

Estimation of phase center variation and its effect on precise orbit determination

Akbar Shabanloui Institute of Geodesy and Geoinformation University of Bonn, Germany

> IUGG 2011 G-07 High Precision GNSS 30th Juni 2011 Melbourne, Australlia

2

 $\circ\,$ Definition of phase center offset (PCO) and its variation (PCV)

- Modelling of Phase Center Varaition (PCV)
- Geometrical Precise Orbit Determination (GPOD)
- GPOD and PCV Results
 - ✓ GRACE
 - ✓ GOCE
 - Conclusion

GNSS Antenna

CMP (center of instrument's mounting plane): Ο frequency independent, instrument offset, defined in the satellite (LEO) reference frame **PCO** (Phase center offset): **frequency** 0 dependent, defined w.r.t CMP in the antenna reference frame (ARF) **PCV** (Phase center variations): **frequency** 0 dependent, defined w.r.t PCO in the antenna reference frame (ARF), varying with the direction (azimuth and zenith) of incoming GNSS signal

universität**bon**

GOCE Antenna Credit: ESA

g Phase center offset & phase center variation universitätbonn

Carrier phase observation equation: $\Phi_{r,i}^{s}(t) = \rho_{r}^{s}(t) + c\delta t_{r}(t) - I_{r}^{s}(t) + T_{r}^{s}(t) + \lambda_{i}A_{r,i}^{s_{1}} + O_{r,i}^{s}(t) + \varepsilon_{r,i}^{s}(t)$

Phase center offset and variation can be

defined as: $O_{r,i}^{s}(t) = \mathbf{r}_{0} \cdot \mathbf{e}_{r}^{s} + \Delta \Psi(\alpha, z)$

GOCE Antenna Credit: ESA

According to Rothacher et al. (1995), phase center corrections (PCO and PCV) have some inherent degrees of freedom: $\mathbf{r}'_{0} \implies \mathbf{r}_{0} + \Delta \mathbf{r}_{0}$ $\Delta \Psi'(\alpha, z) \Longrightarrow \Delta \Psi(\alpha, z) - \Delta \mathbf{r}_{0} \cdot \mathbf{e}_{r}^{s} + \Delta \Delta \Psi$

6

According to Rothacher et al. (1995) phase center corrections

have some inherent degrees of freedom:

$$\mathbf{r}_0' \qquad \Longrightarrow \mathbf{r}_0 + \Delta \mathbf{r}_0$$

$$\Delta \Psi'(\alpha, z) \Longrightarrow \Delta \Psi(\alpha, z) - \Delta \mathbf{r}_0 \cdot \mathbf{e}_r^s + \Delta \Delta \Psi$$

 $\Delta \mathbf{r}_0, \Delta \Psi_0$: arbitrary location of mean phase center and arbitrary phase offset for all directions

To avoid singularity we assume:

 \checkmark Summation over all azimuth and zenith angles to zero (zero mean)

- \checkmark Bore-sight to zero
- ✓ Other constrains...

Anechoic Test Chamber (Chamber measurements, relative PCO and PCV)

 Absoulte phase center offset and variation based on robot calibration

• Empirical estimation of PCV based on GNSS carrier phase residuals (in-flight calibration)

Modelling of PCV

PCV can be modelled based on spherical harmonic coefficients as:

$$\Delta \Psi(\alpha, z) = \sum_{n=0}^{n_{\max}} \sum_{m=0}^{n} c_{nm} C_{nm}(\alpha, z) + s_{nm} S_{nm}(\alpha, z)$$

with

$$C_{nm}(\alpha, z) = \overline{P}_{nm}(\cos z) \cos m\alpha$$
$$S_{nm}(\alpha, z) = \overline{P}_{nm}(\cos z) \sin m\alpha$$

With unknowns as $(n_{\text{max}} = 8 - 10)$: C_{nm} , S_{nm}

✓ To prevent the normal equation systems from becoming singular, a priori constraint has to be added on each parameter (because of arbitrary phase shift!)

✓ With least squares method, the unknown parameters can be estaimated based on post-fit GNSS carrier phase residuals.

9

 ✓ After empirically estimation of spherical harmonics coefficients, the antenna PCO and PCV map can be generated as tabular correctios (e.g. ANTEX, Antenna Exchange Format).

✓ The generated antenna PCO and PCV map can be used to future GNSS estimation procedure as a systematical error.

universität

10

Advantages

- ✓ Smaller effort
- \checkmark A large number of GNSS antennas in a short time period
- \checkmark A small accurate network with fixed positions can be used to calibrate and determine antenna PCO and PCV map

Disadvantages

 \checkmark Some iterations are needed to absorbe all residuals and estimate final antenna map

 \checkmark It denepends on the data availabity and data volume!

Precise Orbit Determination (POD)

universität**bonn**

11

Credit: European Space Agency (ESA)

Zero Differenced Geometrical POD

Processing concept

Precise

Consideration of all effects on SST observations, using precise GNSS ephemerides and clocks

$$\Phi_{r,i}^{s}(t) = \rho_{r}^{s}(t) + c\delta t_{r}(t) - I_{r}^{s}(t) + T_{r}^{s}(t) + c\delta t_{r}(t) - I_{r}^{s}(t) + C\delta t_{r}(t) + C\delta t_{r$$

- $+\lambda_i A_{r,i}^{s_1} + O_{r,i}^s(t) + \varepsilon_{r,i}^s(t)$
- No tropospheric effect at LEO altitude (~250-1000 km)
- First order ionospheric effect eliminated with Ion-free linear combination
- Ambiguity term cannot be solved as integer (real)!
- GPS precise orbits (at 15 minutes) and clocks at 30 sec

universität**bonr**

GRACE (Gravity Recovery And Climate Explorer) versitätbonn

Start: 17 March 2002 Altitude: 500 km Inclination: 89.5 deg Excentricity: 0.002 Low-low SST: 220 km

- More than 85 months of GNSS GRACE data have been used to estimated geometrical precise orbit of twin satellites
- Based on spherical harmonics, the phase center variations for twin satellites have been estimated as:

GOCE (Gravity & Ocean Circulation Explorer) universität bonn

- Start: 17 Mar. 2009
- Altitude: 254 km
- Sun Synchronize
- Inclination: 96.5 deg

universität**bonn**

21

Comparison of GPS derived geometrical POD and PSO orbit

Modelling of PCV

22

- More than 72 days of GNSS GOCE data have been used to estimated geometrical precise orbit of GOCE satellite
- Based on GNSS residuals, the phase center variation of GOCE has been estimated as:

=>Estimated PCV should be used as a systematical effect on GPOD estimation procedure.

Comparison of GPS derived geometrical POD and PSO orbit

universität**bonn**

Conclusion

- ✓ GNSS-LEO satellites configuration and geometrical strength play an important role in Geometrical POD, subsequently in PCV
- ✓ PCV based on GNSS carrier phase observation residuals successfully implemented and affects Geometrical POD
- ✓ To estimate reliable phase center variation, long period of GNSS data should be used as pseudo-observations.
- No gravity field and no force models have been used in the Geometrical POD. Therefore, it can be directly used to recover of the Earth's gravity field.

Thank you for your attention

Comparison of

GPS derived kinematic orbits - K-Band ranges

Comparison of

GPS derived kinematic orbits - K-Band ranges

Comparison of GPS derived kinematic orbits - K-Band ranges 6 5 Δ З 2 [cm] 0 -2 -3 _4 -5 -6 10 20 22 24 2 12 14 16 18 n 6 2007-03-01 [hour]

Improvements in the **GPS** processing

- Phase wind-up
- Empirical Phase Center Variations (PCV)

GOCE GNSS Antenna offsets

Precise Orbit Determination (POD)

32

Credit: European Space Agency (ESA)