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Abstract: We give a brief review of deformed N = 8 supersymmetric mechanics as a generalization
of SU(2|1) mechanics. It is based on the worldline realizations of the supergroups SU(2|2) and SU(4|1)
in the appropriate N = 8, d= 1 superspaces. The corresponding models are deformations of the
standard N = 8 mechanics models by a mass parameter m.
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1. Introduction

Recently, there has been a growth in interest in deformed models of supersymmetric quantum
mechanics (SQM) based on some semisimple superalgebras treated as deformations of flat d= 1
supersymmetries with the same number of supercharges. This interest was mainly motivated by the
study of higher-dimensional models with “curved” rigid supersymmetries (see e.g., [1]) derived within
the localization method [2] as a powerful tool allowing one to compute non-perturbatively quantum
objects, such as partition functions, Wilson loops, etc. Reduction of rigid supersymmetric field theories
to the deformed SQM ones can be used for computation of the superconformal index [3], the vacuum
(Casimir) energy [4], etc.

The simplest deformedN = 4 SQM models with worldline realizations of SU(2|1) supersymmetry
were considered in [3,5,6] and in [7] (named there “weak d= 1 supersymmetry”). The relevant
deformation parameter is the mass-dimension parameter m. When m goes to zero, the standard “flat”
N = 4, d = 1 supersymmetry is recovered. The corresponding worldline multiplets were (2, 4, 2)
and (1, 4, 3) (Multiplets of the standard and deformed N = 4, d= 1 supersymmetry are denoted as
(k, 4, 4−k) with k = 0, 1, 2, 3, 4. These numbers correspond to the numbers of bosonic physical fields,
fermionic physical fields and bosonic auxiliary fields, respectively. N = 8, d= 1 multiplets are denoted
in the same way as (k, 8, 8−k), where k = 0, 1, . . . , 8.). The systematic superfield approach to SU(2|1)
supersymmetry was worked out in [8–11]. The models built on the multiplets (1, 4, 3), (2, 4, 2) and
(4, 4, 0) were studied at the classical and quantum levels. Recently, SU(2|1) invariant versions of super
Calogero–Moser systems were constructed and quantized [12–14].

The common features of all these models can be summarized as:

• The oscillator-type Lagrangians for the bosonic fields, with m2 as the oscillator strength.
• The appearance of the Wess–Zumino type terms for the bosonic fields, of the type ∼ im(żz̄− z ˙̄z).
• At the lowest energy levels, wave functions form atypical SU(2|1) multiplets, with unequal

numbers of the bosonic and fermionic states and vanishing values of the Casimir operators. The
energy spectrum involves an essential dependence on the deformation parameter m.

It was of obvious interest to advance further and to consider SQM models which exhibit
deformations of N = 8, d= 1 Poincaré superalgebra. As distinct from the N = 4 case, there exist
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two different types of the N = 8 deformations. These are associated with worldline realizations
of the supergroups SU(2|2) and SU(4|1), the odd sectors of which have the same dimension 8.
The present review of deformed N = 8 supersymmetric mechanics is to a large extent based on
our recent papers [15,16]. Here, we focus our attention mainly on the off-shell chiral multiplets of
deformed N = 8 supersymmetric mechanics.

SU(2|1) Supersymmetric Mechanics

The systematic study of SU(2|1) supersymmetric mechanics initiated in [8] was based on the
deformation (In fact, the standard N = 2, d = 1 Poincaré superalgebra is written as {Q, Q̄} = 2H and,
together with the U(1) automorphism generator, can be identified with the superalgebra u(1|1). In this
interpretation, the standard Hamiltonian H appears as a central charge operator.)

N = 4, d = 1 Poincaré ⇒ su(2|1), (1)

where the superalgebra su(2|1) is given by the following non-vanishing relations

{Qi, Q̄j} = 2mIi
j + 2δi

j H̃,
[

Ii
j , Ik

l

]
= δk

j Ii
l − δi

l Ik
j ,[

Ii
j , Q̄l

]
=

1
2

δi
jQ̄l − δi

l Q̄j ,
[

Ii
j , Qk

]
= δk

j Qi − 1
2

δi
jQ

k,[
H̃, Q̄l

]
=

m
2

Q̄l ,
[

H̃, Qk
]
= − m

2
Qk. (2)

The dimensionless generators Iij = I ji form SU(2) symmetry (The doublet indices i = 1, 2 are raised
and lowered in the standard way by the antisymmetric εij symbols, e.g.,

Qi = εijQj, ε21 = ε12 = 1.

while the generator H̃ of the dimension of mass is treated as a U(1) symmetry generator.
The supercharges have the dimension m1/2 and they carry SU(2) doublet indices. The mass-dimension
parameter m plays the role of deformation parameter. In the limit m = 0, the generators Ii

j become the
SU(2) automorphism generators of the standard N = 4, d= 1 superalgebra with the Hamiltonian H̃.

One can extend the algebra (2) by an external U(1) automorphism symmetry generator F which
has non-zero commutation relations only with the supercharges [1,9]:

[F, Q̄l ] = −
1
2

Q̄l ,
[

F, Qk
]
=

1
2

Qk. (3)

The redefinition H̃ ≡ H −mF brings the extended superalgebra su(2|1)+⊃ u(1) to the form in which it
looks as a centrally extended superalgebra ŝu(2|1):

{Qi, Q̄j} = 2m
(

Ii
j − δi

jF
)
+ 2δi

j H ,
[

Ii
j , Ik

l

]
= δk

j Ii
l − δi

l Ik
j ,[

Ii
j , Q̄l

]
=

1
2

δi
jQ̄l − δi

l Q̄j ,
[

Ii
j , Qk

]
= δk

j Qi − 1
2

δi
jQ

k,

[F, Q̄l ] = −
1
2

Q̄l ,
[

F, Qk
]
=

1
2

Qk. (4)

In the new basis, the generator F becomes the internal U(1) generator, while H commutes with all
generators and so can be treated as a central charge. In the limit m = 0, the generators Ii

j and F
decouple and become the U(2) automorphism generators of the standard N = 4, d= 1 superalgebra,
with H as the Hamiltonian.
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2. Two Deformations of the Standard N = 8, d= 1 Poincaré Superalgebra

In contrast to N = 4 supersymmetry, in the N = 8 case, there are two different options for the
deformation due to the existence of two different superalgebras with eight supercharges:

(1) N = 8, d = 1 Poincaré ⇒ su(2|2),
(2) N = 8, d = 1 Poincaré ⇒ su(4|1).

Both deformed N = 8 superalgebras contain the superalgebra su(2|1) as a subalgebra.

2.1. The Superalgebra su(2|2)

The first choice was in details studied in [15]. The non-vanishing (anti)commutators of the
superalgebra su(2|2) can be written as{

Qia, Q̄jb

}
= 2m

(
δa

b Ii
j − δi

jF
a
b

)
+ 2δi

jδ
a
b H,{

Qia, Qjb
}
= − 2i εijεabC,

{
Q̄ia, Q̄jb

}
= 2i εijεabC̄,[

Ii
j , Ik

l

]
= δk

j Ii
l − δi

l Ik
j , [Fa

b , Fc
d ] = δc

bFa
d − δa

dFc
b ,[

Ii
j , Qka

]
= δk

j Qia − 1
2

δi
jQ

ka,
[

Ii
j , Q̄la

]
=

1
2

δi
jQ̄la − δi

l Q̄ja ,[
Fa

b , Qic
]
= δc

bQia − 1
2

δa
b Qic, [Fa

b , Q̄ic] =
1
2

δa
b Q̄ic − δa

c Q̄ib . (5)

The superalgebra su(2|2) contains in general three central charges C, C̄ and H. The generators Iij = I ji,
Fab = Fba form two mutually commuting su(2) algebras. The doublet indices i = 1, 2 and a = 1, 2 are
raised and lowered in the standard way by two independent sets of εij and εab symbols. In the limit
m→ 0, a centrally extended flat N = 8 superalgebra is reproduced, with two extra central charges C
and C̄ and SO(8) automorphisms broken to SU(2)×SU(2). The su(2|1) subalgebra generators (4) can be
distinguished as

Qi = Qi1, Q̄j1 = Q̄j , Ii
j = Ii

j , F1
1 = F, H = H. (6)

The basic world-line realizations of SU(2|2) supersymmetry are defined in the complex N = 8,
d= 1 superspace identified with the following supercoset of the supergroup with the superalgebra (5):{

Qia, Q̄ia, Ii
j , Fa

b , C, C̄, H
}

{
Ii
j , Fa

b , C, C̄
} ∼

{
t, θia, θ̄ jb

}
, (θia) = θ̄ia. (7)

2.2. The Superalgebra su(4|1)

The superalgebra su(4|1) is given by the following non-vanishing (anti)commutators:{
QI , Q̄J

}
= 2m LI

J + 2δI
JH,

[
LI

J , LK
L

]
= δK

J LI
L − δI

LLK
J ,[

LI
J , QK

]
= δK

J QI − 1
4

δI
J QK,

[
LI

J , Q̄L

]
=

1
4

δI
J Q̄L − δI

LQ̄J ,[
H, QK

]
= − 3m

4
QK, [H, Q̄L] =

3m
4

Q̄L . (8)

Here, LI
J are the generators of the R-symmetry group SU(4), and the capital indices I, J, K, L

(I = 1, 2, 3, 4) refer to the SU(4) fundamental and anti-fundamental representations. The Hamiltonian is
associated with the U(1) generatorH (One could redefine the Hamiltonian to make it a central charge
by the introduction of the external U(1) generator as in the Equation (3)).
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In the contraction limit m = 0, the above superalgebra goes over to the SU(4) covariant form of
the standard N = 8, d= 1 superalgebra. This limiting superalgebra actually possesses an enhanced
R-symmetry group SO(8) which mixes QI with Q̄J .

In the superalgebra (8), we can extract an SU(2) doublet from the SU(4) fundamental and
anti-fundamental representations of the supercharges by restricting the SU(4) index I as I → i (i = 1, 2).
In this way, one singles out in (8) a subalgebra containing twice as less supercharges. It coincides with
the superalgebra (2) under the following identification of the SU(2|1) generators

QI → Qi, Q̄J → Q̄j , F = L1
1 + L2

2 , Ii
j = Li

j −
1
2

δi
jF, H̃ = H+

m
2

F. (9)

The basic SU(4|1), d= 1 superspace is defined as the coset superspace

SU(4|1)
SU(4)

∼

{
QI , Q̄J , LI

J ,H
}

{
LI

J

} ∼ {ζ} =
{

t, θI , θ̄ J
}

, (θI) = θ̄ I . (10)

3. The SU(2|2) Chiral Multiplet (5, 8, 3)

As an example of the off-shell SU(2|2) d = 1 multiplets, we consider the multiplet (5, 8, 3). It has
a natural description in a chiral SU(2|2) superspace. We introduce the left chiral subspace parametrized
by the complex coordinates

ζL =
{

tL, θia
}

, (11)

with the following transformation properties

δθia = εia + 2m θibθ ja
(

εjb − ε̄jb

)
, δtL = − 2iθia ε̄ia +

4im
3

θibθ jaθjb ε̄ia . (12)

Specializing in the εi2-transformations in the Equation (12) yields the odd transformations
corresponding to the SU(2|1) subgroup. The set (11) can be identified with the following complex
supercoset of SU(2|2): {

Qia, Q̄jb, Ii
j , Fa

b , C, C̄, H
}

{
Q̄jb, Ii

j , Fa
b , C, C̄

} . (13)

The invariant measure of integration over (11), dζL, is defined as

dζL = dtL d4θ, δ (dζL) = 0 . (14)

The SU(2|2) supermultiplet (5, 8, 3) is described by SU(2|2) chiral superfield subjected to some
extra constraints.

We start with an unconstrained complex superfield Ψ which is defined on the chiral subspace (11)
and is given by the general θ-expansion

Z
(

tL, θia
)
= z +

√
2 θiaψia + θiaθ

j
a Aij + θiaθb

i Bab +
2
√

2
3

θibθ jaθjb πia +
1
3

θibθ jaθjbθiaD,

Bab = Bba , Aij = Aji . (15)
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The superfield Z has no external indices with respect to the R-symmetry SU(2)×SU(2) subgroup and
transforms as δZ = 0. This implies the following component transformations:

δz = −
√

2 εiaψia , δψia = −
√

2
(

ε
j
a Aij + εb

i Bab − iε̄ia ż
)

,

δAij = −
√

2 εa
(j

[
πi)a + m ψi)a

]
−
√

2 ε̄a
(j

[
iψ̇i)a −m ψi)a

]
,

δBab = −
√

2 εi(b

[
πi

a) + m ψi
a)

]
+
√

2 ε̄i(b

[
iψ̇i

a) + m ψi
a)

]
,

δπia =
√

2
(
− iε̄j

a Ȧij + iε̄b
i Ḃab − εiaD

)
+
√

2 m
[(

ε
j
a − ε̄

j
a

)
Aij +

(
εb

i − ε̄b
i

)
Bab − iε̄ia ż

]
,

δD =
√

2 iε̄ia (π̇ia + m ψ̇ia) . (16)

Their Lie brackets are easily checked to form SU(2|2) symmetry. The chiral superfield (15) contains 16
bosonic and 16 fermionic fields and so is in fact reducible. To single out the multiplet (5, 8, 3), we can
impose (by hand) the following extra SU(2|2) covariant constraints (In [15], these extra constraints
were written in terms of SU(2|2) superfields living on the full superspace (7).)

Aij =
√

2
(
− iv̇ij + m vij

)
, πia = − i ˙̄ψia + m ψ̄ia −m ψia , D = ¨̄z + im ˙̄z ,

(z) = z̄ , (ψia) = ψ̄ia,
(
vij
)
= vij, (Bab) = Bab = Bba. (17)

The d = 1 field content now precisely matches with the multiplet (5, 8, 3). The deformed
transformations (16) are rewritten for the remaining independent fields as

δz = −
√

2 εiaψia , δz̄ =
√

2 ε̄iaψ̄ia , δvij = − εa
(jψ̄i)a + ε̄a

(jψi)a ,

δψia = 2iεj
av̇ij − 2m ε

j
avij −

√
2 εb

i Bab +
√

2 iε̄ia ż ,

δψ̄ia = − 2iε̄j
av̇ij − 2m ε̄

j
avij −

√
2 ε̄b

i Bab −
√

2 iεia ˙̄z ,

δBab =
√

2 εi(b

[
i ˙̄ψi

a) −m ψ̄i
a)

]
+
√

2 ε̄i(b

[
iψ̇i

a) + m ψi
a)

]
. (18)

The SU(2|2) invariant deformed action can be written as an integral over chiral subspaces, like in
the case of flat N = 8 supersymmetry [17]:

S(5,8,3) =
1
4

∫
dζL f (Z) +

1
4

∫
dζR f̄ (Z̄) =

∫
dtL(5,8,3) . (19)

The relevant component Lagrangian reads

L(5,8,3) = g
[

˙̄zż + v̇ijv̇ij +
i
2

(
ψia

˙̄ψia − ψ̇iaψ̄ia
)
−m ψiaψ̄ia −m2vijvij +

1
2

BabBab
]

− im
(

˙̄z∂z f − ż∂z̄ f̄
)
+

i
2
( ˙̄zgz̄ − żgz)ψiaψ̄ia − 1

2

(
gz ψi

aψib + gz̄ ψ̄i
aψ̄ib

)
Bab

+
i√
2

(
gz ψiaψa

j − gz̄ ψ̄iaψ̄a
j

)
v̇ij − m√

2

(
gz ψiaψa

j + gz̄ ψ̄iaψ̄a
j

)
vij

− 1
12

(
gzz ψibψjaψjbψia + gz̄z̄ ψ̄ibψ̄jaψ̄jbψ̄ia

)
. (20)

Here, g is a special Kähler metric defined as

g (z, z̄) = ∂z∂z f (z) + ∂z̄∂z̄ f̄ (z̄) , gz =
∂g (z, z̄)

∂z
, gz̄ =

∂g (z, z̄)
∂z̄

, etc . (21)

As compared to the undeformed case, we observe the appearance of the oscillator-type fermionic (∼m)
and bosonic (∼m2) potential terms, as well as the internal bosonic Wess–Zumino term accompanied by
some new Yukawa-type couplings.
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The free action Sfree
(5,8,3) corresponds to the simplest choice f (Z) = Z2/4. The corresponding

component off-shell Lagrangian reads

Lfree
(5,8,3) = ˙̄zż + v̇ijv̇ij +

i
2

(
ψia

˙̄ψia − ψ̇iaψ̄ia
)
−m ψiaψ̄ia − i

2
m ( ˙̄zz− z̄ż)−m2vijvij +

1
2

BabBab. (22)

SU(2|1) Superfield Approach

The supergroup SU(2|2) contains as a subgroup the supergroup SU(2|1). Hence, SU(2|2)
supersymmetric mechanics can be equivalently viewed as SU(2|1) supersymmetric mechanics [8–11]
associated with a few irreducible SU(2|1) multiplets forming a given SU(2|2) multiplet. The multiplet
(5, 8, 3) can be split into SU(2|1) multiplets as (4, 4, 0)⊕ (1, 4, 3) or (2, 4, 2)⊕ (3, 4, 1). Following [15],
we restrict our consideration to the second option.

Generally, the SU(2|2) invariant Lagrangian can be written in terms of SU(2|1) superfields. We
define SU(2|1) as a subgroup of SU(2|2), such that the relevant su(2|1) subalgebra is composed of the
generators (6). We require the SU(2|1) Lagrangian to be invariant under the second SU(2) subgroup
associated with Fa

b . Then, the closure of SU(2|1) transformations and SU(2) transformations necessarily
yields the whole supersymmetry SU(2|2). Skipping details, the final metric g := g

(
z, z̄, vij

)
of the

target space is expressed as

g
(
z, z̄, vij

)
= −

∂2F
(
z, z̄, vij

)
∂vij ∂vij

=
4 ∂2F

(
z, z̄, vij

)
∂z ∂z̄

, (23)

where F is an arbitrary real scalar function of SU(2|1) superfields satisfying the five-dimensional
Laplace equation [18,19]: (

4 ∂2

∂z ∂z̄
+

∂2

∂vij ∂vij

)
F = 0. (24)

Equation (24) is none other than the conditions of the SU(2|2) supersymmetry. The metric (21) is the
most general solution of (24) for those functions F which are restricted to the two-dimensional target
space as g ≡ g (z, z̄). The actions for the SU(2|2) multiplet (5, 8, 3) prove to be massive deformations
of those for the same multiplet in the flat case [18].

The more general case with the target metric g
(
z, z̄, vij

)
can also be worked out. Here, we give

a simple example of such a model. We consider solutions involving dependence on the triplet vij. The
most general solution with g ≡ g

(
vij
)

yields the Lagrangian

L∗(5,8,3) =
1

2|v|

[
˙̄zż + v̇ijv̇ij +

i
2

(
ψia

˙̄ψia − ψ̇iaψ̄ia
)
+

1
2

BabBab +
i
|v|2 ψ

(i
a ψ̄j)avik v̇k

j

+
vij

2
√

2 |v|2
(

2 ψa
i ψ̄b

j Bab + iψiaψa
j ˙̄z + iψ̄iaψ̄a

j ż
)
−

3v(ijvkl)

8|v|4 ψa
i ψja ψ̄b

k ψ̄lb

− m
2

ψiaψ̄ia −m2vijvij
]

, (25)

with

g
(
vij
)
=

1
2|v| , |v| =

√
vijvij . (26)

4. SU(4|1) Chiral Multiplets

The off-shell multiplets (2, 8, 6) and (8, 8, 0) of the flat N = 8, d= 1 supersymmetry cannot
be promoted to the SU(2|2) case. Such a deformation becomes possible in the case of SU(4|1)
supersymmetry where the appropriate analogs of these multiplets are described by SU(4|1) chiral
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superfields subjected to some extra constraints. The extra constraints can be defined in terms of
superfields living on the full superspace (10). We avoid calculation of the deformed covariant
derivatives D I , D̄J (they in general involve complicated U(4) connection terms) and consider the
multiplets (2, 8, 6) and (8, 8, 0) using the chiral superspace description. It should be noted, however,
that the most general construction for the multiplet (8, 8, 0) is achieved within the SU(2|1) superfield
formulation [16].

The supergroup SU(4|1) admits two mutually conjugated complex supercosets which can be
identified with the left and right chiral subspaces:

{tL, θI} ,
{

tR, θ̄ J
}

. (27)

The left subspace is identified with the following coset space:

ζL = {tL, θI} ∼

{
QI , Q̄J , LI

J ,H
}

{
Q̄J , LI

J

} . (28)

The coordinate set ζL is closed under the relevant SU(4|1) supersymmetry transformations

δθI = εI + 2m ε̄KθKθI , δtL = 2iε̄KθK . (29)

The invariant left chiral measure is defined as

dζL := dtL d4θ e−3imtL , δ (dζL) = 0 ,
∫

dζL θIθJθKθL e3imtL = ε I JKL . (30)

Note that the Hamiltonian in this parametrization cannot be identified with the pure time
derivative. In order to achieve this natural representation, one needs to pass to the new parametrization
of superspace, changing the coordinates as

θ̃I = θI e3imtL/4, tL = tL . (31)

Just in this parametrization, the Hamiltonian takes the standard form H = i∂tL . On the other
hand, the advantage of the parametrization (28) is the simplest form of the transformations (29).
Therefore, in what follows, it will be convenient to deal with such a simple parametrization. Due to the
non-standard form of the Hamiltonian in this parametrization, all transformations and θ-expansions
of the SU(4|1) superfields will be accompanied by the factors like e3imtL/4. We consider the chiral
superfield Φ given by the general θ-expansion

Φ (tL, θI) = φ +
√

2 θKχKe3imtL/4 + θIθJ AI Je3imtL/2 +

√
2

3
θIθJθKξ I JKe9imtL/4

+
1
4

εI JKL θIθJθKθLB e3imtL , AI J ≡ A[I J], ξ I JK ≡ ξ [I JK]. (32)

The superfield Φ transforms as a singlet of the stability subgroup SU(4) , i.e., δsu(4)Φ = 0 . Taking into
account (29), the transformations of its components under the odd generators look as:
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δφ = −
√

2 εKχKe3imt/4,

δχI =
√

2 ε̄I (iφ̇) e−3imt/4 −
√

2 εK AIKe3imt/4,

δAI J = 2
√

2 ε̄[I
(

iχ̇J] +
m
4

χJ]
)

e−3imt/4 −
√

2 εKξ I JKe3imt/4,
√

2
3

δξ I JK = 2 ε̄[K
(

iȦI J] +
m
2

AI J]
)

e−3imt/4 − εI JKL εLB e3imt/4,

εI JKL δB =
8
√

2
3

ε̄[L
(

iξ̇ I JK] +
3m
4

ξ I JK]
)

e−3imt/4. (33)

The general supersymmetric action can be written as a sum of integrals over chiral subspaces [17] as

Schiral =
∫

dtLchiral = −
1
4

[∫
dζL K (Φ) +

∫
dζR K̄ (Φ̄ )

]
, (34)

where the overall coefficient −1/4 is chosen for further convenience. The component form of this
SU(4|1) invariant is given by the expression

Schiral = −1
4

∫
dt
{

6B ∂φK + ε I JKL

[
2
3

χLξ I JK +
1
2

AI J AKL
] (

∂φ

)2 K

− ε I JKL AI JχKχL (∂φ

)3 K +
1
6

ε I JKL χIχJχKχL (∂φ

)4 K + c.c.
}

. (35)

This invariant does not display the kinetic term of the fields in (32) and so must be treated as a kind of
“pre-action” for the multiplets (2, 8, 6) and (8, 8, 0). The genuine action appears after imposing some
extra SU(4|1) covariant conditions on the d = 1 component fields in (32). Of course, they should follow
from the appropriate superfield constraints [16], but it is much easier to guess their form directly at
the component level, requiring the final field content to be (2, 8, 6) or (8, 8, 0) and resorting to the
SU(4|1)-covariance reasonings.

4.1. The Multiplet (2, 8, 6)

The multiplets (2, 8, 6) is described by the chiral superfield (32) subjected to the
additional constraints

(AI J) = AI J =
1
2

ε I JKL AKL, B =
2
3

(
¨̄φ + im ˙̄φ

)
,

ξ I JK = − εI JKL
(

i ˙̄χL −
m
4

χ̄L

)
, (χI) = χ̄I . (36)

Substituting this into the transformation rules (33) gives the following odd transformations of the
components of the multiplet (2, 8, 6):

δφ = −
√

2 εKχKe3imt/4, δφ̄ =
√

2 ε̄Kχ̄K e−3imt/4,

δAI J = 2
√

2 ε̄[I
(

iχ̇J] +
m
4

χJ]
)

e−3imt/4 +
√

2 εI JKL ε[K

(
i ˙̄χL] −

m
4

χ̄L]

)
e3imt/4,

δχI =
√

2 ε̄I (iφ̇) e−3imt/4 −
√

2 εK AIKe3imt/4,

δχ̄I = −
√

2 εI

(
i ˙̄φ
)

e3imt/4 −
√

2 ε̄K AIK e−3imt/4. (37)
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The component Lagrangian (35), up to total time derivative, becomes

L(2,8,6) =

[
φ̇ ˙̄φ− 1

4
AI J AI J +

i
2

(
χK ˙̄χK − χ̇Kχ̄K

)
− m

4
χKχ̄K

]
g

+ im
(

φ̇ ∂φ̄K̄− ˙̄φ ∂φK
)
− i

2

(
φ̇ ∂φg− ˙̄φ ∂φ̄g

)
χKχ̄K

+
1
2

AI J χIχJ ∂φg− 1
2

AI J χ̄I χ̄J ∂φ̄g

− 1
24

[
ε I JKL χIχJχKχL ∂z∂φg + εI JKL χ̄I χ̄J χ̄Kχ̄L ∂φ̄∂φ̄g

]
, (38)

where

g (φ, φ̄ ) = ∂φ∂φK (φ) + ∂φ̄∂φ̄K̄ (φ̄) . (39)

We observe that the complex fields φ parametrizes, as f (z) in (21), a special Kähler manifold.
The Lagrangian (38) is a deformation of the most general Lagrangian which was constructed in
terms of N = 4 superfields in [20] and reproduced later in terms of N = 8 superfields in [17].

4.2. The Multiplet (8, 8, 0)

Proceeding in a similar way, we find that, in this case, the components of the chiral superfield (32)
must be subjected to the following additional constraints:

AI J =
√

2
(

iẏI J − m
2

yI J
)

, (yI J) = yI J =
1
2

ε I JKL yKL,

ξ I JK = − εI JKL
(

i ˙̄χL −
5m
4

χ̄L

)
, (χI) = χ̄I ,

B =
2
3

(
¨̄φ + 2im ˙̄φ

)
. (40)

The odd SU(4|1) transformations are realized on the minimal set of independent 8 + 8 fields as:

δφ = −
√

2 εIχ
Ie3imt/4, δφ̄ =

√
2 ε̄I χ̄I e−3imt/4,

δyI J = − 2 ε̄[IχJ]e−3imt/4 + εI JKLεKχ̄L e3imt/4,

δχI =
√

2 ε̄I (iφ̇) e−3imt/4 − 2 εJ

(
iẏI J − m

2
yI J
)

e3imt/4,

δχ̄I = −
√

2 εI

(
i ˙̄φ
)

e3imt/4 + 2 ε̄J
(

iẏI J +
m
2

yI J

)
e−3imt/4. (41)

They are consistent with the transformations (33) and leave invariant the constraints (40).
Substituting the constraints (40) into the pre-action (35), we find the component Lagrangian of

the multiplet (8, 8, 0)

L(8,8,0) = g
[

φ̇ ˙̄φ +
1
2

ẏI J ẏI J +
i
2

(
χK ˙̄χK − χ̇Kχ̄K

)
− 5m

4
χKχ̄K −

m2

8
yI JyI J

]
− im

4

(
φ̇ ∂φg− ˙̄φ ∂φ̄g

)
yI JyI J + 2im

(
φ̇ ∂φ̄K̄− ˙̄φ ∂φK

)
+

1√
2

(
iẏI J −

m
2

yI J

)
χIχJ ∂φg +

1√
2

(
iẏI J +

m
2

yI J
)

χ̄I χ̄J ∂φ̄g

− i
2

(
φ̇ ∂φg− ˙̄φ ∂φ̄g

)
χKχ̄K −

1
24

εI JKL χ̄I χ̄J χ̄Kχ̄L ∂φ̄∂φ̄g

− 1
24

ε I JKL χIχJχKχL ∂φ∂φg. (42)



Symmetry 2019, 11, 135 10 of 11

The target space metric coincides with the metric (39) of the special Kähler manifold. More general
solutions involving some extra dependence on yI J , i.e., g := g

(
φ, φ̄, yI J), were obtained in [16] using

the SU(2|1) superfield formulation. By analogy to Section 3, there is an arbitrary real scalar function
f
(
φ, φ̄, yI J) of SU(2|1) superfields which must satisfy the eight-dimensional Laplace equation. In the

same way, the metric (39) is a particular solution of the eight-dimensional Laplace equation restricted
to the two-dimensional target space, g := g (φ, φ̄).

5. Conclusions

Using d= 1 superfield approaches, we explained, on a few specific examples, how to construct
models of the SU(2|2) supersymmetric mechanics based on the multiplet (5, 8, 3), as well as models of
SU(4|1) supersymmetric mechanics based on the multiplets (2, 8, 6) and (8, 8, 0). All three multiplets
are described by chiral superfields subjected to some extra SU(2|2) and SU(4|1) covariant constraints.
Their N = 8 invariant deformed actions were written as integrals over chiral subspaces that leads to
the target space metric corresponding to two-dimensional specical Kähler manifolds. In the case of the
deformed multiplets (5, 8, 3) and (8, 8, 0), we have also pointed out that the most general construction
of their invariant actions is achieved in terms of SU(2|1) superfields.

In [21], Berenstein, Maldacena and Nastase proposed an M-theory matrix model with
16 supercharges, which spurred investigations of massive super Yang–Mills mechanics. Since their
matrix model has SU(4|2) supersymmetry, the SU(2|1), SU(2|2) and SU(4|1) supersymmetric mechanics
models are expected to describe particular reductions of this general matrix system, with four and
eight supercharges, respectively. In particular, the massive matrix models based on the multiplets
(5, 8, 3) and (8, 8, 0), in the case of the simplest target space metric g = 1 (i.e., for the free model), were
studied at the component level in [22,23], respectively. Our approach allows one to generate non-trivial
interactions, which hopefully may be interpreted as effective actions with quantum corrections taken
into account.
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