

A new approach for an integrated kinematic-dynamic orbit determination of low flying satellites based on GNSS observations

Akbar Shabanloui

Geodätische Woche 2007 Session GNSS (G6) Leipzig, Deutschland 26 Sep. 2007

LEO Missions (Earth Explorers)

✓ Kinematical LEO orbits can be used to recover the gravity field of the Earth by the POD methods,

✓ Analysis of altimetry observations requires kinematical orbits of altimetry satellite,

✓ Atmosphere sounding requires kinematical positions of the LEO satellites

✓ GNSS (GPS, GLONASS, GALILEO) methods play an important role in geometrical (subsequently kinematical) POD in addition to classical methods (e.g. SLR...)

Precise Orbit Determination (POD)

✓ Geometrical orbit determination Only geometrical observations are used, no force models and no constraints; pointwise representation

✓ Kinematical orbit determination Geometrical & kinematical observations are used, no force models used; representation by kinematical functions

✓ Dynamical orbit determination Geometrical, kinematical & dynamical observations are used, force models necessary; pointwise representation or representation by functions

Geometrical precise orbit determination

Kinematical precise orbit determination

Dynamical precise orbit determination

Processing concepts

Step by step presentation of LEO short arcs from the solution of Newton-Euler motion equation,

selected a-priori

$\mathbf{r}(t) = \mathbf{r}_a \frac{\sin((1-\tau)N)}{\sin(N)} + \mathbf{r}_e \frac{\sin(\tau N)}{\sin(N)} + \mathbf{C}^T \mathbf{P}(\tau) + \sum_{\nu=1}^n \overline{\mathbf{d}}_{\nu} \sin(\nu \pi \tau)$

all coefficients can be estimated by a Gauss-Markov model

Advantage:

the kinematical orbits and other kinematical parameters can be derived directly from estimated LEO short arc parameters.

Kinematical (short arcs) POD simulated case

cut-off angle 15°

- simple data screening & S/N filtering
- elevation weighting

SON THURS

Sequential time differenced carrier phase observations between GPS satellite s LEO receiver r at epoch t can be written as:

$$\Delta \Phi_{r}^{s}(t_{1}, t_{2}) = \left| \mathbf{r}^{s}(t_{2}) - \mathbf{r}_{r}(t_{2}) \right| - \left| \mathbf{r}^{s}(t_{1}) - \mathbf{r}_{r}(t_{1}) \right| + e_{\Delta \Phi_{3}}$$

$$\Delta \Phi_{r,3}^{s}(t_{1}, t_{2}) =$$

$$\mathbf{r}^{s}(t_{2}) - \left(\mathbf{r}_{a} \frac{\sin((1 - \tau_{2})N)}{\sin(N)} + \mathbf{r}_{e} \frac{\sin(\tau_{2}N)}{\sin(N)} + \mathbf{C}_{3\times 4} \mathbf{P}(\tau_{2}) + \sum_{f=1}^{n} \bar{\mathbf{d}}_{f} \sin(\pi f \tau_{2})\right) \right| -$$

$$\mathbf{r}^{s}(t_{1}) - \left(\mathbf{r}_{a} \frac{\sin((1 - \tau_{1})N)}{\sin(N)} + \mathbf{r}_{e} \frac{\sin(\tau_{1}N)}{\sin(N)} + \mathbf{C}_{3\times 4} \mathbf{P}(\tau_{1}) + \sum_{f=1}^{n} \bar{\mathbf{d}}_{f} \sin(\pi f \tau_{1})\right) \right| + e_{\Delta \Phi_{3}}$$

The Gauss-Markov model for two sub-sequential epochs,

$$\mathbf{X}_{r} = \begin{pmatrix} \Delta \Delta \Phi_{r}^{s_{1}}(t_{1},t_{2}) \\ \vdots \\ \Delta \Delta \Phi_{r}^{s_{j}}(t_{1},t_{2}) \\ \vdots \\ \Delta \Delta \Phi_{r}^{s_{j}}(t_{1},t_{2}) \\ \vdots \\ \Delta \Delta \Phi_{r}^{s_{m}}(t_{1},t_{2}) \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{r}^{s_{1}}(t_{2})\mathbf{A}_{\mathbf{X}_{r}}^{r}(t_{2}) - \mathbf{A}_{r_{r}}^{s_{j}}(t_{1})\mathbf{A}_{\mathbf{X}_{r}}^{r}(t_{1}) \\ \vdots \\ \mathbf{A}_{r_{r}}^{s_{m}}(t_{2})\mathbf{A}_{\mathbf{X}_{r}}^{r}(t_{2}) - \mathbf{A}_{r_{r}}^{s_{m}}(t_{1})\mathbf{A}_{\mathbf{X}_{r}}^{r}(t_{1}) \\ \vdots \\ \mathbf{A}_{r_{r}}^{s_{m}}(t_{2})\mathbf{A}_{\mathbf{X}_{r}}^{r}(t_{2}) - \mathbf{A}_{r_{r}}^{s_{m}}(t_{1})\mathbf{A}_{\mathbf{X}_{r}}^{r}(t_{1}) \\ \end{bmatrix} \begin{bmatrix} \mathbf{X}_{r} - \mathbf{X}_{r}^{0} \end{bmatrix} \\ \vdots \\ \mathbf{M}_{r_{r}}^{s_{m}}(t_{2})\mathbf{A}_{\mathbf{X}_{r}}^{r}(t_{2}) - \mathbf{A}_{r_{r}}^{s_{m}}(t_{1})\mathbf{A}_{\mathbf{X}_{r}}^{r}(t_{1}) \\ \end{bmatrix} \begin{bmatrix} \mathbf{X}_{r} - \mathbf{X}_{r}^{0} \end{bmatrix} \\ \vdots \\ \mathbf{M}_{r}^{s_{m}}(t_{2})\mathbf{A}_{\mathbf{X}_{r}}^{r}(t_{2}) - \mathbf{A}_{r_{r}}^{s_{m}}(t_{1})\mathbf{A}_{\mathbf{X}_{r}}^{r}(t_{1}) \\ \end{bmatrix} \begin{bmatrix} \mathbf{X}_{r} - \mathbf{X}_{r}^{0} \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{X}_{r} - \mathbf{X}_{r}^{0} \end{bmatrix} \\ \begin{bmatrix} \mathbf$$

- Unknowns: boundary values, polynomial coefficients corrections, amplitudes of Fourier series.
- Solutions: Gauss-Markov model
- Convergence & accuracy: after a few iterations, ~ cm.

 LEO short arc orbit is continuous and velocities and another kinematical parameters can be derived from the estimated orbit parameters.

Kinematical short arc POD-simulated

30 minutes of CHAMP satellite [2000 07 15 15h 10m – 15h 40m]

Kinematical short arc POD sequential time differenced carrier phase

Difference plot between estimated short arc absolute positions with observation precision=0.01 m & given positions

Kinematical (short arcs) POD real case

20

GPS, LEO indices,

Travelling time between GPS & LEO,

 $\mathbf{r}^{s}(t-\varepsilon_{r}^{s}), dt^{s}(t-\varepsilon_{r}^{s})$

GPS position, clock offset at sending time,

 $\mathbf{r}_{r}(t), dt_{r}(t)$

LEO position, clock offset at receiving time

S, r

 \mathcal{E}_r^s

universität**bonn**

Carrier phase GPS SST observation...

Sequential time differenced carrier phase SST

Carrier phase ionosphere-free observation at epochs (1,2) $\Phi_{r,3}^{s}(t_{1}) = \left| \mathbf{R}_{z}(\omega_{e}\varepsilon_{1})\mathbf{r}^{s}(t_{1}-\varepsilon_{1})-\mathbf{r}_{r}(t_{1})\right| + \lambda_{3}N_{r,3}^{s} + c\left[dt^{s}(t_{1}-\varepsilon_{1})-dt_{r}(t_{1})\right] + d_{o}^{s}(t_{1}) + d_{R}^{r}(t_{1}) - d_{R}^{s}(t_{1}) + d_{C,3}^{r}(t_{1}) + d_{V,3}^{r}(t_{1}) + d_{M,\Phi_{3}}(t_{1}) + e_{\Phi_{3}}$ $\Phi_{r,3}^{s}(t_{2}) = \left| \mathbf{R}_{z}(\omega_{e}\varepsilon_{2})\mathbf{r}^{s}(t_{2}-\varepsilon_{2})-\mathbf{r}_{r}(t_{2})\right| + \lambda_{3}N_{r,3}^{s} + c\left[dt^{s}(t_{2}-\varepsilon_{2})-dt_{r}(t_{2})\right] + d_{o}^{s}(t_{2}) + d_{R}^{r}(t_{2}) - d_{R}^{s}(t_{2}) + d_{C,3}^{r}(t_{2}) + d_{V,3}^{r}(t_{2}) + d_{M,\Phi_{3}}(t_{2}) + e_{\Phi_{3}}$

sequential time difference ionosphere-free carrier phase observation between epochs (1,2)

$$\Delta \Phi_{r,3}^{s}(t_{1},t_{2}) = \left| \mathbf{R}_{z}(\omega_{e}\varepsilon_{2})\mathbf{r}^{s}(t_{2}-\varepsilon_{2}) - \mathbf{r}_{r}(t_{2}) \right| - \left| \mathbf{R}_{z}(\omega_{e}\varepsilon_{1}).\mathbf{r}^{s}(t_{1}-\varepsilon_{1}) - \mathbf{r}_{r}(t_{1}) \right| -$$

$$c\Delta dt_r(t_1,t_2) + e_{\Delta\Phi_3}$$

Ionosphere free sequential time differenced carrier phase observations can be written as:

$$\Delta \Phi_{r,3}^{s}(t_{1},t_{2}) = \left| \mathbf{R}_{z}(\omega_{e}\varepsilon_{2})\mathbf{r}^{s}(t_{2}-\varepsilon_{2}) - \mathbf{r}_{r}(t_{2}) \right| - \left| \mathbf{R}_{z}(\omega_{e}\varepsilon_{1})\mathbf{r}^{s}(t_{1}-\varepsilon_{1}) - \mathbf{r}_{r}(t_{1}) \right| - c\Delta dt_{r}(t_{1},t_{2}) + e_{\Delta\Phi_{3}}$$

$$\Delta \Phi_{r,3}^{s}(t_{1},t_{2}) = \left| \mathbf{R}_{z}(\omega_{e}\varepsilon_{2})\mathbf{r}^{s}(t_{2}-\varepsilon_{2}) - (\mathbf{r}_{a}\frac{\sin((1-\tau_{2})N)}{\sin(N)} + \mathbf{r}_{e}\frac{\sin(\tau_{2}N)}{\sin(N)} + \mathbf{C}_{3\times4}\mathbf{P}(\tau_{2}) + \sum_{f=1}^{n} \overline{\mathbf{d}}_{f}\sin(\pi f \tau_{2})) \right| - \left| \mathbf{R}_{z}(\omega_{e}\varepsilon_{1})\mathbf{r}^{s}(t_{1}-\varepsilon_{1}) - (\mathbf{r}_{a}\frac{\sin((1-\tau_{1})N)}{\sin(N)} + \mathbf{r}_{e}\frac{\sin(\tau_{1}N)}{\sin(N)} + \mathbf{C}_{3\times4}\mathbf{P}(\tau_{1}) + \sum_{f=1}^{n} \overline{\mathbf{d}}_{f}\sin(\pi f \tau_{1})) \right| - c\Delta dt_{r}(t_{1},t_{2}) + e_{\Delta\Phi_{3}}$$
universitätbom

The Gauss-Markov model for one epoch,

$$\begin{pmatrix} \Delta \Delta \Phi_{r_{1}}^{s_{1}}(t_{1},t_{2}) \\ \vdots \\ \Delta \Delta \Phi_{r}^{s_{1}}(t_{1},t_{2}) \\ \vdots \\ \Delta \Delta \Phi_{r}^{s_{1}}(t_{1},t_{2}) \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{r_{r}}^{s_{1}}(t_{2})\mathbf{A}_{\mathbf{X}_{r}}^{\mathbf{r}}(t_{2}) - \mathbf{A}_{r_{r}}^{s_{1}}(t_{1})\mathbf{A}_{\mathbf{X}_{r}}^{\mathbf{r}}(t_{1}) \\ \vdots \\ \mathbf{A}_{\mathbf{r}_{r}}^{s_{m_{1}}}(t_{1},t_{2}) \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{r_{r}}^{s_{1}}(t_{2})\mathbf{A}_{\mathbf{X}_{r}}^{\mathbf{r}}(t_{2}) - \mathbf{A}_{r_{r}}^{s_{1}}(t_{1})\mathbf{A}_{\mathbf{X}_{r}}^{\mathbf{r}}(t_{1}) \\ \vdots \\ \mathbf{A}_{\mathbf{r}_{r}}^{s_{m_{1}}}(t_{2})\mathbf{A}_{\mathbf{X}_{r}}^{\mathbf{r}}(t_{2}) - \mathbf{A}_{r_{r}}^{s_{m_{1}}}(t_{1})\mathbf{A}_{\mathbf{X}_{r}}^{\mathbf{r}}(t_{1}) \\ \vdots \\ \mathbf{A}_{\mathbf{r}_{r}}^{s_{m_{1}}}(t_{2})\mathbf{A}_{\mathbf{X}_{r}}^{\mathbf{r}}(t_{2}) - \mathbf{A}_{r_{r}}^{s_{m_{1}}}(t_{1})\mathbf{A}_{\mathbf{X}_{r}}^{\mathbf{r}}(t_{1}) \\ \mathbf{X}_{r} = \begin{pmatrix} x_{a} \quad y_{a} \quad z_{a} \quad \dots \quad z_{e} \quad c_{11} \quad c_{12} \quad c_{13} \quad c_{14} \quad \dots \quad c_{34} \quad \overline{d}_{1,x} \quad \overline{d}_{1,y} \quad \overline{d}_{1,z} \quad \dots \quad \overline{d}_{n,z} \end{pmatrix}_{(6+12+3n)}^{\mathsf{T}} \\ \mathbf{X}_{\Delta t} = (\Delta cdt_{12} \quad \dots \quad \Delta cdt_{(m-1)m})_{m-1}^{\mathsf{T}} \\ \mathbf{A}_{\Delta \Phi} = \mathbf{A} \Delta \mathbf{X}, \qquad \Sigma_{\Delta \Phi} \end{pmatrix}$$

- Initial value: unknowns initial values can be derived from code estimated positions at the first step,
- Unknowns: boundary values, polynomial coefficients corrections, amplitudes of Fourier series,
- Solutions: Gauss-Markov model,
- **Convergence & accuracy:** after ~a few iterations, ~ cm.

 LEO short arc orbit is continuous and velocities and another kinematical parameters can be derived from the estimated LEO short arc parameters.

- From sequential differenced carrier phase SST observations, LEO absolute positions and clock offsets can be estimated at every epoch with a sufficient (not essential 4) number of GPS satellites and good satellite geometry,
- An accuracy of cm can be expected for the sequential time diffenced carrier phase SST data processing, but DOP! isn't crucial,
- The resulting LEO orbit is given continuous (without gaps)
 & smoother than geometrical POD,
- Kinematical LEO orbit can be used to recover the Earth's gravity field with the POD recovery concept. (kinematical parameters can be derived analytically).

Dynamical (short arcs) POD simulation case

 $\mathbf{r}(t)$

 $\frac{\sin((1-\tau)N)}{\sin(N)}$

Dynamical short arc POD

 $\frac{\sin(\tau N)}{\sin(N)}$

Boundary positions have been estimated by a Polynomic & Formin Series caefficients have been determined from given Earth gravity field disadvantage:

the dynamical orbits can't be used directly to recover the Earth gravity field, but estimated dynamical parameters can be used as initial values to kinematical POD procedure.

 $\mathbf{C}^{T}\mathbf{P}(\tau) + \sum \mathbf{d}_{\nu} \sin(\nu \pi \tau)$

•Shor arcs of GRACE twin satellites above Europe and Africa have been selected,

- •Observations type:
 - -GPS high-low SST pseudo-range observations,
 - -Earth gravity field (EGM96),
- •Unknowns :

-Boundary positions at begin & end of short arc.

Dynamical LEO POD can not be used for recovery of the Earth with the POD recovery concept, but estimated parameters & LEO POD can be used as initial values for further processes as kinematical POD, etc..,

From dynamical method, LEO positions and clock offsets can be estimated at every epoch with a sufficient enough number (not essential 4) of GPS satellites and good satellite geometry,

The resulting LEO orbit is given continuous (without gaps) and smoother than kinematical POD,

Reduced kinematical (short arcs) POD simulation case

Reduced kinematical POD

 $\mathbf{r}(t) = \mathbf{r}_a \cdot \frac{\sin((1-\tau)N)}{\sin(N)} + \mathbf{r}_e \cdot \frac{\sin(\tau N)}{\sin(N)} +$

Calculated from low degree Earth gravity field

 $(\mathbf{C}^{T})\mathbf{P}(\tau) + \sum_{\nu=1}^{n} \overline{\mathbf{d}}_{\nu} \sin(\nu \pi \tau)$

- Sinsus analysis to difference between real orbit and dycamical low degree orbit,
- A little dynamical information have been used in the reduced kinematical orbit determination,

Thank you for your

attentions

40

