩ = αz − α′z = 0 on allWz, meaning αz is well de�ned.

Since π|W̃z
is a di�eomorphism for every z ∈ C , dπ is an isomorphism and we can therefore pull αz back

to W̃z via π and de�ne τ = ρ*dz∧π*αz. As D = Im(z1−A) satis�es τ(·, D) = 0, the form τ descends to a form τ̄
on S = W̃/D. We now prove that τ̄ is symplectic. First of all, dτ̄ = 0 as τ̄ is a 2-form on a 2-dimensional space.
In order to prove its non-degeneracy we proceed as follows. First we observe that at every point [(z, w)] of S
we have

T[(z,w)]S ∼= 〈Y〉 ⊕ TwW̃z/D(z,w) (23)

where Y is a vector in TwW̃ such that dρ(Y) = ∂/∂z. Take nowW ∈ TwW̃z such that [W] ̸= 0 in TwW̃z/D and
compute

(ρ*dz ∧ π*αz)[(z,w)](Y ,W) = π*αz(W) = Ω((Vz)w , dπw(W)) ̸= 0 (24)

otherwise we would have (Vz)w ∈ (TwWz)Ω, where we denote with the superscript Ω the symplectic
orthogonal complement. Now one observes that because both Im(z1−A) and ker(dµ) are contained in TwWz

then (TwWz)Ω ⊆ ker(z1 − A) ∩ ker(dµ)Ω = ker(z1 − A) ∩ ker(dµ) as ker(dµ) is Lagrangian. By counting
dimensions we actually have (TwWz)Ω = ker(z1 − A) ∩ ker(dµ). But this would imply Vz ∈ ker(dµ) at w,
which is in contrast with the fact that Vz was constructed as a lift of a vector �eld vz.

As a last step we prove that when (W, Ω) is constructed as the transverse Hilbert scheme of a symplectic
surface (S, ω) projecting onto C via p with the symplectic form Ω induced by ω then, once we recover S as
W̃/D we also get back the original symplectic form ω.

Let us write ω = dz ∧ φz, where φz is a 1-form de�ned on the �bre p−1(z). Then on the usual open
dense subset V ⊂ W of all d-tuples of distinct points we have Ω =

∑
dzi ∧ φzi . Let Ṽ = {(z, w) ∈

W̃|z has multiplicity exactly 2} and note that Ṽ is open and dense in W̃. Call r : W̃ → S the canonical
projection onto the space of leaves: we have cl(r(Ṽ)) = cl(r(cl(Ṽ)) = S, where cl stands for the topological
closure. Hence r(Ṽ) is dense in S. Moreover, as the canonical projection onto the space of leaves of a foliation
is always an openmap [6, pag.47, Theorem 1], r(Ṽ) is open in S. Since onVwehaveVzi = ∂/∂zi for i = 1, . . . , d,
then ιVzΩ = φz for every z and it is clear that τ̄ agrees with ω on r(Ṽ), hence ω and τ̄ coincide as claimed on
the whole S.
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