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II Kurzfassung

Kurzfassung

Die in dieser Arbeit vorgestellte Methodik ermöglicht die Berechnung der Strom- und Span-
nungsspektren eines Antriebssystems für den eingeschwungenen Zustand unter Berücksich-
tigung von Wechselwirkungen der Systemkomponenten. Die Darstellung der Signale mittels
ihrer Fourier-Koeffizienten bildet die mathematische Grundlage. Die Beschreibung ihrer Sys-
temverknüpfung erfolgt als algebraische Gleichungen, welche im Allgemeinen nichtlinear sind
und die Verkopplung der spektralen Komponenten berücksichtigen. Dies ermöglicht die Beach-
tung der Interaktionen zwischen Wechselrichter, seiner Speisung und Last sowie seiner Regelung
und Pulsdauermodulation. Dabei wird die Zeitkontinuität der physikalischen Größen, die Zeit-
diskretisierung der Regelung und der entsprechende Umwandlungsprozess einbezogen. Damit
trägt diese Arbeit zu einem tieferen Verständnis der Wechselwirkungen innerhalb eines Um-
richtersystems bei und ermöglicht die Berechnung der entstehenden Spektren unter Berücksich-
tigung der Interaktionen, welche in gängigen Frequenzbereichsmodellen vernachlässigt werden.

Als Vereinfachung werden in dieser Arbeit die leistungselektronischen Komponenten als ver-
lustfreie Schalter angenommen, welche diskret einen leitenden und einen sperrenden Zustand
annehmen können. Die verwendeten Gleichungen gelten für hart geschaltete Umrichter mit
fester Schaltfrequenz. Die Wechselsperrzeit kann für den gesteuerten Betrieb berücksichtigt
werden. Diese bleibt allerdings für den geregelten Betrieb vernachlässigt.

Die Interaktion des Umrichtersystems mit einer elektrischen Maschine wird am Beispiel einer
permanentmagneterregten Synchronmaschine gezeigt. Andere Maschinentypen werden in dieser
Arbeit nicht betrachtet. Die Modellierung erfolgt im rotorfesten Koordinatensystem auf Grund-
lage der Hauptflussverkettung ohne Sättigung und berücksichtigt den Einfluss von oszillieren-
den Drehmomenten auf die spektrale Verteilung im gesamten Antriebssystem. Der Wechsel-
richter wird dabei im gesteuerten Betrieb betrachtet.

Die entwickelten Frequenzbereichsmodelle werden numerisch in Matlab ausgewertet und mit
Ergebnissen aus Zeitbereichssimulationen in Simulink verglichen, welche auf den gleichen An-
nahmen beruhen. Vergleiche zeigen sehr geringe Unterschiede zwischen den Ergebnissen. Eine
Validierung der zugrundeliegenden Annahmen erfolgt über den Vergleich mit Messergebnissen.
Durch die Rechenleistung sind dem vorgestellten Verfahren, insbesondere bei der Wahl ungün-
stiger Verhältnisse von Grundfrequenz und Schaltfrequenz, in der numerischen Auswertung bei
der Anzahl zu berücksichtigender Harmonische der Systemgröße Grenzen gesetzt.

Schlagworte: Frequenzbereichmodellierung – Oberschwingungs-Wechselwirkungen – puls-
dauermodulierte Wechselrichter



Abstract III

Abstract

The method presented in this thesis allows for the calculation of the current and voltage spectra
of a drive system for the steady state, while considering the influence of interactions between
the system components. The signals are represented by their Fourier coefficients. Their relation-
ships within the system are described by algebraic equations, which are generally nonlinear and
they incorporate the coupling of the harmonic components. This ensures the consideration of
interactions between the inverter, its feeding source and load, as well as its closed-loop control
and pulse-width modulation. The models include the time-continuity of the physical quantities,
the time-discretization of the control signals, and their respective conversion processes. As a
result, this thesis provides a deeper understanding of the dependencies within a converter sys-
tem and enables a calculation of the resulting spectra taking into account the aforementioned
interactions, which are neglected in established frequency-domain models.

As a simplification, in this work the power electronic components are assumed to be lossless
switches, which can conduct and block as discrete states. The equations presented apply to hard-
switched converters with fixed switching frequencies. The effect of interlock times is considered
in the models for open-loop control. However, it is neglected in the models for closed-loop
control.

The interaction of the converter system with an electrical machine is presented for the example
of a permanent-magnet synchronous machine. Other machine types are not analyzed in this
work. The model is formulated in the rotor reference frame in accordance with the main spatial
harmonic of the field components and considers the influence of oscillatory load torque on the
spectra of the overall drive system. The inverter is assumed to be in open-loop control in this
case.

The frequency-domain models developed in this work are numerically evaluated and they are
compared with results from time-doamin simulations in Simulink, which are based on the same
assumptions. Comparisons reveal very low differences between the results. A validation of the
underlying assumptions is performed by comparison with measurement results. Due to con-
strains in computational power, especially in cases of unfavorable ratios of fundamental fre-
quency and switching frequency, the presented method is limited in its numerical evaluation
regarding the number of considered harmonics and the size of the system.

Keywords: frequency domain modeling – harmonic interactions – pulse-width modulated in-
verters
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1 Introduction

The individual components of drive systems, such as the voltage source inverter (VSI), the pas-
sive components, the electrical machine, and the control (Figure 1.1), build closely coupled
relationships, resulting in a nonlinear closed-loop system. The accurate assessment of current
and voltage harmonics of drive systems is studied to achieve various design goals, for example
determination of dc-link capacitor size and lifetime [1, 2], design of grid filters and compliance
with grid codes [3], avoiding the excitation of resonances in grid applications [4] and mechani-
cal shafts [5], design of active power filters [6, 7], and many more.

Generally, there are two approaches to evaluate the frequency behavior and the propagation of
harmonics. In the first approach, the nonlinear differential equation system can be solved in the
time domain by using numerical integration and applying a Fourier transform to the resulting
waveforms. Nonlinear effects of the power electronic system can be relatively easily combined,
but they can lead to long simulation times. Moreover, the transform is applied on sampled sig-
nals using the discrete Fourier transform (DFT) algorithm, which can lead to aliasing when the
simulated signals contain a frequency behavior that is higher than half the sampling frequency.
When the system contains components with very different time constants, e.g. the small time
constant of power electronic switching and the large time constant of an electrical machine, the
simulation of transients can become time-consuming. Because the transients cause frequency
leakage in the spectrum, it is important to determine when the steady state is achieved, which
can be challenging.

In the second approach, the equation system is transformed into the frequency domain provid-
ing an algebraic equation system. The formulation of the model is complex, but often provides
useful insight into the behavior of the system. The frequency-domain equations can be evaluated
more easily for the steady state, which is described by a Fourier series with a discrete spectrum
in the form of Fourier coefficients. The exact models in the frequency domain have been devel-
oped for power electronic converters for individual aspects, effects, and devices. However, the
interactions between the components are often neglected or linearized models are employed.

The goal of this thesis is to develop models that cover the harmonic interactions in a drive sys-
tem. The models are derived in the frequency domain describing the signals with their Fourier
coefficients. The drive system in Figure 1.1 is used in this thesis as a benchmark system. It
comprises a three-phase two-level VSI with closed-loop control that drives a permanent magnet
synchronous machine (PMSM). The VSI is fed by a diode rectifier, which is represented by its
rectified current. The PMSM is loaded by a mechanical load torque. The control assures that
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Figure 1.1: Topology of the drive system

the setpoint values are reached. For this, measured signals from the physical system are fed
back to the control. The latter influences the system by adjusting the gate signals of the VSI.
The following overview of the system provides an identification of the components and their
interactions that need to be modeled.

System Overview

The interactions of the signals in the drive system are depicted as a block diagram in Figure 1.2,
showing the individual blocks as sub-components that are modeled in the following chapters.
The inputs of the system are the rectifier current, the load torque, and the setpoint values of
the control. They are represented by red arrows. The black double arrows indicate bidirectional
power exchange between the dc link, the VSI, and the PMSM. Because these components de-
scribe the behavior of a physical system, they are represented by continuous-time signals. There
is an interaction between the dc link and the VSI, which is described by the dc-side signals. The
interaction of the VSI and the PMSM is represented by the ac-side signals. The nonlinear behav-
ior of the PMSM describing the interaction of the electrical domain with the mechanical domain
and the choice of an appropriate coordinate system are further challenges in the modeling of the
drive system.

A closed-loop control is implemented to comply with the demand indicated by the setpoint
values. The required voltage and current values are measured by analog sensors and are sampled
and held by an analog-to-digital converter (ADC). These unidirectional information signals
are indicated by blue arrows. The control provides the required ac-side voltage of the VSI in
the form of a duty cycle. Modulating the duty cycle using a pulse-width modulation (PWM)
creates the control signals for the power electronic switches. Because the control and the PWM
are implemented in a digital unit and the power stage forms an analog unit, both discrete and
continuous time signals are present in the system. The following section reviews what kinds of
modeling approaches are available in the literature to describe the individual subsystems and to
point out the interactions that are not sufficiently covered.
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Frequency-domain Modeling in the Literature

For pulse-width modulated systems, the double Fourier series expression emerged as a standard
method to describe the switching behavior of power electronic converters. The method ap-
plies for hard-switched converters using fixed switching frequency PWM methods. The double
Fourier series approach was originally developed by Bennett [8] and Black [9] for application
in communication systems. It was adapted to PWM converters by Bowes and Bird [10]. Further
extended by Holmes [11], the method became a standard method to describe the output voltage
of PWM VSI, summarized in the comprehensive book of Holmes and Lipo [12]. The results are
presented as the ac-side voltage spectrum of the VSI, but in a more general sense the results rep-
resent the spectrum that correlates with the switching state of the power electronic components,
which is called the switching function spectrum.

The double Fourier series analysis in its original form described by Bowes and Bird [10] and
Holmes and Lipo [12] is based on simplifying assumptions:

1. A constant dc-link voltage, i.e. no interaction of dc side and ac side

2. A single frequency modulator input signal, i.e. no interaction with the control loop

3. Ideal switching of the power electronics, i.e. no dead time and lossless switches

For a variable dc-link voltage containing harmonic components, the ac-side voltage spectrum is
determined by a convolution of the switching function spectrum and the dc-link voltage spec-
trum [13], representing the dc-to-ac conversion. McGrath et al. [2] showed that an ac-to-dc
conversion can be represented similarly and the dc-link current spectrum can be calculated by
a convolution of the switching function spectrum and the ac-side current spectrum.
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In the last 15 years, adaptions of the double Fourier method and alternative methods were de-
veloped for the description of the PWM output spectrum [14], with special emphasis on the in-
corporation of modulator input signals that contain multiple frequency components [6, 15–17].
Moreover, analytical models were published that allow the incorporation of dead-time effects
on the ac output voltage of VSI [18–22]. All these publications developed an input-to-output
expression of the PWM block [Figure 1.2]. The interaction of the signals within the power stage
of the plant and the influence of the feedback loop of a control system are not considered. Thus,
the question arises of how to incorporate the interactions of a closed-loop system.

A wide-spread method of modeling and analyzing PWM converters is the averaging method
that was introduced by Wester, Ćuk, and Middlebrook [23–25] for dc/dc-converter topologies
and further described by Erickson and Maksimovic [26–29]. The formal mathematical proce-
dure of averaging and linearization process is known as state-space averaging. The approach
was adapted to ac/dc power converters by Hiti [30]. The method truncates the high frequency
components that are generated by the switching behavior of the converter. Therefore, it requires
that the low frequency components of the base band can be separated from the high frequency
components of the switching band. This is often true when the switching frequency is much
higher than the modulating frequency and aliasing effects are negligible.

The method can be used to develop linearized small-signal models and is often applied in
impedance models and small-signal stability analysis [31]. The linearized models allow in-
corporation of the closed-loop control using linear control theory and use of standard controller
design methods, e.g. for grid converters [32] and for drive systems [33]. Corradini et al. [34]
applied this method to digital control of power converters, taking into account the small-signal
delays of the digital controller and the regularly sampled PWM.

Nevertheless, the averaging method simplifies the switching process and is only valid up to
approximately half the switching frequency. This can lead to over-simplification, when the
switching-band and the base-band components overlap and when sampling effects, such as
aliasing, are present. Moreover, no method was found during the literature review that cov-
ers the full interaction of the modulation and switching process with the controlled converter
system.

The coupling of the power converter and an electrical machine in a drive system leads to a non-
linear relationship and an interaction of harmonics between the electrical and the mechanical
domain. This means that mechanical load faults can lead to torque oscillations that are propa-
gated into the stator currents [35, 36] and harmonic components of the currents are propagated
into the torque of the machine, which can lead to mechanical stress on the rotor shaft [5, 37].
This harmonic behavior is bidirectional and the full spectrum can be predicted when the sys-
tem is regarded as a closed loop. Whereas Chang et al. [38] studied the harmonic interaction
of a drive system including an induction machine based on the successive solution of the time-
domain equations, there are few publications that model the simultaneous interaction in drive
systems in the frequency domain. Arrillaga et al. [39] present a frequency-domain model of a
synchronous machine, which is modeled in the rotor reference frame. However, the mechanical
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speed is assumed to be constant and interactions with the mechanical system are neglected. The
coupling of the drive and the electrical machine in one reference frame in the frequency domain,
considering the oscillations that are present in the rotor position, has not yet been investigated.

In conclusion, a need for further research was identified that provides a method in the frequency
domain covering harmonic interactions within a drive system. This includes the mutual depen-
dencies between physical signals of the power stage as well as interactions with the control
signals, introducing nonlinear effects, such as modulation, sampling, and aliasing. The inten-
tion is to extend the modeling depth of the steady-state frequency-domain models to that of
typical electrical circuit simulator used for power electronic systems, such as Plecs and Sim-
scape, treating the semiconductors as ideal switches, with a discrete on-state and a discrete
off-states.

Overview of this Thesis

The goal of this thesis is to contribute to closing the identified gap in the research area of
frequency-domain modeling considering nonlinear interactions. The literature review demon-
strates that most approaches describe the drive system components in an input-to-output rela-
tionship, neglecting the bidirectional interactions. This thesis addresses the prediction of the
harmonic spectrum in a drive system in the frequency domain, including the closed-loop inter-
actions. This thesis seeks to provide a deeper understanding of the harmonic interactions and to
develop a modeling approach that allows for calculation of the spectra.

The modeling approach and the general solution process are presented in Chapter 2. The method
is adapted to a two-level VSI with open-loop control and linear load in Chapter 3. The questions
of how the PWM influences the signals of the physical plant and how these signals interact with
each other are addressed.

In Chapter 4 the incorporation of interlock times into the system model are studied. The question
arises of how the modified switching behavior affects the signals in the system. The reaction of
the plant and the mutual dependency of the signals of the plant and the switching behavior are
analyzed.

Chapter 5 demonstrates how the harmonic interaction of the VSI, the PWM, and the plant
is changed by application of feedback control. An analysis is conducted of how the solution
process is changed by the presence of continuous-time and discrete-time signals and by their
mutual dependencies in closed-loop control.

The modeling approach is extended in Chapter 6 to a drive system, by connection of a VSI and a
PMSM. Because a standard machine model in the rotor reference frame is chosen, the influence
of coordinate transformations on the modeling approach is examined. This chapter addresses the
influence of oscillating load torques on the modeling process in the rotating reference frame.



6 1. Introduction

The analytical results developed in this work are compared to results from time-domain simu-
lations. Experimental results are included, obtained from measurements with a prototype con-
verter system. Descriptions of the experimental setup and the measurement equipment are given
in the appendix. The thesis is concluded and summarized in Chapter 7.
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2 Modeling Approach

The goal of this chapter is to develop a mathematical framework to analyze the interaction of
the signals within the drive system and its reaction to external disturbances. The system con-
tains continuous-time signals that represent the quantities of the power level: voltages, currents,
rotational speed, and torque. The signals that operate on the control system are discrete-time
signals, such as the measured and sampled signals of the power level, the control setpoints, and
the signals of the pulse-width modulation.

The first section reviews the frequency-domain representation of signals, starting with the Fourier
series and the Fourier transform for continuous-time signals and its extension to discrete-time
signals. Then, necessary approximations of the signal are introduced in order to provide the
simultaneous numerical solution process presented afterwards. Finally, the validation process
is described, which includes the comparison of results from the frequency-domain models with
spectra obtained in time-domain simulations and measurements.

The modeling approach developed in this chapter is mainly based on the Fourier analysis and
the theory of signal processing taken from the comprehensive books [40] and [41].

2.1 Frequency-Domain Representation of Signals

Continuous-Time Signals

A periodic time-domain signal x(t) can be represented by a complex Fourier series

x(t) =
∞∑

k=−∞
X,k · e jkω0t, k ∈ Z, (2.1)

where X,k ∈ C is the complex Fourier coefficient of order k that represents the k-th harmonic
of the fundamental angular frequency ω0 = 2πf0. The Fourier coefficients can be calculated by

X,k = ω0

2π ·
∫ 2π/ω0

0
x(t) · e−jkω0t dt (2.2)



8 2. Modeling Approach

The Fourier series assigns the periodical signal x(t) to a discrete spectrum X[kf0], which is
represented by the Fourier coefficients. The square brackets [.] indicate that the spectrum is
discrete. There are two alternative notations to (2.1), using either real coefficients (A,k, B,k) or
trigonometric representation with magnitude and phase representation (X̂,k, θx,k). The conver-
sions between the notations are provided in Appendix A.

The Fourier transform allows the extension of the frequency representation to aperiodic signals
x(t), resulting in a continuous spectrum as a function of the frequency f , with

X(f) =
∫ ∞
−∞

x(t) · e−j2πft dt. (2.3)

An alternative notation is introduced, where the spectrum is given as a function of the angular
frequency ω = 2πf , with

X(ω) =
∫ ∞
−∞

x(t) · e−jωtdt. (2.4)

In order to distinguish the Fourier transform of a continuous signal from the Fourier transform
of a discrete signal, the acronym continuous-time Fourier transform (CTFT) will be used when
both types of signals are present.

There is a close relationship between the Fourier series and the Fourier transform, which is
illustrated in the following example.

A rectangular pulse, defined by

rect
(
t

T

)
=
{

1 for −T/2 ≤ t ≤ T/2
0 otherwise , (2.5)

can be used to represent the status of a switch and with this be used to model the conducting
state of a power electronic device, expressed by the switching function s(t). The continuous
spectrum for an aperiodic rectangular pulse sa(t) with a pulse width of T is given by the si-
function, with

sa(t) = rect
(
t

T

) d t Sa(f) = T · si(πTf), (2.6)

where si(πTf) = sin(πTf)/(πTf), πTf 6= 0; and si(0) = 1.

Repeating the pulse with a period T0 = 1/f0 results in a periodic signal of rectangular pulses
sp(t). The repetition is represented in the time domain by a convolution (represented by the
operator ∗) of the aperiodic signal with a sequence of Dirac-pulses δ:

sp(t) = sa(t) ∗
∞∑

k=−∞
δ(t− kT0), k ∈ Z. (2.7)
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Figure 2.1: Top graph: Waveform of a rectangular pulse
with a pulse width of T . Bottom graph: Periodic rectan-
gular signal with a fundamental period of T0 and a pulse
width of T = 2/3 · T0.
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Figure 2.2: Top graph: Continuous spectrum of the rect-
angular from Figure 2.1 top. Bottom graph: discrete
spectrum of a periodic rectangular signal depicted in the
bottom graph of Figure 2.1 bottom.

Figure 2.1 shows the waveform of the rectangular pulse in the top graph and the periodic pulse
train with a pulse width of T = 2/3 · T0 in the bottom graph.

For the calculation of the Fourier transform of (2.7), the convolution theorem

x1(t) ∗ x2(t) d t X1(f) ·X2(f) (2.8)

can be utilized, where a time-domain convolution can be expressed as a multiplication of the
spectra. With the Fourier transform of the sequence of Dirac pulses

∞∑
k=−∞

δ(t− kT0) d t f0 ·
∞∑

k=−∞
δ(f − kf0), k ∈ Z, (2.9)

and the Fourier transform of the aperiodic signal Sa(f), the Fourier transform of the periodic
signal results in a discrete spectrum

Sp(f) = f0 · Sa(f) ·
∞∑

k=−∞
δ(f − kf0) = f0 ·

∞∑
k=−∞

Sa[kf0] · δ(f − kf0). (2.10)
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The spectrum is sampled by the Dirac pulses and equals the discrete coefficients of the Fourier
series representation Sp[kf0] of the periodic signal, illustrating the relationship between Fourier
series and Fourier transform. The resulting spectrum for the rectangular pulse is shown in Fig-
ure 2.2 in the top graph and the discrete spectrum for the periodic waveform is shown in the
bottom graph.

Sampling of a continuous Fourier spectrum X(f) is used in this thesis to transfer equations that
are developed generally for aperiodic signals to the special case of signals in a periodic steady
state, described by complex Fourier coefficients X,k.

Discrete-Time Signals

Because the control and modulation of the power converters that are considered in this work
are implemented in digital systems, a mixed analysis of continuous and discrete signals is per-
formed. The sampling of a continuous signal x(t) with a sampling period of Ts can be repre-
sented by multiplication with a sequence of Dirac-pulses, leading to a continuous-time repre-
sentation of a sampled signal

xs(t) = x(t) ·
∞∑

n=−∞
δ(t− nTs) =

∞∑
n=−∞

x[nTs] · δ(t− nTs), n ∈ Z. (2.11)

x[nTs] is a discrete-time signal sampled at nTs. The application of the Fourier transform in (2.3)
to the sampled signal, with

Xs(f) =
∞∑

n=−∞

∫ ∞
−∞

x(t) · δ(t− nTs) · e−j2πfnTs dt (2.12)

=
∞∑

n=−∞
x[nTs] · e−j2πfnTs , (2.13)

is known as discrete-time Fourier transform (DTFT) and provides a continuous spectrum, which
is periodic with the sampling frequency fs = 1/Ts. If the continuous signal x(t) is periodic,
the sampled signal is periodic as well. Thus, the spectrum is discrete and can be represented
by Fourier coefficients. It should be noted that the fundamental frequency of the discrete-time
signal is the greatest common divisor of the sampling frequency and the fundamental frequency
of the continuous-time signal x(t). The DTFT has a close relationship with the z-transform,
which provides a frequency representation of the sampled signal, with

Xs(z) =
∞∑

n=−∞
x[nTs] · z−n. (2.14)

The complex variable z is defined as z = r · e j2πfTs . For a radius of r = 1 the z-transform
becomes the DTFT.
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Using the analogon of the convolution theorem in (2.8), with

x(t) · y(t) d t X(f) ∗ Y (f), (2.15)

the time-domain multiplication of the continuous signal with a sequence of Dirac pulses in
(2.11) can also be expressed as a frequency-domain convolution of the spectrum X(f) with the
Fourier transform of the sequence

∞∑
n=−∞

δ(t− nTs) d t fs ·
∞∑

n=−∞
δ(f − nfs), (2.16)

resulting in

Xs(f) = fs ·X(f) ∗
∞∑

n=−∞
δ(f − nfs). (2.17)

With this expression, a frequency-domain consideration of the sampling process is possible and
can also be applied to the discrete spectrum of the Fourier coefficients, with

Xs[kf0] = fs ·X[kf0] ∗
∞∑

n=−∞
δ[kf0 − nfs], n, k ∈ Z (2.18)

where fs is an integer multiple of the fundamental frequency f0.

In order to illustrate the relationship of the spectrum of a continuous-time and discrete-time sig-
nals, Figure 2.3 shows the waveforms of three continuous signals and their sampled equivalent.

1) The top graph shows a continuous signal

x1 = cos(ω0t) + 0.1 · cos(5 · ω0t+ π/7). (2.19)

as a solid line. The sampled signal has a sampling frequency of fs = 20 · f0 and is marked as
crosses. Figure 2.4 shows the amplitude of the discrete spectrum for the continuous signal as
bars and for the sampled signal as crosses. All frequency components Xp1(kf0) 6= 0 have a
frequency smaller than the Nyquist frequency of fs/2 and according to the sampling theorem
they are correctly represented by the sampled signal. The periodicity of the spectrum with ±n ·
fs, n ∈ Z is clearly visible.

2) For a second continuous signal

x2 = x1 + 0.2 · cos(16 · ω0t) (2.20)

the sampling theorem is not fulfilled as the additional component has a frequency 16 · f0 >
fs/2, which leads to aliasing (see middle graphs in Figure 2.3 and Figure 2.4). All frequency
components of the periodic signal Xp2(kf0) are present in the spectrum of the sampled signal
Xs2(kf0). However, the components with a frequency higher than fs/2 are reflected into the
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Figure 2.3: Time-domain waveform of continuous-time signals and their sampled equivalents: signal x1 fulfilling
the sampling theorem (top graph), signal x2 violating the sampling theorem (middle graph), modulated
signal x3, where the sampled values of x3 are equal to the sampled values of x1, indicated with a dotted
line (bottom graph).
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Figure 2.4: Amplitude spectra of the continuous-time signals and their sampled equivalents depicted in Figure 2.3.
The spectra of the sampled signals are periodic with the sampling frequency of fs = 20 · f0. Top
graph: Compliance with the sampling theorem results in a correct representation of the spectrum within
the sampling frequency interval. Middle graph: violation of the sampling theorem results in aliasing.
Bottom graph: The symmetry of the high frequency components around half the sampling frequency
results in cancellation in the spectrum of the sampled signal (aliasing occurs, but its effect is desired).
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base band. This results in low-frequency components of ±(fs − 16 f0) that are not present in
the spectrum of the continuous signal.

3) Aliasing can be avoided for frequency components that are synchronized with the sampling
frequency. If a continuous signal x3 contains frequency components modulated at half the sam-
pling frequency, with

x3 = x1 + 0.2 · cos
(
ω0t+

(
ωs

2 · t+ π

2

))
+ 0.2 · cos

(
ω0t−

(
ωs

2 · t+ π

2

))
, (2.21)

the sampling points shown in the bottom graph of Figure 2.3 concur with the crossings of the
signal x3 (solid line) and the signal without amplitude modulation x1 (dotted line). In other
words, the sampling occurs during the zero crossing of the high-frequency component. There-
fore, this component is not present in the spectrum of the sampled signal shown in the bottom
graph of Figure 2.4. In the frequency domain this can be explained by the aliasing effect that
maps the frequency components (ωs/2 + ω0) to (ωs/2 − ω0) and vice versa. Complete cancel-
lation results, because these components are symmetrical and of equal amplitude. This fact is
used in the feedback control of PWM power converters, where the modulation leads to high-
frequency components in the measured signals that are above the Nyquist frequency. These
components are not visible in the measured signals when the sampling is synchronized to the
center of the PWM pulses [42].

2.2 Numerical Approximation of the Spectrum

From (2.18) in the previous section, we can conclude that the spectra of periodic continuous-
time signals and of periodic discrete-time signals can be described by the coefficients of a
Fourier series. This includes the sampling process that describes the relationship between the
continuous and discrete signals. When considering periodic signals that are not band-limited,
the Fourier series contains an infinite number of coefficients. In order to evaluate the interaction
of the signals numerically, an approximation of the Fourier series with a limited number of
coefficients is required.

The solution of nonlinear time-domain problems is often accomplished by a numerical inte-
gration of the differential equations (for continuous systems) or the difference equations (for
discrete systems). In order to evaluate the spectral content of the acquired discrete-time signals,
a numerical approximation of the Fourier transform can be performed, called DFT. The result
is a discrete spectrum

Xs(k) =
N−1∑
n=0

xs[n] · e−jk2πn/N , k = 0, ..., N − 1, (2.22)

which is periodic with the sampling period and therefore approximates the signal up to the
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Nyquist frequency of fs/2 with a limited number of spectral lines. The DFT algorithm requires
an evenly sampled sequence xs(n) that is an approximation of the continuous signal x(t). If
x(t) contains frequencies higher than the Nyquist frequency, the sampling leads to aliasing and
the base-band spectrum contains false information, as shown in the previous section.

In order to avoid aliasing, the signals can be described analytically in the frequency domain and
a numerical evaluation of the analytical equations provides the approximation of the spectra.
All continuous signals considered in this work are finite power signals, that is

1
T
·
∫
T
|x(t)|2dt <∞. (2.23)

For finite power signals, the Fourier series converges

∞∑
k=−∞

|X,k|2 <∞, (2.24)

meaning that the power in the harmonics of high order is negligible [40] and the power of the
signal P can be approximated by a Fourier series with a finite number of harmonics kmax, with

P =
∞∑

k=−∞
|X,k|2 ≈

kmax∑
k=−kmax

|X,k|2. (2.25)

However, the deviation e(t) of an approximation xapp(t) of the signal x(t) with

e(t) = xapp(t)− x(t), (2.26)

and

xapp(t) =
kmax∑

k=−kmax

X,k · e jkω0t, (2.27)

can have significant errors in points of discontinuities of x(t) that remain even for large numbers
of kmax, which is known as the Gibbs phenomenon. Because the evaluation of the developed
equation systems in this work is performed on the spectra in a limited frequency band rather
than on the reconstruction of the signal in the time domain, (2.27) provides an acceptable ap-
proximation. Furthermore, the summation in (2.27) is exact for a band-limited signal, if the
maximum frequency in the signal is smaller than kmax · f0.

This can be demonstrated for a rectangular pulse pattern with a 50 % pulse width and zero
average value, which is represented by a Fourier series

rect(t) =
∞∑

k=−∞

1
T0
· si(kπ/2), (2.28)

with an infinite number of coefficients. Thus, the DFT of the sampled signal contains aliasing.
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Figure 2.6: DFT of a rectangular pulse described with a low number of sampling points (blue crosses), a high
number of sampling points (orange bars) and the coefficients of a Fourier series representation with a
maximum order of kmax = 15 (green pluses).

Because the rectangular pulse is a finite power signal, the influence of aliasing decreases with
higher sampling frequencies. Therefore, the spectral analysis of signals with discontinuities
requires very high sampling frequencies, as illustrated by the example in Figure 2.5. The rect-
angular pulse is plotted for a large sampling period of Ts = 5 · T0 · 10−2 as a solid line with
crosses for the sampling points, and for a small sampling period of Ts = T0 · 10−4 as a dashed
line. The spectrum obtained by DFT is shown in Figure 2.6 and shows a strong influence of
aliasing when using large sampling periods. For a small sampling period, aliasing is reduced to
small amplitudes. By contrast, evaluating the coefficients of the Fourier series in (2.28) predicts
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the coefficients exactly up to the maximum order kmax that the evaluation was performed for. In
Figure 2.6 the maximum order is chosen as kmax = 15 and the evaluation of the Fourier series
is included in Figure 2.5 as a solid line, illustrating the Gibbs phenomenon.

2.3 Simultaneous Solution of the Equation System

The converter systems that will be analyzed in the next chapters contain a number of N un-
known signals. The goal is to represent all relationships of the signals in the frequency domain
and simultaneously solve the resulting equation system. Two important relationships will be pre-
sented in the following section: linear time-invariant (LTI) systems and the frequency-domain
convolution.

LTI Systems

The relationship between an input signal u(t) and an output signal x(t) in an LTI system is
given as the convolution of the input signal with the impulse response of the system h(t), with

x(t) = h(t) ∗ u(t) =
∫ ∞
−∞

h(t− τ) · u(t) dτ. (2.29)

In the frequency domain this can be expressed by a multiplication of the spectrum of the input
signal X(f) with the transfer function of the system H(f), with

X(f) = H(f) · U(f). (2.30)

If the input signal is periodic and is approximated by a finite Fourier series using (2.27) with a
limited number of kmax harmonics, the complex Fourier coefficients can be collected in a vector
representation

~U = [U,−kmax , .. , U,−1, U,0, U,1, .. , U,kmax ]T (2.31)

with a length of l = 2 kmax + 1. The output of the LTI system results in a Fourier series with the
same number of harmonics and the relationship can be written as

~X = H · ~U, (2.32)

where the LTI system is represented by a diagonal matrix

H = diag(H,−kmax , .. , H,−kmax), (2.33)
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with the element of harmonic order k

H,k = H[kf0]. (2.34)

The output results in a vector of complex Fourier coefficients of the length l, with

~X = [X,−kmax , .. , X,−1, X,0, X,1, .. , X,kmax ]T. (2.35)

Convolution

The multiplication of two time-domain signals u1(t) and u2(t) corresponds to a convolution of
the spectra in the frequency domain, with

x(t) = u1(t) · u2(t) d t X(f) = U1(f) ∗ U2(f). (2.36)

If the time-domain signals are periodic, the convolution can be expressed as a summation of
shifted products of the discrete spectra

X[kf0] = U1[kf0] ∗ U2[kf0] =
∞∑

m=−∞
U1[mf0] · U2[(k −m)f0], (2.37)

which is known as linear discrete convolution. For a finite number of harmonics the convolution
can be written in a vector representation of the Fourier coefficients, where the convolution
output for the harmonic coefficient of order k results in:

X,k =
[
~U1 ∗ ~U2

]
,k

=
kmax∑

m=−kmax

U1,m · U2,(k−m), k −m ≥ −kmax ∧ k −m ≤ kmax.

(2.38)

The convolution can then be rearranged into a matrix multiplication

~X = ~U1 ∗ ~U2 = C(~U1) · ~U2. (2.39)

The complete output of the convolution is a vector ~X of the size (2 l − 1). Because all sig-
nals in this work are limited to the length l, the evaluation of (2.38) will be limited to k ∈
{−kmax, ..., kmax}. This truncated form of the linear discrete convolution1 uses a square convo-

1This form corresponds to the Matlab function conv when applying the option same.
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lution matrix C(~U1) of the vector ~U1 that has a size of l × l, with

C( ~U1) =



U1,0 . . . U1,−kmax

U1,1 . . . U1,(1−kmax) U1,−kmax
...

...
...

U1,kmax . . . U1,−kmax
...

...
...

U1,kmax U1,(kmax−1) . . . U1,−1
U1,kmax . . . U1,0


. (2.40)

As an example, the time-domain multiplication of two waveforms u1(t) and u2(t) is depicted
in Figure 2.7. The first graph shows a typical PWM signal as it would result from a modulation
index M = 0.8, a switching frequency of fs = 1000 Hz, and a fundamental frequency of 50 Hz.
The second signal has a direct component of 1 superimposed by a high-frequency signal with
an amplitude of 0.1 and a frequency of 1050 Hz. The third graph shows the multiplication of the
two signals.

The spectra of the signals are shown in Figure 2.8. The spectrum of the first signal is given in
the first graph, showing the typical sideband components around multiples of fs. PWM spectra
are analyzed in detail in Chapter 3. The blue lines illustrate the band-limited spectrum with
kmax = 2500 Hz/50 Hz = 50 and the red lines represent the full spectrum. The frequency-
domain convolution of ~U1 ∗ ~U2 with the spectrum of the second signal is shown in the third
graph for the full convolution matrix. A comparison of the blue lines of the band-limited spec-
trum with the red lines of the full spectrum reveals that there are deviations not only for the har-
monic components above kmax, but also for components of the second sideband group around
2000 Hz. This is explained by the convolution of the frequency-components of the third side-
band group around 3000 Hz and the high-frequency component in u2 at 1050 Hz, which is ne-
glected when using the band-limited spectra. The fourth graph shows the result when using the
square convolution matrix as it is given by (2.40).

Inverse Convolution

The inverse convolution, also known as deconvolution, is used in signal processing and image
processing to recover the original signal that was filtered by a convolution with a kernel [43].
In order to reverse the process given by (2.36), a time-domain division is performed, which
corresponds with an inverse convolution in the frequency domain, with

u2(t) = x(t)
u1(t)

d t U2(f) = U−1
1 (f) ∗X(f). (2.41)
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As requirements, the signal u1(t) must never be zero and 1/u1(t) must be a signal of slow
growth [44]. When assuming discrete spectra, an inversion of (2.39) can be performed, with

~U2 = C−1(~U1) · ~X. (2.42)

In order to calculate the inverse of the square convolution matrix, it is required that C(~U1) is a
regular matrix with det

(
C(~U1)

)
6= 0.

Linear Equation System

The N unknown signals of a converter system, represented by the vectors ~Xn, n ∈ {1, 2, ..., N}
with vector size l, form a feedback system, where all signals can interact with each other.
These relationships are described by a set of N l-dimensional equations ~fn : Cl → Cl, n ∈
{1, 2, ..., N}, as illustrated in Figure 2.9. The input signals, represented by the vectors ~Um,m ∈
{1, 2, ...,M}, are independent of the system signals.

Figure 2.9: Example representation of an linear feedback system with nonreactive input vectors ~U1...~UM , output
vectors ~X1... ~XN , and linear transfer functions H1...H3 .

If the relationships of all unknown signals are linear, the system description results in a linear
equation system

A11 . . . A1N
... . . .

...
AN1 . . . ANN


︸ ︷︷ ︸

A

·


~X1
...
~XN


︸ ︷︷ ︸

~X

=


~B1
...
~BN


︸ ︷︷ ︸

~B

, (2.43)

where A is the coefficient matrix of the dimension (N · l×N · l), which can be divided into N2

submatrices Amn,m, n ∈ {1, 2, ..., N} of the size (l × l). The vector ~X collects all unknown
signals and has a length of N · l. All input signals are collected in the vector ~B, which has
a length of (N · l). In the case of a frequency-domain convolution with the harmonics of an
unknown signal, the coefficients of the input signal are present in the coefficient matrix.

As an example, an equation system with two input vectors ~U1 and ~U2 and two unknown vectors
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~U1 and ~U2 is given by{
~X1 ∗ ~U1 − ~X2 = ~0
~X1 + ~X2 = ~U2

}
, (2.44)

where ~0 is a zero vector of length l. The system contains a convolution of unknown vector ~X1
and input vector ~U1. The equation system can be represented as a linear matrix expression by[

C(~U1) −E
E E

]
︸ ︷︷ ︸

A

·
[
~X1
~X2

]
︸ ︷︷ ︸
~X

=
[
~0
~U2

]
︸ ︷︷ ︸
~B

, (2.45)

where E denotes the identity matrix. The convolution is represented by the convolution matrix
of the input vector C(~U1), which is included in the system matrix.

The solution of the equation system requires an inversion of the system matrix, with

~X = A−1 · ~B. (2.46)

In this thesis, the solution is performed numerically in Matlab using the matrix left divide
(mldivide) function. The function allows Matlab to choose an appropriate solver depending
on the shape and the sparsity of the matrix. A system containing a convolution of two unknown
vectors, e.g. ~X1 ∗ ~X2, is nonlinear and requires a nonlinear solution method.

Nonlinear Equation System

If the overall equation system is nonlinear, a numerical algorithm is required to find the roots of
the equation system

~f1( ~X1, ... ~XN , ~U1, ...~UM) = ~0
...

~fN( ~X1, ... ~XN , ~U1, ...~UM) = ~0
(2.47)

The iterative solution process requires initial values ~Xn0 for all vectors.

In Chapter 3 a frequency-domain model for a VSI with open-loop control is developed that re-
sults in a linear equation system of the form presented in (2.43). When considering closed-loop
control in Chapter 5, the simultaneous solution of the resulting nonlinear equation system is
required. The initial values of the solution process are calculated in a reduced model that only
considers the fundamental frequency component. This approach also applies to the incorpora-
tion of nonlinear loads, as shown in Chapter 6 for a drive system with a PMSM.
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2.4 Validation Process

The results from the frequency-domain models are compared to results from time-domain sim-
ulations and measurement results. In the case of the frequency-domain models, the spectra of
the signal X are directly available in the form of complex vectors ~XFD. By contrast, the results
of the time-domain simulations and the measurement results are in the form of sampled time-
domain values. A fast Fourier transform (FFT) is applied in both cases to calculate the complex
spectra in vector representation.

The numerical results of the complex spectra are plotted in the following chapters in their mag-
nitude representation [Appendix A], with

X̂,k = 2 ·
√
<{X,k}2 + ={X,k}2 = 2 · |X,k|, k ∈ N. (2.48)

For a good comparability of a wide range of magnitudes, a logarithmic scale is chosen. Because
differences between the results from different models appear smaller in a logarithmic scale than
in a linear scale, the differences of the spectra are calculated as an additional comparison tool.
There are two definitions of differences that will be used in this thesis. The difference of the
complex spectra will be used to compare the spectra of the frequency-domain model ~XFD and
the time-domain model ~XTD. This will be denoted as

|∆X,k| :=
{

2 · |XFD
,k −XTD

,k |, k 6= 0
|XFD

,0 −XTD
,0 |

. (2.49)

This method allows to display differences in the models, even when magnitudes are similar.
Differences that result from differences in the angle information are indicated in this method.

For a comparison of the results from the frequency-domain models with the spectra of measure-
ment results ~Xmeas a second method is utilized. The difference of the magnitude spectra

∆|X,k| :=
{

2 · || ~XFD
,k | − | ~Xmeas

,k ||, k 6= 0
|| ~XFD

,0 | − | ~Xmeas
,0 ||

. (2.50)

allows to compare the spectra while neglecting differences in the angle information. Although a
full validation of the spectra is only possible when considering the complex spectra, this method
allows to validate the accuracy of the calculated magnitudes of the frequency-domain model.

A comparison of the angles of the spectra is not used in this thesis, because large differences in
the angle information can occur, while the magnitudes of these spectral lines are low. This can
lead to misinterpretation. Differences in the angle information are sufficiently covered by the
difference of complex spectra |∆ ~X|.
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3 VSI with Open-Loop Control

A VSI connects a voltage-stiff1 dc link to a number of ac phases using semiconductor switches.
The single-phase full-bridge VSI depicted in Figure 3.1 is formed by four individually con-
trolled insulated-gate bipolar transistors (IGBTs) with anti-parallel diodes. The converter can
be clustered into two half bridges, each of which consist of a top and a bottom transistor-diode
pair. Similarly, the three-phase half-bridge VSI depicted in Figure 3.2 consists of three half
bridges. The transistors are controlled by their gate signals, which are represented here by a
binary signal gtν for the top transistor of phase ν and gbν for the bottom transistor of phase ν.

The half bridge is the fundamental building block of the VSI and connects a current-stiff2 ac
phase to the dc link. The dc-link capacitor Cdc acts as the dc-voltage source and provides two
voltage-stiff nodes with a voltage of udc/2 and−udc/2 in reference to the midpoint potential ϕ0.
By turning the top transistor on and the bottom transistor off, the positive node is connected to
the output. By inverting the two gate signals, the negative node can be coupled with the phase
output. This results in a positive-voltage and a negative-voltage switching state, respectively.
The analytical model for the half bridge as the fundamental building block is developed in
Section 3.1 and is used to describe the single-phase VSI and the three-phase VSI.

The ac-side phases of the VSI are connected to a load comprising an inductance, which intro-
duces a low-pass filter. By quickly alternating between the two switching states, the low-pass
filtered output voltage is defined by the ratio of the switching intervals. This ratio is called duty

1A stiff voltage is provided by a capacitive energy storage.
2An inductive energy storage yields a stiff current.
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Figure 3.1: Equivalent circuit of a single-phase full-bridge VSI. It consists of two individually controlled half
bridges. The output voltage is the difference of the ac-side voltages of the two half bridges.
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Figure 3.2: Equivalent circuit of a three-phase two-level VSI comprising half bridges

cycle and has approximately a linear relationship with the low-pass filtered output voltage. The
generation of the gate signals, representing a low-frequency behavior linear to the duty cycle, is
determined in the PWM process, which is analyzed in Section 3.2.

While the PWM process defines the energy conversion between the ac side and the dc side, the
two sides form subsystems themselves. As shown in Figure 3.1 and Figure 3.2, these commonly
consist of linear components (inductance, capacitor, resistor) and are influenced by disturbance
voltages and disturbance currents. The frequency-domain models for these subsystems are de-
veloped in Section 3.3 and result in linear transfer functions.

Modeling the VSI with its load and its feeding source as a closed-loop system that describes the
interaction of the ac-side signals with the dc-side signals and their reaction to the disturbances
in the frequency domain concludes in the simultaneous solution of all equations collected in
one equation system. In Section 3.4 the equation system is formulated and numerically solved
for the single-phase VSI and the three-phase VSI and validated by time-domain simulations and
experimental results.

3.1 Model of One VSI Phase Leg

The model of one half bridge with the phase leg number ν, with ν ∈ {1, 2} for a single-phase
full-bridge inverter and ν ∈ {1, 2, 3} for a three-phase inverter, is developed on the equivalent
circuit shown in Figure 3.3 a. The switching state of the IGBTs is defined by the binary gate
signals gtν(t) ∈ {0, 1} and gbν(t) ∈ {0, 1} for the top and bottom IGBT, respectively, and the
transistors are switched complementarily with negated gate signals gtν(t) = ḡbν(t). Assuming
complementary switching behavior, each phase leg can be replaced by a single-pole double-
throw switch (Figure 3.3 b), with the switching function

sν(t) = gtν(t)− gbν(t) = 2 · gtν(t)− 1, sν(t) ∈ {−1, 1}. (3.1)
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Figure 3.3: Equivalent circuit of one inverter phase leg using a) IGBTs b) a single-pole double-throw switch

The switching function is used to provide the algebraic connection between the ac-side voltage
uac and the dc-side voltage udc, with

uacν(t) = 1
2 · sν(t) · udc(t), (3.2)

and between the ac-side current iac and the dc-side current idc, with

idcν(t) = idcpν(t)− idcnν(t)
2 = 1

2 · sν(t) · iacν(t). (3.3)

Note that while considering only a single half bridge, the dc-side current is a mathematical
quantity without an equivalent physical current, because there is no return current path. Its
physical meaning is given when considering the other half bridges of the topology.

Transforming the equations to the frequency domain, using the convolution theorem in (2.15),
yields a convolution of the spectra, with

Uacν(f) = 1
2 · Sν(f) ∗ Udc(f), (3.4)

Idcν(f) = 1
2 · Sν(f) ∗ Iacν(f). (3.5)

Whereas (3.4) and (3.5) are valid for aperiodic signals, a simplified evaluation of the power
conversion can be accomplished for the steady state using Fourier coefficients. With the vector
representation of the Fourier coefficients in (2.31) and the matrix representation of the convo-
lution in (2.39), the model of a half bridge results in

~Uacν = 1
2 ·C(~Sν) · ~Udc, (3.6)

~Idcν = 1
2 ·C(~Sν) · ~Iacν . (3.7)
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3.2 Pulse-Width Modulation

PWM is a common method to determine the switching instants of the transistors in order to
generate a desired voltage setpoint usp of the phase output of the half bridges. For clarity, the
phase number ν is not included in the following equations of single-phase cases.

The division of the voltage setpoint by half the dc component of the dc-link voltage Udc0 defines
the duty cycle as

d(t) = usp(t)
Udc0/2

. (3.8)

A comparison of (3.2) with (3.8) reveals that the ac-side voltage approximates the voltage set-
point when

1. udc(t) ≈ Udc0,

2. d(t) ≈ s(t).

The first assumption is a valid approximation, because the dc-link voltage is stiff, due to a
sufficiently large dc-link capacitance. In order to validate the second assumption, the goal of
the PWM process is to provide a fast-switching pattern with a switching period Tsw and a short-
time average that equals the slowly-varying duty cycle. Introducing the moving average operator
〈.〉T [34], with

〈x(t)〉T = 1
T

∫ t+T/2

t−T/2
s(τ)dτ, (3.9)

the approximation of the PWM process becomes

〈s(t)〉Tsw
= d[nTsw]. (3.10)

For carrier-based PWM, the switching function is determined by a comparison of the duty cycle
as the input signal to a periodic carrier signal c(t) ∈ [−1, 1]. For the selection of the carrier
signal it is required that there be a linear relationship between the duty-cycle and the short-time
average of the switching function [13]. If the duty cycle is larger than the carrier signal, the
output gate signal gt(t) = ḡb(t) is one, otherwise the output is zero. The switching instants are
called edges.

It is further assumed that the gradient of the carrier signal is much higher than the gradient
of the duty cycle and the duty cycle is limited to d(t) ∈ [−1, 1]. With this, the output signal
changes its value twice per cycle and the carrier period is equal to the switching period Tsw. The
only exceptions are given for the maximum duty cycle values of 1 and -1, where no switching
occurs.
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A number of different modulation methods exist that differ in their choice of carrier signal
and sampling method. For the carrier signal, either a sawtooth signal or a triangular signal are
the common choices. Symmetrical carrier signals are preferred because of a lower resulting
distortion of the output signal [13]. Using a sawtooth signal, one edge is fixed to the beginning
of the carrier period. This modulation type is called single-edge PWM. If the sawtooth signal
has a positive slope, as shown in Figure 3.4, the positive edge is fixed and the negative edge is
influenced by the duty cycle. This is a modulation type called trailing-edge PWM (TE-PWM).
For a negative slope, shown in Figure 3.5, the positive edge is modulated. This is known as
leading-edge PWM (LE-PWM).
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Figure 3.4: Regularly-sampled trailing-edge PWM
(TE-PWM)
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Figure 3.5: Regularly-sampled leading-edge PWM
(LE-PWM)
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double-edge PWM (AD-PWM)
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In digital control systems, the duty cycle is updated once per control period Tc and the duty cycle
is sampled and held by the modulation unit, which is called regularly-sampled. For single-edge
modulation, the control period is the same as the carrier period Tsw = Tc. The continuous duty
cycle is included in Figure 3.4 and Figure 3.5 as a red, dashed line. The sampling and holding
of the duty cycle occurs at the beginning of each carrier period, resulting in the red solid line.
The bottom graphs of Figure 3.4 and Figure 3.5 show the resulting switching functions s(t)
for regularly-sampled TE-PWM and LE-PWM respectively, which only differ in the placement
of the pulse within the switching period. When using an analog modulator, the duty cycle is a
time-continuous signal and the modulation process is called naturally-sampled.

The modulation process leads to an output signal that is a distorted image of the input signal.
The selection of the modulation type and the preferred modulation and control system (digital
or analog) determines the intensity of this distortion. Naturally-sampled PWM has a lower dis-
tortion compared to a regularly-sampled implementation [12]. Nevertheless, due to its simpler
implementation in the widely used digital low-level control of power converters, only regular
sampling is considered in this thesis.

When using a symmetrical triangular carrier, the placement of both edges within the switching
period depends on the duty cycle, which explains why it is called double-edge PWM. Sampling
the duty cycle at the beginning of the carrier period (Tsw = Tc) results in a switching pulse that is
symmetrically placed within the switching period, as shown in Figure 3.6. This method is called
symmetrical regularly-sampled double-edge PWM (SD-PWM). Sampling the duty cycle at the
beginning and at the center of the carrier period (Tsw = 2Tc) results in asymmetrical regularly-
sampled double-edge PWM (AD-PWM) with an asymmetrically placed switching pulse. In this
case, the short-time average of the switching function follows the duty cycle more closely, with

〈s(t)〉Tsw/2 = d[nTsw/2]. (3.11)

A triangular signal can be composed of one rising sawtooth signal followed by a falling saw-
tooth signal [9]. This fact is used to establish the model of double-edge PWM from the models
of TE-PWM and LE-PWM, which are easier to analyze. Switching the edges and starting the
triangular signal with a falling sawtooth signal followed by a rising sawtooth signal can also be
described by a phase shift of the triangular carrier by π.

A comparison of the output spectra of the regularly-sampled PWM methods reveals a lower
distortion for the double-edge implementations and the lowest distortion levels for AD-PWM
[12]. Nevertheless, both double-edge modulation types are used, because a control frequency
that is twice the switching frequency is not feasible in all applications.
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3.2.1 Single-Frequency Modulation

The presented modulation methods generate a switching function with a short-time average that
approximates the duty cycle. Inevitably, the PWM process generates additional low frequency
harmonics of the input signal and high frequency side bands around the switching frequency. In
order to evaluate these distortions, which differ significantly between the modulation methods,
analyses of the spectra are performed [12].

Under the assumption of sinusoidal modulation, where the duty cycle is a sine wave

d(t) = M · sin(ωd0 · t+ θd0) (3.12)

with a constant modulation index M , a constant radiant frequency ωd0 and a phase shift of θd0
the ac-side voltage spectrum was analyzed by Bowes and Bird [10] using the double Fourier
series approach, which has its theoretical background in the work of Bennett [8] and Black [9].
The results are summarized for and extended to various modulation methods in the compre-
hensive book of Holmes and Lipo [12]. These represent the ac-side voltage as a double Fourier
series under the assumption of a constant dc-link voltage, and therefore they are proportional to
the switching function, see (3.8). The carrier signal has constant radiant frequency of ωsw and a
phase shift of θsw.

The output of the modulation process is a switching function s(t) that depends on two variables
x(t) and y(t), with

(x(t), y(t)) 7−→ s(t),
x(t) := ωsw · t+ θsw,

y(t) := ωd0 · t+ θd0.

(3.13)

Periodic waveforms that depend on two variables can be described by a Fourier series extension
to two dimensions, called double Fourier series. Its (real) Fourier coefficients Amn and Bmn are
obtained by solving double integrals, with

Amn = 1
2π2 ·

∫ π

−π

∫ π

−π
s(x, y) · cos(mx+ ny) dx dy

Bmn = 1
2π2 ·

∫ π

−π

∫ π

−π
s(x, y) · sin(mx+ ny) dx dy

(3.14)

In order to find an analytical expression of the Fourier coefficients, the integration needs to
be solved analytically. The expression of the switching function s(x, y) and the corresponding
bounds of integration are derived for each modulation method individually based on a graphical
interpretation of the so-called unit cell. This process is illustrated in Figure 3.8 for SD-PWM.
Each square of the width 2π represents a unit cell, comprising one switching period on the
x axis and one duty cycle period one the y axis. The locus of the duty cycle has the form
d(t) = M · cos(ωd0 + θd0) and divides the area of positive (1) and negative (-1) switching
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function levels, resulting in a sandglass shape. For natural sampling the switching occurs at the
crossing of the linear slope of ωd0/ωsw · t (red, dotted line) and the locus of the duty cycle. For
regular sampling, the slope is modified into a sampled slope y′ (red, solid line). Additionally,
a phase correction of the sampling process is implemented that results in an effective sampling
at the center of the switching cycle. The resulting switching pattern is included in the bottom
graph.

By finding an expression y 7→ x for the switching instants, the bounds of integration in (3.14)
are divided into parts, where the switching function can by substituted by its values (1) and
(-1). The graphical representation of the unit cells (Figure 3.8) can help for the development,
by transforming the intersections of the locus of the duty cycle and the linear slope. A further
substitution (x, y) 7→ y′ is necessary in order to consider the sampling process of SD-PWM
and AD-PWM. The results are analytical expressions for the double Fourier coefficients Amn
and Bmn. The reader is referred to [12] for a detailed derivation of the double Fourier series
expressions for various modulation methods.

Regardless of the PWM method, the switching function can be represented by a double Fourier
series with the following form:

s(t) = A,00

2︸ ︷︷ ︸
dc component

+
∞∑
n=1

[A,0n cos(n(ωd0t+ θd0)) +B,0n sin(n(ωd0t+ θd0))]︸ ︷︷ ︸
base−band harmonics

...

+
∞∑
m=1

[A,m0 cos(m(ωswt+ θsw)) +B,m0 sin(m(ωswt+ θsw))]︸ ︷︷ ︸
carrier harmonics

...

+
∞∑
m=1

∞∑
n=−∞

[
A,mn cos(m(ωswt+ θsw) + n(ωd0t+ θd0))...
+B,mn sin(m(ωswt+ θsw) + n(ωd0t+ θd0))

]
︸ ︷︷ ︸

side−band harmonics

[12],

(3.15)

where A,mn and B,mn are the real Fourier coefficients of the double Fourier series. The indices
of summation m ∈ N and n ∈ Z represent the carrier and duty-cycle harmonic order.

In order to transfer the double Fourier series representation in (3.15) into the single Fourier
series approximation, with

s(t) =
kmax∑

k=−kmax

S,k · ejkω0t, (3.16)

three steps are performed:

1. The indices of summation are limited to m = −mmax...mmax and n = −nmax...nmax.

2. The fundamental frequency of the single Fourier series is selected as the greatest common
divisor of the duty cycle frequency and the switching frequency ω0 = gcd(ωd0, ωsw). For
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this, it is assumed that ωsw/ωd0 ∈ Q.

3. Multiple real double Fourier coefficients A,mn and B,mn of the radiant frequency mωsw +
nω0 are superimposed in the calculation of a single Fourier coefficient S,k of the radiant
frequency kω0. All terms that fulfill k = m + n · ωd0/ωsw,m ∈ N, n ∈ Z influence the
coefficient and build a sum of complex numbers.
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Figure 3.8: Replication of the unit cell for four switching periods and one duty cycle period using SD-PWM with
sinusoidal modulation. The bottom graph shows the resulting switching function. The sampling is
phase corrected and results at the center of the switching period.
ωd0/ωsw = 8, M = 0.5, θd0 = 0, θsw = π.

3.2.2 Multiple-Frequency Modulation

Analytical results for the output spectra of modulators with arbitrary band-limited input signals
were presented by Song and Sarwate in [15] for the first time, providing a more general rep-
resentation of the modulator. Alternative approaches were published in recent years [6, 16, 17],
allowing the incorporation of multiple harmonics in the input spectrum of the modulator.

The approach by Song and Sarwate originates from a time-domain representation of the pulse
pattern using the unit step function (Heaviside function) and is further developed into a frequency-
domain representation of the switching function spectrum as a function of the duty-cycle spec-
trum. The derivation of the approach in [45] is similarly derived in the time domain, but requires
a calculation of the switching instants in the time domain prior to the calculation of the switch-
ing function spectrum.

The results presented by Song and Sarwate in [15] are developed as Fourier transforms and
are reviewed here in a modified notation and with a correction for AD-PWM. They are used
to develop the switching function spectrum in the form of Fourier coefficients. For better com-
parability, the corresponding equation numbers of the reference are given in brackets, where
possible.
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TE-PWM

Figure 3.9 a) shows the comparison of a sampled duty cycle with a TE-PWM sawtooth carrier
for two switching periods. The duty cycle is set to a positive value during the first period and to a
negative value during the second period. The output signal s(t) can be divided into a rectangular
function sc(t) with a constant pulse width of 0.5 · Tsw and a modulated rectangular function
sdTE(t, d), which has a pulse width that is determined by the sampled values of the duty cycle
d[mTsw]. The duty cycle is sampled at the beginning of each switching period. For TE-PWM
the switching function is written as

sTE(t, d) = sc(t) + sdTE(t, d) [15, (1)]. (3.17)

The signal sc(t) is depicted in Figure 3.9 b) and has a value of 1 during the first half of the
switching cycle and a value of -1 during the second half of the switching cycle. This is written
as

sc(t) =
{

1 for mTsw ≤ t < (m+ 1/2)Tsw
−1 for (m+ 1/2)Tsw ≤ t < (m+ 1)Tsw

, m ∈ Z (3.18)

The duty-cycle-dependent component considers the deviation of the output signal sTE(t, d) from
sc(t) due to the influence of the duty cycle, expressed as

sdTE(t, τ) = 2 ·
∞∑

m=−∞
σ(t− (m+ 1/2)Tsw)− σ(t−mTsw − τm) [15, (1)], (3.19)

where σ(t) is the unit step function, defined as

σ(t) =
{

0 for t < 0
1 for t ≥ 0 , (3.20)

and τm is the pulse width of the switching period m. The pulse width has linear relationship
with the duty-cycle value sampled at the beginning of the respective switching cycle, with

τm = 1
2 · Tsw · (1 + d[mTsw]). (3.21)

In (3.19) each carrier period comprises a positive and a negative unit step function σ(t), illus-
trated in Figure 3.9 c) for the first switching cycle (m = 0) and in Figure 3.9 d) for the second
switching cycle (m = 1). The two unit step functions are included as blue and green, dashed
lines. According to (3.17) the total switching function depicted in Figure 3.9 e) results from the
superposition of the components shown in the subplots b) + c) + d).

In order to find an analytical expression of the switching function spectrum for TE-PWM, a
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a) Comparison of a TE-PWM carrier signal with a
sampled duty cycle, where d[mTsw] > 0 for the first
switching period (n = 0) and d[mTsw] < 0 for the
second switching period (n = 1).
b) Rectangular function with a duty cycle of 50 %.
c) Duty-cycle-dependent part for (m = 0), consisting
of two unit-step functions.
d) Duty-cycle-dependent part for (m = 1).
e) Resulting switching function comprising b) + c) + d).
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Figure 3.10: Derivation of switching function for LE-
PWM:
a) Comparison of an LE-PWM carrier signal with a
sampled duty cycle, where d[mTsw] > 0 for the first
switching period (n = 0) and d[mTsw] < 0 for the sec-
ond switching period (n = 1).
b) Equivalent description with a TE-PWM carrier signal
and an inverted duty cycle.
c) Inverted rectangular function with a duty cycle of
50 %.
d) Inverted duty-cycle-dependent part for TE-PWM in
b) and (m = 0), consisting of two unit-step functions.
e) Duty-cycle-dependent part for TE-PWM in b) and
(m = 1).
f) Resulting switching function comprising c) + d) + e).
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Fourier transform is applied to the individual components of (3.17), with

STE(f) = Sc(f) + SdTE(f), (3.22)

The respective vector representation of Fourier coefficients is written as

~SLE = ~Sc + ~SdTE. (3.23)

Because sc(t) is a periodic function with a period of Tsw it can be described by a Fourier series.
Choosing the fundamental period of the Fourier series to an arbitrary value of T0 = m·Tsw,m ∈
Z, the Fourier coefficient Sc,k of order k of the rectangular function results in

Sc,k =
{ 2

jπ(2p+1) for k = (2p+ 1) · T0/Tsw, p ∈ Z
0 otherwise . (3.24)

By using the sampling property of the Dirac function, the discrete spectrum can be transformed
to a continuous spectrum Sc(f), with

Sc(f) =
∞∑
p=0

2
jπ(2p+ 1) · [δ(f − (2p+ 1)fsw)− δ(f + (2p+ 1)fsw)] [15, (3)], (3.25)

For the derivation of the Fourier transform SdTE(f, τ) of (3.19), the Fourier transform of the
unit step function

Σ(f) = 1
2 · δ(f) + 1

j2πf (3.26)

and the time-shifting property

σ(t− τ) d t Σ(f) · e−j2πfτ , (3.27)

are utilized. With this, the Fourier transform SdTE(f, τ) results in

SdTE(f, τ) = 1
jπf ·

∞∑
m=−∞

e−j2πf ·((m+ 1
2 )Tsw) − e−j2πf ·(mTsw+τm) [15, (4)]. (3.28)

Substitution of the pulse width with (3.21) and applying steps of factorization yields

SdTE(f, d) = 1
jπf ·

∞∑
m=−∞

e−j2πf ·((m+ 1
2 )Tsw) − e−j2πf ·(mTsw+ 1

2 Tsw (1+d[mTsw]) (3.29)

= 1
jπf · e

−jπfTsw ·
∞∑

m=−∞
e−j2πfmTsw − e−j2πf ·(mTsw+ 1

2Tswd[mTsw]) (3.30)

= 1
jπf · e

−jπfTsw ·
∞∑

m=−∞
e−j2πfmTsw

(
1− e−jπfTswd[mTsw]

)
[15, (5)]. (3.31)
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By applying the Taylor expansion of the exponential function, with

1− ex = 1−
∞∑
n=0

xn

n! = −
∞∑
n=1

xn

n! , (3.32)

to (3.31) results in:

SdTE(f, d) = 1
jπf · e

−jπfTsw ·
∞∑

m=−∞
e−j2πfmTsw ·

∞∑
n=1
−(−jπfTsw d[mTsw])n

n! . (3.33)

A rearrangement to

SdTE(f, d) = 1
jπf · e

−jπfTsw ·
∞∑
n=1
−(−jπfTsw)n

n! ·
∞∑

m=−∞
(d[mTsw])n · e−j2πfmTsw (3.34)

allows for the extraction of a term
∑∞
m=−∞(d[mTsw])n ·e−j2πfmTsw that corresponds to the DTFT

definition in (2.12). The term is called the DTFT of the duty cycle Ds, which is a spectrum
periodic with the switching frequency fsw. In contrast, the CTFT of the duty cycle is denoted
with D(f).

By acknowledging that exponentiation of a signal in the time domain relates to a repeated
convolution in the frequency domain, the Fourier transform of the discrete-time duty cycle
(ds(t))n is written as

(ds(t))n d t Ds(f) ∗Ds(f) ∗ ... ∗Ds(f)︸ ︷︷ ︸
n times

=: D∗ns (f). (3.35)

Ds(f) is the DTFT of the discrete-time duty cycle. D∗nsw(f) is the Fourier transform of the n-th
power of the input signal (d[mTsw])n, and therefore the n-fold convolution of the duty cycle
spectrum with itself.

If the duty cycle spectrum is given as a continuous-time Fourier transform (d(t))n d tD∗n(f),
the conversion in (2.17) can be applied, which results in

∞∑
m=−∞

(d[mTsw])n · e−j2πfmTsw = D∗ns (f)

= fsw ·D∗n(f) ∗
∞∑

m=−∞
δ(f −mfsw)

= fsw ·
∞∑

m=−∞
D∗n(f −mfsw).

(3.36)
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Application of (3.36) to (3.34) yields

SdTE(f,D) = 1
jπf · e

−jπfTsw ·
∞∑
n=1
−(−jπfTsw)n

n! · fsw ·
∞∑

m=−∞
D∗n(f −mfsw). (3.37)

Reduction and rearrangement leads to the final expression of the switching function spectrum
as

SdTE(f,D) = e−jπfTsw ·
∞∑

m=−∞

∞∑
n=1

(−jπfTsw)n−1

n! ·D∗n(f −mfsw) [15, (6)]. (3.38)

In conclusion, the derivation allows for the expression the switching function spectrum as
a function of the duty cycle spectrum containing multiple frequency components: D(f) 7→
SdTE(f).

Sampling (3.38) with a frequency kf0, while limiting the indices of summation, leads to an
expression for the approximate steady state spectrum using Fourier coefficients:

SdTE,k = e−jπkf0Tsw ·
mmax∑

m=−mmax

nmax∑
n=1

(−jπkf0Tsw)n−1

n! ·
[
~D∗n

]
,(k−mfsw/f0)

, (3.39)

where an evaluation of the vector ~D∗n at the k-th element is denoted as [ ~D∗n],k. The calculation
of the spectrum requires a repeated convolution of the duty cycle spectrum with itself, which is
implemented explicitly, with

~D∗1 = ~D,

~D∗n = ~D∗(n−1) ∗ ~D.
(3.40)

LE-PWM

The derivation of the switching function spectrum for LE-PWM is simplified by using an anal-
ogy to TE-PWM. Figure 3.10 a) shows the carrier and the duty cycle for LE-PWM. The re-
sulting switching function is the same as for TE-PWM when applying an inverted duty cycle
and inverting the output signal (Figure 3.10 b)): sLE(t, d) = −sTE(t,−d). Similar to (3.17), the
switching function for LE-PWM can be divided into two components:

sLE(t, d) = −sc(t) + sdLE(t, d),
= −sc(t)− sdTE(t,−d).

(3.41)

Figure 3.10 c), d), and e) illustrate how the components −sc(t) and sdLE(t, d) can be derived
similarly to TE-PWM. Subfigure f) shows the resulting switching function as the superposition
of c) + d) + e).
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For the derivation of the frequency domain expression

SLE(f, d) = −Sc(f) + SdLE(f, d), (3.42)

the results for are TE-PWM utilized. Sc(f) is the same as for TE-PWM and is given in (3.25).
The derivation of the duty-cycle-dependent component is accomplished by modifying (3.33)
and following the same steps in the derivation as for TE-PWM, with

SdLE(f, d) = −SdTE(f,−d) (3.43)

= − 1
jπf · e

−jπfTsw ·
∞∑

m=−∞
e−j2πfmTsw ·

∞∑
n=1
−(jπfTsw d[mTsw])n

n! (3.44)

= − 1
jπf · e

−jπfTsw ·
∞∑
n=1
−(jπfTsw)n

n! ·
∞∑

m=−∞
(d[mTsw])n · e−j2πfmTsw ,

(3.45)

SdLE(f,D) = 1
jπf · e

−jπfTsw ·
∞∑
n=1

(jπfTsw)n
n! · fsw ·

∞∑
m=−∞

D∗n(f −mfsw). (3.46)

= e−jπfTsw ·
∞∑

m=−∞

∞∑
n=1

(jπfTsw)n−1

n! ·D∗n(f −mfsw) [15, (42)]. (3.47)

The continuous spectrum can again be sampled and approximated with a finite summation to
generate the Fourier components for the steady state:

SdLE,k = e−jπkf0Tsw ·
mmax∑

m=−mmax

nmax∑
n=1

(jπkf0Tsw)n−1

n! ·
[
~D∗n

]
(k−mfsw/f0)

. (3.48)

SD-PWM

The derivation of the switching function for double-edge PWM takes advantage of its close
relationship to single-edge PWM. For SD-PWM the switching function can be written as

sSD(t, d) = sc(t− Tsw/4) + sdLE(t+ Tsw/4, d[mTsw]/2)...
+ sdTE(t− Tsw/4, d[mTsw]/2) [15],

(3.49)

where the first edge is a leading edge and the second edge is a trailing edge. This is illustrated in
Figure 3.11 for one switching period, where subfigure a) shows the carrier signal and the duty
cycle, which is sampled at the beginning of the switching period. The component of constant
duty cycle in subfigure d) differs from TE-PWM (Figure 3.11 b)) in a right shift of Tsw/4.

The leading edge of SD-PWM is the same as for LE-PWM when using half the duty cycle
(d[mTsw]/2) and a left-shifted LE-PWM carrier by Tsw/4, as depicted in Figure 3.11 b). For
comparison, the full duty cycle value is included in light red and the unshifted carrier is in-
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Figure 3.11: Derivation of switching function for SD-
PWM:
a) Comparison of an SD-PWM carrier signal (black
line) with a sampled duty cycle d[mTsw] > 0 (red
dashed line).
b) Equivalent description for the leading edge using a
LE-PWM carrier signal left-shifted by Tsw/4. The duty
cycle’s value is halved.
c) Equivalent description for the trailing edge using
a TE-PWM carrier signal right-shifted by Tsw/4. The
duty cycle’s value is halved.
d) Rectangular function with a duty cycle of 50 % right-
shifted by Tsw/4.
e) Duty-cycle-dependent part for LE resulting from b).
f) Duty-cycle-dependent part for TE resulting from c).
g) Resulting switching function comprising d) + e) + f).
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Figure 3.12: Derivation of switching function for AD-
PWM:
a) Comparison of an AD-PWM carrier signal (black
line) with a sampled duty cycle sampled at mTsw and
(m+ 1/2)Tsw (red dashed line).
b) Equivalent description for the leading edge using a
LE-PWM carrier signal left-shifted by Tsw/4. The duty
cycle’s value is halved and sampled at mTsw.
c) Equivalent description for the trailing edge using
a TE-PWM carrier signal right-shifted by Tsw/4. The
duty cycle’s value is halved and sampled at (m +
1/2)Tsw.
d) Rectangular function with a duty cycle of 50 % right-
shifted by Tsw/4.
e) Duty-cycle-dependent part for LE resulting from b).
f) Duty-cycle-dependent part for TE resulting from c).
g) Resulting switching function comprising d) + e) + f).
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cluded in gray. The resulting duty-cycle-dependent component of the leading edge sdLE(t +
Tsw/4, d[mTsw]/2) is shown in Figure 3.11 e).

The duty-cycle-dependent component of the trailing edge can be derived similarly. As illus-
trated in the subfigures c) and f), an equivalent duty-cycle-dependent component sdTE(t −
Tsw/4, d[mTsw]/2) results when applying a comparison of half the duty cycle (d[mTsw]/2) to a
right-shifted TE-PWM carrier by Tsw/4. The superposition of the subfigures d) + e) + f) yields
the total switching function for SD-PWM, depicted in subfigure g).

The Fourier transform of (3.49) results in

SSD(f,D) = e−jπfTsw/2 · Sc(f) + e+jπfTsw/2 · SdLE(f, d/2)...
+ e−jπfTsw/2 · SdTE(f, d/2) [15, (48)].

(3.50)

An analysis of (3.34) and (3.45) reveals that a scaling of the duty cycle by 1/2 introduces a
scaling term of 1/2n into the calculation of the switching function spectra. Therefore, the final
equations for TE-PWM and LE-PWM in (3.38) and (3.47) are used with a scaling term of 1/2n.
This results in

SSD(f,D) = e−jπfTsw/2 · Sc(f)...

+ e+jπfTsw/2 · e−jπfTsw ·
∞∑

m=−∞

∞∑
n=1

(jπfTsw)n−1

2n · n! ·D∗n(f −mfsw)...

+ e−jπfTsw/2 · e−jπfTsw ·
∞∑

m=−∞

∞∑
n=1

(−1)n−1 · (jπfTsw)n−1

2n · n! ·D∗n(f −mfsw).

(3.51)

A further step is introduced by analyzing the summation over n. For odd numbers n it can be
stated that (−1)n−1 = 1 and thus

(jπfTsw)n−1 · e+jπfTsw/2 + (−1)n−1 · (jπfTsw)n−1 · e−jπfTsw/2...
n is odd−→ (jπfTsw)n−1 ·

(
e+jπfTsw/2 + e−jπfTsw/2

)
= (jπfTsw)n−1 · cos(πfTsw/2).

(3.52)

For even numbers of n it can be stated that (−1)n−1 = −1 and thus

(jπfTsw)n−1 · e+jπfTsw/2 + (−1)n−1 · (jπfTsw)n−1 · e−jπfTsw/2...
n is even−→ (jπfTsw)n−1 ·

(
e+jπfTsw/2 − e−jπfTsw/2

)
= (jπfTsw)n−1 · j · sin(πfTsw/2).

(3.53)
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Applied to (3.51), the summation can be summarized to

SSD(f,D) = e−jπfTsw/2 · Sc(f) + e−jπfTsw ...

·
∞∑

m=−∞

∞∑
n=1

(jπfTsw)2n−2

22n−2(2n− 1)! ·D
∗(2n−1)(f −mfsw) · cos(πfTsw/2)...

+j · (jπfTsw)2n−1

22n−1(2n)! ·D
∗(2n)(f −mfsw) · sin(πfTsw/2) [15, (49)].

(3.54)

In (3.54), odd carrier groups (n = 1, 3, ...) are defined by the first part of the summation and
even carrier groups (n = 2, 4, ...) are defined by the second part of the summation. Sampling is
applied to obtain the Fourier coefficient of order k, expressed as

SSD,k = e−jπkf0Tsw/2 · Sc,k + e−jπkf0Tsw ...

·
mmax∑

m=−mmax

nmax∑
n=1

(jkω0Tsw/2)2n−2

22n−2(2n− 1)! ·
[
~D∗(2n−1)

]
(k−mfsw/f0)

· cos(kω0Tsw/4)...

+j · (jkω0Tsw/2)2n−1

22n−1(2n)! ·
[
~D∗(2n)

]
(k−mfsw/f0)

· sin(kω0Tsw/4).

(3.55)

AD-PWM

For AD-PWM, the duty cycle of the second edge is sampled at the center of the switching
period. The modulation process is depicted in Figure 3.12, visualizing that the only difference
of AD-PWM in comparison to SD-PWM is the duty cycle of the second edge and its influence
of the TE-PWM component. The switching function for AD-PWM is described by

sAD(t, d) = sc(t− Tsw/4) + sdLE(t+ Tsw/4, d[mTsw]/2)...
+ sdTE(t− Tsw/4, d[(m+ 1/2)Tsw]/2),

(3.56)

which stands in contrast to the derivation published in [15, p. 2248]. The sampling points of the
duty cycle [mTsw] and [(m+ 1/2)Tsw] are included to stress the difference for the trailing edge
and the leading edge. The Fourier transform of the switching function in (3.56) results in

SAD(f, d) = e−jπfTsw/2 · Sc(f) + e−jπfTsw/2 · STE(f, d[(m+ 1/2)Tsw]/2)...
+ e+jπfTsw/2 · SLE(f, d[mTsw]/2)

(3.57)
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The influence of the duty cycle’s time shift of Tsw/2 on the Fourier transform in (3.36) yields:

∞∑
m=−∞

(d[(m+ 1/2)Tsw])n · e−j2πfmTsw = e jπfTsw ·D∗ns (f)

= fsw · e jπfTsw ·D∗n(f) ∗
∞∑

m=−∞
δ(f −mfsw)

= fsw ·
∞∑

m=−∞
e jπ·(f−mfsw)Tsw ·D∗n(f −mfsw).

(3.58)

Its application to (3.34) enables the description of the trailing-edge component for AD-PWM,
with

SdTE(f, d[(m+ 1/2)Tsw]/2)

= 1
jπf · e

−jπfTsw ·
∞∑
n=1
−(−jπfTsw)n

n! ·
∞∑

m=−∞
(d[(m+ 1/2)Tsw]/2)n · e−j2πfmTsw

= e−jπfTsw ·
∞∑

m=−∞

∞∑
n=1

(−jπfTsw)n−1

2n · n! ·
∞∑

m=−∞
(d[(m+ 1/2)Tsw])n · e−j2πfmTsw

= e−jπfTsw ·
∞∑

m=−∞

∞∑
n=1

(−jπfTsw)n−1

2n · n! ·D∗n(f −mfsw) · ejπ·(f−mfsw)Tsw .

(3.59)

Appying the results from (3.59) and (3.47) to (3.57) results in:

SAD(f,D) = e−jπfTsw/2 · Sc(f)...

+ e−jπfTsw/2 · e−jπfTsw ·
∞∑

m=−∞

∞∑
n=1

(−jπfTsw)n−1

2n · n! ·D∗n(f −mfsw) · ejπ·(f−mfsw)Tsw ...

+ e+jπfTsw/2 · e−jπfTsw ·
∞∑

m=−∞

∞∑
n=1

(jπfTsw)n−1

2n · n! ·D∗n(f −mfsw)

= e−jπfTsw/2 · Sc(f)...

+ e−jπfTsw/2 ·
∞∑

m=−∞

∞∑
n=1

(−jπfTsw)n−1

2n · n! ·D∗n(f −mfsw) · ejπm...

+ e−jπfTsw/2 ·
∞∑

m=−∞

∞∑
n=1

(jπfTsw)n−1

2n · n! ·D∗n(f −mfsw)

= e−jπfTsw/2 · Sc(f)...

+ e−jπfTsw/2 ·
∞∑

m=−∞

∞∑
n=1

(jπfTsw)n−1

2n · n! ·D∗n(f −mfsw) ·
(
1− (−1)m+n

)
.

(3.60)
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Sampling is applied to obtain the Fourier coefficient of order k, expressed as

SAD,k = e−jπkf0Tsw/2 · Sc,k...

+ e−jπkf0Tsw/2
mmax∑

m=−mmax

nmax∑
n=1

(jkω0Tsw/2)n−1

2nn! ·
[
~D∗n

]
(k−mfsw/f0)

· (1− (−1)m+n).

(3.61)

Validation of the AD-PWM Model

In order to validate the correct derivation, (3.61) is evaluated numerically and compared to
results from time-domain simulations. The PWM model that is implemented in Simulink is
depicted in Figure 3.13, which includes the transformation of the continuous-time duty-cycle
into a discrete-time duty-cycle, before the comparison with the carrier signal for generating
the switching function. The duty cycle contains a fundamental frequency component with an
amplitude of |D,1| = 0.7 and a seventh harmonic component with an amplitude of |D,7| = 0.1.
The carrier to fundamental ratio is fsw/fd0 = 3000/50 = 60.

To show the influence of the convolution power of the duty cycle spectrum D∗n(f), Figure 3.14
shows D∗n(f) for the example case for the first 25 harmonics, including D∗1(f) = D(f),
D∗2(f) = D(f)∗D(f),D∗3(f), andD∗7(f). The graphs illustrate that the spectrum is widened
and the amplitudes diminish with an increasing convolution power.

Figure 3.15 shows the amplitude spectrum |SAD,k| for the first 140 harmonics. The first graph
visualizes the evaluation of (3.61) for mmax = 1 and nmax = 2 in blue. The simulation results
depicted in red are obtained by applying an FFT to the time-domain waveform of the switching
function, which are sampled with a high sampling rate of 5 · 109 to provide precise results. The

Figure 3.13: Implementation of regularly-sampled double-edge PWM. The superposition of the two sine waves
forms the time-continuous duty cycle d(t). The zero-order hold block incorporates the sampling
process and the interpolation (the ’hold’ function) that are necessary to transform the duty cycle into
a discrete-time signal dsw(t). The sampling frequency of the zero-order hold block is equal to the
carrier frequency for SD-PWM and twice the carrier frequency for AD-PWM. The output of the
comparator is the gate signal that can be converted to the switching function.
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Figure 3.14: Duty cycle spectrum (first graph) and the convolution of the spectrum with itself (second graph), the
convolution to the power of three (third graph), and the convolution to the power of seven (fourth
graph) for the example case.

black bars in the second graph illustrate the difference of the frequency-domain results SFD
AD,k

from the time-domain results STD
AD,k, with

|∆SAD,k| = |SFD
AD,k − STD

AD,k|. (3.62)

The chosen definition enables to indicate differences resulting from magnitude differences or
phase differences of the complex spectra in one variable. The graphs illustrate that large dif-
ferences are present for the first carrier group, due to the small number of nmax = 2. The
components of the second carrier are not present in the frequency-domain results because the
evaluation is limited to the first carrier group by mmax = 1.

By increasing the number of considered side band harmonics to nmax = 7 enables to enhance
the precision for the first carrier group (third graph). The difference in the first carrier group is
reduced to very low levels under 10−4 (fourth graph of Figure 3.15). A good approximation of
the second is gained by choosing the parameters to mmax = 2 and nmax = 7 (fifth graph), with
differences in the second carrier group under 10−3 (sixth graph).

The comparison to time-domain results validates the derived frequency-domain model for AD-
PWM. Even higher numbers of mmax and nmax would result in a further increase of precision
and an increased computational effort. The choice depends on the parameters, the system topol-
ogy, and the requirements of the of the application.

When the duty cycle contains a single frequency component, the method described in this sec-
tion produces the same results as the double Fourier series approach [15]. Thus, a numerical
evaluation of (3.55) for SD-PWM and (3.61) for AD-PWM is used as a standard method in
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Figure 3.15: Switching function spectrum for AD-PWM with a duty cycle containing a fundamental component of
|D,1| = 0.7 and a seventh harmonic of |D,7| = 0.1. The carrier to fundamental ratio is fsw/fd0 = 60.
Comparison of frequency-domain results formmax = 1 and nmax = 2 with time-domain results (first
graph) and their difference based on the complex spectra (second graph). The same comparison is
shown in graph three and four for mmax = 1 and nmax = 7 and in graph five and six for mmax = 2
and nmax = 7.
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this thesis, regardless of the duty cycle containing single-frequency components or multiple-
frequency components.

Space Vector Modulation

Van der Broeck et al. [46] introduced space vector modulation (SVM) as a PWM method for
three-phase VSI that extends the linear modulation range and can lead to lower distortion levels.
The method was further analyzed and compared to other continuous and discontinuous PWM
methods [47–51].

SVM has a close relationship with regularly-sampled PWM and creates the same switching
function spectrum as a carrier based modulation method that has a distorted duty cycle [51].
The equivalent duty cycle of phase ν that would be applied to the carrier-based PWM is called
dSVMν and consists of a sinusoidal duty cycle dν and an additional zero-sequency component
d0:

dSVMν(t) = dν(t) + d0(t), ν ∈ {1, 2, 3} (3.63)

The PWM process creates a switching pattern of the three switching functions in each switching
period in order to generate the desired output voltage vector. The switching states where all half-
bridges are connected with the positive dc-link node (s1 = s2 = s3 = 1) or the negative dc-link
node (s1 = s2 = s3 = −1) are called zero-vector states. All other states are called active-vector
states. For SVM, the times that the switching pattern remains in the two zero-vector states are
chosen to be equally long. This can be implemented by shifting the zero-sequence component
of the duty cycle into the center of the maximum and the minimum values of the phase duty
cycles in each switching period, with

d0(t) = −max(d1(t), d2(t), d3(t)) + min(d1(t), d2(t), d3(t))
2 [12]. (3.64)

Mouton et al. [17] showed that the output spectrum for SVM, as a summation of the two input
signals in (3.63), results in the convolution of the side-band spectra that result from two individ-
ual PWM processes with the input signals dν(t) and d0(t). Likewise, other analytical methods
describing the PWM process (e.g. [15]) can be used when the spectrum of dSVMν is known.

In the case of single-frequency duty cycles dν , the zero-sequence duty cycle results in a triangu-
lar wave form with triple frequency and the resulting waveforms are shown in Figure 3.16 for
an input duty cycle with an amplitude of 0.9. For duty cycles containing multiple frequencies
dν , the zero-sequence duty cycle deviates from the triangular waveform. Figure 3.17 shows the
resulting waveforms for an input duty cycle containing unsymmetrical fundamental frequency
components with amplitude of {0.9, 0.45, 0.9} and an additional symmetrical fifth harmonic
with an amplitude of 0.3. For a frequency-domain description of SVM for multiple-frequency
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Figure 3.16: Duty cycle for SVM with symmetrical
single-frequency input signals. The resulting duty cycle
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Figure 3.17: Duty cycle for SVM with unsymmetri-
cal multiple-frequency input signals. The zero-sequence
component d0 differs from its original triangular wave-
form, due to the additional frequency components and
the asymmetry in dν(t). dSVMν is the superposition of
d0 and dν(t).

inputs, the Fourier transform of (3.64) is required as a function

(D1(f), D2(f), D3(f)) 7−→ D0(f). (3.65)

No solution of (3.65) for SVM with multiple-frequency input signals was found either in the
literature review or in this thesis, due to the absence of general Fourier transforms of the min
and max functions.

3.3 Linear Electrical Components

The relationship of the ac-side and dc-side signals are described in (3.4)-(3.5) by a nonlinear
interaction with the switching function. In contrast, the relationship between the currents and
voltages within one side is often linear. The ac-side impedance defines the relationship of the
ac-side current and the ac-side voltage. Depending on the application, the ac-side impedance
represents a grid filter, a motor stray inductance or a passive load. In a similar way, the dc-link
capacitor and an optional load in the dc link define the relationship of the dc-side current and the
dc-side voltage. These components can often be modeled as linear devices. When exceeding the
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normal operating area or the defined frequency range where the chosen modeling assumptions
are valid, these components have an increasing nonlinear behavior, which might require consid-
eration in the modeling depth. The nonlinear behavior that is introduced in electrical machines
is further discussed in Chapter 6.

When the components form LTI systems, they can be described in the frequency domain by
continuous transfer functions, which can be obtained using a Laplace transform of the system’s
differential equations or the two-port network theory. By sampling the continuous transfer func-
tions, discrete transfer functions described by Fourier coefficients are obtained. In the following
section, the ac-side impedance and the dc link are used as examples for the derivation of the
transfer functions of the linear components.

3.3.1 AC-Side Subsystem

For the single-phase ac-side impedance depicted in Figure 3.1, the ac-side subsystem is de-
scribed by a differential equation

Rac · iac(t) + Lac ·
d
dtiac(t) = udis(t)− uac1(t) + uac2(t), (3.66)

with a resistance Rac and an inductance Lac.

The linear components can be described in the frequency domain for each harmonic component
independently, where the equation of the k-th harmonic results in

(Rac + jkω0Lac) · Iac = Udis − Uac1 + Uac2. (3.67)

A combined notation for all harmonics results in a vector representation

Zac · ~Iac = ~Udis − ~Uac1 + ~Uac2, (3.68)

where the impedance is described by a diagonal matrix

Zac = diag(Zac,−kmax , .. , Zac,kmax), (3.69)

with the diagonal elements

Zac,k = (Rac + jkω0Lac), k ∈ {−kmax, ... , kmax}. (3.70)

Alternatively, an admittance representation

Yac = diag(Yac,−kmax , .. , Yac,kmax) (3.71)
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can be used, with the diagonal elements

Yac,k = 1/Zac,k = 1/(Rac + jkω0Lac), k ∈ {−kmax, ... , kmax}, (3.72)

and the ac-side subsystem is described by the linear equation system

~Iac = Yac ·
(
~Udis − ~Uac1 + ~Uac2

)
. (3.73)

Extending the approach to the symmetrical three-phase impedance depicted in Figure 3.2 yields
a differential equation system for the time domain, with

Rac ·

iac1(t)
iac2(t)
iac3(t)

+ Lac ·
d
dt

iac1(t)
iac2(t)
iac3(t)

 = 1
3 ·

 2 −1 −1
−1 2 −1
−1 −1 2

 ·
udis1(t)− uac1(t)
udis2(t)− uac2(t)
udis3(t)− uac3(t)

 , (3.74)

and a linear equation system in the frequency domain, with
~Iac1
~Iac2
~Iac3

 = 1
3 ·

2Yac −Yac −Yac
−Yac 2Yac −Yac
−Yac −Yac 2Yac

 ·

~Udis1 − ~Uac1
~Udis2 − ~Uac2
~Udis3 − ~Uac3

 . (3.75)

Three-Phase LCL Grid Filter

For converter applications that require a low distortion of the ac-side current, higher order fil-
ters are applied, enhancing the damping of high order harmonics. A symmetrical filter can
be regarded as the two-port network depicted in Figure 3.18, which can represent a third-
order LCL grid filter connecting the independent three-phase voltage vectors of the grid ~Ug =
[~Ug1, ~Ug2, ~Ug3]T and the converter ~Uac = [~Uac1, ~Uac2, ~Uac3]T. The symmetrical impedance of the
LCL filter can be calculated from a single-phase equivalent circuit (Figure 3.19), resulting for
the harmonic order k in:

Z1,k = R1 + jkω0L1,

Z2,k = Rd + 1
jkω0Cf

,

Z3,k = R2 + jkω0L2,

(3.76)

where L1 and R1 are the grid-side inductance and resistance, Cf and Rd are the filter capaci-
tance and the series damping resistance, and L2 and R2 are the converter-side inductance and
resistance.

Using the two-port admittance representation, the vectors of the grid voltages and the converter
voltages are the two input variables, and the vectors of the grid currents ~Ig = [~Ig1, ~Ig2, ~Ig3]T and
the converter currents ~Iac = [~Iac1, ~Iac2, ~Iac3]T are the outputs, with
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~Ig1
~Ig2
~Ig3

 = 1
3 ·

2Y11 −Y11 −Y11
−Y11 2Y11 −Y11
−Y11 −Y11 2Y11

 ·

~Ug1
~Ug2
~Ug3

+ 1
3 ·

2Y12 −Y12 −Y12
−Y12 2Y12 −Y12
−Y12 −Y12 2Y12

 ·

~Uac1
~Uac2
~Uac3



~Iac1
~Iac2
~Iac3

 = 1
3 ·

2Y21 −Y21 −Y21
−Y21 2Y21 −Y21
−Y21 −Y21 2Y21

 ·

~Ug1
~Ug2
~Ug3

+ 1
3 ·

2Y22 −Y22 −Y22
−Y22 2Y22 −Y22
−Y22 −Y22 2Y22

 ·

~Uac1
~Uac2
~Uac3

 .
(3.77)

One possible way to calculate the elements of the diagonal matrices Y11,Y12,Y21,Y22, is to
calculate the elements of the impedance representation first, with

Z11,k = Ug,k

Ig,k

∣∣∣∣∣
Iac,k=0

= Z1,k + Z2,k,

Z12,k = Ug,k

Iac,k

∣∣∣∣∣
Ig,k=0

= −Z2,k,

Z21,k = Uac,k

Ig,k

∣∣∣∣∣
Iac,k=0

= Z2,k,

Z22,k = Uac,k

Iac,k

∣∣∣∣∣
Ig,k=0

= −Z2,k − Z3,k,

(3.78)

followed by a transformation to the admittance representation, with

Y11,k = Z22,k

det(Z,k)
, Y12,k = −Z12,k

det(Z,k)
, Y21,k = −Z21,k

det(Z,k)
, Y22,k = Z11,k

det(Z,k)
, (3.79)

where the determinant is det(Z,k) = −(Z1,k · Z2,k + Z1,k · Z3,k + Z2,k · Z3,k).

3.3.2 DC-Link Subsystem

The voltage-stiff dc link in Figure 3.1 and Figure 3.2 consists of large capacitance Cdc and an
optional resistive load, modeled with a resistance Rdc. The differential equation that connects
the dc-side current idc and a dc-side disturbance current idis with the dc-side voltage udc results
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in

Cdc ·
dudc(t)

dt = idc(t) + idis(t). (3.80)

The parasitic inductance that results from the connection of the power electronic devices to the
dc-link capacitor and the equivalent series resistance (ESR) of the capacitor are neglected in
this model.

The vector representation in the frequency domain is

~Udc = Zdc · (~Idc + ~Idis), (3.81)

where the diagonal matrix

Zdc = diag(Zdc,−kmax , .. , Zdc,kmax) (3.82)

represents the dc-side impedance for each harmonic, with the elements

Zdc,k = 1
1
Rdc

+ jkω0Cdc
. (3.83)

With no resistive load (1/Rdc = 0) the dc-side impedance has a singularity for k = 0. In this
case, the dc component of the dc-link voltage Udc0 is defined by boundary conditions, e.g. the
power flow, and is regarded as a disturbance variable instead of as an unknown variable in the
solution of the equation system.

3.4 Numerical Evaluation for VSI with Open-Loop
Control

The relationships of the signals of a converter system form a closed loop, illustrated in the block
diagram in Figure 3.20, where the ac-side signals (uac, iac) influence the dc-side signals (udc, idc)
and vice versa. This energy conversion is defined by the convolution with the switching function
spectrum. For self-commutated converters with open-loop control, the switching function is
independent of the converter currents and voltages and can be regarded as a disturbance variable.
For this reason, the equation system of the frequency-domain model is linear, with

A · ~X = ~B, (3.84)

where A is the coefficient matrix, ~X is the vector of the unknown signals, and ~B is the vector
of the known signals (disturbances). By limiting the number of considered harmonics to kmax,
each unknown signal is represented as a vector of the length l = 2 · kmax + 1. If the equation
system contains N unknown signals, the coefficient matrix has a size of (Nl ×Nl).
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Figure 3.20: Block diagram of the harmonic interaction in a VSI with open-loop control

The equation system can be numerically solved in Matlab, using the automatic solver optimiza-
tion of the matrix left divide (mldivid) function. In the solution process, Matlab performs an
optimization, depending on the sparsity of A and ~B. Considering a large number of harmonics,
the solution process becomes time-consuming and the risk of numerical inaccuracy increases.
In order to increase the accuracy and the computation speed or allow for the consideration of
a larger number of harmonics, a compact system description with a small number of unknown
signals is preferable.

In the following section, the equation system for the single-phase VSI is developed in a com-
pact structure that enhances the solution process. The numerical evaluation is used to show the
successful calculation of the interaction for sine-triangle modulation using SD-PWM and AD-
PWM. The method is extended to a three-phase VSI and the numerical evaluation shows the
incorporation of a duty cycle containing multiple frequency components.

3.4.1 Single-Phase VSI

The single-phase full-bridge VSI in Figure 3.1 consists of two half bridges, described by the
switching functions s1 and s2. Because the voltage seen by the load is the difference of the
output voltages of the half bridges uac = uac1 − uac2, the desired setpoint is described by a
single duty cycle.

Nevertheless, there are different approaches to switching the second half bridge in relation to
the first half bridge in order to reach this goal. These approaches are called modulation strate-
gies here, to avoid confusion with the choice of the modulation method, such as AD-PWM.
Switching the second half bridge with the inverted signal of the first half bridge s̄1(t) = s2(t) is
called bipolar modulation and leads to an output voltage that has two levels uac ∈ {−udc, udc}.

The modulation strategy known as unipolar modulation can be obtained by either inverting the
duty cycle or the carrier signal of the second half bridge. Because the switching instants of
the two half bridges occur at different times, the output voltage contains an additional zero-
voltage level, with uac ∈ {−udc, 0, udc}. This leads to a significantly improved spectrum and
even to a complete cancellation of the side band harmonics for odd carrier multiples in the
case of N-PWM and AD-PWM [12]. However, bipolar modulation might be preferred in some
applications, due to a lower electromagnetic interference (EMI) impact on the load [32].



52 3. VSI with Open-Loop Control

Using the vector representation in (3.6) and (3.7) for the two half bridges and the linear model of
the ac-side and dc-side subsystems in (3.73) and (3.81), the single-phase VSI can be described
by four equations, with

~Uac = ~Uac1 − ~Uac2 = 1
2 ·C(~S1 − ~S2) · ~Udc, (3.85)

~Iac = Yac ·
(
~Udis − ~Uac

)
, (3.86)

~Udc = Zdc ·
(
~Idis + ~Idc

)
, (3.87)

~Idc = ~Idc1 − ~Idc2 = 1
2 ·C(~S1 − ~S2) · ~Iac. (3.88)

These equations are valid for all presented modulation methods and modulation strategies.
Transferring the equations in the matrix form of (3.84) results in

E 0 −1
2 ·C(~S1 − ~S2) 0

Yac E 0 0
0 0 E −Zdc

0 −1
2 ·C(~S1 − ~S2) 0 E


︸ ︷︷ ︸

A

·


~Uac
~Iac
~Udc
~Idc


︸ ︷︷ ︸

~X

=


~0

Yac · ~Udis

Zdc · ~Idis
~0.


︸ ︷︷ ︸

~B

, (3.89)

where C(.) is the convolution matrix defined in (2.40), E denotes the identity matrix, and 0
is the zero matrix. All elements of the matrix A are sub-matrices of the size l × l. The form
in (3.89) illustrates that the spectra of the switching functions have to be independent of the
unknown signals, in order to create a linear equation system.

By eliminating three of the four variables, the equation system can be reduced to a quarter of the
size. When choosing the dc-link voltage as the remaining variable, the equation system results
in

A = E + 1
4 ·Zdc ·C(~S1 − ~S2) · Yac ·C(~S1 − ~S2),

~X = ~Udc,

~B = Zdc ·
(
~Idis + 1

2 ·C(~S1 − ~S2) · Yac · ~Udis

)
.

(3.90)

The system matrix in (3.90) is dense and the number of elements is 16 times smaller than
the sparse system matrix in (3.89). The reduction is beneficial for the numerical evaluation,
especially when considering a large number of harmonics.

A benefit of choosing the dc-link voltage as the remaining variable is that boundary conditions
for the dc-link voltage can be easily implemented. For example, the goal is to integrate a sim-
plified model of an active front-end that controls the dc component of the dc-link voltage to
Udc0 and injects additional harmonic currents into the dc link. Figure 3.21 illustrates how the
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Cdc idis

idc
Ldc→∞ 

udc Udc0

Figure 3.21: Equivalent circuit of the dc link in steady state, incorporating a fixed dc component of the dc-link
voltage Udc0 represented by a voltage source that is connected to the capacitance via an infinite
inductance. Harmonic disturbance currents can be considered by a current source idis.

incorporation results in the equivalent circuit of the dc link, using an ideal dc voltage source
Udc0 and an inductor with infinity inductance Ldc and a disturbance current source idis. In time-
domain simulations this is problematic, because a finite inductance Ldc must be chosen, which
introduces a resonant circuit with the dc-link capacitance. For small inductance values the cur-
rent of the voltage source contains unwanted harmonic components and for large values of Ldc
the time constant of the resonant circuit is large, resulting in large simulation times to reach the
steady state. In the frequency-domain model, the row of the equation system describing the dc
component can simply be replaced by

A|k=0 = [0, . . . , 0, 1, 0, . . . , 0] , ~B
∣∣∣
k=0

= Udc0. (3.91)

The analytical results are presented for an example system with the parameters listed in Ta-
ble 3.1. Unipolar modulation and AD-PWM are used with a switching frequency of 1 kHz.
A single-frequency duty cycle with a frequency of fd0 = 50 Hz and a modulation index of
M = 0.4 is applied. The fundamental frequency of the model is f0 = gcd(f0, fsw) = 50 Hz.
The switching function spectra result from evaluation of (3.61), where the PWM model consid-
ers mmax = 4 carrier harmonics, nmax = 10 sideband harmonics and the maximum harmonic
order is kmax = 90.

A disturbance voltage introduces a first harmonic component (50 Hz) with an amplitude of ûdis,1
and a seventh harmonic component (350 Hz) with an amplitude of ûdis,7 and zero phase-shift.
The duty cycle of the first half bridge has a phase relation to the disturbance voltage of θd0
and the second half bridge of θd0 +π (unipolar modulation). Solving the linear equation system
(3.90) yields the dc-link voltage spectrum, which is used further to calculate the ac-side voltage,
ac-side current, and dc-side current spectra.

The analytical spectra are compared in Figure 3.22 to results of time-domain simulations in
Simulink/Plecs. The differences between the complex spectra are depicted in Figure 3.23. The
first graph shows the magnitude of the switching function spectrum of the first half bridge |~S1|.
The spectrum contains the fundamental component at 50 Hz, and four carrier sideband groups
around multiples of the switching frequency. There is a very good conformity between the
results for the switching function spectrum.

Choosing a finite inductance of Ldc = 10 mH to connect the constant voltage source Udc0 to the
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Figure 3.22: Comparison of frequency-domain model and time-domain simulations for a single-phase VSI with
open-loop control for unipolar modulation and AD-PWM and f0 = fd0 = 50 Hz; fsw = 1 kHz.
There is an introduction of harmonic disturbance currents in the simulation model that influences the
currents and voltages of the system, due to the finite inductance coupling the dc link to a constant
voltage source.
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Figure 3.23: Differences of the complex spectra shown in Figure 3.22 for a single-phase VSI with open-loop
control for unipolar modulation and AD-PWM and f0 = fd0 = 50 Hz; fsw = 1 kHz. There is an
introduction of harmonic disturbance currents in the simulation model that influences the currents
and voltages of the system, due to the finite inductance coupling the dc link to a constant voltage
source.
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Figure 3.24: Comparison of frequency-domain model and time-domain simulations for a single-phase VSI with
open-loop control for unipolar modulation and AD-PWM and f0 = fd0 = 50 Hz; fsw = 1 kHz. The
disturbance current that is simulated in the time-domain model is used as an input in the frequency-
domain model.
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Figure 3.25: Differences of the complex spectra shown in Figure 3.24 for a single-phase VSI with open-loop
control for unipolar modulation and AD-PWM and f0 = fd0 = 50 Hz; fsw = 1 kHz. The disturbance
current that is simulated in the time-domain model is used as an input in the frequency-domain model.
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Table 3.1: Parameters of the single-phase VSI with open-loop control

Parameter Symbol Value
AC filter resistance Rac 0.2 Ω
AC filter inductance Lac 10 mH
Switching frequency fsw 1 kHz
Control frequency fc 2 kHz
Duty-cycle frequency fd0 50 Hz
Modulation index M 0.4
Duty-cycle phase shift θd0 -20◦

DC link capacitance Cdc 480µF
DC-link voltage Udc0 440 V
DC-link inductance Ldc 10 mH
Amplitude of disturbance voltage at fd0 ûdis,1 188 V
Amplitude of disturbance voltage at 7 · fd0 ûdis,7 56 V
Fundamental frequency f0 50 Hz
Maximum harmonic order kmax 90
Maximum carrier order mmax 4
Maximum sideband order nmax 10

dc link in the time-domain simulation model, results in an introduction of harmonic disturbance
currents into the dc link (last graph in Figure 3.22). This leads to visible deviations for all current
and voltage spectra of the system, as these harmonic components are further propagated to the
ac side. By injecting these disturbance current harmonics into the frequency-domain model, it
can be shown that they are the cause of the deviations: Figure 3.24 and Figure 3.25 show the
complex spectra of the two models and their differences when the same disturbance current is
used in both models. There is a good conformity in all signals. The carrier sideband groups
around odd switching frequency multiples are canceled out in the voltage and current spectra,
due to the unipolar modulation technique. The seventh harmonic component introduced by the
disturbance voltage is visible in the ac-side current spectrum and is further propagated to the
dc-side current and dc-link voltage as a sixth and eighth harmonic component. A comparison
of the switching function spectrum with the ac-side voltage spectrum |~Uac| in the second graph
reveals the influence of the harmonics that are present in the dc-link voltage spectrum |~Udc|,
illustrating the importance of considering the convolution of the switching function and dc-link
voltage spectra. The same can be concluded by looking at the influence of the ac-side current
spectrum |~Iac| on the dc-side current spectrum |~Idc|.
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3.4.2 Three-Phase VSI

The analytical model of the three-phase VSI in Figure 3.2 with open-loop control results in a
linear equation system with a sparse structure:

A =



E 0 0 0 0 0 −1
2C(~S1) 0

0 E 0 0 0 0 −1
2C(~S2) 0

0 0 E 0 0 0 −1
2C(~S3) 0

2
3Yac −1

3Yac −1
3Yac E 0 0 0 0

−1
3Yac

2
3Yac −1

3Yac 0 E 0 0 0
−1

3Yac −1
3Yac

2
3Yac 0 0 E 0 0

0 0 0 0 0 0 E −Zdc

0 0 0 −1
2C(~S1) −1

2C(~S2) −1
2C(~S3) 0 E


,

~X =



~Uac1
~Uac2
~Uac3
~Iac1
~Iac2
~Iac3
~Udc
~Idc


, ~B =



~0
~0
~0

1
3Yac

(
2~Udis1 − ~Udis2 − ~Udis3

)
1
3Yac

(
−~Udis1 + 2~Udis2 − ~Udis3

)
1
3Yac

(
−~Udis1 − ~Udis2 + 2~Udis3

)
Zdc~Idis
~0


. (3.92)

Again, a reduction of the system’s size can be obtained by eliminating variables, resulting in a
full system matrix, with

A = E + 1
6Zdc

[
C(~S1)Yac

(
C(~S1)− 1

2C(~S2)− 1
2C(~S3)

)
...

+ C(~S2)Yac

(
−1

2C(~S1) + C(~S2)− 1
2C(~S3)

)
...

+ C(~S3)Yac

(
−1

2C(~S1)− 1
2C(~S2) + C(~S3)

)]
,

~X = ~Udc,

~B = Zdc ·
[
~Idis + 1

6C(~S1)Yac
(
2~Udis1 − ~Udis2 − ~Udis3

)
...

+ 1
6C(~S2)Yac

(
−~Udis1 + 2~Udis2 − ~Udis3

)
...

+1
6C(~S3)Yac

(
−~Udis1 − ~Udis2 + 2~Udis3

)]
.

(3.93)

The equation system is numerically evaluated for two example cases.
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Case I

Case I shows the harmonic interactions of the system when the dc link is fed by a six-pulse diode
rectifier (Figure 3.26). The ac phases of the VSI are connected to a symmetrical three-phase RL
load. The presented case shows the incorporation of different fundamental frequencies of the
subsystems. The grid feeding the diode rectifier operates at a grid frequency of fg = 50 Hz.
Thus, harmonic currents with frequencies of n · 6 · fg, n ∈ N are injected into the dc link.
These are implemented in the frequency-domain model in a nonreactive current source idis.
Hence, the equivalent circuit of Figure 3.2 represents the frequency-domain model for Case I.
For reasons of comparability, the same disturbance current harmonics are used in the frequency-
domain model as in the time-domain model and they represent the dominant harmonics that are
measured in the experimental system.

~

=
VSILoad Diode Rectifier Grid

idis

Figure 3.26: Experimental setup for Case I. The ac-side outputs of a three-phase VSI are connected to a passive
RL load. The dc link is fed by three-phase diode rectifier that is connected to the utility grid.

The frequency of the sinusoidal duty cycle is set to fd0 = 40 Hz. The switching frequency is
chosen to fsw = 3 kHz. This results in a fundamental frequency of f0 = gcd(fg, fd0, fsw) =
10 Hz. The PWM model in (3.61) is evaluated with mmax = 1 carrier harmonics, nmax = 10
sideband harmonics and the maximum harmonic order is kmax = 340. Subsequently, the linear
model of the model in (3.93) is evaluated. The parameters are summarized in Table 3.2.

A comparison of the spectra resulting from the frequency-domain model to results from time-
domain simulations is shown in Figure 3.27. Accordingly, Figure 3.28 shows the differences
of the complex coefficients between both models. The first graph shows the switching func-
tion spectrum of phase 1, which incorporates a fundamental frequency component and the first
carrier sideband group at fsw. The disturbance current spectrum depicted in the last graph in-
troduces harmonic currents as multiples of 300 Hz, which are propagated to the dc-link volt-
age. Accordingly, the ac-side voltage spectrum contains harmonic components that result from
the convolution of the switching function and the dc-link voltage spectra. The resulting low-
frequency harmonics have frequencies of n · 6 · fg ± m · fd0,m, n ∈ N and are not integer
multiples of the duty-cycle frequency, illustrating the importance of choosing the correct fun-
damental frequency of the Fourier series.

In Figure 3.29, the spectra are depicted as a comparison of frequency-domain results and exper-
imental results, with the same order for the spectra as in the previous figures. The differences
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Table 3.2: Parameters of the three-phase VSI with open-loop control for Case I

Parameter Symbol Value
Fundamental frequency f0 10 Hz
Grid frequency fg 50 Hz
Duty-cycle frequency fd0 40 Hz
AC-side resistance 1 Rac 5 Ω
AC-side inductance 1 Lac 20 mH
Switching frequency fsw 3 kHz
Control frequency fc 6 kHz
Grid voltage (line-to-line rms) Ug 400 V
DC-link voltage (dc component) Udc0 555 V
DC-link capacitance Cdc 480µF
Modulation index M 0.6
Duty cycle phase shift θd0 0
Maximum harmonic order kmax 340
Maximum carrier order mmax 1
Maximum sideband order nmax 10

of the magnitude spectra are included in Figure 3.30. For the measurement results, the switch-
ing function is calculated by utilizing its relationship with the gate signals (see (3.1)). The gate
voltage signals have a voltage level of 5 V and are measured at the input of the gate driver.
The unit-free switching function is then obtained by dividing the measured voltage by twice the
average value:

s(t) = ugt(t)− ugb(t)
2 · ūgt

(3.94)

The bottom plot shows the spectrum of the disturbance current in green, which was measured
using a Rogowski coil. Note that the dc component cannot be measured with a Rogowski
coil. The influence of the rectifier is included in the frequency-domain models as a nonreac-
tive current source idis using the measured values of the dominant harmonics, with frequencies
n · 6 · fg, n = 1, ..., 10, are used as inputs.

The modeling results and the measurement results show generally good conformity. Differences
become apparent when the influence of nonlinear effects are increased. Previously the switch-
ing function was analyzed under the assumption of an ideal switching behavior. In reality the
switching behavior is distorted by nonlinearities that are commonly known as dead-time effects,
including an interlock time that is introduced to the gate signals to prevent simultaneous con-
duction of both transistors of a half bridge. The interlock time is chosen to Td = 1µs for the
measurement results depicted in Figure 3.29. An increase of the interlock time to Td = 10µs
leads to the spectrum shown in Figure 3.31. Additional frequency components become evident
in the ac-side voltage, which are further propagated to the ac-side current depending on the load
parameters. These components are not predicted by the frequency-domain model. The influence
of interlock times obviously requires a closer consideration and is further analyzed in Chapter 4.



62 3. VSI with Open-Loop Control

10-3

10-2

10-1

100

|S
1
|

Frequency-domain model Time-domain model

100

101

102

|U
ac

1
2
| 

(V
)

10-1

100

101

|I
ac

1
| 

(A
)

100

101

102

103

|U
d

c
| 

(V
)

10-1

100

101

|I
d

c
| 

(A
)

0 500 1000 1500 2000 2500 3000

Frequency (Hz)

10-1

100

101

|I
d

is
| 

(A
)

Figure 3.27: Comparison of frequency-domain model and time-domain simulations for a three-phase VSI with
open-loop control for Case I with AD-PWM, f0 = 10 Hz, fd0 = 40 Hz; fsw = 3 kHz. The distur-
bance current spectrum represents the diode rectifier, which introduces harmonic currents at multiples
of 300 Hz.
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Figure 3.28: Differences of the complex spectra shown in Figure 3.27 for a three-phase VSI with open-loop control
for Case I with AD-PWM, f0 = 10 Hz, fd0 = 40 Hz; fsw = 3 kHz.
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Figure 3.29: Comparison of frequency-domain model and measurements for a three-phase VSI with open-loop
control for Case I with AD-PWM, f0 = 10 Hz, fd0 = 40 Hz; fsw = 3 kHz. Td = 1µs, in contrast to
Figure 3.31.



3. VSI with Open-Loop Control 65

10-3

10-2

10-1

100

 |
S

1
|

Deviation of magnitudes

100

101

102

 |
U

ac
1

2
| 

(V
)

10-1

100

101

 |
I ac

1
| 

(A
)

100

101

102

103

 |
U

d
c
| 

(V
)

10-1

100

101

 |
I d

c
| 

(A
)

0 500 1000 1500 2000 2500 3000

Frequency (Hz)

10-1

100

101

 |
I d

is
| 

(A
)

Figure 3.30: Differences of the magnitude spectra shown in Figure 3.29 for a three-phase VSI with open-loop
control for Case I with AD-PWM, f0 = 10 Hz, fd0 = 40 Hz; fs = 3 kHz, and Td = 1µsw.
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Figure 3.31: Spectrum for a three-phase VSI with open-loop control for Case I with AD-PWM, f0 = 10 Hz,
fd0 = 40 Hz; fsw = 3 kHz. Td = 10µs, in contrast to Figure 3.29.
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Case II

In Case II a three-phase VSI is fed by a direct voltage source on the dc-side and the ac-side
phases are connected to an LCL-filter that is terminated by a resistive load (Figure 3.32). In order
to show the influence of a duty cycle containing multiple frequencies, Case II uses additional
frequency components at the fifth and seventh multiples of the fundamental frequency, with

d(t) = M1 · cos (ω0t+ θ1) +M5 · cos (ω0t+ θ5) +M7 · cos (ω0t+ θ7) . (3.95)

The PWM model for SD-PWM with multiple-frequency modulation in (3.55) is evaluated with
the parameters mmax = 1 and nmax = 10. The highest harmonic order is kmax = 90. The
parameters of the system are summarized in Table 3.3.

~

=
VSIFilterLoad DC voltage sourceCable

Udc0

idis

Figure 3.32: Experimental setup for Case II. The dc link is fed by a constant voltage source that is connected via
a long cable.

The incorporation of a three-phase LCL-filter described by the admittance matrices (Y21 and
Y22) in (3.77) leads to a minor change in the equation system, with

A = E + 1
6 ·Zdc·

[
C(~S1) · Y22 ·

(
C(~S1)− 1

2 ·C(~S2)− 1
2 ·C(~S3)

)
...

+ C(~S2) · Y22 ·
(
−1

2 ·C(~S1) + C(~S2)− 1
2 ·C(~S3)

)
...

+ C(~S3) · Y22 ·
(
−1

2 ·C(~S1)− 1
2 ·C(~S2) + C(~S3)

)]
,

~X = ~Udc,

~B = Zdc ·
[
~Idis + 1

6 ·C(~S1) · Y21 ·
(
2 · ~Udis1 − ~Udis2 − ~Udis3

)
...

+ 1
6 ·C(~S2) · Y21 ·

(
−~Udis1 + 2 · ~Udis2 − ~Udis3

)
...

+1
6 ·C(~S3) · Y21 ·

(
−~Udis1 − ~Udis2 + 2 · ~Udis3

)]
.

(3.96)

The resulting spectra are depicted in Figure 3.33 as a comparison of the frequency-domain
model to time-domain simulations and with their respective difference of complex coefficients
in Figure 3.34. Likewise, a comparison of the frequency-domain model to measurements is per-
formed in Figure 3.35 and respective differences of magnitude spectra are shown in Figure 3.36.
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Figure 3.33: Comparison of frequency-domain model and time-domain simulations for a three-phase VSI with
open-loop control for Case II. The duty cycle contains components 1, 5, and 7 times the fundamental
frequency of 50 Hz. fsw = 3 kHz (SD-PWM).
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Figure 3.34: Differences of the complex spectra shown in Figure 3.33 for a three-phase VSI with open-loop control
for Case II. The duty cycle contains components 1, 5, and 7 times the fundamental frequency of 50 Hz.
fsw = 3 kHz (SD-PWM).
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Figure 3.35: Comparison of frequency-domain model and measurements for a three-phase VSI with open-loop
control for Case II. The duty cycle contains components 1, 5, and 7 times the fundamental frequency
of 50 Hz. fsw = 3 kHz (SD-PWM).
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Figure 3.36: Differences of the magnitude spectra shown in Figure 3.35 for a three-phase VSI with open-loop
control for Case II. The duty cycle contains components 1, 5, and 7 times the fundamental frequency
of 50 Hz. fsw = 3 kHz (SD-PWM).
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Table 3.3: Parameters of the three-phase VSI with open-loop control for Case II

Parameter Symbol Value
Fundamental frequency f0 50 Hz
Duty-cycle frequency fd0 50 Hz
AC-side resistance 1 R1 3 Ω
AC-side inductance 1 L1 4.22 mH
AC-side resistance 2 R2 0.1 Ω
AC-side inductance 2 L2 6.75 mH
Damping resistance Rd 1.5 Ω
Filter capacitance Cf 10µF
Switching frequency fsw 3 kHz
Control frequency fc 3 kHz
Modulation index at 1 · ωd0 M1 0.4
Modulation index at 5 · ωd0 M5 0.2
Modulation index at 7 · ωd0 M7 0.3
Phase shift at 1 · ωd0 θ1 0
Phase shift at 5 · ωd0 θ5 π/5
Phase shift at 7 · ωd0 θ7 π/4
DC-link capacitance Cdc 480µF
DC-link voltage Udc0 440 V
Maximum harmonic order kmax 90
Maximum carrier order mmax 1
Maximum sideband order nmax 10

The additional components in the duty cycle result in a broad carrier sideband spectrum, which
is visible in the switching function spectrum in the first graph.

The frequency components of the switching function spectrum are present in the line-to-line
ac-side voltage in the second graph, with the exception of zero-sequence components. Because
there are no harmonic disturbance signals present in the system, all harmonic components in the
system are caused by the PWM process. The low-pass effect of the third-order filter is clearly
visible in a comparison of the ac-side voltage, the ac-side current, and the grid-side current
spectra. The bottom graph shows the spectrum of the disturbance current that is introduced by
the dc-voltage source.
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3.5 Discussion

This chapter introduced a modeling approach that describes the harmonic interactions in VSI
systems, including their reaction to external disturbances and including the influence of the
PWM process. In order to describe the interaction of the ac-side and the dc-side quantities, a
switching function was introduced, which describes the state of conduction of the half bridge.
The switching function characterizes both the relationship of the ac-side voltages and the dc-link
voltage, as well as the ac-side currents and the dc-side current. This fact is true independently
of the chosen modulation method.

For linear loads, the frequency-domain model of the VSI with open-loop control is linear. The
solution of the linear equation system is a standard method in numerical computing, which
is generally robust and fast. Even an analytical inversion of the system matrix is conceivable,
which can further enhance the numerical evaluation.

When the existing frequencies of the system signals are non-integer ratios, the size of the equa-
tion system can become very large. For an inconvenient choice of duty-cycle frequency and
switching frequency, the fundamental frequency, as their greatest common divisor, has a small
value. This results in a large system matrix, even though the system is not more complicated
than for other sets of parameters.

The comparison of numerical results from frequency-domain models and time-domain models
shows very good conformity, proving a correct derivation of the equations and correct imple-
mentation in the numerical solution process. The results illustrate the interaction of the signals.
In the presence of harmonic disturbances, the ac-side voltage spectrum and the dc-side current
spectrum deviate from the spectrum of the switching function. Although the switching function
spectrum is a legitimate measure for the PWM performance, it is recommended to include the
system interaction by evaluation of the voltage and current spectra.

Experimental results showed a good accordance with the analytical results. Nevertheless, devi-
ations are present in the spectra, motivating the analysis of nonlinear effects in the switching
behavior of the VSI, which is conducted in the following chapter.
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4 Nonlinearities of Power Electronic
Switches

In the previous chapter, the power electronic components were considered to be ideal switches
assuming infinite response time and neglecting losses. The actual performance differs from the
ideal switch model due to a number of nonlinear influences:

• Interlock times

• Turn-on and turn-off times due to parasitic capacitances

• Forward voltage drops

The resulting nonlinear distortions are collectively called dead-time effects [52]. Among these
effects, the interlock times (also known as blanking times or dead times) are considered to
have the largest impact [53]. A large number of publications analyze their effect and propose
compensation methods, refer to [54, 55] for an overview of compensation methods and further
references.

In Section 4.1 the analysis of the interlock times is reviewed and it is shown that the effect
can be directly incorporated into the switching function. As a result, the modeling approach
introduced in Chapter 3 can be extended with the influence of interlock times. The other non-
linear effects lead to further deviations of the switching behavior. Their influence is briefly
analyzed in Section 4.3 and their incorporation into the frequency domain model is discussed.
The frequency-domain models are evaluated numerically in Section 4.2 and compared to time-
domain simulations and experimental results.

4.1 Modeling the Effect of Interlock Times

The two transistors of a half bridge are turned on complementarily using inverted gate signals
for the top and bottom switch gt = ḡb. Due to a finite turn-off time of the transistors, a simul-
taneous conduction of both transistors and a short circuit of the feeding dc link could result.
This can potentially destroy the dc-link capacitor and the IGBT modules. An interlock time is
introduced as a prevention method, delaying the rising edge of the gate signals by Td.
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Figure 4.1: Switching function model during interlock times: a) half bridge b) switch position 1 for iacν > 0
c) switch position -1 for iacν > 0 d) undefined switch position for iacν ≈ 0

As introduced in Chapter 3, the switching function represents the conduction state of a half
bridge. During the interlock times, both transistors of the half bridge are turned off (Fig-
ure 4.1 a). The stiff phase current commutates to one of the freewheeling diodes, depending
on the sign of the current. As a result, the conduction state of the half bridge during the in-
terlock times is equal to the conduction state of the diodes. Thus, the relationship between the
gate signals and the switching function in (3.1) is no longer valid. As illustrated in Figure 4.1,
the half bridge can be modeled during the interlock times using a current-dependent switching
function s′ν(t), with

s′ν(t) =


1 for iacν > 0
−1 for iacν < 0

undefined for iacν = 0 (only in DCM)

 , (during interlock times). (4.1)

As indicated by Figure 4.1 d), the phase current cannot be assigned to neither the top diode nor
the bottom diode and the output voltage is determined by the voltage of the parasitic capac-
itance. The influence of this discontinuous current mode (DCM) due to small phase currents
charging the parasitic capacitances is further discussed in Section 4.3.

When DCM can be neglected, only the two switch positions b) and c) in Figure 4.1 have to
be considered. For very small phase currents, the conduction state during the interlock time is
influenced by the parasitic capacitance Cpar of the half bridge. Outside the interlock times, the
switching function is independent of the phase currents and defined by the gate signals, with

s′ν(t) = sν(t), (equation only valid outside interlock times). (4.2)

Figure 4.2 shows the gate signals gt (first graph) and gb (second graph) when the leading edges
of the gate signals are delayed by an interlock time Td. The modified switching function s′ in
the third graph corresponds to the gate signals with zero interlock time. The actual switching
function s′ (fourth graph) that reflects the conduction state of the half bridge including the
interlock times depends on the sign of the phase current, which is positive in Figure 4.2 a) and
negative in Figure 4.2 b). During the interlock time, the ideal switching function deviates from
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Figure 4.2: Top and bottom gate signals gt and gb, ideal switching function s, modified switching function con-
sidering interlock times s′, and their deviation e(t) for a) positive phase currents and b) negative phase
currents.

the actual switching function and generates a modeling error e (fifth graph), with

eν(t) = s′ν(t)− sν(t). (4.3)

The error function is a square-wave signal with a width of Td. Its sign equals the sign of the
phase current. The error function represents the deviation from the desired waveform, which
results in the distortion of the phase voltage ∆uacν , with

∆uacν(t) = 1
2 · eν(t) · udc(t). (4.4)

This error voltage leads to:

• A lower fundamental frequency component for loads in motor operation

• A higher fundamental frequency component for loads in generator operation

• An introduction of odd order harmonics

• A widening of the carrier side bands

At the same time, the interlock time introduces a dc-side current error of

∆idcν(t) = 1
2 · eν(t) · iacν(t). (4.5)
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4.1.1 Influence of the Phase Currents

By applying the averaging operator over one switching period to (4.4) and assuming a constant
dc-link voltage of Udc0 results in an average ac-side voltage error of

〈∆uacν(t)〉Tsw
= fsw ·

1
2 · Udc0 ·

∫ t+Tsw

Tsw
eν(τ) dτ = fsw · Td · Udc0 · sign(iacν(t)) [56]. (4.6)

A Fourier decomposition of the square wave signal yields the rms value of the k-th harmonic
component of

|∆Uac,k| =
1√
2
· 4
π
· 1
k
· fsw · Td · Udc0, k ∈ {1, 3, 5, ...} (4.7)

and shows the generation of odd-numbered harmonics. Similarly, the dc-side current error in
(4.5) can be expressed with its average value (also see [57]):

〈∆idc(t)〉Tsw
= fsw ·

1
2 ·
∫ t+Tsw

Tsw
(iac1(τ) · e1(τ) + iac1(τ) · e2(τ) + iac3(τ) · e3(τ)) dτ

= fsw · Td · (|iac1(t)|+ |iac2(t)|+ |iac3(t)|) .
(4.8)

Note that the product of error function and phase current always results in positive values,
because the sign of the error function is determined by the sign of the phase current.

Jeong and Park [58] presented a quantitative prediction of the fundamental ac-side voltage
¯
Uac,1

in an rms phasor representation. The model is reviewed here and extended to three-phase sys-
tems including disturbance voltages, with the equivalent circuit introduced in Chapter 3 (Fig-
ure 3.2). Assuming a symmetrical impedance and allowing generally asymmetrical voltages,
the ac-side current phasors result in¯Iac1,1

¯
Iac2,1

¯
Iac3,1

 =
¯
Yac,1 ·

 2 −1 −1
−1 2 −1
−1 −1 2

 ·
¯
Udis1,1 − ¯

Uac1,1

¯
Udis2,1 − ¯

Uac2,1

¯
Udis3,1 − ¯

Uac3,1

 . (4.9)

The ac-side voltage of phase ν under the influence of interlock times can be decomposed into a
voltage reference

¯
Urefν,1 and a voltage error ∆

¯
Uacν,1, with

¯
Uacν,1 =

¯
Urefν,1 + ∆

¯
Uacν,1. (4.10)

The voltage reference is determined by the modulation process and results in an rms phasor
representation of

¯
Urefν,1 = 1√

2
·Mν ·

Udc0

2 · e jθrefν , (4.11)
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Figure 4.3: Phasor diagram of the fundamental frequency model considering interlock times, based on [58]. The
ac-side voltage equals the reference voltage distorted by an error voltage. The phase angle of the error
voltage is the same as the phase angle of the ac-side current.

where θrefν is the phase angle of the reference voltage. The magnitude of the fundamental volt-
age error is given in (4.7) with k = 1. The sign function of the ac-side current determines that
the voltage error phasor is aligned with the ac-side current phasor:

∆
¯
Uacν,1 =

√
2 · 2
π
· fsw · Td · Udc0 · ejθiacν , (4.12)

where θiacν is the phase angle of the ac-side current.

The phasor relationships are illustrated in Figure 4.3, where the disturbance voltage is aligned
with the alpha axis. The voltage error is in phase with the ac-side current. The phasor diagram
introduces the phase angle φν , which is defined as the angle between the ac-side voltage

¯
Uacν,1

and the load current −
¯
Iacν,1, with

φν = θuacν − θiacν + π, (4.13)

where θuacν is the phase angle of the ac-side voltage. For a passive load the phase angle of the
load current is determined by the argument of the complex load impedance: φν = arg(

¯
Zac,1).

The phase angle φ′ν of the reference voltage with respect to the load current is defined as

φ′ν = θurefν − θiacν + π. (4.14)

The information provided by φ′ν is the relation of the voltage reference and the fundamental
component of the ac-side current, which determines the phase of the voltage error when the
harmonic content is negligible. For considering the influence of harmonic phase currents, it is
useful to introduce the zero-crossing times t01 and t02 of the ac-side current, which are the roots
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of the ac-side current’s Fourier series:

iacν(t) =
kmax∑

k=−kmax

Iacν,k · e jkω0t, (4.15)

iacν(t01) != 0, (4.16)

iacν(t02) != 0. (4.17)

In a first step, a single-frequency sinusoidal current is regarded and (4.15) can be written as

iacν(t) = 2 · |Iacν,1| · cos(ω0 · t+ θiacν). (4.18)

The zero crossing iacν(t01) != 0 occurs at the time t01 when the argument of the cosine function
equals −π/2, thus:

ω0 · t01 + θiacν = −π/2. (4.19)

The second zero-crossing time t02 has a fixed relationship with the first zero-crossing time, with

ω0 · t02 = ω0 · t01 + π, (4.20)

due to the symmetry of the cosine function. The relationships of the angles are illustrated in
Figure 4.4 with the time-domain waveforms of the voltage reference and the ac-side current.
The relationship of the phase angle φ′ and the zero-crossing time results in

φ′ = θurefν + ω0 · t01 − π/2. (4.21)

By using the calculation of the current zero crossings in (4.15)-(4.17), the phase angle φ′ in

ω0t

ω0t

π/2

ω0t01

-θiac

-θuref ϕ'-π
uref

iac

Figure 4.4: Definition of zero crossing angles for sinusoidal currents and voltages: The voltage reference in blue
is described by a cosine function with a phase lag of θuref to the reference point ω0t = 0. The ac-side
current in red is a cosine function with a phase lag of θiac, which is alternatively described by the zero-
crossing angle ω0t01 = −θiac − π/2. The phase difference of the voltage reference and the ac-side
current describes the angle φ′ − π.
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(4.21) describes the current zero crossing under the influence harmonic phase currents. In the
following derivation of the switching function spectrum it is assumed that the current changes
its sign twice per fundamental period, which is called two even crossover (TEC) mode [18,22],
where the two current zero crossings are symmetrical and (4.20) is valid for harmonic currents.

4.1.2 Switching Function Spectrum Considering Interlock Times

The averaging method in (4.6) and (4.8) is an approximation of the spectrum neglecting the
influence of the switching harmonics. The influence of the switching behavior is described by
the switching function. Assuming continuous current mode (CCM), the modified definition of
the switching function in (4.1) and (4.2) allows for incorporation of the effect of interlock times
directly into the calculation of the ac-side voltage spectrum and the dc-side current spectrum
using the convolution method in (3.6) and (3.7), resulting in

~Uacν = 1
2 ·C(~S ′ν) · ~Udc, (4.22)

~Idcν = 1
2 ·C(~S ′ν) · ~Iacν . (4.23)

Therefore, an analytical description of the switching function spectrum under the influence of
interlock times ~S ′ is required.

An analytical model of the ac-side voltage spectrum considering interlock times was first pre-
sented by Wu et al. [18] for a single-phase full-bridge inverter with inductive load, based on
double Fourier analysis. A further method based on double Fourier series was proposed by
Koeslag et al. [19]. This method assumes single-frequency duty cycles and incorporates the
influence of finite turn-on and turn-off times by consideration of the gate-drain capacitance and
the parasitic switching-node capacitance.

An alternative method of deriving the ac-side voltage spectrum under the influence of interlock
times is derived by Moore et al. [21]. The method is based on the PWM model introduced by
Cox [14] and assumes a sinusoidal duty cycle and a passive RL load. Although not mentioned
by the authors, the results represent the switching function, because they are derived as a dimen-
sionless quantity v(t) for a constant dc-link voltage of Udc0 = 2 V. The equality is expressed
through

v(t) := uac(t)
Udc0/2

=̂ s′ν(t). (4.24)

Using the same mathematical approach, the dc-side current spectrum is derived in the Ph.D.
thesis by Ainslie-Malik [20].

As shown in Chapter 3, the same switching function can be used for the calculation of both the
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ac-side voltage and the dc-side current. This is also true during the interlock times in CCM.
Thus, the results given in [21] can be used in a modified notation to represent the switching
function s′ν(t) of phase ν.

In this thesis, it is proposed to interpret the results presented in [21] as a switching function
spectrum, which allows for the utilization of the convolution method in (4.22) and (4.23) and
simultaneously incorporates the effect of interlock times and harmonic disturbances. The re-
sulting block diagram of the signal interactions is depicted in Figure 4.5. Because the switch-
ing function spectrum including interlock times depends on the sign of the phase current, the
equation system is nonlinear. The following section deals with the determination of the phase
current’s zero crossings that is required by the method.

Udis
Yac Zdc

Iac Idc

Uac Udc

S'

Idis

TdS

Figure 4.5: Extension of the block diagram in Figure 3.20 showing the interaction of the signals under the influence
of interlock times.

Derivation of the Switching Function Spectrum

The switching process under the influence of the interlock times is mathematically expressed
according to the times defined in Figure 4.6. Using a sequence of unit step functions (see (3.20))
the switching function without interlock times of phase ν can be written as

sν(t) = 1− 2 ·
∞∑

m=−∞
σ(t−mTsw − τfνm)− σ(t−mTsw − τrνm) [21, (3)], (4.25)

where the switching instants with respect to the beginning of them-th switching period are τfνm
for the falling edge and τrνm for the rising edge. These times have a linear relationship with the
duty cycle, with

τfνm = 1
4 · (1 + dν [mTsw]) · Tsw [21, (9)],

τrνm = 1
4 · (3− dν [(m+ 1/2)Tsw]) · Tsw [21, (10)].

(4.26)

The application of interlock times to the rising edges of the gate signals modifies the expression
of the switching function to

s′ν(t) = 1− 2 ·
∞∑

m=−∞
σ(t−mTsw − τfνm − τdfνm)− σ(t−mTsw − τrνm − τdrνm). (4.27)
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Figure 4.6: Top graph: Ideal switching function s, with the time interval of the falling edge τfm and the rising
edge τrm in reference to the beginning of them-th switching cycle. Middle graph: Modified switching
function s′ for positive phase currents, where the falling edge is delayed by τdfm due to interlock times.
Bottom graph: Modified switching function s′ for negative phase currents, where the rising edge is
delayed by τdrm due to interlock times.

The influence of interlock times is considered by delaying the switching process by the times
τdfνm and τdrνm for the falling and rising edges of the switching function respectively, with

τdfνm = 1
2 · (1 + ψν [mTsw]) · Td,

τdrνm = 1
2 · (1− ψν [(m+ 1/2)Tsw]) · Td [21, (13)-(14)].

(4.28)

Here, the choice function t 7→ ψ(t) considers the influence of the sign of the phase current. In
addition to [21], a phase displacement of the voltage reference in reference to the other signals
of the system is considered. This enables to incorporate the relationship of the voltage reference
with other signals, such as an external disturbance voltage and the dc-link voltage. Because
the voltage reference is covered in this thesis in the more general sense of the duty cycle, the
phase angle θd0ν is used in replacement of the angle of the reference voltage θurefν in (4.14).
Using this equation, the phase current changes its sign twice per cycle at a zero-crossing angle
∠Iacν = −φ′ν + θd0ν + π and the choice function can be written as

ψν(t) = sign(iacν(t)) = sign(cos(ω0t+ ∠Iacν))
= sign(cos(ω0t− φ′ν + θd0ν + π)) = −sign(cos(ω0t− φ′ν + θd0ν)).

(4.29)

The function has a rectangular waveform with a periodicity of 2π/ω0,

ψν(t) =
{

1 for (π2 + φ′ν − θd0ν) < ω0t < (3π
2 + φ′ν − θd0ν)

−1 for (−π
2 + φ′ν − θd0ν) < ω0t < (π2 + φ′ν − θd0ν)

. (4.30)
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In a later step of the derivation process, a time-shifted choice function is utilized, with

ψν(t−
θd0ν

ω0
) =

{
1 for (π2 + φ′ν) < ω0t < (3π

2 + φ′ν)
−1 for (−π

2 + φ′ν) < ω0t < (π2 + φ′ν)
. (4.31)

Due to a simplified derivation in the following steps, the choice function in (4.29) is applied
with values of iacν(t) sampled at the beginning of the switching cycle and at the center of the
switching cycle. This introduces a modeling error when the sign of the current changes within
a PWM period.

In the following derivation of the switching function spectrum, the duty cycle is limited to a
single frequency sine wave, with

dν [mTsw] = Mν · cos(mω0Tsw + θd0ν). (4.32)

The Fourier transform S ′ν(ω) t ds′ν(t) of the modified switching function in (4.27) is derived
by applying the Fourier transform of the time-shifted unit step function (3.26) and (3.27). With
ω = 2πf 6= 0 this results in:

S ′ν(ω) = − 2
jω ·

∞∑
m=−∞

e−jω(mTsw+τfνm+τdfνm) − e−jω(mTsw+τrνm+τdrνm) [21, (39)]. (4.33)

Application of (4.26), (4.28), and (4.32) to (4.33) yields:

S ′ν(ω) = − 2
jω ·

∞∑
m=−∞

e−jωmTsw ...

·
[

e− 1
4 jωTsw · e−jω 1

4 (TswMν cos(mω0Tsw+θd0ν)+2ωTdψν [mTsw]) · e− 1
2 jωTd ...

− e− 3
4 jωTsw · e jω 1

4 (TswMν cos((m+1/2)ω0Tsw+θd0ν)+2ωTdψν [(m+1/2)Tsw]) · e− 1
2 jωTd

]
.

(4.34)

The definition of

zν(ω) := −1
4ωTswMν

λν := − 2Td

TswMν

(4.35)

allows for a more compact notation:

S ′ν(ω) = − 2
jω ·

∞∑
m=−∞

e−jωmTsw · e− 1
2 jωTd ...

·
[

e− 1
4 jωTsw · e jzν(ω)·(cos(mω0Tsw+θd0ν)−λνψν [mTsw]) ...

− e− 3
4 jωTsw · e−jzν(ω)·(cos((m+1/2)ω0Tsw+θd0ν)−λνψν [(m+1/2)Tsw])

]
.

(4.36)



4. Nonlinearities of Power Electronic Switches 85

Use of the Poisson re-summation formula, with

∞∑
m=−∞

h(m) =
∞∑

m=−∞

∫ ∞
−∞

e j2πmτ · h(τ) dτ [21, (17)] (4.37)

allows for the expression of (4.36) as

S ′ν(ω) = − 2
jω

∞∑
m=−∞

∫ ∞
−∞

e j2πmτ · e−jωτTsw · e− 1
2 jωTd ·Q(τ) dτ [21, (40)], (4.38)

where

Q(τ) = e− 1
4 jωTsw · e jzν(ω)·(cos(ω0τTsw+θd0ν)−λνψν(τTsw))...

− e− 3
4 jωTsw · e−jzν(ω)·((ω0(τ+1/2)Tsw+θd0ν)−λνψν((τ+1/2)Tsw)).

(4.39)

Substitution of t = τTsw yields:

S ′ν(ω) = − 2
jωTsw

∞∑
m=−∞

∫ ∞
−∞

e j2πmt/Tsw · e−jωt · e− 1
2 jωTd · q(t) dt, (4.40)

with

q(t) = e− 1
4 jωTsw · e jzν(ω)·(cos(ω0t+θd0ν)−λνψν(t))...

− e− 3
4 jωTsw · e−jzν(ω)·((ω0(t+Tsw/2)+θd0ν)−λνψν(t+Tsw/2)).

(4.41)

The exponentials include the periodic functions cos(ω0t + θd0ν) and ψ(t), which have a pe-
riodicity of 2π/ω0. Thus, an expression as a Fourier series is possible. The Fourier series is
introduced in the following general form

e jzν(ω)(cos(ω0t)−λνψν(t− θd0ν
ω0

)) =
∞∑

n=−∞
Cn(zν , λν , φ′ν) · e jnω0t, (4.42)

where Cn is the Fourier coefficient of harmonic order n and zν and λν are parameters. It is
indicated that there is a dependency on φ′ν through the choice function ψν , which is clarified by
the following equations. The coefficients are calculated by applying (2.2), with

Cn(zν , λν , φ′ν) = ω0

2π ·
∫ 2π/ω0

0
e jzν(cos(ω0t)−λνψν(t− θd0ν

ω0
)) · e−jnω0t dt

= ω0

2π ·
(∫ (π2 +φ′ν)/ω0

(−π2 +φ′ν)/ω0
e jzν(cos(ω0t)+λν) · e−jnω0t dt ...

+
∫ ( 3π

2 +φ′ν)/ω0

(π2 +φ′ν)/ω0
e jzν(cos(ω0t)−λν) · e−jnω0t dt

)
.

(4.43)
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In the next step, the Jacobi-Anger identity

e jzν cos(ω0t) =
∞∑

p=−∞
jp · Jp(zν) · e jpω0t (4.44)

is applied, where Jp(zν) is the p-th order Bessel function of the first kind with the argument zν .
This yields

Cn(zν , λν , φ′ν) = ω0

2π ·
∫ (π2 +φ′ν)/ω0

(−π2 +φ′ν)/ω0
e jzνλν · e−jnω0t ·

∞∑
p=−∞

jp · Jp(zν) · e jpω0t dt ...

+
∫ ( 3π

2 +φ′ν)/ω0

(π2 +φ′ν)/ω0
e−jzνλν · e−jnω0t ·

∞∑
p=−∞

jp · Jp(zν) · e jpω0t dt
 .

(4.45)

Since p and t are independent variables, the integral of the sum is equivalent to the sum of
integrals:

Cn(zν , λν , φ′ν) = ω0

2π ·
∞∑

p=−∞
jp · Jp(zν)...

·
(

e jzνλν ·
∫ (π2 +φ′ν)/ω0

(−π2 +φ′ν)/ω0
e−j(n−p)ω0t dt+ e−jzνλν ·

∫ ( 3π
2 +φ′ν)/ω0

(π2 +φ′ν)/ω0
e−j(n−p)ω0t dt

)
︸ ︷︷ ︸

Apn

.
(4.46)

The summation is further analyzed for the term in the brackets Apn for the case p = n, with

Apn(zν , λν , φ′ν) = π

ω0
·
(
e jzνλν + e−jzνλν

)
= 2π
ω0
· cos(zνλν),

(4.47)

and for the case p 6= n:

Apn(zν , λν , φ′ν) = e jzνλν · 1
−j(n− p)ω0

(
e−j(n−p)π2 − e j(n−p)π2

)
· e−j(n−p)φ′ ...

+ e−jzνλν · 1
−j(n− p)ω0

(
e−j(n−p) 3π

2 − e−j(n−p)π2
)
· e−j(n−p)φ′

=
(
e jzνλν − e−jzνλν

)
· e−j(n−p)φ′ · 1

−j(n− p)ω0

(
e−j(n−p)π2 − e j(n−p)π2

)
= 2j · sin(zνλν) · e−j(n−p)φ′ · 1

−j(n− p)ω0
· e j(n−p)π2 ·

(
e−j(n−p)π − 1

)
= sin(zνλν) · e j(p−n)φ′ · 2

(p− n)ω0
· jn−p ·

(
(−1)p−n − 1

)
.

(4.48)
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This allows for the expression of the Fourier coefficient in (4.46) as:

Cn(zν , λν , φ′ν) = jn · cos(zνλν) · Jn(zν)...

+ jn · sin(zνλν) ·
∞∑

p = −∞
p 6= n

1
π(p− n) · Jp(zν) · e

j(p−n)φ′ · ((−1)p−n − 1). (4.49)

Before inserting this result (4.40), the time-shift property is applied to (4.42), with

e jzν(cos(ω0t+θd0ν)−λνψ(t)) =
∞∑

n=−∞
Cn(zν , λν , φ′ν) · e jnω0t · e jnθd0ν , (4.50)

the exponentials in (4.41) can be expressed by the Fourier coefficients, with

q(t) = e− 1
4 jωTsw ·

∞∑
n=−∞

Cn (zν , λν , φ′ν) · e jnω0t · e jnθd0νt...

−e− 3
4 jωTsw ·

∞∑
n=−∞

Cn (−zν , λν , φ′ν) · e jnω0t · e jnω0Tsw/2 · e jnθd0νt.

(4.51)

Inserting (4.51) into (4.40) yields:

S ′ν(ω, φ′ν) = − 2
jωTsw

· e− 1
2 jωTd

∞∑
m=−∞

∞∑
n=−∞

∫ ∞
−∞

e−j(ω−ωmn)...

·
[
e− 1

4 jωTsw · Cn (zν , λν , φ′ν)− e− 3
4 jωTsw · Cn (−zν , λν , φ′ν) · e jnω0Tsw/2

]
· e jnθd0νt dt,

(4.52)

where ωmn = nω0 +mωs [21, (45)].

This equation can be interpreted as a Fourier transform

S ′ν(ω, φ′ν) =
∫ ∞
−∞

s′ν(t, φ′ν)e−jω dt (4.53)

with the time-domain function

s′ν(t, φ′ν) = − 2
jωTsw

· e− 1
2 jωTd

∞∑
m=−∞

∞∑
n=−∞

... (4.54)

·
[
e− 1

4 jωTsw · Cn (zν , λν , φ′ν)− e− 3
4 jωTsw · Cn (−zν , λν , φ′ν) · e jnω0Tsw/2

]
· e jωmn · e jnθd0νt.

Being in the form of a double Fourier series with Fourier coefficients ~
¯
S ′ν,mn(φ′ν), the equation

is written as:

s′ν(t, φ′ν) =
∞∑

m=−∞

∞∑
n=−∞ ¯

S ′ν,mn(φ′ν) · e jωmnt · e jnθd0ν . (4.55)

It is indicated that the coefficients depend on the current zero crossing, which is expressed by
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the phase angle φ′ν defined in (4.14). The Fourier coefficients are:

¯
S ′ν,mn(φ′ν) = − 2

jωmnTsw
· e− 1

2 jωmnTd ...

·
[
e− 1

4 jωmnTsw · Cn (zν , λν , φ′ν)− e− 3
4 jωmnTsw · Cn (−zν , λν , φ′ν) · e jnω0Tsw/2

]
.

(4.56)

Due to the properties of the Bessel function, with Jn(−zν) = Jn(zν) · (−1)n, n ∈ N, and
the properties of trigonometric functions, with cos(−zνλν) = cos(zνλν) and sin(−zνλν) =
− sin(zνλν), it can be shown that

Cn(zν , λν , φ′ν) = Cn(−zν , λν , φ′ν) · (−1)n, n ∈ N. (4.57)

This allows for a more compact expression of (4.56), with

¯
S ′ν,mn(φ′ν) = 2

jωmnTsw
· e− 1

2 jωmnTd · e− 1
4 jωmnTsw · Cn (−zν , λν , φ′ν) · ((−1)m − (−1)n) . (4.58)

Application of (4.49) and re-substitution of (4.35) yields:

¯
S ′ν,mn(φ′ν) = 2

jΩmn

· Jn
(1

4ΩmnMν

)
· cos

(1
2ΩmnMν

Td

Tsw

)
...

· e− 1
4 jΩmn · e−

1
2 jΩmn

Td
Tsw · jn · ((−1)m − (−1)n) ...

+ 2
jΩmn

·
∞∑

p = −∞
p 6= n

Jp

(1
4ΩmnMν

)
· sin

(1
2ΩmnMν

Td

Tsw

)
...

· ej(p−n)φ′ν

π(p− n) · e
− 1

4 jΩmn · e−
1
2 jΩmn

Td
Tsw · jn · Fmnp,

(4.59)

Fmnp := (1− (−1)p−n) · ((−1)m + (−1)p),
Ωmn := ωmn · Tsw [21, (49-50)].

Because of the assumption ω 6= 0 in (4.33), the results are valid for ωmn 6= 0. In [20] it is shown
that the average value of the function s′ν(t) is zero, which means that the superposition of all
components that contribute to ωmn = 0 is zero.

In order to incorporate the modified switching function spectrum into the frequency-domain
models, it is necessary to transform the information into the vector representation ~

¯
S ′, where the

rows describe harmonics of the fundamental frequency f0. Its Fourier series is described by

s′ν(t) =
kmax∑

k=−kmax
¯
S ′ν,k(φ′ν) · e jkω0t. (4.60)

A comparison of (4.55) with the required form in (4.60) reveals that all combinations of m and
n that fulfill m ·ωsw +n ·ωd0 = k ·ω0 are superposed in the k-th harmonic component. Limiting
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the indeces of summation in (4.55) to m = [−mmax, ...,mmax] and n = [−nmax, ..., nmax] en-
ables a numerical evaluation. The modified switching function spectrum depends on the system
signals through the current zero crossing in the form of the phase angle φ′. Due to the nonlin-
ear interactions of the ac-side current and the modified switching function, an iterative solution
process is implemented.

Whereas the results in (4.59) are only valid for sinusoidal duty cycles, the method presented by
Chierchie et al. [22] provides the ac-side voltage spectrum for multiple-frequency duty cycles
using a TE-PWM model based on the results in [15]. Similarly, the results are derived for a
constant dc-link voltage and represent the switching function spectrum, although not indicated
by the authors.

Iterative Solution Process

By solving the nonlinear equation system (4.9)-(4.12) an estimation of the phase current zero
crossing is obtained based on the fundamental frequency components. The phase angle φ′ is then
given in (4.14). The information about the zero crossing is required in the switching function
model in the form of the phase angle φ′ν . The calculation assumes that the output current of the
inverter is nearly sinusoidal [58]. Especially when large harmonic components are present in
the current, the deviation of the actual zero crossing from the calculation becomes considerable.

Using the phase angle φ′ of the fundamental frequency model as a starting value makes it pos-
sible to solve the linear equation system of the VSI under the influence of interlock times. The
resulting phase current spectrum allows for the recalculation of the current zero crossings by
solving (4.15).

In an iterative process (Figure 4.7), the spectrum of the ac-side current is recalculated until
the deviation of the newly calculated phase angle φ′ from an old calculation is smaller than a
defined boundary ∆φmax.

4.2 Numerical Evaluation

A numerical evaluation of the frequency-domain models including the influence of interlock
times is presented in this section.

The case study uses the same topology and set of parameters as Case I in Section 3.4, with a
three-phase VSI that is connected to an RL load on the ac side. The dc link is fed by a six-
pulse diode rectifier. A switching frequency of 2 kHz is used with AD-PWM as the modulation
method. The parameters are given in Table 4.1.



90 4. Nonlinearities of Power Electronic Switches

Initialization

Calculate ϕ' 

(4.9)-(4.12), (4.14)

Calculate S,k

(4.59)
'

Solve Ax=b

(3.91)

Calculate new ϕ'

(4.15)-(4.21)

Display solutions

|ϕnew-ϕold| > Δϕmax yes

no

' '

Figure 4.7: Program flow chart of the iterative calculation of the converter spectrum under the influence of inter-
lock times. An estimation of φ′ is initially calculated using a fundamental frequency model. In the
following iteration process, the modified switching function is calculated and applied in the linear
frequency-domain model of the VSI. The obtained ac-side current spectrum allows for the recalcu-
lation of φ′ for an improved estimation. The process is stopped when the variation of the iteratively
calculated phase angle φ′ is smaller than a predefined maximum deviation ε.

The first step of the evaluation process is to compare the results from the frequency-domain
model with time-domain simulations, while the ac-side current is idealized to a symmetrical
sinusoidal three-phase system. Due to this modeling simplification, the load behaves like a
current source and the zero-crossing angle φ′ is independent of the behavior of the VSI. The
zero crossing angle is chosen to φ′ = ∠

¯
Zac and the amplitude of the phase current is set to

îac = (M · Udc0)/(2 · |
¯
Zac|).

The disturbance current spectrum ~Idis that results from the rectifier is taken from the time-
domain simulations and is included in the frequency-domain model as an independent input
signal. Because the zero-crossing angle is known, the modified switching function spectrum ~S ′ν
can be calculated a priori using (4.59). This allows for the calculation of the dc-side current
spectrum, the dc-link voltage spectrum and the ac-side voltage spectra from the ac-side current
spectrum in a linear process:

~Iacν
(4.23)−→ ~Idc =

∑
ν

~Idcν
(3.81)−→ ~Udc

(4.22)−→ ~Uacν . (4.61)
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Table 4.1: Parameters of the example system for evaluating the influence of interlock times.

Parameter Symbol Value
Fundamental frequency f0 10 Hz
Grid frequency fg 50 Hz
Duty-cycle frequency fd0 40 Hz
AC filter resistance Rac 5 Ω
AC filter inductance Lac 20 mH
Switching frequency fsw 3 kHz
Control frequency fc 6 kHz
Dead time Td 10µs
Grid voltage (line-to-line rms) Ug 400 V
DC-link voltage (dc component) Udc0 555 V
DC-link capacitance Cdc 480µF
Modulation index M 0.6
Fundamental phase shift θ0 0
Maximum harmonic order kmax 500
Maximum carrier order mmax 1

Maximum sideband order
nmax
pmax

90
90

Figure 4.8 shows a comparison of the results from the frequency-domain model with results
from time-domain simulations. The first graph shows the magnitudes of the modified switching
function spectrum. Because it is a fictive signal that cannot be measured in a system, the modi-
fied switching function spectra for the time-domain simulations are calculated from the ac-side
voltage and the dc-link voltage signals and application of an FFT, with

S1[kf0] = FFT
{

2 · uac1[n]
udc[n]

}
. (4.62)

The fundamental frequency of the signals is the greatest common divisor of the fundamental
frequencies of the two subsystems, with f0 = gcd(fg, fd0) = 10 Hz. Therefore, the FFT of
the simulation results and measurement results are based on a time range of 100 ms. There
are some minor deviations between the models that have an amplitude lower than the limit
of the deviations of the complex spectra plotted in Figure 4.9. The good conformity between
the models indicates that the frequency-domain model is correctly implemented and the angle
information is accurate.

The second graph shows the line-line ac-side voltage spectrum. It contains all frequency com-
ponents of the switching function spectrum with the exception of the zero-sequence compo-
nents (multiples of 3 · fd0). Deviations are visible for the same spectral components as for
the switching function spectrum. Additional frequency components are present in the ac-side
voltage spectrum, due to the convolution of the switching function spectrum with the dc-link
voltage spectrum (fourth graph). There are frequency components visible that result either from
harmonic dc-link voltage components or from the influence of interlock times.
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Figure 4.8: Comparison of the results for the frequency-domain model (blue) and the time-domain model. The
ac-side currents are idealized as symmetrical, sinusoidal currents impressed by current sources. Pa-
rameters: fsw = 3 kHz, fd0 = 40 Hz, fg0 = 50 Hz, Td = 10µs.
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Figure 4.9: Deviation of the complex spectra of the frequency-domain model from the time-domain model shown
in Figure 4.8. Parameters: fsw = 3 kHz, fd0 = 40 Hz, fg0 = 50 Hz, Td = 10µs.
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Figure 4.10: Comparison of the results for the frequency-domain model (blue) and the time-domain model. The
ac-side currents contain harmonic components, feeding a symmetrical RL load. Parameters: fsw =
3 kHz, fd0 = 40 Hz, fg0 = 50 Hz, Td = 10µs.
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Figure 4.11: Deviation of the complex spectra of the frequency-domain model from the time-domain model shown
in Figure 4.10. Parameters: fsw = 3 kHz, fd0 = 40 Hz, fg0 = 50 Hz, Td = 10µs.
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Figure 4.12: Comparison of frequency-domain model and measurements for a three-phase VSI with interlock
times. Parameters: fsw = 3 kHz, fd0 = 40 Hz, fg0 = 50 Hz, Td = 10µs.
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For the correct calculation of the harmonic components in the ac-side currents when applying an
RL load to the phase outputs, the iteration process introduced in Figure 4.7 is used. The initial
calculation of φ′ is based on the fundamental frequency model described by (4.9)-(4.14). In the
iteration process, the modified switching function spectrum in (4.59) is evaluated. Subsequently,
it is applied to the linear equation system described in (3.93), where ~Sν is substituted by ~S ′ν .
Figure 4.10 shows the resulting magnitude spectra. Additional frequency components are visible
for the ac-side current and the dc-side current. The deviation of the complex spectra shown in
Figure 4.11 indicates a successful implementation of the iterative solution process.

A comparison of Figure 4.8 with the results from Chapter 3 in Figure 3.27 illustrates the influ-
ence of the interlock times on the switching function spectrum, generating odd order harmonics.
The superposition of harmonic components that result from the interlock times and from the
disturbance currents are visible in the ac-side voltage and ac-side current.

The comparison of spectra taken from the frequency-domain model and measurements is in-
cluded in Figure 4.12. Figure 4.13 shows the deviation of the magnitude spectra. The measured
disturbance current spectrum Idis is used as an input of the frequency-domain model, which
differs from the disturbance current that was used previously in the time-domain simulations
and frequency-domain models [Figure 4.8-Figure 4.11] explaining differences in the spectra.
The switching function of the measurements is reproduced according to (4.62). The first graph
shows the line-to-line switching function spectrum S12 = S1 − S2. A comparison with the
ac-side voltage spectrum illustrates the odd harmonic components of fd0 that are introduced
by the dead time effects. The harmonic components that result from the disturbance current as
multiples of 6 · fg are present in the ac-side voltage, but are missing in the switching function
spectrum.

According to (4.7), the influence of the interlock times on the harmonic components of the
baseband (f << fsw/2) is expected to be unvarying for constant products fsw · Td. This ex-
pectation is reviewed using measurement results for varying values of interlock times of 10µs,
5µs, and 1µs, while retaining a constant product fsw · Td = 0.001. The switching frequencies
are adapted to 1 kHz, 2 kHz, and 10 kHz, respectively. In order to ensure a sufficiently large ratio
of fsw/fd0, the duty-cycle frequency is lowered to fd0 = 1 Hz and the modulation index is set
to M = 0.025. Figure 4.14 shows the ac-side voltage spectra for the three measurements and a
comparison to results from the frequency-domain model. For small values of Td, the influence
on the voltage harmonics is decreased significantly in the measurements. This indicates the in-
creased relevance of further nonlinear effects, such as the device turn-on and turn-off times. For
small values of Td, the switching transitions and delay times manipulate the output voltage for
a considerable time span of the interlock times.
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Figure 4.14: Measured ac-side voltage spectra (top graph) and spectra from frequency-domain model (bottom
graph) for constant products of switching frequency and interlock time fsw ·Td = 1e -3, and (fsw, Td)
set to (1 kHz, 10µs), (2 kHz, 5µs), and (10 kHz, 1µs). Parameters: fd0 = 1 Hz, M = 0.025.

4.3 Other Nonlinear Effects

This section briefly reviews the nonlinear effects of turn-on and turn-off times and forward
voltage drops of the semiconductor devices. A discussion of their influence on the inverter
spectrum and possible methods to incorporate the effects into a frequency-domain model are
included.

4.3.1 Turn-on and turn-off times

The switching process has so far been modeled as a rectangular function with two levels (-1,
1) and zero transition time between the levels. Consequently, infinite voltage and current gra-
dients in the switching instants are assumed. In reality, there are finite transition times between
the two switching states of a power semiconductor due to a limited gate current and a required
charging time of parasitic capacitances within the semiconductor device [59, 60]. The turn-on
time Ton represents the time necessary for the transistor to switch from the blocking state to
the conduction state. The turn-off time Toff represents the time to reverse the states. The char-
acteristic switching transients of a power transistor can be measured using the circuit depicted
in Figure 4.15. The following generic waveforms use the naming conventions as introduced
in [60].

A generic turn-on process of an IGBT is depicted in Figure 4.16, measured for the mod-
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Figure 4.15: Electric circuit to characterize power transistors (cf. [60]): By turning the transistor on, the stiff volt-
age Udc of the large capacitance Cdc causes an increasing current through the inductance L. At a
desired current level, the transistor is switched off and the current commutates to the freewheeling
diode. Shortly after, the transistor is turned on again. Due to the large time constant of the induc-
tor, the turn-off and turn-on processes are performed at similar current levels. The circuit diagram
includes the parasitic capacitances of the transistor Cce, Cgc, Cge, the parasitic inductance of the
transistor Lpar(T) and the parasitic capacitance and inductance of the diode Cpar(D) and Lpar(D).
The capacitances are functions of the voltage and the temperature.

ule Infineon FF1000R17IE4 at a dc-link voltage of Udc = 500 V and an inductor current of
IL = 1000 A. The graphs show the gate-emitter voltage uge in the top graph, the collector
current ic in the middle graph and the collector-emitter voltage uce in the bottom graph. The
measurement starts at t = 0 and is triggered by the rising input signal at the input of the gate
driver. There is a small delay of 100 ns until the rise of the voltage at the input of the gate unit.
During the following turn-on delay time of Td(on) ≈ 600 ns the gate-emitter voltage increases.
Once the threshold voltage is reached, the commutation of the inductor current is initiated. This
process defines the current rise time of Tri, which lasts approximately 500 ns. The collector cur-
rent exceeds the level of the inductor current due to the diode reverse recovery current. During
the current rise time, the measurement of the collector-emitter voltage shows an intermittent
level. However, this is caused by the voltage drop over the parasitic inductance. With an esti-
mated inductance value of 40 nH, the influence is corrected and plotted as the red voltage curve,
approximating the collector-auxiliary-emitter voltage u′ce. Therefore, it can be stated that the
collector-emitter voltage stays at high level until the collector current reaches its peak value
and the diode builds up the blocking voltage. The gate-collector capacitance Cgc is discharged
and thus the collector-emitter voltage decreases in a voltage fall time of Tfv ≈ 250 ns. Due to a
decreasing space-charge zone in the device, the gate-collector capacitance Cgc increases during
this step [59, 60].

The turn-off process of the same module under the same boundary conditions is depicted in
Figure 4.17. The gate-emitter voltage falls almost 200 ns after the gate driver input signal is
set to its low level. During the following turn-off delay time Td(off) ≈ 1300 ns, the capacitance
Cgc is charged and Cge is discharged, until the gate-emitter voltage reaches the value where
the collector current equals the saturation current. During the following voltage-rise time of
Trv ≈ 400 ns, the space-charge region is built up and the gate-collector capacitance decreases
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Figure 4.16: Turn-on process of the IGBT module Infineon FF1000R17IE4, with iL = 1000 A, Udc = 500 V.
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Figure 4.17: Turn-off process of the IGBT module Infineon FF1000R17IE4, with iL = 1000 A, Udc = 500 V.
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and is charged. Consequently, the collector-emitter voltage rises. Subsequently, the load current
commutates to the diode and the collector current decreases during this current fall time Tfi.
The collector-emitter voltage exceeds the blocking voltage by a voltage peak that is due to the
voltage drop over parasitic inductances. The characteristic tail current is visible for t = 2...3µs,
which is caused by recombination of charge carriers that remained within the drift zone of the
IGBT after its turn off [59, 60].

The switching transients include time intervals where there is a simultaneous current conduction
and a large voltage drop across the semiconductors, generating switching losses. During the
commutation, the conduction state cannot be assigned to either the top or the bottom path and
thus the process cannot be represented by a lossless switch s. The switching transients are often
modeled as an equivalent constant [52,56,61–63] or linear error function [61,63]. The nonlinear
switching transient is considered in [19].

In the following schematic model, the finite switching times are represented by a modified
switching function s′′. The turn-on process is divided into a turn-on delay time Td(on) where the
collector-emitter voltage is at high level and a voltage-fall time Tfv that can be approximated by
a constant gradient. Similarly, the IGBT turn off can be described by a turn-off delay time Td(off)
where the collector-emitter voltage is at low level and a voltage-rise time Trv with constant volt-
age gradient. This approximation neglects the different delay times for the current commutation
and the nonlinearity of the parasitic capacitances. The turn-on and turn-off processes are mainly
determined by the operating point (blocking voltage, load current, and temperature), the gate
current, and the device-specific threshold voltage and voltage-dependent parasitic capacitances.

Figure 4.18 shows the switching process schematically for a half bridge. At the beginning the
bottom transistor is conducting a positive current i and the switching state described by the
switching function is s = −1. The transition to the switching state 1 is performed by turning the
bottom transistor off and turning the top transistor on after an interlocking time of Td (transition
a)→ b) ). Due to the finite turn-off time, the transition is delayed and the modified switching
function s′′ differs from the ideal switching function s, as indicated by the deviation area A1
of the error e. The turn-off delay results in a rectangular deviation and the voltage rise time is
approximated by a triangular shape. The reverse switching transition from 1 to -1 begins with
changing the top gate signal to zero, as shown at c). The top diode keeps conducting the phase
current, resulting in a rectangular deviation e. At the end of the interlock time at d), the bottom
transistor is turned on. The turn-on delay time and the voltage-fall time cause an extension of the
deviation area A2. The same switching process is shown in the steps e)-h) for negative inductor
currents, where the same principle applies and the deviation areas have inverse signs.

For very low inductor currents, the switching transition is governed by an equivalent capac-
itance called switching-node capacitance of the half bridge [19]: In order to commutate the
inductor current to the freewheeling diode, the parasitic capacitance of the diode Cpar(D) has to
be charged and the collector-emitter capacitance of the bottom IGBT has to be discharged [see
Figure 4.15]. For this, the inductor current splits up between the top and the bottom path and
charges the collector-emitter capactitance of the IGBT and the capacitance of the freewheeling
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Figure 4.18: Representation of transistor turn-on and turn-off times in a modified switching function s′′. The
leading edges of the gate signals gt and gb are delayed by interlock times Td. The transitions a)-d)
show the commutation process for positive phase currents and the transitions e)-h) for negative phase
currents.

diodes simultaneously. For a half bridge, the switching node capacitance represents the parallel
connection of the parasitic capacitances of the two IGBTs and the two diodes. Whenever the
current flow path changes, the switching node capacitance has to change polarity. For very low
inductor currents, the charging time can be in the range of the interlock time. The resulting
switching function slope is included in Figure 4.18 as a blue dashed line. The voltage rise time
is extended due to the required charging time of the switching node capacitance. The switching
transition is terminated by the switch-on process of the transistor anti-parallel to the diode, as
shown at b) and h). The switching function model neglects that the inductor current cannot be
assigned to a single current flow path (top or bottom). Therefore, an error is introduced for the
calculation of the dc-side current. However, the influence is considered to be low, because the
value of the current is very low.

The switching-node capacitance is often assumed constant [53, 56, 61, 64], because the average
error over one switching period, rather than the shape of the transient is of interest. The impact of
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the effect is limited to the low frequency operation of ac drives when both the output frequency
and the voltage are low [65].

Under the assumption of Td(on) >> Tfv and Td(off) >> Trv, the error areas are assumed in
[52,56,65] to be rectangular and the average value of the error pulses over one switching period
can be written as

〈e(t)〉Tsw
= A1 + A2

Tsw
≈ 2 · Td + Ton − Toff

Tsw
· sign(iac). (4.63)

Consequently, the turn-on and turn-off times can intensify (turn-on delay) and attenuate (turn-
off delay, switching-node capacitance) the influence of dead-time effects. Whereas average
models are proposed in [52, 55, 56, 65], Koeslag et al. [19] developed an analytical model for
output voltage including finite transition times by applying the double Fourier method. The
model includes an approximation of the voltage-dependent parasitic capacitances. An incor-
poration of the transition times requires the adaption of the edges τdrνm and τdfνm in (4.27)
regarding the areas A1 and A2 in Figure 4.18. Due to the nonlinear dependency of the capac-
itances on the operating point (phase current, dc-link voltage, and device temperature), this
adaption is challenging. Additionally, the parameters of the capacitances are often not provided
by the device manufacturer, requiring an additional measurement. Nevertheless, the assumption
of Td(on) >> Tfv and Td(off) >> Trv results in square-shaped areas that are easier to model
than the trapezoidal shape and Td(on) and Td(off) could be approximated as constant parameters,
resulting in a more accurate model in comparison to a model that neglects the transition times.

4.3.2 Forward voltage drops

The forward voltage drops across the semiconductor devices introduce a deviation of the ac-
side voltage from the model described by (3.2). The current equation in (3.3) is not affected. The
equivalent circuit of a half bridge including the forward voltage drops is depicted in Figure 4.19.
The states of conduction of the top (t) and bottom (b) path are modeled by the switching function
s. The voltages across the IGBTs are represented by a differential resistance rT and a threshold
voltage UT0, with

uT(t) = UT0 + rT · iT(t). (4.64)

Respectively, the voltages across the diodes are represented by a differential resistance rD and
a threshold voltage UD0, with

uD(t) = UD0 + rD · iD(t). (4.65)

It is assumed that the top and bottom devices have equal parameters. Lossless diodes are in-
cluded in the equivalent circuit to model the unidirectional current flow in each semiconductor.
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Figure 4.19: Equivalent circuit of a half bridge including forward voltage drops of the semiconductor devices. The
conduction state of the top and bottom path is modeled with the switching function s. The forward
voltage drop is included for each component as a series connection of its differential resistance, its
threshold voltage, and an lossless diode.

Table 4.2: Value of the ac-side voltage in dependence of the switching function and the current sign.

s(t) ψ(t) uac(t) in (4.66) uac(t) in (4.67)

1 1 1
2 · udc(t) + uD(t) 1

2 · udc(t) + UD0 + rD · iac(t)
1 -1 1

2 · udc(t)− uT(t) 1
2 · udc(t)− UT0 + rT · iac(t)

-1 1 −1
2 · udc(t) + uT(t) −1

2 · udc(t) + UT0 + rT · iac(t)
-1 -1 −1

2 · udc(t)− uD(t) −1
2 · udc(t)− UD0 + rD · iac(t)

The ac-side voltage has a dependency on the switching state and additionally on the sign of the
phase current ψ(t) = sign(iac(t)). The value of the ac-side voltage is summarized in the third
column of Table 4.2 for combinations of s and ψ. A time-domain equation that reproduces these
combinations is given by

uac = s(t) ·
(

1
2 · udc(t) + s(t) · ψ(t) + 1

2 · uD(t) + s(t) · ψ(t)− 1
2 · uT(t)

)
. (4.66)

In modeling and compensation of dead-time effects, the current-dependent voltage drop is of-
ten considered of minor importance [52, 56, 64] and in some cases the complete voltage drop is
neglected due to its minor influence [62, 66]. A frequency-domain model that provides an ex-
pression of (4.66) with Fourier coefficients was not found in the literature review. The following
equations provide an approach to express the voltage drops in the frequency domain.

By analysis of Figure 4.19, the voltage drops uD(t) and uT(t) can be expressed as functions of
the ac-side current, which are summarized in the fourth column of Table 4.2. It is emphasized
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that the influence of the resistive component is proportional to iac(t) and the influence of the
threshold voltage changes with the sign of the ac-side current ψ(t). Applied to (4.66), this results
in

uac = 1
2 · s(t) · udc(t) + s(t) · ψ(t) + 1

2 · UD0 · s(t) + s(t) · ψ(t) + 1
2 · rD · iac(t)...

+ s(t) · ψ(t)− 1
2 · UT0 · s(t)−

s(t) · ψ(t)− 1
2 · rT · iac(t).

(4.67)

With the introduction of

Ū0 := UT0 + UD0

2 , ∆U0 := UT0 − UD0

2 , r̄ := rT + rD

2 , ∆r := rT − rD

2
(4.68)

it is possible to express (4.67) as

uac = 1
2 · s(t) · udc(t) + Ū0 · ψ(t)−∆U0 · s(t) + r̄ · iac(t)−∆r · ψ(t) · s(t) · iac(t). (4.69)

It is notable that the influence of the voltage can be divided into four components:

1. A component Ū0 ·ψ(t), which is proportional to the average threshold voltage, and which
depends on the sign of the ac-side current. The sign of sinusoidal currents is a square
wave and introduces harmonics of odd order into the ac-side voltage.

2. A component ∆U0 · s(t), which is proportional to the deviation of the threshold voltages,
and which depends on the switching function.

3. A component r̄ · iac(t), which introduces a resistive behavior.

4. A component ∆r·ψ(t)·s(t)·iac(t), which is proportional to the deviation of the differential
resistance. It depends on the product of the ac-side current, the ac-side current sign and
the switching function.

When the characteristics of the diode and the IGBT are similar, it is possible to assume that
∆U0 ≈ 0 and ∆r ≈ 0. With these assumptions, an application of a Fourier transformation to
(4.69) yields

Uac(f) = 1
2 · S(f) ∗ Udc(f) + Ū0 ·Ψ(f) + r̄ · Iac(f). (4.70)
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4.4 Discussion

In this chapter the influence of interlocking times on the switching function spectrum was ana-
lyzed. A method was presented that allows for the incorporation of the effect of interlock times
directly into the switching function spectrum and the calculation of the spectra considering
both the interlock times and harmonic disturbances. The results of this chapter extend previ-
ous work [19, 21, 22] that provided the analytical models of the ac-side voltage spectrum for a
constant dc-link voltage and sinusoidal phase currents.

Interlock times result in the generation of odd order harmonics of the fundamental frequency in
the switching function spectrum. For harmonic orders that are a multiple of three, the compo-
nents form zero-sequence components in a three-phase system and therefore cancel out in the
line-to-line voltages and they are not present in the line currents. The interlock times also lead
to a widening of the switching sidebands and there is no clear separation between baseband
harmonics and the switching sidebands.

Under the influence of interlock times, there is a dependency of the switching function on the
zero-crossing times of the ac-side current, which results in a nonlinear equation system. Numer-
ical results were presented and validated by time-domain simulations and experiments. Because
the analytical models assume two current zero crossings per fundamental cycle, deviations oc-
cur when the assumption is not valid due to large current harmonics.

Parasitic capacitances of the semiconductors impact the shape of the output voltages during the
finite switching transients. They generally lead to an attenuation of the harmonics generated
by the interlock times. The semiconductor forward voltage drop cause odd numbered harmonic
components that add to the harmonics generated by the other nonlinear effects.
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5 VSI with Closed-Loop Control

Closed-loop control utilizes the feedback of measured or estimated output signals of the plant
to shape its input signals, achieving a desired control goal. This results in a mutual dependency
between the signals of the control system and the plant. A simplified control loop is illustrated
in Figure 5.1a as a block diagram. The output variable x is measured by a sensor and fed back to
the control system as the sensed output signal x′. A comparison to the setpoint signal xsp results
in the control error ∆x. A controller amplifies the control error, generating the control command
usp. An actuator executes the command, influencing the input of the plant and shaping the output
signal x in order to reach the desired control goal. When designed correctly, deviations in the
output signal from the setpoint signal that result from the influence of a disturbance signal l
are compensated by the controller through the control command, creating a robust and stable
system.

Controller Plant

xabc

u xabcxsp Δx
l

Digital control system

dq

abc

Controller Actuator Plant

Sensor
x'

u xxsp Δx
l

b)

a)

-

-

usp

PWM

SensorADC

Actuator
dq

abc

Continuous physical system

'xdq'
ADC

PWM

Figure 5.1: Block diagram of a physical system with closed-loop control: a) Fundamental structure. b) Extension
to a three-phase converter system. The signals that are vectors are illustrated with double lines. Nonlin-
ear blocks are drawn with double frames. The control is implemented digitally in rotating coordinates,
requiring a hybrid model of discrete and continuous signals in multiple coordinate systems.
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Figure 5.1b shows the extension of the block diagram to a three-phase system, where the con-
trol is implemented in rotating coordinates in a digital subsystem. The physical model of the
three-phase system is modeled with continuous signals in abc coordinates. A conversion into
digital signals is required at the input of the control system. At its output, the digital-to-analog
conversion is performed inherently by the PWM block, which transforms the discrete-time duty
cycle into a continuous-time switching function. Consequently, a hybrid modeling approach is
required that incorporates discrete and continuous signals simultaneously. Moreover, the trans-
formation into rotating coordinates, which is implemented in the digital control system, requires
consideration in the modeling process.

The VSI as the actuator was modeled in Chapter 3 using an idealized switching function and in
Chapter 4 with a modified switching function incorporating nonlinear effects. It was assumed
that the input of the modulator, i.e. the duty cycle, was an independent signal and could be
calculated a priori. For closed-loop control, the duty cycle is a dependent signal determined
in the control process, which interacts with the signals of the plant. Due to the PWM and the
switching process, this interaction is nonlinear.

It was found that the frequency-domain modeling of the interaction between PWM, control,
and plant is not sufficiently covered in the literature. Approaches that model the PWM in great
detail are available, but they do not cover the influence of the feedback. These are the PWM
models that were reviewed in Chapter 3 [12, 14, 15, 17]. Other approaches that cover the inter-
action are based on linearization or contain linearized models of the PWM and the switching
process. Almér and Jönsson [67] develop a dynamic phasor model that accounts for the closed-
loop control of dc-dc converters by averaging and by truncation of high-frequency components.
Corradini et al. [34] present discrete-time average models for dc-dc converters that incorporate
sampling and aliasing effects under small-signal assumptions. A linearization enables the use of
standard control theory methods, such as Bode plot and Nyquist stability theorem. The aliasing
of unsynchronized frequency components that are near the sampling frequency are discussed
by Yue et al [68]. These unwanted beat-frequency components are incorporated under small-
signal assumptions by mapping the high-frequency components to the baseband using a crossed
frequency matrix.

The goal of this chapter is to develop the mathematical framework for calculation of the spec-
trum of the signals including the harmonic interactions due to the feedback control. The control
is developed for the example of closed-loop current control of a three-phase VSI. In Section 5.1
the individual components of the control loop are analyzed as a block-wise input-to-output de-
scription. The influence of quantization is excluded in the models developed in this thesis. Its
influence is briefly discussed in Section 5.2. Section 5.3 describes a modification to the PWM
models introduced in Chapter 3 that is necessary to allow a hybrid model of discrete-time and
continuous-time signals. The evaluation of the total equation system requires nonlinear solution
methods, which is described in Section 5.4.
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5.1 Control Components

Digital control can be implemented on software-based controllers (e.g. microcontrollers) or
hardware-based controllers (e.g. FPGAs) [34]. In this thesis, the control structure is split into
a software-based control for the setpoint generation implemented in a CPU and the evaluation
of the ADCs and the PWM implemented on an FPGA. The system structure and the interac-
tion of the control unit with the power stage are depicted in Figure 5.2 as a block diagram.
The continuous-time signals iac(t) and udc(t) are measured by analog sensors and converted
into discrete-time signals i′ac[n] and u′dc[n] by an ADC such as a ∆Σ modulator. A digital dec-
imator provides the attenuation of the quantization error and the downsampling to the control
frequency. The signals i′ac[n] and u′dc[n] are sampled with the control frequency and utilized in
the CPU. The output of the controller is the duty cycle d[n]. The PWM process is implemented
in the FPGA and transforms the duty cycle into an equivalent switching function s[n].

Analytical models of the PWM and plant were previously analyzed in Chapter 3. This section
studies the measurement system and the digital control. All subsystems are given in an input-
to-output description in the frequency domain.

FPGA

iac(t)

d[n]

udc(t)

udc[n]'

Control PWM
Plant

(VSI)

s[n]

Decimator
Sensors & 

ADC

iac[n]'

isp[n]

CPU

Figure 5.2: Overview of system’s interactions for closed-loop control. The blocks ADC, decimator, and control are
analyzed in this section, whereas the blocks PWM and plant were previously introduced in Chapter 3.

5.1.1 Measurement System

The structure of the measurement system that is used to track a continuous signal of the plant
x(t) is depicted in Figure 5.3. An analog sensor transforms the signal into a low-voltage or
low-current equivalent, which is further converted into a digital signal using a ∆Σ converter.
Decimation is the collective process of low-pass filtering and downsampling [69], which is
applied to the digital signal on an FPGA. Finally, the low-pass filtered signal x′[n] is sampled
with the control frequency and transferred to the control unit.

The sensors can be described by a specified accuracy, an offset error, and a characteristic fre-
quency behavior that can be regarded as linear up to a cut-off frequency fcut. Assuming a cor-
rection of the offset error and a sufficiently large accuracy, these impact factors are neglected
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x'[n]Down-
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Decimator

Figure 5.3: Structure of the measurement system

in the following modeling approach. Even though the bandwidth of the sensor is usually large
(fcut >> kmax · f0), a considerable error of the angle information can occur for the components
around the switching frequency. Therefore, the analog sensors are represented by the transfer
function of a first-order low-pass filter

Hsensor(ω) = 1
jω/fcut + 1 . (5.1)

Refer to Appendix B for information about the measurement devices of the experimental setup.

The ∆Σ modulator transforms the analog signal into a 1-bit digital signal, where the density of
the ones is proportional to the magnitude of the analog signal. The 1-bit resolution causes a high
quantization noise. Using a sampling frequency that is much higher than the control frequency
(oversampling), the noise is mainly present in the high frequency range. The noise is attenuated
in a further step using digital low-pass filters. The high sampling frequency also reduces the
requirements of the input anti-aliasing filter. The cut-off frequency of the anti-aliasing filter is
in the range of half the clock frequency of the delta-sigma modulator, which results in several
MHz and allows a negligence in the models [70].

The output spectrum of the modulator in the z domain Y (z) consists of an input signal spectrum
X(z) affected by the signal transfer function Hx(z) and a noise spectrum E(z) affected by the
noise transfer function He(z), with

Y (z) = Hx(z) ·X(z) +He(z) · E(z)
= z−1 ·X(z) + (1− z−1)L · E(z) [69],

(5.2)

where L is the order of the modulator. The noise spectrum represents a white noise process that
is uncorrelated with the input signal spectrum. The signal transfer functionHx(z) has unity gain
for all frequencies and introduces a phase delay. The influence can be estimated by assuming a
signal frequency of f = 10 kHz and a sampling frequency of f∆Σs = 10 MHz, which results in
the low value of −0.4◦.

Figure 5.4 shows the noise transfer function He(z) for a first-order and a second-order ∆Σ
modulator in dB for the same sampling frequency of f∆Σs = 10 MHz. The graphs illustrate that
the noise spectrum is significantly shifted to higher frequencies, especially for the second-order
modulator. The high-frequency noise is removed in the digital filtering process. The quanti-
zation noise at low frequencies is insignificant. At a frequency of f = 10 kHz the noise is
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Figure 5.4: Noise transfer function of a first-order and second-order ∆Σ modulator for a sampling frequency of
f∆Σs = 10 MHz, cf. [69].

attenuated to -200 dB for the second-order ∆Σ modulator. It is concluded that the influence of
the ∆Σ modulator can be neglected in the models that consider frequencies up to several kHz.

The tasks of the decimator are to remove the quantization noise in the high frequency range,
apply anti-aliasing filters for the upper end of the signal bandwidth, and provide downsampling
to the control frequency while increasing the word size of the signal. Multistage decimators
can be applied where the individual stages are optimized to fulfill these different purposes [71].
The reduction of quantization noise is often performed in the first stage by sinc filters of order
K > 1, which have a transfer function of

HsincK(z) =
(

1
N

1− z−N
1− z−1

)K
[71], (5.3)

where N = f∆Σs/fD is the decimation, f∆Σs is the sampling frequency of the ∆Σ modulator,
and fD is the intermediate decimation frequency. In the second stage a low-pass filter can be
incorporated to shape the desired transfer characteristic at the upper end of the signal bandwidth.
For second-order ∆Σ modulators, sinc filters of order K ≥ 3 are recommended for effective
prevention of aliasing [72]. To provide decimation to the control frequency, an accumulate-
and-dump circuit [71] can be applied in the third stage, which is a sinc filter with its transfer
function given by (5.3) with K = 1. The second and the third stage are optional. The total
transfer function of the decimator is called Hdec, which is a diagonal matrix Hdec for the vector
representation of Fourier coefficients.

The output of the decimator is sampled with the sampling period Ts. The sampling process is
represented by a multiplication of the continuous signal x(t) with a sequence of Dirac pulses δ
described in (2.11), which results in the sampled signal xs(t), with

xs(t) = x(t) ·
∞∑

n=−∞
δ(t− nTs). (5.4)
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Figure 5.5: Block diagram of the measurement system as it is modeled in the frequency domain.

In the frequency domain the sampling is represented by a convolution of the spectrum of the
continuous signal Xs[kf0] with a sequence of Dirac pulses, which is described in (2.18). In the
vector representation, this is expressed as a convolution of the signal vector ~X and a vector Hs
that contains ones at the elements of order nTs/T0, n ∈ Z:

~Xs = ~Hs ∗ ~X. (5.5)

The sampling process is commonly synchronized with the PWM period, minimizing the in-
fluence of switching harmonics in the sensed signals [42]. This avoids aliasing of switching
harmonics, even when digital filters are not applied. See Chapter 3 and Figure 2.4 for an expla-
nation of the beneficial effect of synchronization.

The sampled signals are held in the control system for one control period, which can be modeled
by application of a zero-order hold (ZOH) block to each output of the measurement system. The
continuous transfer function of the ZOH is

HZOH(ω) = e−jωTs/2 · si(ωTs/2). (5.6)

In the vector representation of Fourier coefficients the ZOH is a diagonal matrix HZOH, with
the k-th diagonal element

HZOH,k = e−jkω0Tc/2 · si(kω0Ts/2). (5.7)

The resulting model of the measurement system is illustrated in Figure 5.5 as a block diagram
and the discrete output spectrum in the vector representation is calculated with

~X ′s = HZOH ·
(
C( ~Hs) ·Hdec ·Hsensor · ~X

)
. (5.8)

Figure 5.6 presents an example that illustrates the significance of the correct modeling of sam-
pling and filtering. The input of the measurement system represents a typical ac-side cur-
rent signal, with a large fundamental component at f0 = 50 Hz and a switching spectrum.
The sidebands are visible around the first and second carrier groups at fsw = 2500 Hz and
2 · fsw = 5000 Hz, respectively. The switching process is synchronized with the sampling pro-
cess of the measurement system to avoid aliasing of the switching harmonics [42]. Additionally,
the input signal contains a component at fdis = 2100 Hz that is unsynchronized with the sam-
pling process, representing an external disturbance. The influence of a sensor is neglected in
this example. There are a number of sampling and filtering methods available:
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Figure 5.6: Results for various sampling and filtering methods. The input signal contains a fundamental compo-
nent at 50 Hz, synchronized switching sidebands around multiples of 2500 Hz, and an unsychronized
component at 2100 Hz.
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Single sampling: The input signal is sampled and held once a switching period (fs = fsw).
Because the sampling is synchronized with the switching process, the switching components are
effectively reduced. The dashed line shows the attenuation introduced by the zero-order hold.
Frequency components occur at n·fs±f0, n ∈ Z, due to the sample and hold of the fundamental
component. Aliasing occurs because the frequency of the unsychronized signal fdis is larger
than half the sampling frequency. Frequency components are generated at n · fs ± fdis, n ∈ Z,
including a low frequency component at fs − fdis = 400 Hz.

Double sampling: The input signal is sampled and held twice per switching period (fs = 2·fsw),
synchronized with the switching process. The dashed line shows the attenuation introduced
by the zero-order hold for double sampling. The fundamental frequency component is again
present at n · fs ± f0, n ∈ Z, visible around 5000 Hz. The frequency of the unsynchronized
component is smaller than half the sampling frequency and aliasing to the baseband is avoided.
The component appears at 2900 Hz.

Sinc3 filter: Application of a sinc3 filter prior to the double sampling process introduces low-
pass filtering and provides the necessary decimation from the high-frequency 1 bit signal to a
lower sampled signal with a higher word size. Choosing a low decimation that results in an
intermediate decimation frequency fD >> fs, the influence of the sinc3 filter on the frequency
range discussed in this thesis is negligible. The graph “Sinc3 partly” shows the resulting spec-
trum when double sampling is applied. The dashed line represents the transfer function of the
sinc3 filter with fD = 500 kHz. There is a small component present at fsw due to a phase shift
of the switching harmonics by the sinc3 filter. Again, aliasing occurs when single sampling is
chosen (not depicted).

For a higher decimation that results in fD being in the range of the sampling frequency, unsyn-
chronized signals are more effectively damped. However, the benefit of synchronization can be
lost when the switching ripple is averaged only over a part of the switching period. Thus, the in-
termediate decimation frequency is set to fD = fsw, even when double sampling is applied, and
the switching harmonics cancel out over one switching period. The graph “Sinc3 full” shows
the resulting spectrum, where the disturbance signal is effectively damped.

Sinc1 filter: When applying single sampling (fs = fsw) and an accumulate-and-dump circuit
(sinc1 filter) over one switching period without utilizing any other filtering methods, the spec-
trum in the bottom graph results. The filtration effect is not as effective, as indicated by the
dashed line. Thus, aliasing is visible, although the amplitude is low.

All results from the frequency-domain model [blue bars in Figure 5.6] are validated by time-
domain simulations [red bars]. There is a perfect agreement between the frequency-domain and
time-domain models and the deviation of the complex spectra is below 1e-4 for all harmonics
(not depicted).

Although the sinc3 filter applied over the full sampling period has a good attenuation of out-
of-band components, such as the unsychronized disturbance signals, it has an unwanted and
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large impact on the baseband components. In comparison, the sinc1 filter has a flatter frequency
response with a smaller impact on the baseband components and a lower attenuation of un-
wanted out-of-band components. Therefore, a combination can be applied, with a sinc3 filter
to filter quantization noise, an additional digital filter to shape the damping behavior concern-
ing out-of-band components, and an accumulate-and-dump circuit for decimation to the control
frequency.

5.1.2 Control System

The control system in Figure 5.7 can be divided into the subtasks current control and duty-cycle
calculation. The current control is performed in the rotating reference frame using PI controllers.
The inputs are the measured ac-side currents is ac, the current setpoints is sp, and optional volt-
age signals for disturbance compensation us comp. The outputs are the setpoint voltages in 123
coordinates us sp, which are the inputs to the duty-cycle calculation. The outputs of the complete
control block are the duty-cycle commands for the PWM process ds.

Park Transformation

The current control utilizes the Park transformation to represent the signals in the rotating refer-
ence frame. The transformation comprises the Clarke transformation and a rotation matrix. Due
to the omission of a neutral wire, there are only two independent currents in the three-phase
system and the zero component can be truncated in the transformation matrices. The amplitude-
invariant form of the Clarke transform, which allows for the expression of a three-phase signal
xν , ν ∈ {1, 2, 3} in the stationary αβ frame, is written in the time domain as

[
xα(t)
xβ(t)

]
= 2

3 ·
[
1 −1

2 −1
2

0
√

3
2 −

√
3

2

]
·

x1(t)
x2(t)
x3(t)

 ,
~xαβ(t) = 2/3 · Tclarke · ~x123(t).

(5.9)

us dc/2
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dq
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Figure 5.7: Block diagram for closed-loop control using PI current control and dc-link voltage feedback
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The inverse transformation is written asx1(t)
x2(t)
x3(t)

 =


1 0
−1

2

√
3

2
−1

2 −
√

3
2

 ·
[
xα(t)
xβ(t)

]
,

~xabc(t) = T T
clarke · ~xαβ(t).

(5.10)

The linear time-invariant Clarke transform can be applied to each frequency component indi-
vidually and therefore can be expressed for the k-th Fourier coefficient as

[
Xα,k

Xβ,k

]
= 2

3 ·
[
1 −1

2 −1
2

0
√

3
2 −

√
3

2

]
·

X1,k
X2,k
X3,k

 ,
~Xαβ,k = 2/3 · Tclarke · ~X123,k.

(5.11)

The inverse transform results in

~X123,k = T T
clarke · ~Xαβ,k. (5.12)

The second component of the Park transform is a rotation into the dq reference frame with the
rotating angle θ, resulting in the signal in dq coordinates, with[

xd(t)
xq(t)

]
=
[

cos(θ(t)) sin(θ(t))
− sin(θ(t)) cos(θ(t))

]
·
[
xα(t)
xβ(t)

]
,

~xdq(t) = Trot(θ(t)) · ~xαβ(t).
(5.13)

Assuming of the rotating angle has a constant gradient with θ(t) = ωrott, where ωrot is its
angular frequency of the rotation, allows for the expression of the Fourier transform of the
matrix elements as

cos(ωrott) d t 1
2 · δ(ω − ωrot) + 1

2 · δ(ω + ωrot),

sin(ωrott) d t − j
2 · δ(ω − ωrot) + j

2 · δ(ω + ωrot).
(5.14)

The Delta function is convolved with the spectrum of the signals in αβ coordinates, which
results in a frequency shift, with

Xd(ω) = 1
2 ·Xα(ω) ∗ δ(ω − ωrot) + 1

2 ·Xα(ω) ∗ δ(ω + ωrot)...

− j
2 ·Xβ(ω) ∗ δ(ω − ωrot) + j

2 ·Xβ(ω) ∗ δ(ω + ωrot)

= 1
2 · (Xα(ω − ωrot) +Xα(ω + ωrot)− jXβ(ω − ωrot) + jXβ(ω + ωrot)) ,

(5.15)
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Xq(ω) = j
2 ·Xα(ω) ∗ δ(ω − ωrot)−

j
2 ·Xα(ω) ∗ δ(ω + ωrot)...

+ 1
2 ·Xβ(ω) ∗ δ(ω − ωrot) + 1

2 ·Xβ(ω) ∗ δ(ω + ωrot)

= 1
2 · (jXα(ω − ωrot)− jXα(ω + ωrot) +Xβ(ω − ωrot) +Xβ(ω + ωrot)) .

(5.16)

The application to Fourier components requires the rotation frequency to be an integer multiple
of the fundamental frequency with ωrot = nω0, n ∈ N. The frequency-domain convolution of
the rotating matrix results in a shift of n harmonic order, including a left-shift and a right-shift
term [

Xd,k
Xq,k

]
= 1

2 ·
[
1 −j
j 1

]
·
[
Xα,(k−n)
Xβ,(k−n)

]
+ 1

2 ·
[

1 j
−j 1

]
·
[
Xα,(k+n)
Xβ,(k+n)

]
. (5.17)

The inverse rotation describes the transformation from dq coordinates into αβ coordinates, with[
xα(t)
xβ(t)

]
=
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
·
[
xd(t)
xq(t)

]
,

~xdq(t) = Trot(−θ(t)) · ~xαβ(t),
(5.18)

which can be expressed for the Fourier coefficients as[
Xα,k

Xβ,k

]
= 1

2 ·
[

1 j
−j 1

]
·
[
Xd,(k−n)
Xq,(k−n)

]
+ 1

2 ·
[
1 −j
j 1

]
·
[
Xd,(k+n)
Xq,(k+n)

]
. (5.19)

The frequency-domain representation of the Park transformation is derived here for continuous-
time signals. Due to the time invariance and linearity of the Clarke transform and equal CTFT
and DTFT for cosine and sine [41] in (5.14), the results can be directly applied to discrete-time
signals.

The derivation of the rotation matrix in the frequency domain is based on the assumption of a
rotating angle with a constant gradient of ωrot. This is valid in the first approximation because
the rotating angle is determined by the grid frequency in grid-converter applications or the
rotor speed in machine applications, which are stiff quantities in both cases. Nevertheless, the
rotating frequency can contain harmonic components, especially in the presence of faults. The
consequences of harmonic components in the rotating matrix are discussed and analyzed further
in the context of a drive system with a synchronous machine in Chapter 6.
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Proportional-Integral Control

Linear PI controllers can be described by a transfer function

HPI(ω) = KP + KP

TI
·HI(ω), (5.20)

where KP is the proportional gain and TI is the integrator time constant. For digital control, the
transfer function of the integrator HI(ω) depends on the choice of the integration method, all
of which are summarized in Table 5.1. The table also provides the difference equations for the
integration methods forward Euler, backward Euler, and Tustin, where x[k] is the input signal
and y[k] is the output signal.

For a matrix representation, the PI controller is a diagonal matrix HPI, where the diagonal
elements are the sampled values HPI[kω0] of the transfer function in (5.20). The measured
signals of the ac-side currents are transformed into dq coordinates ~I ′d, ~I

′
q by application of (5.11)

and (5.17). The inputs of the current controllers are the deviations of the measured currents in
dq coordinates from the setpoint signals ~Idsp, ~Iqsp, with

∆~I ′s d = (~Is d sp − ~I ′s d)
∆~I ′s q = (~Is q sp − ~I ′s q).

(5.21)

The outputs of the controllers are the setpoint voltages of the VSI in dq coordinates, with

~Us d sp = HPI ·∆~I ′s d + ~Us d comp,

~Us q sp = HPI ·∆~I ′s q + ~Us q comp.
(5.22)

The equations contain additional components for disturbance compensation, which take into
account the cross-coupling of the dq axes and a compensation of the measured disturbance

Table 5.1: Difference equations and transfer functions for different integration methods, cf [42].

Integration method Difference equation Transfer function

Forward Euler y[k] = Tc x[k − 1] + y[k − 1] H(ω) = Tc
1

ejωTc − 1

Backward Euler y[k] = Tc x[k] + y[k − 1] H(ω) = Tc
e jωTc

e jωTc − 1

Trapezoidal (Tustin) y[k] = Tc

2 (x[k] + x[k − 1]) + y[k − 1] H(ω) = Tc

2
e jωTc + 1
e jωTc − 1
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voltage in dq coordinates ~Uddis and ~Uqdis, with

~Us d comp = ~Us d dis + ωrot · Lac · ~I ′s q,

~Us q comp = ~Us q dis − ωrot · Lac · ~I ′s d.
(5.23)

The dc component of the controller’s transfer function has infinite gain, with HI(ω → 0)→∞.
Thus, the dc components of the dq currents converge to

Is d,0 = Is d sp,0,

Is q,0 = Is q sp,0.
(5.24)

Consequently, the dc components of the setpoint voltages cannot be calculated by (5.22). The
solutions of Us d,0 and Us q,0 result instead from the complete equation system that incorporates
the interaction of the control with the physical model of the VSI and its load.

The setpoint voltages ~Us d sp and ~Us q sp are transformed back into 123 coordinates by application
of (5.19) and (5.12). The current setpoints are independent signals in this example system.
Nevertheless, the approach can be extended to cascaded controllers that influence the current
setpoints to control further signals of the plant, introducing additional equations with linear
transfer functions.

Duty-Cycle Calculation

The duty cycle is the division of the setpoint voltage of phase ν by half the measured dc-link
current. The calculated duty cycle is committed to the modulator within the control cycle and is
applied to the switching pattern in the next control step, with

dν [k] = uspν [k − 1]
u′dc[k − 1]/2 . (5.25)

The division is the inverse operation of the multiplication in the time domain. For the equivalent
operation in the frequency domain the inverse convolution is utilized. Applied to Fourier coeffi-
cients, this operation is represented by an inverse convolution matrix C(.)−1. The requirements
for the existence of the inverse convolution are fulfilled [see inverse convolution in Section 2.3],
because for a stable converter operation it is required that udc(t) ≥,∀t and 1/udc(t) is a slowly
growing signal, since it is the state variable of an energy storage.

Finally, the delay block (z−1) in Figure 5.7 takes the computational delay into account. The de-
lay is considered in the frequency-domain models with a diagonal matrix Hdelay. Accordingly,
the calculation of the duty cycle results in

~Ds ν = 2 ·Hdelay ·C(~U ′s dc)−1 · ~Us sp ν , (5.26)
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where the k-th diagonal element of the matrix is

Hdelay,k = e−jkω0Tc . (5.27)

5.2 Amplitude Quantization

In the digital control system, signals are represented by discrete values in a binary code. This
leads to the generation of quantization noise, which can be classified by a number of effects. The
analog input signals are transferred into discrete signals by the ADC. For uniform quantizers,
the quantization step q is determined by the number of bits n and the full scale range FSR of
the ADC [42], with

q = FSR

2n . (5.28)

Input quantization results in a quantization noise that can be modeled by a stochastic process,
which superimposes the original signal. With the assumption that there is no correlation of noise
and signal, the maximum signal to noise ratio (SNR) can be estimated as:

SNR = 10 · log10

(12
8 · 2

2n
)

(dB) [42]. (5.29)

The signal to noise ratio of the delta-sigma modulator was discussed previously. The output
word size of the delta-sigma modulator is 1 and is subsequently increased by the decimator to
the decimator’s output word size p. When applying a sinc3 filter this results in

n = 3 · log2(N) [72]. (5.30)

In the experimental system, a decimation ratio ofN = 40 is applied, which results in a word size
of approximately n = 16 bit and SNR = 98 dB. Therefore, the influence of input quantization
on the measurement results is expected to be low.

A further influence of quantization noise can originate from rounding errors and truncations, be-
cause of the limited precision of variables and constants in the control process, which is called
arithmetic quantization noise [42]. In the experimental setup, the digital control is imple-
mented on an ARM Cortex-A9 processor [see Appendix B] with 32 bit floating point precision.
For processors with access to floating point units, the influence of arithmetic quantization is
considered negligible [42].

Output quantization results from the limited resolution in counter based PWM processes [42].
For a clock frequency of fclk = 100 MHz, the switching instant can be executed with an accu-
racy of 10 ns. Using a control frequency of fc = 10 kHz, the duty cycle has a resolution of
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fclk/fc points. The equivalent number of bits is represented by log2(fclk/fc) ≈ 13, and the duty
cycle resolution results in fc/fclk = 0.01 % [34]. The resolution is higher for lower control
frequencies, as they are used in the example cases and the influence of output quantization is
expected to be low. However, it should be noted that for applications with a low ratio of fclk/fc,
the effect can become significant and cause instabilities known as limit cycle oscillations [42].

5.3 Incorporation of the PWM Model

This section analyzes how to connect the output of the digital control, which is a discrete-time
signal, to the input of the PWM model. The frequency-domain models for regularly-sampled
PWM that incorporate multiple-frequency input signals were introduced in Section 3.2.2. As
shown in the Simulink implementation of regularly-sampled PWM in Figure 3.13, its structure
can be internally divided into a sampler, a ZOH, and a representation of naturally-sampled
PWM.

Figure 5.8 shows two possibilities for adapting this arrangement to the frequency-domain model
of regularly-sampled PWM. Subfigure a) shows the model presented in (3.60) in Section 3.2.2,
where the input spectrum is the Fourier transform of the continuous-time duty cycle D(f).
Without loss of generality, the functions of the sampler and the ZOH can be applied outside the
PWM model, providing the Fourier transform of the discrete-time duty cycle Ds(f) as input of
a model of naturally-sampled double-edge PWM, which is used to calculate the switching func-
tion spectrum, as shown in subfigure b). In conclusion, regularly-sampled PWM is equivalent
to naturally-sampled PWM with a ’distorted’ duty cycle spectrum Ds(f) as its input.

A model for naturally-sampled double-edge PWM (ND-PWM) is derived by Song and Sarwate
in [15, (61)]. Written in the nomenclature used in this thesis, the model results in

SND(f,D) = D(f) + Sc(f) · e−jπfTsw/2 +
∞∑
m=1

(−1)m ·
∞∑
n=1

...(
(j2mπ)2n−2

22n−2 · (2n− 1)! ·
(
D∗(2n−1)(f + 2mfsw) +D∗(2n−1)(f − 2mfsw)

)
...

−(j(2m− 1)π)2n−1

j22n−1 · (2n)! ·
(
D∗(2n)(f + (2m− 1)fsw) +D∗(2n)(f − (2m− 1)fsw)

))
.

(5.31)

In order to express the same switching function spectrum as for AD-PWM, with

SAD(f,D) ≈ SND(f,Ds), (5.32)

the Fourier transform of the discrete-time duty cycle is calculated and applied to the ND-PWM



124 5. VSI with Closed-Loop Control

ND-PWM

ND-PWMZOH

Σ δ( f - fc ) 

D( f ) Ds( f ) S( f )

Regularly-sampled PWM model

Ds( f ) S( f )

a)

ZOH

Σ δ( f - fc ) 

D( f )

Naturally-sampled 

PWM modelb)

Figure 5.8: Equivalent methods to represent regularly-sampled PWM when the input is the CTFT of the duty
cycle D(f): a) The series connection of sampler, ZOH, and naturally-sampled PWM is combined in
one mathematical expression. b) The CTFT of the duty cycle D(f) is first converted into the DTFT of
the duty cycle Ds(f) using a model of the sampler and the ZOH. The resulting spectrum is used as the
input for the naturally-sampled PWM model.

model. With the transfer function of the ZOH HZOH(f) and the sampler Hs(f), this results in

Ds(f) = HZOH(f) · (Hs(f) ∗D(f)). (5.33)

For the application of feedback control, the output of the digital controller is the duty-cycle
spectrum Ds(f) of the discrete-time signal, which interacts with the signals of the PWM and
the plant. As previously discussed, the frequency-domain model for regularly-sampled PWM
[Figure 5.8 a)] requires the duty-cycle spectrum D(f) of the continuous-time signal d(t) as the
input. However, as shown in Figure 5.9 a), a naturally-sampled PWM model can be applied to
express regularly-sampled PWM when the input is a discrete-time signal.

A numerical evaluation of the ND-PWM model is performed in an example case by converting
(5.31) into the representation of discrete Fourier coefficients. The indeces of summation are
limited to mmax and nmax. The duty cycle is applied as the spectrum of the sampled signal,
which is depicted in Figure 5.10. The duty cycle contains a fundamental frequency component
with an amplitude of |D,1| = 0.7 and a seventh harmonic component with an amplitude of
|D,7| = 0.1. The carrier to fundamental ratio is fsw/fd0 = 3000/50 = 60. These are the same
parameters as used for the validation of the AD-PWM model in Figure 3.15. The duty-cycle
spectrum contains sideband groups at multiples of the control frequency of fc = 2 · fsw.

The graphs on the left side of Figure 5.11 show the amplitude spectrum of the switching function
for the first 80 harmonics for various numbers of considered harmonics. The first graph shows
the comparison of the frequency-domain model with a time-domain model for mmax = 1,
nmax = 7, kmax = 150. Large deviations between the complex spectra are visible in the second
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ND-PWMZOH

Σ δ( f - fc ) 

ZOH
-1 rect

Filter

Regularly-sampled PWM model

Ds( f ) D( f ) S( f )Ds( f )

ND-PWM
S( f )Ds( f )

a)

b)

Figure 5.9: Equivalent methods to represent regularly-sampled PWM when the input is the DTFT of the duty
cycle Ds(f): a) A block expressing naturally-sampled PWM. b) The inverse ZOH and the rectangular
filter compensate the sampler and the ZOH in the PWM model. These blocks are inserted prior to
the frequency-domain model of regularly-sampled PWM that includes a ZOH block and a sampler
[Figure 5.8 a)].
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Figure 5.10: Spectrum of the sampled and hold duty cycle. The continuous duty cycle originally contains two
components at k = 1 and k = 7. Due to sampling with the control frequency, components around
multiples of the fc/f0 = 60 are present.

graph. As shown in the third and fourth graph, higher numbers ofmmax and nmax lead to a minor
improvement in the calculation. Nevertheless, large deviations occur, which can be explained
by the low number of considered harmonics kmax of the duty-cycle spectrum. In this case,
the second and third sideband groups shown in Figure 5.10 are neglected, which results in a
incomplete calculation of the first carrier group for the switching function spectrum.

As shown in the fifth and sixth graphs, an increased number of kmax = 500 is not sufficient
when the indeces of summation (mmax = 1, nmax = 7) are low. This is because of the neglected
interaction of the sideband groups of the duty cycle in the modulation process. The last two
graphs show the spectra for mmax = 2, nmax = 20, and kmax = 500. For very high numbers of
mmax, nmax, and kmax, the deviation decreases further (not depicted).

This numerical example shows that the model for ND-PWM requires a much higher number of
harmonics kmax in the duty-cycle to reach the same accuracy as the AD-PWM model. Therefore,
an alternative method is presented in Figure 5.9 b): The DTFT of the duty-cycle is converted into
a CTFT, which is subsequently applied to the AD-PWM model. The conversion is performed
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Figure 5.11: Evaluation of the models depicted in Figure 5.9, which represent regularly-sampled PWM when the
input spectrum is the DTFT of the duty cycle Ds(f). The parameters mmax, nmax, kmax are varied
from top to bottom. Left graphs: Method a) using a model for ND-PWM. Right graphs: Method b)
using an inverse ZOH, a rectangular filter and a model for AD-PWM.
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by application of the inverse transfer function of the ZOH

H−1
ZOH(ω) = jωTc

1− e−jωTc
, ω 6= 0

H−1
ZOH(0) = 1

(5.34)

and the inversion of the sampling process. Because Ds(f) is the DTFT of a band-limited signal,
this can be represented by a rectangular filter

Hrect(ω) =
{

1 for −ωc/2 ≤ ω ≤ ωc/2
0 otherwise . (5.35)

The graphs on the right side of Figure 5.11 show the results for this modeling approach for the
same parameters as for the ND-PWM model. Although the model appears to be more complex,
a high accuracy is reached for relatively low numbers of considered harmonics kmax. Due to
the band-limiting effect of the rectangular filter, there are no duty-cycle components larger than
fc/2 that require consideration in the PWM model. The proposed approach is chosen for the
evaluation of the total equation system presented in the next section, because a low number of
kmax is crucial for the numerical solution process.

5.4 Numerical Evaluation

The frequency-domain model for closed-loop control is evaluated for the topology of Case I
[Figure 3.26], where the ac-side phases are connected to a passive RL load and the dc link
is fed by a three-phase diode rectifier. The parameters are listed in Table 5.2. The feedback
loops incorporate the sensed ac-side currents and the dc-link voltage. The cut-off frequency of
the sensors are fIcut and fUcut for the ac-side current sensors and the dc-link voltage sensor,
respectively. The PI controller is designed using the technical optimum, with

TI = Lac

Rac
,

KP = TI ·Rac

2 · 1.5 · Tsw
.

(5.36)

Compensating voltages ~Udcomp and ~Uqcomp are not used in this example case.

The mutual dependency of the nonlinear PWM process, the plant, and the controller requires the
simultaneous solution of the nonlinear equation system, which is of the form written in (2.47).
The equation system chosen for the following numerical evaluation describes N = 13 signals,
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Table 5.2: Parameters of the example system for Case I

Parameter Symbol Values
Fundamental frequency f0 50 Hz
Switching frequency fsw 3 kHz
Control frequency fc 6 kHz
ac-side resistance Rac 5 Ω
ac-side inductance Lac 20 mH
dc-link capacitance Cdc 480µF
Grid voltage (line-to-line, rms) Ug 400 V
Grid frequency fg 50 Hz
Grid-side inductance Lg 260µH
Current sensor cut-off frequency fIcut 240 kHz
Voltage sensor cut-off frequency fUcut 100 kHz
Proportional gain (current control) KP 20 V/A
Integrator time constant controller TI 4 ms
Highest considered harmonic kmax 70
Maximum carrier order mmax 1
Maximum sideband order nmax 7

collected in a vector

~X = [~Iac1, ~Iac2, ~Iac3, ~Udc, ~D1, ~D2, ~D3, ~Id, ~Iq, ~Uαsp, ~Uβsp, ~Udsp, ~Uqsp]T. (5.37)

The size of the vector is N · lmax. All other signals are described as dependent variables and are
not written explicitly in the equation system. They can however be calculated directly from the
signals present in ~X . The input signals of the system are the ac-side disturbance voltages, the
dc-side disturbance current, the dc component of the dc-link voltage and the current setpoint in
dq coordinates.

A large equation system results for large numbers of signals in the system and for large num-
bers of considered harmonics. This requires long computation times and increases the risk of a
diverging solution process. For this reason, the fundamental frequency of the duty-cycle is set
to 50 Hz (in comparison to 40 Hz in Chapter 3 and Chapter 4) and the fundamental frequency
of the model results in f0 = 50 Hz. This reduces the number of required harmonics kmax and
therefore decreases the size of the equation system.

The numerical solution is performed in Matlab using the trust-region algorithm. This algorithm
is chosen because it allows for the incorporation of information about the Jacobian matrix. The
Jacobian consists of the partial derivatives

∂fi
∂xj

, i, j ∈ [1, N · lmax], (5.38)

which are positioned in the i-th row and the j-th column.
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An analytical description of the Jacobian is challenging due to the nonlinear operations of the
PWM process and the convolution. In this work, a numerical calculation of the Jacobian is an in-
herent property of the Matlab function fsolve. Whereas the derivation of the analytical Jacobian
is complex, it is straightforward to analyze if a dependency between two variables exists. This
allows for the formulation of the sparsity pattern, where all partial derivatives that are nonzero
are indicated in a sparsity matrix. When provided to the solver, the sparsity matrix determines
which derivatives are calculated and which derivatives are known to be zero, accelerating the
solution process. Figure 5.12 shows the sparsity pattern of the equation system. For clarity, the
vector size of each signal is set to the low value of lmax = 9. Each square drawn by the grid is a
submatrix of size lmax × lmax. Different forms of the submatrices are visible:

• Blank fields: No influence of the signal on the equation. The partial derivatives are zero.

• Diagonal lines: Linear influence of the signal on the equation. There is no coupling of
the harmonics.

• Double diagonal line: Frequency-shift due to a coordinate rotation. The lines are on the
first minor diagonals when the frequency shift is by one harmonic order.

• Irregular hexagon: Coupling of most harmonic components due to a convolution.

• Squares: Full coupling of all harmonics. In this case due to PWM or inverse convolution.

In this particular case, less than 15 % of the matrix elements are nonzero. The number of func-
tion calls, which are required to numerically calculate the Jacobian, is halved due to the use of
the sparsity pattern.

The iterative solution process requires a vector of initial values ~X0 for the iterative process. A
fundamental frequency model provides the fundamental frequency components for ac quantities
and the dc component of dc quantities. All other harmonic components are set to zero.

Figure 5.12: Sparsity pattern of the nonlinear equation system.
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Figure 5.13: Comparison of the results for closed-loop control using the frequency-domain model (blue) and the
time-domain model (red).
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Figure 5.14: Deviation of the complex spectra of the frequency-domain model from the time-domain model pre-
sented in Figure 5.13 for closed-loop control.
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Figure 5.15: Comparison of frequency-domain model and measurements for a three-phase VSI with closed-loop
control for Case I.
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Figure 5.16: Deviations of the magnitude spectra shown in Figure 5.15 for a three-phase VSI with closed-loop
control for Case I.
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The magnitude spectra are depicted in Figure 5.13, comparing the results from the frequency-
domain model to results from a time-domain simulation. The feedback loops of the ac-side
currents and the dc-link voltage introduce low-frequency components into the duty cycle spec-
trum. These components result from the disturbance current of the diode rectifier, which are
propagated to the sensed dc-link voltage and the sensed ac-side currents. Due to the nonlin-
ear PWM process, the harmonic components of the duty cycle spectrum generate additional
base-band and side-band harmonics in the switching function spectrum.

There is good conformity between the results of the two models, as indicated by the low de-
viations of the complex spectra shown in Figure 5.14. Minor deviations are visible around the
switching frequency that can be explained by the low number of considered harmonics, as indi-
cated by the previous examination presented in Figure 5.11.

A comparison of the frequency-domain results with measurement results is presented in Fig-
ure 5.15. The deviations of the magnitudes are illustrated in Figure 5.16.

To illustrate the influence of the propagated harmonics, Figure 5.17 presents a comparison of
the “closed-loop” case to the “open-loop” case. For this, the fundamental component of the
duty cycle is taken from the model with closed-loop control and used as an input in the model
with open-loop control. The harmonic components are not included to mimic the missing feed-
back loop. The propagated harmonic components in the duty-cycle and their influence on the
generation of baseband and carrier sideband harmonics in the switching function and ac-side
voltage spectra is clearly visible. The lower baseband components in the ac-side voltage of the
closed-loop case show the damping effect of the feedback control.

Figure 5.18 shows the duty cycle spectrum for three cases: For the first graph the current control
and the voltage feedback is used as in Figure 5.13. In order to show the influence of the har-
monics that are propagated by the current controller, the second graph depicts the resulting duty
cycle when the voltage feedback is chosen to a set value of Udc0. The third graph illustrates the
harmonic components that are propagated by the voltage feedback. In this case, all harmonic
components of the voltage setpoint provided by the current controller are neglected. Because
the source of harmonic disturbances is located at the dc side, the majority of the harmonics
are propagated through the voltage feedback. If the harmonic disturbance is located at the ac
side, the current feedback loop would have a larger impact on the propagation of harmonic
components.
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Figure 5.17: Comparison of frequency-domain models with closed-loop control (dark blue) and open-loop control
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5.5 Discussion

This chapter demonstrated the incorporation of closed-loop control into the frequency-domain
models, while considering the PWM process and the power electronic devices as ideal switches.
Whereas previous approaches in the literature showed only unidirectional blocks for the indi-
vidual components PWM, control, and plant, the method presented here includes their mutual
dependencies and nonlinear interactions. These result in a nonlinear equation system, which can
be numerically and simultaneously solved using iterative algorithms. The analysis shows how
harmonics are propagated through the control loop to the duty cycle and how this changes the
spectrum of the switching function.

High-frequency components that are not synchronized with the PWM process and the sampling
process can occur when multiple converters are present in the system. Aliasing can result, gen-
erating low-frequency components in the sensed signals when these components are above the
sampling frequency and when appropriate filtering methods are not implemented. The method
presented here takes these components and the aliasing effect into consideration.

The detailed system description comes at the cost of a high computational effort, which depends
on the number of harmonics considered and the number of system variables. Improvement of the
solution process was achieved by exploitation of the sparsity of the equation system. This was
done in the form of a derivation of the sparsity structure of the Jacobian, because it only requires
the information of whether there is a dependency between two variables, without the need to
give detailed information about this dependency. An analytical form of the partial derivatives
that are collected in the Jacobian was not derived in this work, due to its complexity in the case
of the PWM process.



6. Drive System 137

6 Drive System

Electrical machines act as electromechanical energy converters connecting the electrical and
mechanical domains. This power conversion is generally nonlinear, thus representing a common
form of nonlinear load in converter system applications. Figure 6.1 shows a grid-connected drive
system with a diode rectifier feeding a machine-side VSI. The PMSM is driven by the VSI and
is connected to a mechanical load represented by the load torque ml and the inertia J . Using a
frequency converter as a variable-speed drive of the electrical machine allows for the decoupling
of the rotor speed from the frequency of the feeding grid. Due to a finite control response and
finite filter components, the decoupling is incomplete and frequency components of the machine
subsystem can interact with frequency components of the grid side. The penetrated frequency
components are considered to be interharmonics, since they are generally not an integer multiple
of the subsystem’s fundamental frequency [73].

Considerable interharmonic currents are introduced through the coupling dc link when an im-
balance occurs in one of the subsystems. The impact of variable-speed drives on the grid current
spectrum (drive input currents) when using a diode rectifier as a front-end converter is addressed
in [38, 74, 75]. Periodic torque oscillations can occur due to parasitic load variations (e.g. wind
shadow of a wind power plant’s tower), loads connected to crank shafts (e.g. reciprocating
compressors) [76–78], stator faults, and rotor faults [35, 36]. The resulting oscillation of the
machine’s speed leads to a phase modulation of the stator currents.

Therefore, the question arises of how to incorporate the drive system into the frequency domain
modeling approach. In [39], a frequency-domain model of a synchronous machine is presented,
which neglects the influence of the mechanical subsystem. This results in a linear frequency
domain model of the synchronous machine. The goal of the modeling approach presented in
this chapter is to provide a model of the drive system in the frequency domain covering the
nonlinear interaction of the machine-side VSI and the electrical machine under the influence of
load torque oscillations.

idis

Front end VSI PMSM

mi mlim

Grid

J

Load

Figure 6.1: Grid-connected drive system with a diode rectifier (front end) coupled to a VSI feeding a PMSM.
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This chapter is structured as follows: Section 6.1 reviews the differential equation system of the
electrical machine for the example of a PMSM, provided by standard main spatial harmonic
models in the literature like [79], followed by a transformation into the frequency domain.
Saturation is neglected. The machine equations include a model of the mechanical subsystem
with a single rotating inertia, which allows for the incorporation of mechanical load torque
oscillations. The model of the VSI and its interaction with the electrical machine is developed
in Section 6.2. To simplify the derivation in this chapter, the front-end converter is represented
as a nonreactive current source. The VSI is assumed to be in open-loop control, thus there is no
influence of the signals of the plant on the control signals. The model is developed in rotating
dq coordinates and incorporates the system reaction to torque oscillations and its propagation
to the dc link. Different assumptions on the strength of rotor speed oscillations and dc link
voltage ripple result in the development of drive system models with various modeling depths,
which are provided in Section 6.3. Finally, Section 6.4 evaluates the total equation system and
compares the results to the spectra resulting from time-domain simulations and measurements.

6.1 Permanent Magnet Synchronous Machine

Figure 6.2 shows schematically a PMSM with one pole pair (number of pole pairs p = 1). The
stator has three symmetrical phases ν ∈ {1, 2, 3} with the phase voltages umν described byum1

um2
um3

 = Rs ·

im1
im2
im3

+ d
dt

ψ1
ψ2
ψ3

 , (6.1)

where imν are the stator phase currents and ψν are the stator flux linkages. Because the skin
effect and the proximity effect are neglected, the stator resistance Rs is assumed to be constant.
The rotor is equipped with permanent magnets and rotates with an angular frequency ωm. The
permanent magnets generate a magnetic field that results in fluxes linked with the stator phases,
which depend on the rotor position and have a constant amplitude of Ψp. The rotor position
that results in the maximum flux linkage in phase 1 defines the direct axis (d-axis). This allows
the mechanical rotor position to be described as an angle εm between the stator phase 1 and
the d-axis (Figure 6.2). For machines with multiple pole pairs the maximum flux linkage in
each phase occurs p-times during one full turn of the rotor. Thus, the electrical rotor position
εe is introduced as εe = p εm. The electrical rotor position varies with the electrical angular
frequency ωe = p ωm.

With the assumptions of symmetrical phases and the absence of zero sequence components,
the equation system (6.1) can be simplified. The flux density of the stator phases and of the
permanent magnets are symmetrically and sinusoidally distributed. The Park transformation,
with the electrical rotor position as the transformation angle, enables the representation of the
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Figure 6.2: Illustration of a PMSM for p = 1 with different coordinate systems three-phase system: (123), station-
ary reference frame (αβ), and rotor reference frame (dq)

stator voltages in rotating dq coordinates ud, uq, with

ud(t) = Rs · id(t) + dψd(t)
dt − ωe(t) · ψq(t),

uq(t) = Rs · iq(t) + dψq(t)
dt + ωe(t) · ψd(t).

(6.2)

When neglecting saturation of the machine’s iron core, the flux linkages can be expressed by
the product of the dq currents and constant inductances, with

ψd(t) = Ld · id(t) + Ψp,

ψq(t) = Lq · iq(t),
(6.3)

where Ld is the inductance in the d-axis and Lq is the inductance in the q-axis. Insertion of (6.3)
into (6.2) yields the transient machine model with constant coefficients, with

ud(t) = Rs · id(t) + Ld ·
did(t)

dt − Lq · ωe(t) · iq(t),

uq(t) = Rs · iq(t) + Lq ·
diq(t)

dt + Ld · ωe(t) · id(t) + Ψp · ωe(t).
(6.4)

The following frequency-domain models are established through application of the model with
constant coefficients.

The mechanical behavior is modeled with a single inertia Jm, which combines load and machine
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inertia. The differential equation of the mechanical speed is described as

dωm(t)
dt = 1

Jm
· (mi(t)−mfr(t)−ml(t)), (6.5)

with a load torque ml and a speed-proportional friction torque mfr, described by the friction
constant Kfr, with

mfr(t) = Kfr · ωm(t). (6.6)

The mechanical rotor position is connected to the mechanical speed through the differential
equation

dεm(t)
dt = ωm(t). (6.7)

The machine torque can be calculated by

mi(t) = p · 3
2 · (ψd(t) · iq(t)− ψq(t) · id(t)). (6.8)

Substitution of the flux linkages with (6.3) results in

mi(t) = p · 3
2 · ((Ld − Lq) · id(t) · iq(t) + Ψp · iq(t)) . (6.9)

6.1.1 Frequency-Domain Model

During stationary operation, the synchronous speed of the machine is impressed by the funda-
mental angular frequency of the feeding voltages ωe0. Due to the electro-mechanical coupling
the mechanical synchronous speed equals the direct component of the mechanical speed in
steady state, with ωm0 = ωe0/p. This fact simplifies the modeling process in the frequency do-
main, since ωm0 is determined by the feeding voltages and is independent of the mechanical
load.

To begin with, it is assumed that all signals can be expressed by a Fourier series with a funda-
mental angular frequency ω0 and that all harmonics are integer multiples kω0, k ∈ Z. Trans-
formation of the differential equations of the stator (6.4) and the differential equations of the
mechanical system (6.5) and (6.7) into the vector representation of Fourier coefficients results
in

~Ud = Zd · ~Id − Lq · ~ωe ∗ ~Iq, (6.10)
~Uq = Zq · ~Iq + Ld · ~ωe ∗ ~Id + Ψp · ~ωe, (6.11)
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Jm · ~ωm = p · 3
2 ·
(
(Ld − Lq) · ~Id ∗ ~Iq + Ψp · ~Iq

)
− ~Ml −Kfr · ~ωm, (6.12)

K · ~εm = ~ωm. (6.13)

The frequency domain equation system contains linear impedances in d- and q-axes, described
by diagonal matrices

Zd = diag(Zd,−kmax , .. , Zd,kmax),
Zq = diag(Zq,−kmax , .. , Zq,kmax),

(6.14)

with the k-th elements

Zd,k = Rs + jkω0Ld,

Zq,k = Rs + jkω0Lq,
(6.15)

and a diagonal matrix

Jm = diag(Jm,−kmax , .. , Jm,kmax), (6.16)

with the k-th element

Jm,k = jkω0Jm (6.17)

containing the inertia. The diagonal matrix K describes the differentiation in the frequency
domain, with

K = jω0 · diag(−kmax, .. , kmax). (6.18)

For the derivation it was assumed that all signals only contain harmonics that are integer multi-
ples of ω0. For a synchronous machine the electrical synchronous speed is inherently a multiple
of the mechanical synchronous speed with the number of pole pairs as the proportionality factor
ωe0 = pωm0. In general, the disturbances (the load torqueml and the dc-link disturbance current
idis) can introduce harmonics of the angular frequency ωl0 and ωdis0, which are not multiples of
ωm0. In this case, the fundamental angular frequency of the system model ω0 is defined by the
greatest common divisor

ω0 = gcd(ωm0, ωl0, ωdis0). (6.19)

6.2 Converter Model in dq Coordinates

The previous section showed how the modeling of the PMSM in the rotor reference frame
is beneficial, because it allows for the use of constant coefficients and the nonlinear behavior
is reduced to a convolution of the vectors ~Id, ~Iq, and ~ωe. However, this requires the feeding
VSI to be modeled in the same reference frame as the machine. For this purpose, the VSI
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Figure 6.3: Equivalent circuit of the drive system in 123 coordinate system

model developed in Chapter 3 is transformed into rotating dq coordinates. Figure 6.3 shows the
equivalent circuit of the drive system in 123 coordinates for the definition of the variables.

At first, the switching function is expressed in αβ coordinates using an amplitude-invariant
Clarke transformation [see (5.9)], with

[
sα(t)
sβ(t)

]
= 2

3 ·
[

1 −1
2 −1

2
0

√
3

2 −
√

3
2

]
·

 s1(t)
s2(t)
s3(t)

 . (6.20)

Application of the Clarke transformation on both sides of the ac-side voltage equation [see
(3.2)], with uac1(t)

uac2(t)
uac3(t)

 =

 s1(t)
s2(t)
s3(t)

 · udc(t)
2 , (6.21)

leads to a voltage equation in αβ coordinates, with[
uα(t)
uβ(t)

]
=
[
sα(t)
sβ(t)

]
· udc(t)

2 . (6.22)

The machine is star-connected with a floating star point voltage. Therefore, a zero-component in
the ac-side voltages has no effect on the ac-side currents and the αβ components of the ac-side
voltages equal the αβ components of the machine’s phase voltages.

Secondly, a rotation [see (5.13)] with the PMSM’s electrical rotor angle εe as the rotation angle
is applied. This results in the switching function in dq coordinates, with[

sd(t)
sq(t)

]
=
[

cos(εe(t)) sin(εe(t))
−sin(εe(t)) cos(εe(t))

]
·
[
sα(t)
sβ(t)

]
, (6.23)
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and the voltage equation can be rewritten as[
ud(t)
uq(t)

]
=
[
sd(t)
sq(t)

]
· udc(t)

2 . (6.24)

Similarly, the machine currents imν are transformed into dq coordinates id, iq. The dc-side cur-
rent can then be expressed as a function of the phase currents and the switching functions in dq
coordinates as

idc(t) = −3
2 ·

1
2 · (sd(t) · id(t) + sq(t) · iq(t)), (6.25)

where the factor 3/2 is introduced due to the fact that the amplitude-invariant Clarke transfor-
mation is applied. Finally, (6.24) and (6.25) can be expressed in the vector representation of
Fourier coefficients, with

~Ud = 1
2 ·

~Sd ∗ ~Udc, (6.26)

~Uq = 1
2 ·

~Sq ∗ ~Udc, (6.27)

~Idc = −3
4 ·
(
~Sd ∗ ~Id + ~Sq ∗ ~Iq

)
. (6.28)

6.3 Drive System Models

The drive system model that results from the connection of the machine model and the VSI
model in dq coordinates is given in Figure 6.4. The challenge in this model results from the
fact that the switching function in dq coordinates is a function of the rotor position, see (6.23).
Therefore, the switching function (dq) depends on the system signals even for open-loop control
and the model is nonlinear.

In this section the dq transform under the influence of oscillating rotor positions is derived,
which leads to a complicated expression of the switching function spectrum. Therefore, simpli-
fied models are developed that can be used when the mechanical oscillations are small. These
models of various modeling depth can then be chosen depending on the goal of the calculation,
the influence of the disturbances, and the values of the parameters.

6.3.1 Park Transformation for Oscillating Rotor Positions

The rotation angle of the dq transformation contains harmonic components when the machine
speed can be regarded as a periodically oscillating signal. The block diagram of the drive system
in dq coordinates in Figure 6.5 illustrates the interaction of the signals. In the case of open-loop
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Figure 6.5: Block diagram of the drive system in dq coordinates

control, the switching function in 123 coordinates is independent of the system signals. The Park
transformation leads to a dependency of the switching function in dq coordinates on the system
signals. Therefore, the rotation matrix is further analyzed and a frequency domain expression is
derived.

When expressing the machine’s electrical angular frequency ωe as a Fourier series, with

ωe(t) = ωe0 +
∞∑

k = −∞,
k 6= 0

ωe,k · ejkω0t, (6.29)

the machine’s electrical rotor angle εe can be calculated as its integral

εe(t) =
∫
ωe(t)dt,

=
∫ ωe0 +

∞∑
k = −∞,
k 6= 0

ωe,k · ejkω0t

 dt.
(6.30)
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Figure 6.6: Separation of the electrical rotor angle into three parts when the rotor speed is periodically oscillating:
Ramp of constant gradient ωe0 (top), a constant εc (middle), and time-dependent part εt (exaggerated,
bottom).

The integral’s solution

εe(t) = ωe0t+ εc + εt(t) (6.31)

can be divided into three components, with a ramp of constant gradient ωe0 as the first part, a
constant second part εc to fulfill the initial condition, and a time-dependent third part

εt(t) =
∞∑

k = −∞,
k 6= 0

ωe,k

jkω0
· ejkω0t. (6.32)

Figure 6.6 shows the division of the electrical rotor angle εe into the three components. The
time-dependent third part can be regarded as a Fourier series, with the complex coefficients

εt,k = ωe,k

jkω0
, k ∈ Z\{0}. (6.33)

Figure 6.7 illustrates the relationship between the rotor phase angle εe and the ac-side voltage
in a phasor diagram. The voltage phasor and the rotor dq axes rotate with a constant angular
frequency ωe0 that is superimposed by the harmonic components of the rotor speed. The position
of the voltage phasor in reference to the d axis has a mean value that defines the constant
component εc. Thus, the initial value of the electrical rotor position results in

εe(t = 0) = ωe0 · 0 + εc + εt(t = 0)

= εc +
∞∑

k = −∞,
k 6= 0

εt,k. (6.34)
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Figure 6.7: Phasor diagram of the stator voltage in the rotating reference frame

Using the partitioning in (6.31), the expression of the rotation matrix in (6.23) can be expressed
as three individual rotation matrices. The first component leads to a rotation with a constant
angular frequency w0, with[

s′d(t)
s′q(t)

]
:=
[

cos(w0t) sin(w0t)
−sin(w0t) cos(w0t)

]
·
[
sα(t)
sβ(t)

]
. (6.35)

With the requirement that the electrical radiant frequency be an integer multiple of the funda-
mental radiant frequency, ω0 = nωe0, n ∈ N, the rotation is expressed by a shift of±n harmonic
orders in the frequency domain [see (5.17)]. This results in[

S
′
d,k
S
′
q,k

]
= 1

2 ·
[

1 −j
j 1

]
·
[
Sα,(k−n)
Sβ,(k−n)

]
+ 1

2 ·
[

1 j
−j 1

]
·
[
Sα,(k+n)
Sβ,(k+n)

]
. (6.36)

The constant part εc leads to a constant rotation of the switching function of[
s′′d(t)
s′′q(t)

]
=
[

cos(εc) sin(εc)
−sin(εc) cos(εc)

]
·
[
s′d(t)
s′q(t)

]
. (6.37)

In the frequency domain, the rotation is a simple matrix multiplication with the coefficients,
with [

S ′′d,k
S ′′q,k

]
:=
[

cos(εc) sin(εc)
−sin(εc) cos(εc)

]
·
[
S ′d,k
S ′q,k

]
. (6.38)

The frequency-domain expressions developed for the first two components allow the drive sys-
tem to be modeled in dq coordinates when the rotor position is free of harmonic components,
presented in Section 6.3.3. The rotation with the third, time-dependent part, with[

sd(t)
sq(t)

]
︸ ︷︷ ︸

~sdq(t)

=
[

cos(εt(t)) sin(εt(t))
−sin(εt(t)) cos(εt(t))

]
︸ ︷︷ ︸

Trot(εt(t))

·
[
s′′d(t)
s′′q(t)

]
︸ ︷︷ ︸
~s ′′dq(t)

, (6.39)
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allows for the incorporation of the oscillating rotor position. Its expression in the frequency
domain requires a deeper investigation, which is conducted for a single-frequency oscillation
first. Afterwards, an extension to multiple-frequency oscillations is presented.

Rotation Matrix for Harmonic Rotation Angles Containing a Single Frequency

Assuming εt(t) is a sinusoidal function with εt(t) = ε̂,h · cos(hω0t+ θε,h), h ∈ N, the elements
of the rotation matrix Trot(εt(t)) can be expressed as a Bessel series using the Jacobi-Anger
expansion [12], with

cos(εt(t)) = J0(ε̂,h) + 2
∞∑
m=1

cos(m · π2 ) · Jm(ε̂,h) · cos(m · (hω0t+ θε,h)), (6.40)

sin(εt(t)) = 2
∞∑
m=1

sin(m · π2 ) · Jm(ε̂,h) · cos(m · (hω0t+ θε,h)). (6.41)

In turn, (6.40) and (6.41) can be regarded as Fourier series, with the complex coefficients

Fcos,kh =
{
Jk(ε̂,h) · ejk(θε,h+π/2) for k = m · h; m is even

0 otherwise

}
, (6.42)

Fsin,kh =
{

0 otherwise
Jk(ε̂,h) · ejk(θε,h+π/2) for k = m · h; m is odd

}
. (6.43)

Following the general procedure, the Fourier coefficients are collected in vectors

~Fcos,h = [Fcos,−kmaxh, ..., Fcos,kmaxh]
T , (6.44)

~Fsin,h = [Fsin,−kmaxh, ..., Fsin,kmaxh]
T . (6.45)

Then the time-domain rotation of the switching function in (6.39) is represented by a convolu-
tion of the spectra, with

~Sd = ~Fcos,h ∗ ~S ′′d + ~Fsin,h ∗ ~S ′′q , (6.46)
~Sq = −~Fsin,h ∗ ~S ′′d + ~Fcos,h ∗ ~S ′′q . (6.47)

Rotation Matrix for Harmonic Rotation Angles Containing Multiple Frequencies

For a time-dependent rotation angle with a finite number of hmax harmonics, the rotation matrix
has the form Trot

(∑hmax
h=1 ε̂,h · cos(hω0t+ θε,h)

)
. Through application of addition theorems, the

total rotation matrix can be separated into individual rotation matrices for each harmonic h,
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with

Trot

hmax∑
h=1

ε̂,h · cos(hω0t+ θε,h)
 =

hmax∏
h=1

Trot (ε̂,h · cos(hω0t+ θε,h)) . (6.48)

In the frequency domain the rotation is represented by a vector of Fourier coefficients for each
harmonic of εt(t). The switching function spectrum is calculated by extension of (6.46) and
(6.47) into a recurring convolution for each harmonic h:

~S
(1)
d = ~Fcos,1 ∗ ~S ′′d + ~Fsin,1 ∗ ~S ′′q ,
~S(1)

q = −~Fsin,1 ∗ ~S ′′d + ~Fcos,1 ∗ ~S ′′q ,
~S

(h)
d = ~Fcos,h ∗ ~S(h−1)

d + ~Fsin,h ∗ ~S(h−1)
q ,

~S(h)
q = −~Fsin,h ∗ ~S(h−1)

d + ~Fcos,h ∗ ~S(h−1)
q ,

~Sd = ~S
(hmax)
d ,

~Sq = ~S(hmax)
q .

(6.49)

Simplification of the Rotation Matrix Spectrum

The calculation of the Fourier coefficients of the rotating matrices and the large number of
convolutions that are necessary to calculate the switching function spectrum result in a high
computational effort. For this reason, a limitation of considered harmonic components is pro-
posed.

According to (6.42) and (6.43), the amplitudes of the coefficients are determined by the Bessel
function. For most applications it can be assumed that the speed oscillations have a relative
amplitude ω̂,h/ω0 that is much smaller than 1. Moreover, the harmonics of the rotating angle
are connected with the speed oscillations via an integration, which leads to a damping by 1/h.
This strengthens the assumption of ε̂ << 1. Figure 6.8 shows the Bessel function Jm(ε̂) for
the orders m = 0, 1, 2 and for arguments 0 < ε̂ < 1. For small arguments, the dc component
J0 approximates 1 and the magnitude reduces rapidly with higher orders, indicating that high
order coefficients can be neglected.

This fact is illustrated in Figure 6.9, where the coefficients of the rotating matrix are depicted for
speed oscillations with 5 % magnitudes in reference to the dc component, i.e. ω̂,h/ω0 = 0.05.
The coefficients of Fcos and Fsin are marked as blue and red crosses, respectively. The top graph
shows the results for the first speed harmonic h = 1 illustrating that the coefficients of Fcos are
present at even harmonics and dc, and the coefficients of Fsin are present at odd harmonics. The
middle graph shows the results for the second speed harmonic h = 2, where the coefficients are
damped by 1/h and the pattern is widened by h · k. The convolution of both rotating matrices
is depicted in the bottom graph.
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In conclusion, it is proposed that the influence of speed harmonics can be neglected when the
ratio of the speed oscillation’s magnitude and its angular frequency ω̂,h/(h · ω0) are below a
specified limit. This limit is chosen in the numerical evaluations to 10−4.

6.3.2 Fundamental-Frequency Model

A fundamental-frequency model of the drive system provides the initial values for the solution
of the following multiple-frequency models. For this purpose, the frequency-domain equations
of the PMSM (6.10)-(6.12) are evaluated for the dc component denoted with a ’0’ subscript,
resulting in

Ud0 = −Lq · ωe0 · Iq0 +Rs · Id0, (6.50)
Uq0 = Ld · ωe0 · Id0 +Rs · Iq0 + Ψp · ωe0, (6.51)

0 = p · 3
2 · ((Ld − Lq) · Id0 · Iq0 + Ψp · Iq0)−ML0 −Kfr · ωm0. (6.52)

The magnitude of the VSI voltage

U2
d0 + U2

q0 =
(
M · Udc0

2

)2
(6.53)

is determined by the modulation index M and the dc-link voltage.
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The four equations (6.50) - (6.53) form a nonlinear equation system, which can be solved for
the four variables Id0, Iq0, Ud0, and Uq0 using, for example, the trust-region algorithm.

The fundamental frequency model also provides information about the relationship between the
stator voltages and the electrical rotor position. For an analysis of this relationship, we revisit
the phasor diagram depicted in Figure 6.7, which shows the voltage phasor and the correspond-
ing dq components for a given rotor position. The constant component of the electrical rotor
position εc is an angle in relation to the phasor of the ac-side voltage, with

εc = −φPWM − atan(Uq0

Ud0
), (6.54)

φPWM = ωe0

2 · fc
. (6.55)

6.3.3 Model with Constant Machine Speed

If the harmonic speed components are low in the sense of a given application, a constant ma-
chine speed can be assumed and a simplification of the mathematical model is possible. Be-
cause of the constant speed, the switching function is independent of the system signals and
~Sdq = ~S ′′dq can be evaluated in (6.38) using the constant part of the rotor position as the rotating
angle, calculated in (6.54).

With the assumption of a constant dc-link voltage Udc0, the dq voltages in (6.26)-(6.27) are
independent of the other system variables and can be evaluated a priori. Thus, the analytical
model is described by (6.10) and (6.11), resulting in a linear equation system[

Zd −Lqω0E
Ldω0E Zq

]
·︸ ︷︷ ︸

A

[
~Id
~Iq

]
︸ ︷︷ ︸
~X

=
[

~Ud
~Uq −Ψpω0~k0

]
︸ ︷︷ ︸

~B

, (6.56)

where ~k0 represents a vector of length l. All elements of this vector are zero, with the exception
of the centered element, which has a value of one, representing an existing dc component.

The execution of the frequency-domain model is explained in Figure 6.10 a) with a program
flow chart. At first, the nonlinear fundamental frequency model is solved iteratively. Afterwards,
the constant part of the rotor position is calculated, which is used to transform the switching
function spectrum into dq coordinates. Because harmonic components in the rotor speed are
neglected, the remaining equation system is linear and the mldivide function is applied for the
solution in Matlab.
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Calculate εc (6.54)

Calculate ϕ'
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* *
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Calculate new ϕ'
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Figure 6.10: Program flow for model with constant machine speed with consideration of different effects:
a) Without interlock times (Td = 0) and with a constant dc-link voltage
b) With interlock times (Td > 0) and with a constant dc-link voltage
c) For variable dc-link voltages, substitute the blocks in subfigure a) and b) that are marked with *.
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Influence of Interlock Times

To consider interlock times in the model, the program flow in Figure 6.10 b) is executed. As
introduced in Chapter 4, an iterative solution process is required to re-calculate the switching
function spectrum, which depends on the zero-crossing of the phase currents. The phase angle φ′

is recalculated from the ac-side currents in each step of the iteration. Using (4.59), the switching
function is then calculated as a function of φ′.

Influence of Variable DC-Link Voltage

To take a variable dc-link voltage into account, the equation system in (6.56) is extended with
(6.26)-(6.28), describing the interaction of the dc-side signals and the ac-side signals in dq
coordinates. The equation covering the influence of the dc-link capacitance was previously in-
troduced in (3.81). The equation system results in

Zd −Lqωe0E −1
2C(~Sd) 0

Ldωe0E Zq −1
2C(~Sq) 0

0 0 E −Zdc

−3
4C(~Sd) −3

4C(~Sq) 0 E

 ·
︸ ︷︷ ︸

A


~Id
~Iq
~Udc
~Idc


︸ ︷︷ ︸

~X

=


~0

−Ψpωe0~k0

Zdc · ~Idis
~0


︸ ︷︷ ︸

~B

. (6.57)

Elimination of variables can be performed to create a smaller equation system, as shown in
Chapter 3. This step is excluded here, for the sake of brevity. The consideration of a variable
dc-link voltage can be used with or without the consideration of interlock times, as indicated in
Figure 6.10 c).

6.3.4 Model with Variable Machine Speed

The program flow chart for the model with variable machine speed is given in Figure 6.11. The
beginning of the program is the same as for constant machine speed [Figure 6.10 a)]. First, the
fundamental frequency model is solved and the constant part of the rotor angle εc is used to
calculate the switching function in dq coordinates without oscillatory speed components S ′′d,k
and S ′′q,k. In contrast to the model with constant speed, the calculation of the switching function
in dq coordinates considering oscillatory speed components (Sd,k and Sq,k) is required. This
is performed as a part of the nonlinear equation system that is solved in the following step.
The second difference is the consideration of the mechanical equations (6.12) and (6.13). The
equation system is solved using the trust-region algorithm.
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Solve fundamental-frequency 

model (6.50)-(6.53)

Calculate εc
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(3.59)
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Sd,k and Sq,k

(5.11), (6.36), (6.38)

'' ''

Solve nonlinear equation system

(6.26)-(6.28), (6.10)-(6.13), 

(6.49) 

Display solutions

Figure 6.11: Program flow for model with variable machine speed.

6.4 Numerical Evaluation

The frequency-domain models of a drive system presented in this work are numerically evalu-
ated and compared to time-domain simulations and measurement results. The general parame-
ters of the electrical machine are summarized in Table 6.1.

6.4.1 Model with Constant Speed

First, the models with constant speed are evaluated. To do this, the fundamental frequency model
is solved for a fundamental frequency of the duty cycle of 50 Hz, which results in a mechanical
frequency of 10 Hz and a machine speed of 600 rpm. AD-PWM is applied with a switching
frequency of 3 kHz. The load torque is set to ML0 = 15 Nm. The constant part of the dc-link
voltage is set to Udc0 = 440 V and the modulation index is M = 0.2.

Application of the fundamental frequency model provides an estimation of the dc-components
of the currents and voltages in dq coordinates, with Id0 = −2.3 A, Iq0 = 17.7 A, Ud0 =
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Table 6.1: Parameters of the PMSM

Parameter Symbol Value
Pole pairs p 5
Stator line resistance (dc) Rs 111 mΩ
Inductance d-axis (unsaturated) Ld 1.23 mH
Inductance q-axis (unsaturated) Lq 2.11 mH
PM flux linkage Ψp 0.129 Vs
Total inertia Jm 0.0594 kg m2

Friction Kfr 40 mN m / Hz

−12.0 V, and Uq0 = 42.3 V. Calculated from this, the constant part of the rotor position has a
value of εc = −1.87.

Constant dc-link voltage and negligence of interlock times

To begin with, the model with constant dc-link voltage and without interlock times is evaluated.
The magnitude spectra are shown in Figure 6.12. The machine currents in dq coordinates, de-
picted in the top two plots, contain dc components and sideband harmonics at fsw± 3 · fd0. The
bottom two plots show the ac-side voltage and ac-side current spectra.

A comparison to time-domain simulations shows no differences in the results, as indicated by
the deviations in Figure 6.13. The simulations are performed in Simulink/Plecs, where a constant
speed source is connected to the rotor shaft. The simulation time is 200 ms and the results are
sampled with 10 MHz. Because of this, the mechanical load torque cannot be included in the
system and the phase shift between the duty cycle of the VSI and the rotor position is a degree
of freedom. By setting the phase shift to the value εc = −1.87, both the frequency-domain
model and the time-domain model are based on the same assumptions.

The dc values of the dq components result in Id0 = −2.3 A, Iq0 = 17.7 A, Ud0 = −12.0 V, and
Uq0 = 42.3 V. This confirms the previous calculation of the currents, voltages, and the constant
angle of the rotor position using the fundamental frequency model.

Constant dc-link voltage and consideration of interlock times

Under the influence of interlock times, with Td = 1µs, the frequency-domain model gives
the results presented in Figure 6.14. The application of the model shows that the phase angle
considering the current zero crossings has a value of Φ′ = −0.063. Results from time-domain
simulations are included in the figure. The simulation time is 200 ms and the results are sampled
with 100 MHz. There are a considerable number of spectral lines that show differences between
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Figure 6.12: Comparison of the results for the drive system using the frequency-domain model (blue) and the
time-domain model (red). The machine speed and the dc-link voltage are modeled as constant.
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Figure 6.13: Deviation of the complex spectra shown in Figure 6.12.
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the two models, as depicted in Figure 6.15. These differences include all depicted variables in
the baseband and the switching sidebands.

To investigate these differences, a simulation model using the averaging method is used. The
switching behavior is neglected and the power electronic devices are substituted with voltage
sources. The effect of dead time is included additively by application of (4.6) to the reference
voltage of the sources. The simulation time is 200 ms and the results are sampled with 10 MHz.

The results are depicted in Figure 6.16 and the differences to the frequency-domain model are
shown in Figure 6.17. As expected, the averaging model does not include the switching sideband
harmonics. In the case of the line-to-line voltage spectra, there are no differences visible for the
baseband harmonics between the models. The differences in the baseband components of the
currents are very low. Therefore, it is likely that the differences that occur in the switched model
for the line-to-line voltage spectra are due to an inaccuracy in the simulation model.

Variable dc-link voltage and negligence of interlock times

For the evaluation of the model with a variable dc-link voltage, a dc-side disturbance current
introduces harmonic currents typical for a diode rectifier. The results of the time-domain model
are sampled with 10 MHz after a simulation time of 2 s. The results are shown in Figure 6.18.
The differences between the frequency-domain model and the time-domain model are included
in Figure 6.19.

The graphs show the line-to-line voltage spectrum and the phase current spectrum in the first
and second graphs, respectively. The typical dc-link voltage spectrum under the influence of the
rectifier current, as shown in the previous chapters, is depicted in the third graph. The bottom
graph shows the dc-side current spectrum of the VSI. The differences between the results are
lower than the chosen accuracy of the figures, which confirms the correct derivation of the
equations of the drive system.

6.4.2 Model with Variable Speed

In order to confirm the correct derivation of the rotation matrix in the frequency-domain under
the influence of speed harmonics, a test case with reduced models in the frequency domain and
the time domain is conducted. The electrical angular frequency is the input of the models. It
contains harmonics at the second and fourth harmonic of the mechanical angular frequency, as
shown in Figure 6.20 in the first graph.

The value of εc is a degree of freedom, which is set to the same value in both models. In the time-
domain model, this is accomplished by setting the initial rotor position to the value calculated
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Figure 6.14: Comparison of the results for the drive system using the frequency-domain model (blue) and the
switched time-domain model (red). The machine speed and the dc-link voltage are modeled as con-
stant. An interlock time of Td = 1µs is considered.
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Figure 6.15: Deviation for the switched model with interlock times Td = 1µs in Figure 6.14
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Figure 6.17: Deviation for the averaging model with interlock times Td = 1µs in Figure 6.16
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Figure 6.19: Deviation for model with variable dc-link voltage in Figure 6.18.
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with (6.34).

The second and third graphs show the switching function spectra in dq coordinates under the
negligence of the harmonic components in the angular frequency S ′′d and S ′′q . The fourth and
fifth graphs illustrate how the speed harmonics influence the switching function spectra Sd and
Sq. The speed harmonic at 20 Hz is propagated to the switching function spectra. The amplitude
of the harmonic at 40 Hz is too low to be visible. Any further harmonic components, as these are
shown in Figure 6.9, are not visible here. Their amplitudes are too low to have a considerable
impact. The differences between the spectra of the two models are negligible.

The evaluation of the complete drive system under the influence of harmonic torque yields the
spectra depicted in Figure 6.21. In order to compare both models under the influence of the
same input signals, the simulated load torque is used as an input signal of the frequency-domain
model. The dc-link voltage is constant in both models. The influence of speed harmonics on
the Park transformation is neglected in the frequency-domain model for ratios of the speed
oscillation’s magnitude and its angular frequency ω̂,h/(h · ω0) under a value of 10−4. There are
no considerable differences between the results of the models.
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Figure 6.20: Switching function spectrum under the influence of speed harmonics. The speed is given as the same
input signal in both models.
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Figure 6.21: Results for the drive system model under the influence of oscillating load torque. The dc-link voltage
is modeled as a constant input signal. There are no interlock times considered.
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6.5 Discussion

In this chapter a model for the interaction of a VSI and a PMSM was developed in the fre-
quency domain. The electrical machine was modeled with its main spatial harmonic behavior
in the rotor reference frame (dq). The inductances and resistances of the model are considered
as constant. The VSI’s equation system, which was developed by using the switching func-
tion, was transformed into the same dq reference frame. The approach includes the influence
of oscillating load torques on the rotor angle and as well as the reference frame rotation of the
switching function. Each harmonic component leads to a rotation matrix consisting of Fourier
coefficients that are described by a Jacobi-Anger expansion. The switching function in dq co-
ordinates results in a convolution of these rotation matrices with the switching function that
neglects these oscillating terms.

The excitation frequency is propagated from the load torque to the rotor speed and to the phase
currents in dq coordinates. For the phase currents represented in 123 coordinates, the excitation
occurs as sidebands around the fundamental frequency component. Additionally, multiples of
the excitation frequency are generated. Nevertheless, these components are of much smaller
amplitude and their generation can be considered a second-order effect. This fact allows for the
simplification of the rotation matrix in dq coordinates, which results in a lower computational
effort. The comparisons of the results from the frequency-domain and time-domain models
showed very good conformity.

There is a number of nonlinear parasitic effects that are neglected in the machine model due to
its underlying assumptions. The geometrical variation of the air gap due to rotor slots and the
influence of the geometry of the permanent magnets leads to the generation of spatial harmonic
components. In reality, the resistances and inductances depend on the frequency, due to skin
effect and proximity effect. Saturation of the iron core was neglected, which simplifies the
nonlinear relationship of current and flux linkage to a linear one. Moreover, saturation leads to
a dependency of the effective magnetic permeance of the air gap, which introduces harmonic
spatial components into the magnetic flux density [79]. A consideration of time harmonics and
spatial harmonics requires a double Fourier series formulation and a detailed description of the
relationships between the electrical and magnetic quantities of the machine.
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7 Conclusions and Summary

Conclusions

The analysis of the VSI shows that there is a mutual dependency between the signals of the sys-
tem: The ac-side quantities influence the dc-side quantities, and vice versa. The power conver-
sion between the ac-side and the dc-side is a nonlinear process with the generation of baseband
harmonics and switching sideband harmonics. It is remarkable that, despite this fact, the equa-
tion system of the VSI with open-loop control in the frequency domain is linear. This is made
possible through definition of the switching function, which comprises the nonlinear PWM and
power conversion processes and is independent of the system variables.

The switching function can be used even with the incorporation of dead-time effects. Neverthe-
less, their consideration sacrifices the linearity of the model: Under the influence of interlock
times, the switching function depends on the sign of the phase current. This reaction of the sys-
tem to the switching function can be reduced to the information of a single phase angle, which
indicates the zero-crossing even under the influence of harmonics. However, this requires the
assumption of two even zero-crossings (TEC mode), which might not be fulfilled under the
influence of large harmonics.

Although the concept of the switching function is not new, its application in the analysis of
PWM methods is rare. The common choice is to study the ac-side voltages, since these im-
mediately impact the ac-side load. However, when analyzing the interaction of the ac-side and
the dc-side, the definition of the switching function allows for a better understanding of the
PWM and power conversion processes and the formulation of a compact equation system in the
frequency domain.

In the case of a VSI with closed-loop control, the control and PWM signals depend on the
signals of the physical system. A PWM model that considers multiple-frequency duty cycles is
necessary to cover these interactions. Due to the nonlinearity of the PWM process, the overall
equation system is nonlinear and iterative solution methods are required.

One might ask why it is important to consider the switching process and the interactions in such
great detail. A motivation was found in the effects of aliasing, which can lead to an influence of
the harmonics of the switching band on the baseband components due to the sampling process.
The incorporation of sampling and aliasing effects was enabled in this thesis by distinguishing
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continuous-time signals and discrete-time signals and their respective conversion processes.
Both types of signals can be described by Fourier methods in the frequency domain, which
allows for a simultaneous modeling of this hybrid system. Moreover, the importance of the
correct representation of the sampling process in the PWM model should be stressed: If its
input is already a discrete-time signal of correct sampling period, a model for regularly-sampled
PWM would lead to faulty results, because the sampling process would be considered twice.
It was demonstrated that a regularly-sampled PWM model with a continuous-time input signal
can be approximated by a naturally-sampled PWM model combined with a sample-and-hold
process applied to the input. In the case of a discrete-time input signal, it was preferable to
apply an inverse sample-and-hold process combined with a regularly-sampled PWM model.
This combination requires a lower number of considered harmonics than a naturally-sampled
PWM model to acquire the same accuracy.

The influence of a PLL was neglected in this thesis. There are, however, similarities to the drive
system model where oscillations can be present in the rotation angle. When these oscillations
are described by harmonics, each harmonic component leads to a rotation matrix consisting of
Fourier coefficients that are described by a Jacobi-Anger expansion. The switching function
in dq coordinates then results in a convolution of these rotation matrices with the switching
function that neglects these oscillating terms. Steps for simplification can be provided to allow
for a more compact equation system. A more accurate representation of the electrical machine
incorporates further nonlinear effects, such as saturation, spatial harmonics, and skin effect.
These are neglected in the models presented due to the assumption of a magnetically linear
machine on the basis of the fundamental spatial harmonic and of resistances independent of the
frequency.

Summary

The modeling approach that was presented in this thesis proved to be a helpful tool for the
calculation of steady-state spectra in VSI drives. It enables the consideration of harmonic in-
teractions by simultaneous solution of the system equations. This stands in contrast with the
prevailing unidirectional models found in the presented literature, which model the components
with their input-to-output behavior, neglecting the bidirectional interactions. Multiple nonlinear
effects were covered in this thesis, including the generation of switching harmonics in the PWM
process, dead-time effects, the influence of feedback control, and the nonlinearity introduced by
electromotive conversion.

The concept of the switching function is a center-piece of this thesis, which was adapted from
the literature for describing the switching state of the converter half bridges. It was demonstrated
in this thesis that dead-time effects can be incorporated into the switching function models in
the frequency domain. In the case of a drive system, the switching function was transformed
into the rotor reference frame. The influence of oscillatory components in the rotor angle on the
coordinate transform were derived in the frequency domain, enabling modeling of the influence



7. Conclusions and Summary 167

of oscillating load torques on the voltages and currents of the drive system.

Applications of the presented method can be found where the interaction of the harmonic com-
ponents cannot be neglected and when the base band harmonics and the switching band harmon-
ics cannot be clearly separated. It was shown that interactions of switching-band harmonics and
base-band harmonics are present when aliasing occurs.

In the case of unsynchronized inverter systems, e.g. parallel grid-tied VSI, the common method
of avoiding aliasing through synchronization of PWM and sampling is not applicable between
the individual VSI. The application of the presented method requires the development of a PLL
model.

The nonlinear effects were analyzed individually in this thesis. A combination of effects, for
example the incorporation of dead-time effects in closed-loop control, remains to be solved in
future work.

For the presented method of numerical evaluation, integer ratios of the system frequencies are
recommended. Although the choice of non-integer ratios does not lead to a more complicated
system, the size of the equation system can become very large. A solution to this problem
is strongly recommended to enhance practical applications. An enhancement of the speed of
the solution process is desirable, when it comes to large numbers of considered harmonics and
multiple nonlinear effects. For this, an improvement of the system description, the incorporation
of an analytical Jacobian matrix, and an extensive study of solvers are recommended.





A. Fourier Series 169

A Fourier Series

Table A.1 provides the conversion between different types of Fourier series representations.

Fourier series Fourier coefficients

a)
x(t) = A,0

2 +
∑
k∈N

A,k · cos(kω0t)

+jB,k · sin(kω0t)

A,k = X̂,k · cos(θx,k)
= 2 · <{X,k}

B,k = X̂,k · sin(θx,k)
= −2 · ={X,k}

b) x(t) = A,0
2 +

∑
k∈N

X̂,k · cos(kω0t+ θx,k)

X̂,k =
√
A2
,k +B2

,k

= 2 ·
√
<{X,k}2 + ={X,k}2

θx,k = −atan(B,k

A,k
)

= atan(={X,k}/<{X,k})

c) x(t) =
∑
k∈Z

X,k · e jkω0t

X,k =


1
2(A,−k + jB,−k), k < 0

A,0
2 , k = 0

1
2(A,k − jB,k), k > 0

=


1
2X̂,−k(cos(θx,k)− j sin(θx,k)), k < 0

A,0
2 , k = 0

1
2X̂,k(cos(θx,k) + j sin(θx,k)), k > 0

Table A.1: Conversion of Fourier series representations using
a) real coefficients A,k and B,k,
b) trigonometric coefficients magnitude X̂,k and phase θx,k,
c) complex coefficients X,k





B. Experimental System 171

B Experimental System

This appendix contains information about the experimental setup that was used for validation
of the presented frequency-domain models. Figure B.1 shows the prototype setup of the VSI in
its experimental environment.

Figure B.1: The photo on the left shows the power stage of the VSI and its control unit. The photo on the right
shows the closed cabinet of the power stage and a three-phase inductor in front of the cabinet. The
cabinet on the right side contains an LCL filter and a transformer on the bottom, as well as the oscil-
loscope Teledyne Lecroy HDO8108 in the top part, which was used during the experiments.

Power stage

The power stage of the voltage-source inverter is depicted in Figure B.2. The back-to-back
inverter system comprises three IGBT modules Infineon IFS150V12PT4. They are used as a
grid-side VSI, a machine-side VSI, and an optional chopper module. The modules consist of
three half-bridge modules. The minimum required interlock time and the minimum pulse width
are both 1µs.
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Figure B.2: Power stage of the back-to-back inverter system

Each IGBT module is equipped with a circuit board containing the optical transmitters and
receivers for communication with the control system and a circuit board providing the insulated
power supply of the gate drivers. The input signals of the gate drivers are generated on the
FPGA unit of the control platform and transferred via optic fiber cables.

The dc link capacitance of Cdc = 480µF is composed by a parallel connection of 12 individual
film capacitors. A parallel 1 MΩ discharging resistor provides a slow discharging process.

Sensors of the control system

Current and voltage sensors are used for feedback control and synchronization with the util-
ity grid or a grid emulation. The ac-side currents are measured by current transducers LEM
HASS 50-S. The transducers have a 3-dB cut-off frequency of fcut = 240 kHz. Using an oper-
ational amplifier, the output voltage of the transducer is adapted to the required input voltage
range of the ADC. The cut-off frequency of the ADC’s input filter is much higher than the
band-width of the current transducer and therefore negligible. Isolated ∆Σ modulators Analog
Devices AD7401A are used as ADCs. They are operated at a clock frequency of 20 MHz and
are connected to the FPGA via RS-485 serial ports.

The ac-side voltages and the dc-link voltage are sensed by differential probes custom-made by
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Protolar GmbH. Low pass filters with a cut-off frequency of 100 kHz are implemented in the
probes and the same ∆Σ converters are used as for the current probes.

Digital control system

The control is implemented on the Protolar ControlCube. The hardware comprises four circuit
boards, including a main board, one level of optic fiber transmitters and receivers, two boards
with RS-485 ports for serial communication with the current and voltage probes, and a 24 V
digital I/O interface. The key component is a system-on-chip unit Xilinx Zynq 7000, which is
located on the main board. It contains an FPGA and an ARM Cortex-A9 double-core processor.
Via a 24 V digital IO interface, the ControlCube is connected to a programmable logic controller
(PLC), which monitors basic operator clearance and operates contactors. The structure of the
overall control system is depicted schematically in Figure B.3.
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Figure B.3: Block diagram of the control structure

The FPGA incorporates the collection of measurement data from the ADCs. The digital filters
(decimators) are implemented on the FPGA as Sinc3 filters or accumulate-and-dump filters.
The FPGA also comprises the low-level control of the power converters, whereas the high level
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control is implemented in CPU2, as an interrupt-based control algorithm written in C. The
control algorithm provides a duty-cycle-equivalent sample point to the FPGA, where a counter
determines the switching instant of the required duty cycle. The ControlCube is connected to a
computer via Ethernet, allowing the user to observe control signals and change parameters and
set-point values via the Protolar software Supervisor.

Data acquisition

The equipment used for data acquisition is independent of the measurement probes of the con-
trol system. Table B.1 lists the additional current and voltage probes used for this purpose.
The table provides the -3 dB bandwidth of the probes. All high frequency cut-off frequencies
are above 5 MHz, which is considered sufficiently high. All probes, except the Rogowski coils
used to measure the dc-side current and the disturbance current, are specified for measuring dc
signals. The Rogowski coils PEM CWT03LF have a peak current rating of 60 A and a low fre-
quency (-3dB) bandwidth of 11 Hz. The measurement of dc currents is not inherently supported
by Rogowski coils. Moreover, a considerable error is introduced into the angle information for
low-frequency components, with an 18.6◦(typical) phase lead at 50 Hz. Because the measure-
ment results are used for validation of the amplitude information, the accuracy is considered
sufficient for frequencies greater than 11 Hz.

The ac-side voltages are measured line-to-line between the ac-side terminals of the regarded
IGBT module, assuring a low impedance coupling with the ac-side currents. Similarly, the dc-
link voltage is measured between the dc-side terminals of the regarded IGBT module. Distur-
bance voltages are measured line-to-line at the disturbance-side terminals of the filter impedance
that is inserted between the VSI and the disturbance. The gate signals of the top and bottom IG-
BTs of phase 1 are measured as the input signals of the gate driver, which are available as 5 V
signals on the extension board containing the optic transmitters.

The data acquisition is performed on an eight channel 12 bit oscilloscope Teledyne Lecroy
HDO8108, which is depicted on the right side of Figure B.1. A high number of 50 MS is used,
which results in a sampling rate of 250 MS/s for the typically chosen acquisition window of
200 ms. Aliasing is avoided by using a 20 MHz analog input filter for the channels. Setting the
acquisition height for voltage measurements to 1000 V and for current measurements to 100 A
results in voltage quantization steps Qu and current quantization steps Qi of

Qu = 1000 V/212 = 244 mV,
Qi = 100 A/212 = 24 mA.

The internal control signals are logged in Supervisor with a time-stamp protocol.
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Table B.1: Current and voltage probes used for data acquistion.

Measured signal Symbol Probe Bandwidth (-3 dB)
AC-side voltage uacν TESTEC TT-SI 9001 DC ... 25 MHz
DC-side voltage udc Tektronix P5200 DC ... 25 MHz
Disturbance voltage udisν TESTEC TT-SI 9001 DC ... 25 MHz
Bottom gate signal gb TESTEC TT-SI 9001 DC ... 25 MHz
Top gate signal gt TESTEC TT-SI 9001 DC ... 25 MHz
AC-side current iacν Agilent N2782B DC ... 50 MHz
DC-side current idc PEM CWT03LF 11 Hz ... 5 MHz
Disturbance current idis PEM CWT03LF 11 Hz ... 5 MHz

Figure B.4: Photographs of load and LCL filter: a) Adjustable resistors in star connection b) Three-phase LCL
filter and isolating transformer

Loads

The VSI is loaded with three resistors in star connection [Figure B.4 a], which have a variable
resistance of 0..5 Ω. When using a first-order filter, the VSI is connected to the three-phase
inductor placed in front of the rack in Figure B.1. It has a variable inductance of 5...20 mH
in 5 mH steps. Alternatively, the third-order LCL filter shown in Figure B.4 b can be used. It
consists of a converter-side inductor, a grid-side inductor, and shunt capacitors in series with
damping resistors terminated in star connection. The grid-side inductor is connected to an iso-
lation transformer in YNd5 connection. The transformer is modeled with its stray inductance
and load-dependent losses as a series connection of an inductor and a resistor.
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