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Introduction

• Ionospheric scintillations impact GPS ionosphere-free linear observations from SWARM satel-
lites and subsequently the derived orbits and gravity field solution.
• Different patterns of noise exist when flying above the equator or pole

Fig. 1: Time differences of geometry-free linie combination (upper) and Observed-minus-Computed (OMC) of ionosphere-free linear
combination for Swarm A on DoY 135, 2015.

• Large high frequency noise at polar areas and some equatorial areas (red box)
• Systematic errors at equatorial areas (black box)

Strategies to mitigate the impact of scintillation in observation time series

1) Simple elimination of noisy parts impacts:
• Strength of the positioning reduced
• Ambiguity estimation more difficult
• Low degrees of gravity field solutions affected

(Jäggi, 2016)

2) Boxcar averaging:
• Smoothing of the observations
• Possible elimination of more than the

ionospheric noise

3) Here: Physically based mitigation of the impact of scintillation based on spectral content
(Rino 1979):
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with ω angular frequency of carrier phase fluctuations, α is related to the length of the ionospheric
disturbances, P is the smoothness parameter and factor F is the spectral strength of the carrier
phase noise at 1Hz when α = 0.

Summary of applied methodology

Fig. 2: Summary of the methodology used to detect, filter and reconstruct the contaminated time series of observations.

Filtering high-frequency noise with Mátern covariance matrix

• An adequate covariance matrix W (Kermarrec and Schön 2017) is built based on the knowledge
of the ionospheric spectral density: W(τ ) = (ατ )νKv(ατ ).
Smoothness ν depends on the ionospheric strength (weak: 0.1-0.5, moderate: 0.5-1.2, strong:
1.2-1.7).
• The noise corresponding to ionospheric scintillations is extracted from the identified time series
y’ = γŷ,
with ŷ = W−1

2y, γ =
σφ,ref
σŷ

with σφ,ref = 3mm.

(a) Original (blue line) and filtered (magenta line) carrier
phase OMC of PRN20 for 2 different starting times, with
α = 1.5 and ν = 1.

(b) Influence of the parameter sets α and ν on the slopes of the PSD at
frequencies between 0.1 Hz (12,5 s) and 0.5 Hz (2 s), for PRN 20.

Fig. 3: Filtering with Mátern covariance matrix

Improved kinematic orbit determination

• Daily RMSE in radial direction can be reduced by around 20%.

Fig. 4: Position residuals in the along, cross and radial components of the Swarm A orbit solution computed with (blue) and without
(red) filtering, w.r.t. reduced-dynamic orbits from ESA, on DoY 333, 2015.

• Global distribution of the residuals in radial direction with/without filtering shows that the
noise in polar and equatorial regions is strongly eliminated.

(a) Without filter (b) With filter

Fig. 5: Radial residuals with/without filter in November 2015, showing the improvement at polar and equatorial areas.

Impact of systematic errors at equatorial areas

• Phase OMC is the ionophere-free linear combination of phase observations minus the geometry
distance based on reduced-dynamic orbits, receiver clock errors and ambiguities.
• Large systematic errors (red) are caused by rapid change of electron density for Swarm A
• The corrected OMC (black) is polynomial curve fitting of undisturbed OMC (blue) plus white
noise at the same level.
• The systematic errors are much smaller for Swarm C (violet) after the update of phase tracking
loop (time series is 5 cm shifted).

Fig. 6: Impact of systematic errors of PRN 11 for Swarm A and C, on DoY 135, 2015 from 30326 s to 32337 s.

• Severe systematic errors along geomagnetic equator are significantly eliminated after correcting
the disturbed observations.

Fig. 7: Differences between the gravity field derived from the Swarm kinematic orbits and from GRACE KBR, Swarm A, Mai, 2015.

Conclusions

• Mátern covariance matrices with α = 1.5 and ν = 1 are used to mitigate the impact of noise
increase due to ionospheric scintillations and these homogenize the observation noise.
• The spectral decomposition -slope of the psd at high frequency- of the filtered OMC is similar
to the one that would be obtained without noisy observations.
• Systematic errors at equatorial areas can be eliminated using the polynomial curve fitting of
undisturbed OMC, in order to reduce the errors in the gravity field.
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Jäggi, A. et al. (2016). Swarm kinematic orbits and gravity fields from 18 months of GPS data. In: Adv Space Res. 57(1),
pp.218-233.
Kermarrec, G., Ren, L., Schön, S. (2018). On filtering ionospheric effects in GPS observations using the Mátern covariance
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