

Geometrical and Kinematical Precise Orbit Determination of GOCE

Akbar Shabanloui Institute of Geodesy and Geoinformation, University of Bonn

> 7th October 2010 Cologne, Germany

- Precise Orbit Determination (POD) principle
- Geometrical Precise Orbit Determination (GPOD)
- Kinematical Precise Orbit Determination (KPOD)
- GOCE Lagrange receiver (clock)
- Zero difference estimation procedure
- Results
- Conclusions

Precise Orbit Determination (POD)

universität**bonn**

3

Credit by ESA

Precise Orbit Determination (POD) methods universitätbonn

Geometrical Precise Orbit Determination (GPOD) universitätbonn

Precise Orbit Determination (POD) methods universitätbonn

Kinematical Precise Orbit Determination (KPOD) universitätbonn

> Geometrical POD : point-wise, positions != KPOD, e.g. Bern

Dynamical POD : continous, positions, velocities and accelerations based on force function information

GPS LAGRANGE receiver onboard GOCE

9

Credit by ESA

GNSS receiver on-board GOCE

Credit by ESA

- LAGRANGE (Laben GNSS Receiver for Advanced Navigation, Geodesy and Experiments)
 - 12 chanels, dual frequency (L1 and L2) GPS/GLONASS
 - The clock of the GOCE LAGRANAGE receiver is not steered to integer seconds (free clock system)
 - Interpolation of SST observations (Data Screening with triple differenced method)
 - Interpolation of GPS orbits (Zero differenced)

universität**hon**

GNSS receiver on-board GOCE (Rinex SST) universitätbonn

Clock is not steerd to be integer

	0	20		00000000	TTON		one					
	- 2 MFI 722	0.20 AL CO D MONEL T22			OBSERVHIIOM DHIH			663 20-120-10 16.62.16			DEM / DIN DU / NATE	
	COCE	011_1 02	сэн	29 588 10 10:55.				10.53.10	MODVED NOME			
SPACEBORNE										MORKEN	R TVPF	
	Kiruna	Kiruna FSA								ORSERI	IFR / ACENCY	
	Main			LOREN			3 2			RFC #	/ TVPE / HERS	
	1	RYMSA				0.2				ANT # / TYPE		
	•	ß_6899			-0.0046		-1,1755				/ TITE No· NFI To X/V/7	
		0,0000			0.0040		-1.0000			ANTEN	NA: B_SIGHT XYZ	
	1.000									INTERUAL		
	1	1								WAUFI	ENGTH FACT 11/2	
	8	11	12	61	P1	P2	S1	S2	CH	# / TY	YPES OF OBSERV	
	2009	11	2	12	ด	0.779	99998			TIME	DE FIRST OBS	
	2009	11	2	12	59	29.77	99936			TIME	DF LAST OBS	
	6		_							RCU CI	LOCK OFFS APPL	
	_									END OF	F HEADER	
	09 11	2 12 1	5 30.	7800000	0 11	17 32	11 14	28	9 19 27 26	20 22		
	-18682	885.842	00 -1	3467931.	56500	1978	7021.7	93 0 0	19787020.	76600	19787018.19500	
		47.250	00	38.	12500		0.0	0000				
	-21235	717.237	00 -1	5022391.	51300	1931 [.]	1520.4	3000	19311519.	06200	19311518.27300	
		46.625	00	35.	18800		1.0	0000				
	-25948	184.884	00 -1	8683843.	74600	18553	7424.9	3000	18557423.	85200	18557421.78100	
		44.062	00	35.	81200		2.0	9000				
	-17114	597.831	00 -1	2088234.	96000	2019	0959.6	1700	20190957.	53900	20190955.82000	
		43.000	00	30.	62500		3.0	9000				
	-14313	629.498	00 -1	0192727.	64200	2054	7552.2	5600	20547550.0	61700	20547548.82800	
		44.125	00	31.	06200		4.0	0000				
	-10848	177.101	00 -	5025368.	26200	21913	2937.1	9200	21912935.0	60200	21912933.95300	
		42.375	00	28.	43800		5.0	0000				
	-2430	062.536	00	-759916.	91900	2271	5136.5	3600	22715134.	43800	22715133.43800	
		36.812	មម		37500		6.0	9999				
	-8781	453.662	២២ –	4550814.	80200	2116	404.2	2700	2116/402.	/8900	21167401.50800	
	41.4 00	41.938	មម	27. 0047000	50200	04054	7.0	9999 9999	04050040		04050047 70400	
	-14002	304.773	ยย – ดด	8310038.	34400	2125	8921.5 0 0	0000	21258919.3	21100	21258917.78100	
	-16400	44.188	00 00 -	32. 0450144	18880	0070	8.0 0000 0	0000	007000.7	70700	20720064 04700	
	-14090	024.070 ho 200	00 - 1 00	0059401. 00	43000	2072	40.2	5400 0000	20720047.	(31.00	20720040.30700	
	_9999	42.000	00 00	28. 101004	000000	2202	10.0 0400 0	0000	22020404	07000	22020477 00000	
	-3228	200.309	- 00 00	1049001.	12000	22920	14 0	1000	22920101.	01900	22928177.00800	
		37.00Z	00	21.	40000		11.0	0000				

universität**bonn**

GPS LAGRANGE receiver clock behavior!

Clock jumps of 20 ms at ~27 hours can be seen

7 < Number of GPS satellites (PRNs) < 12

GPS visibility onboard GOCE (Nov. 2009)

universität**bonn**

7 < Number of GPS satellites (PRNs) < 12

Zero differenced GPOD

Zero Difference Only connection between LEO satellite and GPS satellites,

Geometrical

Only pure geometrical relations between LEO and the GPS satellites have to be used, no force models and no constraints,

Precise

Consideration all effects on GPS-SST observations and using precise GNSS satellites ephemerides.

Processing concept

Precise Orbit Determination (POD)

20

3

 $\mathbf{r}(t)$

 $\mathbf{e}_{2}^{\mathsf{E}}$

(20 r

Q

....

 $\rho_r^{s_i}(t)$

- No troposphere effect at GOCE altitude (~250 km)
- First order ionospheric effects eliminated with Ion-free linear combination

^E₁

- Ambiguity term cannot be solved as Integer (real)!
- GPS precise orbits (a) (5 minutes) and clocks at 30

GPS Antenna offsets

- GPS receiver offset with respect to GOCE reference frame is constant
- L1 and L2 (L3) Phase Center Offsets (PCO) are derived from IGS ANTEX (ANTenna Exchange format)
- Phase Center Variation (PCV) can be empirical estimated based on carrier phase residuals! (or ANTEX?)
- Offset with respect to center of mass (COM) is slowly varing!

- HILL

24

 $\Phi_{r,i}^{s_1}(t) = \rho_r^{s_1}(t) + c\delta t_r(t) + \lambda_i A_{r,i}^{s_1} + e_{r,i}^{s_1}(t) + \varepsilon_{r,i}^{s_1}(t)$

$$\Delta \Phi_{r,i}^{s_1}(t) = \mathbf{a}_{\mathbf{x}}^{s_1}(t) \Delta \mathbf{x}$$

universität **bonn**

$$\Delta \Phi_{r,i}^{s_1}(t) = \mathbf{a}_{\mathbf{x}}^{s_1}(t) \Delta \mathbf{x}$$

$$\Delta \Phi_{r,i}^{s_2}(t) = \mathbf{a}_{\mathbf{x}}^{s_2}(t) \Delta \mathbf{X}$$

universität**bonn**

$$\Delta \Phi_{r,i}^{s_2}(t) = \mathbf{a}_{\mathbf{x}}^{s_2}(t) \Delta \mathbf{X}$$

$$\Delta \Phi_{r,i}^{s_3}(t) = \mathbf{a}_{\mathbf{x}}^{s_3}(t) \Delta \mathbf{x}$$

$$\Delta \Phi_{r,i}^{s_2}(t) = \mathbf{a}_{\mathbf{x}}^{s_2}(t) \Delta \mathbf{X}$$

$$\Delta \Phi_{r,i}^{s_3}(t) = \mathbf{a}_{\mathbf{x}}^{s_3}(t) \Delta \mathbf{X}$$

$$\Phi_{r,i}^{s_4}(t) = \rho_r^{s_4}(t) + c\delta t_r(t) + \lambda_i A_{r,i}^{s_4} + e_{r,i}^{s_4}(t) + \varepsilon_{r,i}^{s_4}(t)$$

THE

52

m

w

$$\Delta \Phi_{r,i}^{s_1}(t) = \mathbf{a}_{\mathbf{x}}^{s_1}(t) \Delta \mathbf{x}$$

$$\Delta \Phi_{r,i}^{s_2}(t) = \mathbf{a}_{\mathbf{x}}^{s_2}(t) \Delta \mathbf{X}$$

$$\Delta \Phi_{r,i}^{s_3}(t) = \mathbf{a}_{\mathbf{x}}^{s_3}(t) \Delta \mathbf{X}$$

$$\Delta \Phi_{r,i}^{s_4}(t) = \mathbf{a}_{\mathbf{x}}^{s_4}(t) \Delta \mathbf{x}$$

THE

$$\Delta \Phi_{r,i}^{s_1}(t) = \mathbf{a}_{\mathbf{x}}^{s_1}(t) \Delta \mathbf{x}$$

$$\Delta \Phi_{r,i}^{s_2}(t) = \mathbf{a}_{\mathbf{x}}^{s_2}(t) \Delta \mathbf{X}$$

$$\Delta \Phi_{r,i}^{s_3}(t) = \mathbf{a}_{\mathbf{x}}^{s_3}(t) \Delta \mathbf{x}$$

$$\Delta \Phi_{r,i}^{s_4}(t) = \mathbf{a}_{\mathbf{x}}^{s_4}(t) \Delta \mathbf{x}$$

$$\Phi_{r,i}^{s_5}(t) = \rho_r^{s_5}(t) + c \delta t_r(t) + \lambda_i A_{r,i}^{s_5} + e_{r,i}^{s_5}(t) + \varepsilon_{r,i}^{s_5}(t)$$

universität **bonn**

$$\Delta \Phi_{r,i}^{s_1}(t) = \mathbf{a}_{\mathbf{x}}^{s_1}(t) \Delta \mathbf{x}$$

$$\Delta \Phi_{r,i}^{s_2}(t) = \mathbf{a}_{\mathbf{x}}^{s_2}(t) \Delta \mathbf{X}$$

$$\Delta \Phi_{r,i}^{s_3}(t) = \mathbf{a}_{\mathbf{x}}^{s_3}(t) \Delta \mathbf{X}$$

$$\Delta \Phi_{r,i}^{s_4}(t) = \mathbf{a}_{\mathbf{x}}^{s_4}(t) \Delta \mathbf{X}$$

$$\Delta \Phi_{r,i}^{s_5}(t) = \mathbf{a}_{\mathbf{x}}^{s_5}(t) \Delta \mathbf{x}$$

$\Delta \Phi = A \Delta x$, C_{Φ}

$\Delta \Phi = A \Delta x$, C_{\oplus} 3 Un . HILL min nn son so ş 3 33. 32 UUL nn. w $\Delta \hat{\mathbf{x}} = \mathbf{N}^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{C}_{\Phi}^{-1} \Delta \mathbf{\Phi}, \quad \mathbf{C}_{\Delta \hat{\mathbf{x}}} = \mathbf{N}^{-1}$ 133,00 $\mathbf{N} = \left(\mathbf{A}^{\mathrm{T}} \mathbf{C}_{\Phi}^{-1} \mathbf{A}\right)$

$\Delta \Phi = A \Delta x, \quad C_{\Phi}$ $\Delta \hat{x} = N^{-1} A^{T} C_{\Phi}^{-1} \Delta \Phi, \quad C_{\Delta \hat{x}} = N^{-1}$ $N = (A^{T} C_{\Phi}^{-1} A)$

 $\hat{\mathbf{x}} = \mathbf{x}_0 + \Delta \mathbf{x}, \quad \mathbf{C}_{\hat{\mathbf{x}}} = \mathbf{N}^{-1}$

universität**bonn**

30 minutes short arc (2009-11-02 02 00 00 - 02 30 00)

GPOD - GOCE results

Kinematical POD

A satellite short arc can be represented with the Euler-Bernoulli term up to degree J as:

gg

$$\mathbf{r}(\tau) - \overline{\mathbf{r}}(\tau) = \mathbf{d}(\tau) \approx \sum_{j=1}^{J} \mathbf{e}_{2j} E_{2j}(\tau) + \sum_{j=1}^{J} \mathbf{b}_{2j+1} B_{2j+1}(\tau)$$

KPOD - GOCE results

30

Estimated kinematical Pos. (J=4) - PSO (Fourier index 30 and 40)

- GNSS-GOCE satellites configuration and geometrical strength play an important role in POD.
- Estimated Geometrical Precise Orbit can be used to estimate kinematical POD of GOCE.
- Kinematical POD can be used to recover the Earth's gravity field model based on the hl-SST methods, (GOCE SST model).
- No gravity field and no force models have been used in the Geometrical and Kinematical modes (advantage).
- Empirical PCV results should improve POD of GOCE!

Thank you for your attention!