

REeal data AnaLysis GOCE Gravity field determination from GOCE

I. Krasbutter¹, O. Baur^{3,4}, J.M. Brockmann¹, J. Cai³, A. Eicker², B. Kargoll¹, J. Kusche², T. Mayer-Gürr^{2,4}, J. Schall², W.-D. Schuh¹, A. Shabanloui², N. Sneeuw³

¹ Institute of Geodesy and Geoinformation · Theoretical Geodesy · University of Bonn
² Institute of Geodesy and Geoinformation · Astronomical Physical Mathematical Geodesy · University of Bonn
³ Institute of Geodesy · University of Stuttgart
⁴ Graz University of Technology (now)

BMBF Geotechnologien Statusseminar: "Erfassung des Systems Erde aus dem Weltraum III"

Potsdam, 24/05/2012

Aim:

Determination of a gravity field with high accuracy and resolution.

Sensors for gravity field determination:

GPS tracking (SST)

Gradiometry (SGG)

Motivation

GIS

Input: GOCE observations **Putput:** Gravity field analysis **Output:** Gravity coefficients + accuracies

GOCE observations

GOCE observations:

GIS

Satellite-gravity-gradiometry (SGG) observations:

- ► calibrated gravity gradients $V_{ij}, i, j \in {x,y,z}$
- source: ESA HPF/EGG-C

Satellite-to-Satellite tracking (SST) observations:

- kinematic precise orbits (GPS Code/Phase observations)
- source: ESA HPF/EGG-C or REAL GOCE (IGG-APMG)

Available SGG Data:

Problems:

- number of observations: 30 Mio. per component
 - \implies required memory:
 - e.g. $oldsymbol{A}\sim 15$ Terabyte
 - \implies time-consuming estimation:
 - $\sim 1000 \,\, {\rm Tage}$

Solutions:

GIS

universitätbo

- tailored algorithms
- iterative, massive parallel software
- computation on supercomputers
- downsampling (e.g. IGG-APMG: 5 sec.)

- increasing number of data:
 ~ 2, 6, 12 months
- sampling rate: 1 sec.

$\begin{array}{l} \textbf{Observation equation} \\ \boldsymbol{\ell}_{[30 \text{ Mio}.\times1]} + \boldsymbol{v} = \\ \boldsymbol{A}_{[30 \text{ Mio}.\times63.000]} \boldsymbol{x} \end{array}$

5

GOCE observations

Spectral characteristics of SGG noise:

- observations per component are highly correlated
- two gradient components with very high noise levels (V_{xy}, V_{yz})

Problems:

GIS

- covariance matrix is fully occupied
- memory requirements per component: 7 PetaByte

Stochastic model $\mathbf{\Sigma}\{\mathcal{L}\} = \mathbf{\Sigma}_{[30 \text{ Mio.} imes 30 \text{ Mio.}]}$

Solutions:

Decorrelation with

- digital, discrete filters
- empirical covariance matrix for data segments, independence of segments

tigg universität<mark>br</mark>

GIS

Local characteristics of SGG data: Outliers

Problems:

- noise has a high amplitude and a trend
 - \implies outliers not obviously
 - ⇒ automatic search not possible
- robust least squares solution require a datenscreening

Local characteristics of SGG data: Outliers

Solution:

GIS

- ▶ filtering with a high-pass filter (e.g. differentiation filter):
 - elimination of the trend
 - outliers are visible \implies automatic search possible
 - temporal chances are visible

tigg universitätbo

GIS

Local characteristics of SGG data: Outliers

Solution:

- ▶ filtering with a high-pass filter (e.g. differentiation filter):
 - elimination of the trend
 - $\blacktriangleright \text{ outliers are visible} \Longrightarrow \text{automatic search possible}$
 - temporal chances are visible

Input: GOCE observations **Putput:** Gravity field analysis **Output:** Gravity coefficients + accuracies

Gravity field analysis within REAL GOCE

SGG - deterministic model:

REAL GOCE

- 1. Invariants Approach (GIS):
 - rotational invariants of the gradient tensor
 - **e.g.** $I_2 = \frac{1}{2}(V_{xx}^2 + V_{yy}^2 + V_{zz}^2) V_{xy}^2 V_{xz}^2 V_{yz}^2$
 - invariants as equidistant, gap-less time-series
 - global representation
- 2. Time-Wise Approach (IGG-TG):
 - ► V_{xx}, V_{yy}, V_{zz} as 2nd derivative of potential in GRF
 - gradients as equidistant, gap-less time-series
 - global representation

GIS

universität

- 3. Short-Arc Approach (IGG-APMG):
 - ► V_{xx}, V_{yy}, V_{zz} as 2nd derivative of potential in GRF
 - \blacktriangleright analysis of short arcs (\sim 15 min.) with 5 sec. sampling
 - global and local representation

Gravity field analysis within REAL GOCE

SGG - stochastic model:

REAL GOCE

^{‡‡}igg universität<mark>br</mark>

GIS

- 1. Invariants Approach (GIS):
 - decorrelation by digital MA filter cascades
 - filters are adjusted to invariants
- 2. Time-Wise Approach (IGG-TG):
 - decorrelation by digital ARMA filter cascades
 - filters are adjusted to gradients
- 3. Short-Arc Approach (IGG-APMG):
 - full variance covariance information per short arc
 - arcs are independent
 - arc-wise reweighting of observations

Cooperations within the gravity field processing groups:

- ► IGG-TG ⇒ GIS: filter adjustment by invariants
- ► IGG-TG ⇐⇒ IGG-APMG: stochastic model analysis, filter vs. covariance function per arcs
- ▶ ALL ⇒ ALL: outlier information, quality information on gradients
- ► ALL ⇒ ALL: validation of results

Cooperations with other groups within REAL GOCE:

- ► IGG-APMG ⇒ WP 150 (KIT): use of topographic-isostatic reduction of GOCE gravity gradients
- ► IGG-APMG/IGG-TG ⇒ WP 310 (BKG) : validation of gravity fields
- ► IGG-TG ⇒ WP 110 (IAPG/DGFI): validation of reprocessed SGG data
- ► All ⇒ WP 220 (IFM) : application of gravity models to ocean circulation studies

Input: GOCE observations **Putput:** Gravity field analysis **Output:** Gravity coefficients + accuracies

solid: degree error variance from difference to EGM08, dashed: degree error variance from formal errors

solid: degree error variance from difference to EGM08, dashed: degree error variance from formal errors

GOCE-only models compared to EGM08: 2, 6, 12 months data

solid: degree error variance from difference to EGM08, dashed: degree error variance from formal errors

14

Accuracies of gravity coefficients: 2 months: 6

6 months:

12 months:

tigg universitätbor

GIS

igg universitätbonn

GIS

Anomalies compared to EGM08 (d/o 200, m/s^2) on local scale (12 months data):

GOCE-only models compared to EGM08:

solid: degree error variance from difference to EGM08, dashed: degree error variance from formal errors

GOCE-only models compared to EGM08:

solid: degree error variance from difference to EGM08, dashed: degree error variance from formal errors

 t_{igg}

univers

GIS

2 months anomalies compared to EGM08 (d/o 200, m/s^2):

tt igg universit

GIS

2 months refined anomalies compared to EGM08 (d/o 200, m/s^2)

Summary:

- consistent gravity field solutions from all three approaches
- improvements with 12 months data
- ► EGM08 improvement d/o 60-180
- improvements with regional refinement

Outlook:

- data up to at least end of 2012
- ESA reprocesses L1b gravity gradients
- first promising results

21

GOCE-only models compared to GOC002s:

2 months, 2 months reprocessed

solid: degree error variance from difference to GOCO02s, dashed: degree error variance from formal errors