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1 Introduction

N= 4 superconformal many-body models in one dimension may prove useful in a micro-

scopic description of the near-horizon extremal black holes [1]. The peculiar features of

extended one-dimensional supersymmetry provide another source of inspiration [2]. The

exceptional supergroup D(2, 1;α) plays the key role in this context, because it is the most

general N= 4 supersymmetric extension of the conformal group SO(2,1) in one space di-

mension. The generators of the corresponding Lie superalgebra are associated with time

translation, dilatation, special conformal transformation, supersymmetry transformations

and their superconformal partners, as well as with two variants of su(2) transformations.

One of them is the R-symmetry subalgebra, while the other one acts upon fermions only.

In recent works [3, 4], couplings in N= 4 superconformal mechanics have been re-

considered from the perspective of the R-symmetry subgroup. It was argued that any

realization of SU(2) in terms of phase-space functions can be extended to a representation

of D(2, 1;α). In particular, this allowed one to reproduce the D(2, 1;α) supermultplets of

type (3, 4, 1) (two variants), (4, 4, 0), and (0, 4, 4) as well as to construct novel couplings

(see also [5]). The present paper extends the analysis of [3, 4] to encompass spin degrees

of freedom.

The first attempt to accommodate spin variables within D(2, 1;α) superconformal

mechanics was made in [6] (see also the related earlier work [7]). The R-symmetry genera-

tors were built in terms of a bosonic SU(2) doublet which parametrizes a two-dimensional

sphere. These spin degrees of freedom turned out to be only semi-dynamical, as they are
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governed by a Wess-Zumino-type action linear in the velocities. A generalization to the

many-body case was proposed in [8].

In contrast to the previous studies [6–8], the spinning extensions we build in this work

are fully dynamical. As the principal idea to this end, we borrow the SU(2) generators of a

relativistic spinning particle coupled to a spherically symmetric four-dimensional Einstein-

Maxwell background, which yields a spin sector represented by a symmetric Euler top. The

spin dynamics becomes nontrivially coupled with the orbital motion of the particle.

The work is organized as follows. In the next section, we review the symplectic struc-

ture of a spinning particle on a curved background along the lines of [9]. In section 3, spher-

ically symmetric solutions to the four-dimensional Einstein-Maxwell equations are utilized

to build three SU(2)-invariant reduced angular Hamiltonian systems in phase space. They

describe firstly a particle moving on a two-sphere coupled to a symmetric Euler top, sec-

ondly the same system in the external field of a Dirac monopole, and thirdly a particle

propagating on the SU(2) group manifold and interacting with a symmetric Euler top. We

emphasize that the underlying Poisson-structure relations are not canonical and involve an

arbitrary real parameter a ∈ (0, 1), which is linked to the g00 component of the original

background metric. In the reduced SU(2) mechanics it determines the moments of inertia

of the symmetric Euler top. Each case is shown to be integrable, and the corresponding

solutions to the equations of motion are displayed in section 4. The rotation to a reference

frame better adapted to the orbital motion is discussed in section 5, including some sub-

tleties. Section 6 uses our spin-orbit su(2) generators to build novel spinning extensions of

D(2, 1;α) superconformal mechanics along the lines in [4]. In the concluding section 7 we

summarize our results and discuss possible further developments.

Throughout the paper a summation over repeated indices is understood. We use units

in which c = 1 and G = 1. In section 2 the Greek letters refer to four-dimensional curved

spacetime indices, while in section 6 they designate SU(2) doublet representations. The

relation between spherical and Cartesian coordinates and our SU(2) spinor conventions are

gathered in an appendix.

2 Symplectic structure of a spinning particle on a curved background

The phase space of a spinning particle on a curved background is parametrized by the

canonical pair (xµ, pµ) and self-conjugate spin variables Sµν = −Sνµ with µ, ν = 0, 1, 2, 3.

It is endowed with the symplectic structure [9]

{xµ, pν} = δµν , {pµ, pν} = −1

2
RµνλσS

λσ, {Sµν , pλ} = ΓµλσS
νσ − ΓνλσS

µσ,

{Sµν , Sλσ} = gµλSνσ + gνσSµλ − gµσSνλ − gνλSµσ,
(2.1)

where gµν is the inverse metric tensor, Γµλσ are the Christoffel symbols, and Rµνλσ is the

Riemann tensor.1 The Jacobi identities are fulfilled as a consequence of the Bianchi identity

∇αRλσβγ +∇βRλσγα +∇γRλσαβ = 0 and the fact that the metric is covariantly constant.

1Our conventions are Rαβγδ = ∂γΓαδβ−∂δΓαγβ+ΓαγσΓσδβ−ΓαδσΓσγβ and Γαβγ = 1
2
gαλ(∂βgλγ+∂γgλβ−∂λgβγ).
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In what follows we will need the following statement. Let ξµ1 ∂µ, ξµ2 ∂µ and ξµ3 ∂µ be

three Killing vector fields obeying

[ξλ1∂λ, ξ
ν
2∂ν ] = ξµ3 ∂µ with ξµ3 = ξσ1 ∂σξ

µ
2 − ξ

σ
2 ∂σξ

µ
1 . (2.2)

Then the phase-space functions

J (ξ) = ξµpµ + 1
2∇µξνS

µν (2.3)

satisfy a similar relation under the bracket (2.1), namely

{J (ξ1),J (ξ2)} = −J (ξ3). (2.4)

The proof is straightforward and relies upon the relation

∇λ∇µξνSµν = Rγλµν ξγS
µν , (2.5)

which is valid for an arbitrary Killing vector ξν as a consequence of ∇µξν = −∇νξµ,

[∇µ,∇ν ]ξγ = −Rλγµνξλ, and Rγλµν +Rγµνλ +Rγνλµ = 0. Hence, a background invariance

under some Lie group implies a natural action of the same group in the phase space endowed

with the symplectic structure (2.1) (see also the discussion in [9]).

3 Spherically symmetric backgrounds and reduced SU(2) mechanics

The unique spherically symmetric solution of the four-dimensional vacuum Einstein equa-

tions is the Schwarzschild black hole metric

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1
dr2 − r2(dθ2 + sin2θ dφ2), (3.1)

where M is the mass and r > 2M . Its spatial Killing vector fields generating an su(2)

algebra read

− sinφ∂θ − cot θ cosφ∂φ, cosφ∂θ − cot θ sinφ∂φ, ∂φ. (3.2)

Computing the geometric characteristics Γµλσ, Rµνλσ and evaluating the phase-space

functions (2.3), one finds that pt, pr, S
tr, Stθ, and Stφ do not contribute to (2.3). It

is therefore consistent to reduce the spinning-particle dynamics on this background to a

spherical one by ignoring the coordinate time t and regarding the radial variable r as a

fixed external parameter. The ensuing reduced SU(2) mechanical system is then governed

only by the two angular variable-momentum pairs (θ, pθ) and (φ, pφ) as well as spin vector
~J with components (Jr, Jθ, Jφ) built from the triple (Srθ, Srφ, Sθφ). Abbreviating

1− 2M

r
= a2 with a ∈ (0, 1) (3.3)

and denoting

Jφ =
r

a
Srθ =: J1, Jr = r2 sin θ Sθφ =: J2, Jθ =

r

a
sin θ Srφ =: J3, (3.4)
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one reduces (2.1) to the Poisson structure

{θ, pθ} = 1, {φ, pφ} = 1, {pθ, pφ} = (1− a2)J2 sin θ,

{J1, pφ} = J3 cos θ − aJ2 sin θ, {J2, pθ} = −aJ3, {J2, pφ} = aJ1 sin θ, (3.5)

{J3, pθ} = aJ2, {J3, pφ} = −J1 cos θ, {Ji, Jj} = εijkJk,

where εijk is the Levi-Civita symbol with ε123 = 1. It is straightforward to verify that the

Jacobi identities are satisfied for (3.5).

The su(2) generators constructed from (2.3) now acquire the form

J1 = −(pθ − aJ1) sinφ−
(
pφ

sin θ
− aJ3

)
cos θ cosφ− J2 sin θ cosφ,

J2 = (pθ − aJ1) cosφ−
(
pφ

sin θ
− aJ3

)
cos θ sinφ− J2 sin θ sinφ, (3.6)

J3 =

(
pφ

sin θ
− aJ3

)
sin θ − J2 cos θ.

Decomposing into orbital and spin angular momentum, we may write

~J = ~L+ ~J with ~L = pθ êφ −
pφ

sin θ
êθ and ~J = −aJ1 êφ + aJ3 êθ − J2 êr, (3.7)

where (êr, êθ, êφ) are the standard local orthonormal basis vectors associated to three-

dimensional spherical coordinates and given in the appendix.

To define our reduced dynamical system we need to specify a Hamiltonian which gen-

erates a proper-time evolution. A minimal and natural choice is the su(2) Casimir element

H =
1

2
JiJi =

1

2

(
~L+ ~J)2 =

1

2

((
pθ − aJ1

)2
+

(
pφ

sin θ
− aJ3

)2

+ J2
2

)
. (3.8)

Two limiting cases are worth mentioning. On the one hand, in the absence of the spin

degrees of freedom ~J this Hamiltonian describes a free particle of unit mass moving on a

two-dimensional unit sphere. On the other hand, discarding the angular canonical pairs

(θ, pθ) and (φ, pφ), one reveals a symmetric free Euler top:

J̇i = {Ji, H} ⇒ J̇1 = (1−a2)J2J3, J̇2 = 0, J̇3 = −(1−a2)J1J2. (3.9)

Hence, (3.5) and (3.8) couples these two systems and describes a spinning particle on a

two-sphere. The composite system is superintegrable. By construction, the total angular

momentum vector ~J is conserved. Four functionally independent integrals of motion in

involution included ( ~J 2=2H,J3, J2
1+J2

3 , J2). A fifth functionally independent conserved

quantity, ~L2, is in involution with JiJi but not with ~J2 = a2(J2
1+J2

3 )+J2
2 . Hence, the

system in superintegrable. In Minkowski space, a=1, one may alternatively choose the

Liouville set ( ~J 2=2H,J3, ~L2, ~J2). This list is in complete analogy with the well-known

spin-orbit coupling problem in quantum mechanics. The radial deformation of the metric,

|grr| = a−2, modifies this picture.
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Turning to the four-dimensional Einstein-Maxwell equations, the spherically symmetric

solution is given by the Reissner-Nordström black hole

ds2 =

(
1−2M

r
+
Q2

r2

)
dt2−

(
1−2M

r
+
Q2

r2

)−1
dr2−r2(dθ2+sin2θ dφ2), A =

Q

r
dt, (3.10)

where M is the mass and Q the electric charge. One can repeat the analysis above and

reproduce the same relations (3.5) and (3.6) with the obvious modification of the exter-

nal parameter,

a2 = 1− 2M

r
+
Q2

r2
. (3.11)

However, if the black hole also carries a magnetic charge q, the latter contributes to the

su(2) generators,

J1 = −(pθ − aJ1) sinφ−
(
pφ

sin θ
− aJ3

)
cos θ cosφ− J2 sin θ cosφ+ q

cosφ

sin θ
,

J2 = (pθ − aJ1) cosφ−
(
pφ

sin θ
− aJ3

)
cos θ sinφ− J2 sin θ sinφ+ q

sinφ

sin θ
, (3.12)

J3 =

(
pφ

sin θ
− aJ3

)
sin θ − J2 cos θ.

The structure relations (3.5) remain intact. The associated su(2) mechanics is governed

by the Hamiltonian

H =
1

2
JiJi =

1

2

((
pθ − aJ1

)2
+

(
pφ

sin θ
− q cot θ − aJ3

)2

+ (J2 − q)2
)
, (3.13)

which describes a spinning particle moving on a unit two-sphere in the external field of a

Dirac monopole.

As q in (3.12) and (3.13) is a constant, one can build one more realization of su(2).

For this we introduce an extra canonical pair (ξ, pξ), extend the structure relations (3.5) by

{ξ, pξ} = 1 (3.14)

and implement an oxidation with respect to q by replacing

q → pξ. (3.15)

The resulting Hamiltonian

H =
1

2
JiJi =

1

2

((
pθ − aJ1

)2
+

(
pφ

sin θ
− pξ cot θ − aJ3

)2

+ (J2 − pξ)2
)

(3.16)

describes a spinning particle propagating on the group manifold of SU(2). It is straight-

forward to verify that the corresponding su(2) generators

J1 = −(pθ − aJ1) sinφ−
(
pφ

sin θ
− aJ3

)
cos θ cosφ− J2 sin θ cosφ+

pξ cosφ

sin θ
,

J2 = (pθ − aJ1) cosφ−
(
pφ

sin θ
− aJ3

)
cos θ sinφ− J2 sin θ sinφ+

pξ sinφ

sin θ
, (3.17)

J3 =

(
pφ

sin θ
− aJ3

)
sin θ − J2 cos θ
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reduce to the vector fields dual to the conventional left-invariant one-forms defined on the

group manifold in case the spin degrees of freedom are absent. Like its reduction (3.13),

the extended model is superintegrable. Five functionally independent integrals of motion

in involution are given by ( ~J 2=2H,J3, pξ, J2
1+J2

3 , J2), an additional integral is still ~L2.

Concluding this section, we note that the Schwarzschild profile a2 = 1 − 2M
r of our

spherically symmetric background appears to be irrelevant for obtaining the Poisson struc-

ture (3.5) or the su(2) realization (3.6). Indeed, (3.1) or (3.10) may be generalized to a

generic static and spherically symmetric metric

ds2 = f(r) dt2 − f(r)−1dr2 − r2(dθ2 + sin2θ dφ2) with f(r) > 0 arbitrary. (3.18)

Repeating the analysis above, one arrives at the same expressions (3.4)–(3.6) with the

obvious substitution a2 → f .

If desirable, (3.18) can be incorporated within a general relativistic framework as the

so called regular black-hole solution. It suffices to consider Einstein gravity coupled to a

variant of nonlinear electrodynamics,

S = − 1

16π

∫
d4x
√
−g
(
R+ L(F 2)

)
(3.19)

where R denotes the Riemann curvature scalar and F 2 = FµνF
µν with the gauge field-

strength tensor Fµν , and then fix the form of the function L from the Einstein-Maxwell

equations (for more details see [10] and references therein).

4 Dynamics of the SU(2) mechanics

The reduced SU(2) mechanics is integrable and hence can be solved by quadrature. Let us

start with the model (3.8) and denote the canonical time variable by t. Taking into account

the Poisson-structure relations and the Hamiltonian, one obtains the equations of motion

θ̇ = pθ − aJ1, J̇1 = J3
(
J2 + φ̇ cos θ

)
,

φ̇ =
1

sin θ

( pφ
sin θ

− aJ3
)
, J̇3 = −J1

(
J2 + φ̇ cos θ

)
,

(4.1)

while (3.6) and (3.8) allow one to express pφ and pθ in terms of the other variables and

conserved quantities,

pφ
sin θ

− aJ3 =
J3

sin θ
+ J2 cot θ and pθ − aJ1 = ±

√
2H − J2

2 −
(
J3

sin θ
+ J2 cot θ

)2

.

(4.2)

Taking into account the rightmost equation in (4.2), the differential equation for θ in (4.1)

can be readily integrated to yield

cos θ(t) =

√(
1− J2

2

2H

)(
1− J

2
3

2H

)
cos
(√

2H(t−t0)
)
− J3J2

2H
, (4.3)
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where t0 is a constant of integration. The time evolution of φ is tied to that of θ,

φ(t) = φ0 +

∫ t

t0

dτ
J3 + J2 cos θ(τ)

sin2θ(τ)
, (4.4)

φ0 being another constant of integration. Note that J2
2 ≤ 2H and J 2

3 ≤ 2H as a conse-

quence of (3.8).

The orbital behaviour of the system becomes more transparent by observing that

êr · ~J = xi Ji = −J2 = constant, (4.5)

with êr and xi given in the appendix. Since êr points to the location (θ, φ) of the particle,

the latter traces a circular orbit, which is given by the intersection of our unit two-sphere

with a cone whose axis is determined by the conserved angular momentum vector ~J . The

apex semi-angle α depends on the conserved component J2 of the spin vector ~J and the

energy
√

2H = | ~J |,
cosα = − J2√

2H
. (4.6)

If J2 = 0 the cone opens to the plane xiJi = 0, and the orbit becomes a great circle. The

orbital circular motion is uniform, as follows from

ẋiẋi = θ̇2 + sin2θ φ̇2 = 2H − J2
2 = constant. (4.7)

Turning to the spin sector, the integral of motion J2
1 + J2

3 =: R2 implies that J1 and

J3 can be represented in the form2

J1(t) = R cos Ω(t) and J3(t) = R sin Ω(t). (4.8)

Substituting these expressions into the right column of (4.1), one links Ω to θ,

Ω(t) = Ω0 −
∫ t

t0

dτ
J2 + J3 cos θ(τ)

sin2θ(τ)
, (4.9)

where Ω0 is a constant of integration. The spin vector ~J precesses around the radial direc-

tion, which corresponds to the 2-direction in the spin subspace parametrized by (J1, J2, J3).

Remarkably enough, the angular precession velocity Ω̇ is tied to the orbital motion of the

particle on the sphere. As an illustration, below we display graphs of the angular velocities

θ̇(t), φ̇(t) and Ω̇(t) for a particular solution.

A particularly simple solution arises if one chooses the initial conditions such that

J1 = J2 = 0. (4.10)

In this case we learn that

pθ − aJ1 = 0 and

(
pφ

sin θ
− aJ3

)
+ J2 tan θ = 0, (4.11)

2Alternatively, the time reparametrization t→ T = 1
J2

∫ t
0
dτ
(
J2 + φ̇(τ) cos θ(τ)

)
brings the right column

in (4.1) to the standard Euler form. The motion of the spin vector is uniform and only with respect to the

redefined temporal variable: (∂TJ1)2 + (∂TJ2)2 + (∂TJ3)2 = (J2
1+J2

3 ) J2
2 = constant.
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Figure 1. The angular velocities θ̇(t), φ̇(t) and Ω̇(t) for a particular solution, characterized by

(J1,J2,J3) = ( 1
2 ,

1
3 ,

1
4 ) and J2 = 1

2 . The blue curve shows θ̇, the yellow one φ̇, the green one Ω̇.

which immediately implies that

θ̇ = 0 and φ̇ = − J2
cos θ

= J3 =
√

2H = constant ⇒ Ω̇ = 0. (4.12)

Hence, in this special case the spin vector ~J is constant (the spin frame is just carried around

with the particle), and so are pφ and pθ. The orbital and spin motion are decoupled. One

might think that the initial condition (4.10) can always be achieved by choosing adapted

coordinates via rotating to a reference frame where ~J points in the 3-direction. However,

this is not so, as we shall argue in the following section.

A similar analysis can be carried out for the model (3.13). It is straightforward to

verify that (4.3)–(4.9) maintain their form, provided J2 on the right-hand side is replaced

by J2 − q. In particular, a particle on S2 moves along a great circle if J2 = q.

Finally, because (3.16) is an oxidation of (3.13) and pξ is a constant of the motion,

solutions to the equations of motion for (θ, φ, J1, J3) read as in (4.3), (4.4), (4.8) and (4.9)

with the obvious substitution

J2 → J2 − pξ (4.13)

on the right-hand side of all formulæ. The equation of motion for the extra angular variable

ξ has the general solution

ξ(t) = ξ0 + Ω(t), (4.14)

where ξ0 is a constant of integration, and Ω reads as in (4.9) with J2 replaced by J2 − pξ.
Concluding this section, we note that for a general solution the dimensionless parameter

a enters only the relations linking the momenta (pθ, pφ) to the velocities (θ̇, φ̇) and the spin

degrees of freedom (J1, J3) (see the left column in (4.1)). Although a is involved in the

formal Hamiltonian formulation, it does not influence the qualitative behaviour of the

spinning particle moving on S2 or SU(2).
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5 Rotating the reference frame

When solving the equations of motion of a free particle on S2, it is customary to exploit

the SU(2) invariance for passing to the reference frame in which the conserved angular

momentum vector ~J ′ is directed along the x′3-axis. The condition ê′r · ~J ′ = 0 then implies

that the particle moves along the equator. Alternatively, one can substitute θ′ = π
2 directly

into the Lagrangian and reveal the uniform circular motion φ′(t) = φ0+p′φt, where p′φ = J ′3
and φ′0 are constants of integration.

The systems described in the preceding section are more complex. For one thing, they

are intrinsically Hamiltonian, and one cannot just substitute θ′ = const into a Lagrangian.

For another, the infinitesimal form

δεA = {A,Ji} εi (5.1)

for SU(2) transformations of an arbitrary phase-space function A, where εi is an infinites-

imal parameter and Ji is taken from (3.6), (3.12) or (3.17), affects also the spin degrees of

freedom Ji. Hence, the rotation takes place in the full phase space.

Although we do not have at hand the explicit canonical transformation generated by

a finite analog of (5.1), it is clear what to start with. For definiteness let us focus on

the model (3.6) and (3.8) and assume J 2
1 + J 2

2 6= 0. One can introduce the conserved

rotation matrices

R2 =


1 0 0

0 J3√
J 2
1 +J 2

2 +J 2
3

√
J 2
1 +J 2

2√
J 2
1 +J 2

2 +J 2
3

0 −
√
J 2
1 +J 2

2√
J 2
1 +J 2

2 +J 2
3

J3√
J 2
1 +J 2

2 +J 2
3

 and R1 =


− J2√

J 2
1 +J 2

2

J1√
J 2
1 +J 2

2

0

− J1√
J 2
1 +J 2

2

− J2√
J 2
1 +J 2

2

0

0 0 1


(5.2)

which yield J ′1J ′2
J ′3

 = R2R1

J1J2
J3

 =

 0

0√
J 2
1 + J 2

2 + J 2
3

 . (5.3)

This rotation acts on the orbital subspace (θ, φ) via ê′r = R2R1êr, giving

cos θ′ = ê′r ·
~J
| ~J |

=
J1 sin θ cosφ+ J2 sin θ sinφ+ J3 cos θ√

J 2
1 + J 2

2 + J 2
3

,

tanφ′ =
(J 2

1 + J 2
2 ) cot θ − J3 (J1 cosφ+ J2 sinφ)

(J1 sinφ− J2 cosφ)
√
J 2
1 + J 2

2 + J 2
3

.

(5.4)

Restricting the first formula to the mass shell, i.e. making use of (3.6), one verifies that

cos θ′(t) = − J2√
J 2
1 + J 2

2 + J 2
3

= − J2√
2H

= constant, (5.5)

as it should be due to (4.5) above.
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To figure out the time evolution of φ′, one might insert the solutions (4.3) and (4.4)

into the second line of (5.4). However, it is easier to employ the inverse transformation

cos θ =
J3 cos θ′ +

√
J 2
1 + J 2

2 sin θ′ sinφ′√
J 2
1 + J 2

2 + J 2
3

,

tanφ =
J2
√
J 2
1 + J 2

2 cot θ′ + (J1
√
J 2
1 + J 2

2 + J 2
3 cosφ′ − J2J3 sinφ′)

J1
√
J 2
1 + J 2

2 cot θ′ − (J2
√
J 2
1 + J 2

2 + J 2
3 cosφ′ + J1J3 sinφ′)

.

(5.6)

Using the first line and the result (5.5) to express the evolution of sin φ′(t) in terms of the

solution (4.3), we readily see that

sinφ′(t) = cos
(√

2H(t−t0)
)

⇒ φ′(t) =
√

2H(t−t1) (5.7)

with a shifted integration constant t1. The result φ̇′2 = 2H can also be inferred from

ẋ′iẋ
′
i = ẋiẋi using (5.5) in the rotated frame and (4.7) in the unrotated one.

As compared to a free particle on the two-sphere, the presence of the spin degrees of

freedom moves the circular orbit an azimuthal distance − J2√
2H

away from the equatorial

plane, while the angular velocity φ̇′(t) =
√

2H is now linked to the energy of the full system.

The guiding principle to build transformation laws for the remaining variables (pθ, pφ)

and (J1, J2, J3) is to preserve the Poisson-structure relations (3.5). The corresponding

partial differential equations seem to be intractable for the moment, indicating that more

physical insight is needed. We plan to continue their study elsewhere.

6 Spinning extensions of the D(2, 1;α) superconformal mechanics

Any realization of su(2) in section 3 can be extended to a representation of the Lie superal-

gebra associated with D(2, 1;α) [4]. It is sufficient to introduce an extra bosonic canonical

pair (x, p) along with fermionic SU(2) spinor partners (ψα, ψ̄
α) subject to (ψα)∗ = ψ̄α for

α = 1, 2, and to extend (3.5) by the structure relations

{x, p} = 1 and {ψα, ψ̄β} = −i δα
β . (6.1)

The generators of Lie superalgebra associated with D(2, 1;α) read

H =
p2

2
+

2α2

x2
JaJa +

2α

x2
(ψ̄σaψ)Ja −

(1+2α)

4x2
ψ2ψ̄2, D = tH − 1

2
xp,

K = t2H − txp+
1

2
x2, Ia = Ja +

1

2
(ψ̄σaψ),

Qα = pψα −
2iα

x
(σaψ)αJa −

i(1+2α)

2x
ψ̄αψ

2 , Sα = xψα − tQα, (6.2)

Q̄α = pψ̄α +
2iα

x
(ψ̄σa)

αJa −
i(1+2α)

2x
ψαψ̄2, S̄α = xψ̄α − tQ̄α,

I− =
i

2
ψ2, I+ = − i

2
ψ̄2, I3 =

1

2
ψ̄ψ,

where σa are the Pauli matrices. When verifying the structure relations of the superalgebra

(see the appendix), one only needs to use the bracket {Ji,Jj} = εijkJk and the fact that
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the Ji commute with (x, p, ψα, ψ̄
α) without specifying the actual content of Ji. As far

as dynamical realizations are concerned, H is interpreted as the Hamiltonian. D and K

are treated as the generators of dilatations and special conformal transformations. Qα are

the supersymmetry generators and Sα are their superconformal partners. Ia generate the

R-symmetry subalgebra su(2). So do also I± and I3 for which the Cartan basis is chosen.

A few comments are in order. An attempt to accommodate spin degrees of free-

dom within D(2, 1;α) superconformal mechanics was made in [6] (see also related earlier

work [7]). Bosonic SU(2) doublet variables (zα, z̄
α) with (zα)∗ = z̄α and α = 1, 2 have been

introduced, which obey the bracket {zα, z̄β} = −iδα
β and give rise to the su(2) generators

Jαβ =
i

2
(zαz̄β + zβ z̄α). (6.3)

As the extra variables parametrize a two-dimensional sphere,

z1 = r cos
θ

2
ei
φ
2 , z2 = r sin

θ

2
e−i

φ
2 , zαz̄,

α = r2 (6.4)

and their dynamics is governed by the Wess-Zumino-type action

S = −r
2

2

∫
dt φ̇ cos θ, (6.5)

one concludes that (zα, z̄
α) are non-propagating harmonic variables [6]. This is to be

contrasted with the fully fledged spin dynamics resulting form the su(2) realizations in

section 3.

A generalization of [6, 7] to the many-body case was proposed in [8]. According to

the analysis in [4], the algebraic construction in [8] remains valid if one replaces (6.3) by

any other dynamical realization of su(2), provided the kinetic term entering the resulting

Hamiltonian involves a non-degenerate metric. Combining the results in [4] with those in

section 3 one can readily build a spinning extension of D(2, 1;α) superconformal many-body

mechanics based upon any chosen solution of the generalized Witten-Dijkgraaf-Verlinde-

Verlinde equations [8], including the ∨-system solutions proposed recently in [11].

Finally, by introducing an extra fermionic canonical pair (χα, χ̄
α) with χ̄α = (χα)∗ for

α = 1, 2, and by incorporating the bracket

{χα, χ̄β} = −i δα
β (6.6)

into the Poisson structure, one can further generalize the su(2) generators of section 3 via

Ja → Ja +
1

2
(χ̄σaχ). (6.7)

The resulting model (6.2) will describe the coupling of spinning D(2, 1;α) superconformal

mechanics to an extra on-shell type-(0, 4, 4) supermultiplet realized in terms of χα and χ̄α.

7 Conclusions

To summarize, in this work we have built spinning extensions the D(2, 1;α) superconformal

mechanics by properly adjusting the SU(2) generators associated with the model of a
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relativistic spinning particle coupled to spherically symmetric four-dimensional Einstein-

Maxwell backgrounds. The spin degrees of freedom are represented by a symmetric Euler

top. A peculiar feature of the construction is the non-standard Poisson structure inherited

from the parent relativistic formulation [9]. It was shown that the compact sector of

the spinning D(2, 1;α) superconformal mechanics describes either a particle moving on

a two-dimensional sphere coupled to a symmetric Euler top, or the same system in the

external field of a Dirac monopole, or a particle propagating on the group manifold of SU(2)

interacting with a symmetric Euler top. Each case was proven to be superintegrable, and

the general solution to the equations of motion was constructed. A possible generalization

of the analysis to the many-body case has been discussed.

There are several directions in which the present work can be continued. The fermionic

degrees of freedom (ψα, ψ̄
α) introduced in section 6 represent supersymmetric partners

for the bosonic variables (x, θ, φ, ξ). Together they form on-shell supermultiplets of the

D(2, 1;α) supergroup. It will be interesting to study whether the fermionic counterparts

can also be associated with spin degrees of freedom in the spirit of recent work [12].

One can consider a relativistic spinning particle on more general backgrounds and in

an arbitrary dimension. The associated reduced angular sector might be of interest with

regard to its integrability. The Myers-Perry black-hole geometry with its SU(n) isometry

is a case to study.

A systematic investigation of the angular part of generic many-body conformal me-

chanics was initiated in [13, 14]. The construction of spinning extensions of a generic

spherical mechanical system is an intriguing open problem.
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A SU(2) spinor conventions and D(2, 1;α) superalgebra

The standard orthonormal basis for spherical coordinates have the Cartesian components

(
êr

)
=

x1x2
x3

 =

sin θ cosφ

sin θ sinφ

cos θ

 ,
(
êθ

)
=

cos θ cosφ

cos θ sinφ

− sin θ

 ,
(
êφ

)
=

− sinφ

cosφ

0

 .

The structure relations of the Lie superalgebra associated with the exceptional super-

group D(2, 1;α) read

{H,D} = H, {H,K} = 2D,

{D,K} = K, {Ia, Ib} = εabcIc,

{Qα, Q̄β} = −2iHδα
β , {Qα, S̄β} = −2α(σa)

β
α Ia + 2iDδα

β + 2(1+α)I3δα
β ,
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{Sα, S̄β} = −2iKδα
β , {Q̄α, Sβ} = 2α(σa)

α
β Ia + 2iDδβ

α − 2(1+α)I3δβ
α,

{Qα, Sβ} = 2i(1+α)εαβI−, {Q̄α, S̄β} = −2i(1+α)εαβI+,

{D,Qα} = −1

2
Qα, {D,Sα} =

1

2
Sα,

{K,Qα} = Sα, {H,Sα} = −Qα,

{Ia, Qα} =
i

2
(σa)

β
α Qβ , {Ia, Sα} =

i

2
(σa)

β
α Sβ ,

{D, Q̄α} = −1

2
Q̄α, {D, S̄α} =

1

2
S̄α,

{K, Q̄α} = S̄α, {H, S̄α} = −Q̄α,

{Ia, Q̄α} = − i

2
Q̄β(σa)

α
β , {Ia, S̄α} = − i

2
S̄β(σa)

α
β ,

{I−, Q̄α} = εαβQβ , {I−, S̄α} = εαβSβ ,

{I+, Qα} = −εαβQ̄β , {I+, Sα} = −εαβS̄β ,

{I3, Qα} =
i

2
Qα, {I3, Sα} =

i

2
Sα,

{I3, Q̄α} = − i

2
Q̄α, {I3, S̄α} = − i

2
S̄α,

{I−, I3} = −iI−, {I+, I3} = iI+,

{I−, I+} = 2iI3.

The Pauli matrices
(
(σa)

β
α

)
are chosen in the form

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
,

which obey

(σaσb)
β
α + (σbσa)

β
α = 2δabδα

β , (σaσb)
β
α − (σbσa)

β
α = 2iεabc(σc)

β
α ,

(σaσb)
β
α = δabδα

β + iεabc(σc)
β
α , (σa)

β
α (σa)

ρ
γ = 2δα

ρδγ
β − δαβδγρ ,

(σa)
β
α εβγ = (σa)

β
γ εβα , εαβ(σa)

γ
β = εγβ(σa)

α
β ,

In section 6 lower Greek indices designate SU(2) doublet representations. Complex conju-

gation yields equivalent representations to which one assigns upper indices, (ψα)∗ = ψ̄α.

Spinor indices are raised and lowered with the use of the SU(2)-invariant antisymmetric

matrices ε,

ψα = εαβψβ , ψ̄α = εαβψ̄
β ,

where ε12 = 1 and ε12 = −1. For spinor bilinears we stick to the notation

ψ2 = (ψαψα) , ψ̄2 = (ψ̄αψ̄
α) , ψ̄ψ = (ψ̄αψα) ,
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such that

ψαψβ =
1

2
εαβψ

2 , ψ̄αψ̄β =
1

2
εαβψ̄2 , ψαψ̄β − ψβψ̄α = εαβ , ψ̄ σaψ = ψ̄α(σa)

β
α ψβ .

Our conventions for complex conjugation read

(ψα)∗ = ψ̄α , (ψ̄α)
∗

= −ψα , (ψ2)
∗

= ψ̄2 , (ψ̄ σaχ)
∗

= χ̄σaψ .
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