Relative gravimeter calibration system for high accurate applications

Federal Agency for Cartography and Geodesy

Ludger Timmen¹, Manuel Schilling¹, Reinhard Falk², Alexander Lothhammer², Gerald Gabriel³, Detlef Vogel³

¹ Leibniz Universität Hannover, ² Federal Agency for Cartography and Geodesy, ³ Leibniz Institute for Applied Geophysics

Motivation: best possible scale definition for relative gravimeters

With state-of-the-art instruments and well controlled calibration lines (for long-term stability):

Gravimeter calibration accuracy of 1×10^{-4} is a realistic objective (e.g., gravity range $\Delta g = 100 \ \mu m/s^2 \rightarrow 10 \ nm/s^2$ systematic error only)

Potential error sources have to be mastered:

- Measuring uncertainty of relative gravimeters
- Scale accuracy as defined by absolute measurements in the Harz Mountains
- Temporal variation of the reference g-values of the calibration system
- Uncertainties of the vertical gravity gradients above the marked calibration points
- Instrumental air pressure effect of relative gravimeters due to insufficient or damaged sealing of the sensor housing
- Temporal instability of the electronic measuring and nulling system (feedback system)
 of the gravimeters

Absolute gravimetry on the Harz Calibration Line in 1986/87 and 2013

Absolute	δg/δh	g(IfE, JILAg-3)		g(BKG, A10-033)		$\Delta \mathbf{g}$	Mittel
Points	$[\mu m/s^2/m]$	$[\mu m/s^2]$		$[\mu m/s^2]$		$[\mu m/s^2]$	$[\mu m/s^2]$
Bad Harzburg	2.951	04/86	9811652.857	13.06.2013	9811652.875	-0.018	9811652.866
481		05/87		09.09.2013			
Torfhaus	3.144	05/87	9810800.472	13.06.2013	9810800.425	+0.047	9810800.448
563				17.06.2013			
Kriegsgräber	3.178	05/87	9810721.051	12.06.2013	9810721.070	-0.019	9810721.060
571				17.06.2013			

Instrumental airpressure effect and feedback

instablities

Testing pressure sealing of gravimeters in a pressure chamber

2013.5

2014

[Year]

2014.5

2015

2012.5

2013

Calibration factors determined in the Gravimeter Calibration System Hannover for two gravimeters

- Scintrex CG3-04492
- ZLS Burris B-64

varying by 1×10⁻³ maximum

Gravimeter Calibration System Hannover

The Gravimeter Calibration System Hannover with its two most important parts (in "red"):

- Vertical Gravimeter Calibration Line Hannover (VGCH, 20-storey building, no absolute observations, indoor)
- Harz Calibration Line (3 absolute gravimetric points, outdoor)

Upgrade 2017 versus Solution 2004

- g-values for 3 absolute points of the Harz Calibration Line with s=50 nm/s² introduced ("soft datum concept")
- Scale transfer from Harz to VGCH by 7 gravimeters with contemporary measurements in Harz/VGCH
- Controlled weighting to avoid dominance of a single instrument for scale transfer
- Additional 8 gravimeters for point densification in the VGCH ("estimation of variance components")
- All g-values in the VGCH are defined at 0.250 m above floor (appr. sensor height)
- No points below 1st floor considered to avoid groundwater impacts on scale definition
- Only points along one vertical line considered
- Scale accuracy of Harz and Hannover lines:
 2×10⁻⁴ expanded uncertainty (95% confidence)
- Main Δg -connection 210-370 in the VGCH obtained with s=11 nm/s² (1st to 17th floor, lift connection)
- No significant scale change for the base connections in VGCH (210-370) and Harz Calibration Line

Comparison of g-results of Upgrade 2017 with Solution 2004 of VGCH (first gravimeter weighting with estimation of variance components, final weighting with controlled weights)

References

- 1. Timmen, L. R. Falk, O. Gitlein, H. Wilmes: The measuring offset of the absolute gravimeter JILAg-3 (LUH) with respect to the FG5 instruments no. 101(BKG) and no. 220 (LUH). In: V. G. Peshekhonov (Ed.-in-Chief): Terrestrial Gravimetry: Static and Mobile Measurements, Int. Symposium, The State Research Center of Russian Federation Concern CSRI Elektropribor, JSC, 72-77, St. Petersburg, 2011.
- 2. Timmen, L. (2010): Absolute and Relative Gravimetry. In: Guochang Xu (ed.): Sciences of Geodesy-I, Advances and Future Directions. Springer, Berlin Heidelberg, 1-48, DOI: 10.1007/978-3-642-11741-1_1.
- 3. Timmen, L.; Gitlein, O. (2004): The capacity of the Scintrex Autograv CG-3M no. 4492 gravimeter for "absolute-scale" surveys. In: Revista Brasileira de Cartografia (Brazilian Journal of Cartography), 56(2004)02, 89-95.