

A New Approach for Pure Kinematical and Reduced Kinematical Determination of a LEO Orbit based on GNSS Observations

Akbar Shabanloui

Session: Gravity 2.2 IAG 2009 31th August 2009, Buenos Aires

Precise Orbit Determination (POD)

2

Credit: European Space Agency

Precise Orbit Determination (POD) methods

Geometrical POD : point-wise, positions

- Kinematical POD : continous, positions, velocities and accelerations
- Dynamical POD : continous, positions, velocities and accelerations based on force function information

Kinematical Precise Orbit Determination (KPOD) universitätbonn

Kinematical POD – methods

8

universität**bon**i

 $L(\mathbf{r}(t)) = \mathbf{a}(t;\mathbf{r},\dot{\mathbf{r}})$

corresponding Fredholm's integral equation:

 \sim

$$\mathbf{r}(\tau) = \overline{\mathbf{r}}(\tau) + \mathbf{d}(\tau) = \overline{\mathbf{r}}(\tau) + \sum_{\nu=1}^{\infty} \mathbf{d}_{\nu} \sin(\nu \pi \tau)$$

elliptical reference motion:

$$\overline{\mathbf{r}}(\tau) = \mathbf{r}_A \frac{\sin \mu (1-\tau)}{\sin \mu} + \mathbf{r}_B \frac{\sin \mu \tau}{\sin \mu}$$

difference function:

$$\mathbf{d}(\tau) = \sum_{\nu=1}^{\infty} \mathbf{d}_{\nu} \sin(\nu \pi \tau)$$

universität**bon**

universität**bonn**

12

Amplitudes

Remainders

universität

14

A satellite short arc can be represented:

$$\mathbf{r}(\tau) = \overline{\mathbf{r}}(\tau) + \sum_{\nu=1}^{\infty} \mathbf{d}_{\nu} \sin(\nu \pi \tau)$$

with Fourier amplitudes:

$$\mathbf{d}_{\upsilon} = 2 \int_{\tau'=0}^{1} \mathbf{d}(\tau) \sin(\upsilon \pi \tau') d\tau'$$

Fourier series amplitudes:

$$\mathbf{d}_{\upsilon} = \sum_{j=1}^{J} \frac{2(-1)^{j+1}}{(\upsilon \pi)^{2j+1}} [(-1)^{\upsilon} \mathbf{d}^{[2j]}(1) - \mathbf{d}^{[2j]}(0)] + \beta \frac{2}{(\upsilon \pi)^{2J+1}} \int_{\tau'=0}^{1} \mathbf{d}^{[2J+2]}(\tau') \sin(\upsilon \pi \tau') d\tau'$$

universität**bonn**

15

$$\mathbf{d}_{F}^{\infty} = \mathbf{d}(\tau) = \sum_{\nu=1}^{\infty} \mathbf{d}_{\nu} \sin(\nu \pi \tau) =$$

$$=\sum_{j=1}^{\infty} \mathbf{e}_{2j} E_{2j}(\tau) + \sum_{j=1}^{\infty} \mathbf{b}_{2j+1} B_{2j+1}(\tau) = \mathbf{d}_{P}^{\infty}$$

A satellite short arc can be represented:

$$\sum_{\nu=1}^{\infty} \mathbf{d}_{\nu} \sin\left(\nu \pi \tau\right) = \sum_{j=1}^{\infty} \mathbf{e}_{2j} E_{2j}(\tau) + \sum_{j=1}^{\infty} \mathbf{b}_{2j+1} B_{2j+1}(\tau)$$

A satellite short arc can be represented with the Euler-Bernoulli term up to degree J as:

gg

$$\mathbf{r}(\tau) - \overline{\mathbf{r}}(\tau) = \mathbf{d}(\tau) \approx \sum_{j=1}^{J} \mathbf{e}_{2j} E_{2j}(\tau) + \sum_{j=1}^{J} \mathbf{b}_{2j+1} B_{2j+1}(\tau)$$

16

Short arc representation

universität**bonn**

LEO orbit can be represented as: **Gibbs effect!** $\mathbf{r}(\tau) = \overline{\mathbf{r}}(\tau) + \mathbf{d}(\tau) = \overline{\mathbf{r}}(\tau) + \sum \mathbf{d}_{\upsilon} \sin(\vartheta \pi \tau)$ $\nu=1$ **Precision!** or 18 $\mathbf{r}(\tau) = \overline{\mathbf{r}}(\tau) + \mathbf{d}(\tau) = \overline{\mathbf{r}}(\tau) + \sum_{j=1}^{j} \mathbf{e}_{2j} E_{2j}(\tau) + \sum_{j=1}^{j} \mathbf{b}_{2j+1} B_{2j+1}(\tau)$ i=1i=1fast Solution? convergence! $\mathbf{r}(\tau) = \overline{\mathbf{r}}(\tau) + \sum_{j=1}^{n} \mathbf{e}_{2j} E_{2j}(\tau) + \sum_{j=1}^{n} \mathbf{b}_{2j+1} B_{2j+1}(\tau) + \sum_{j=1}^{n} \overline{\mathbf{d}}_{j} \sin(\upsilon \pi \tau)$ j=1

Kinematical POD – ellipse mode, J=4

19

Amplitudes

Remainders

Position differences

Velocity differences

index Pos.(m) $\operatorname{Vel.}(m/s)$ Acc. (m/s^2) 200.012644 0.000353 0.00001230 0.0107170.0003970.000018 400.011997 0.000463 0.000025 0.0147370.0009410.00007759

Acceleration differences

Statistical values

KPOD – real case

Four short arcs (30 min.) ground track of CHAMP

24

Diff. (m)

0.06

0.04

0.02 0 -0.02

-0.04

IGG - GFZ velocities

RMS

index	Pos.(m)	Vel. (m/s)
20	0.0503	0.0019
30	0.0455	0.0018
40	0.0449	0.0017
59	0.0449	0.0017

Statistical values

GPS-SST residuals

Reduced-Kinematical POD – method

✓ Introduction of an approximate force function $(\tilde{\mathbf{d}}_{i} \cdots \tilde{\mathbf{d}}_{j}), \mathbf{C}_{(\tilde{\mathbf{d}}_{i} \cdots \tilde{\mathbf{d}}_{j})}$

 \checkmark Fixing only some orbit parameters $(\tilde{\mathbf{d}}_{i}\cdots\tilde{\mathbf{d}}_{j}), \mathbf{C}_{(\tilde{\mathbf{d}}_{i}\cdots\tilde{\mathbf{d}}_{j})} \rightarrow \mathbf{0}$

✓ Down- or up weighting
$$\mathbf{C}_{(\tilde{\mathbf{d}}_1 \cdots \tilde{\mathbf{d}}_n)}$$
 in relation to $\mathbf{C}_{(\mathbf{d}_1 \cdots \mathbf{d}_n)}$

C₁

,

 $\mathbf{I}_1 = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2 \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}$

Constraints
$$\mathbf{I}_2 = \begin{pmatrix} \mathbf{0} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}, \quad \mathbf{C}_2$$

$$(\mathbf{I}_{1}) = \begin{pmatrix} \mathbf{A}_{1} & \mathbf{A}_{2} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix}, \quad \mathbf{C}_{\mathbf{I}} = \begin{pmatrix} \mathbf{C}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{2} \end{pmatrix}$$

$$\begin{pmatrix} \hat{\mathbf{x}}_1 \\ \hat{\mathbf{x}}_2 \end{pmatrix} = \mathbf{N}^{-1} \begin{pmatrix} \mathbf{A}_1^{\mathrm{T}} \mathbf{C}_1^{-1} \mathbf{I}_1 \\ \mathbf{A}_2^{\mathrm{T}} \mathbf{C}_1^{-1} \mathbf{I}_1 + \mathbf{C}_2^{-1} \mathbf{I}_2 \end{pmatrix}, \ \mathbf{N}^{-1} = \begin{pmatrix} \mathbf{Q}_{\hat{\mathbf{x}}_1 \hat{\mathbf{x}}_1} & \mathbf{Q}_{\hat{\mathbf{x}}_1 \hat{\mathbf{x}}_2} \\ \mathbf{Q}_{\hat{\mathbf{x}}_2 \hat{\mathbf{x}}_1} & \mathbf{Q}_{\hat{\mathbf{x}}_2 \hat{\mathbf{x}}_2} \end{pmatrix}$$

27

index

Pos.(m)

Position differences

Velocity differences

 $\operatorname{Vel.}(m/s)$

Acc. (m/s^2)

universität**bonn**

RMS

Acceleration differences

200.012831 0.000316 0.0000120.00887330 0.0003370.0000160.014034 0.000402 0.00002140 590.011553 0.0007210.000056

Statistical values

- No gravity field and no force models have been used in the Geometrical and Kinematical modes (advantage),
- The proposed kinematical orbit determination method is very flexible. A smooth transition from kinematical to reduced kinematical and finally dynamical or vice-versa is possible.

Thank you for your attention