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As a consequence of its statistical nature, the measurement of the laser-induced damage threshold
holds always risks to over- or underestimate the real threshold value. As one of the established
measurement procedures, the results of S-on-1 (and 1-on-1) tests outlined in the corresponding ISO
standard 21 254 depend on the amount of data points and their distribution over the fluence scale. With
the limited space on a test sample as well as the requirements on test site separation and beam sizes,
the amount of data from one test is restricted. This paper reports on a way to treat damage test data in
order to reduce the statistical error and therefore measurement uncertainty. Three simple assumptions
allow for the assignment of one data point to multiple data bins and therefore virtually increase the
available data base. C 2015 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4932617]

I. INTRODUCTION

The measurement of the laser-induced damage threshold
(LIDT) has a long history beginning shortly after the advent
of the laser at the beginning of the 1960s. Over the years, a
number of important lessons needed to be learned to derive
a meaningful and reproducible damage threshold values.
Among many other parameters, laser beam stability, beam
size, and sample preparation require careful attention and a
certain level of experience.1

Most laser applications apply rather compact optical
components. Also, a meaningful test of the power handling
capabilities needs to be performed on an optic of identical
quality. This includes substrate material, subsurface, and
surface quality and finishes as well as coating design and
deposition. As the substrate quality is highly dependent on the
capability of cutting, grinding, and polishing of certain sizes,
it is usually desirable to test samples of limited surface area.
However, a statistical test calls for a maximum amount of test
data to decrease uncertainty, which is contrary to the trend of
compact high power lasers. In this paper, we report on a data
treatment method to decrease error budgets of a LIDT test data
evaluation without adding more data to the given set.

II. DATA REDUCTION

Concerning the general test procedure, the reader may
consult the ISO standard 21 254 as the present paper builds
on these procedures and data recording methods for the 1-
on-1 and S-on-1 tests. All data presented (simulated and
experimental) are produced with a continuous distribution
on the fluence scale. The binning is always conducted after
the sample has been irradiated with the whole data set and
not already during the testing phase by retesting at certain
fluence levels with pre-selected intervals. In the experiment,
the motivation for this protocol is to be flexible in distributing
the remaining test sites over the fluence scale, particularly for
samples of unknown threshold level.

The following three basic assumptions comprise the
foundation for the presented data reduction method.

1. An undamaged test site would have also survived when
irradiated at lower fluence.

2. A damaged test site would have also been damaged when
irradiated at higher fluence.

3. In one of these virtual additional tests, the given defects
were identically distributed within the Gaussian beam
profile as in the actual tested site. (The number of
assumptions reduces to the first two when testing with a
top hat beam profile or when the test beam size is sufficient
to cover the given defect ensemble within the test area.)

With these three assumptions, it is a direct consequence that
the test data of a certain fluence interval or data bin can also be
assigned to further bins in order to significantly increase the
total amount of data relevant for the subsequent data reduction
procedure. This approach is graphically shown in Fig. 1. In this
view graph, a data set is shown which has been taken in a test
with continuous laser fluence values. After collection, the data
were arranged into equally sized fluence bins, whose width is
chosen with respect to the intervals on the fluence scale and not
concerning the count of data points per bin. From these bins,
the damage probability pi is calculated as the ratio between
the amount of damaged sites nd and total number of test sites
in the respective bin (damaged and non-damaged nnd),

pi =
nd

nd + nnd
. (1)

In this example, only the damage probabilities in the transition
range of the full data set are marked with the vertical dashed
lines. All other bins will give probabilities equal to 1 or 0, as
only one of the two possible states is included in the respective
bin. For the sake of simplicity, these bins are not shown in
Fig. 1.

With this procedure, the average number of data points per
bin (sample diameter d= 25 mm) is increased from about 10 to
roughly 40. Assuming a statistical error of 1/N, the reciprocal
amount of data points per bin, the statistical probability error
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FIG. 1. Test data with a continuous distribution on the fluence scale assigned
not only to its original data bin. Data of damaged test sites are also assigned
to bin of higher fluence and data of survived test sites are also assigned to
bins of lower fluence.

is reduced from ∼10% to ∼2.5%.2 And just as suggested by
Hildenbrand et al., the error bars are limited to probability
values between 0 and 1, as it is not a physical assumption
to allow values of pi > 1 and pi < 0.3 The result of this data
reduction is shown as a before and after comparison in Fig. 2.
The fitting routine to derive the damage threshold value is
addressed in Secs. III and IV.

In total, this procedure is based on the experimental
settings used in a standard damage threshold test according to
the ISO standard. In a test on a sample of 25 mm in diameter
irradiated under an angle of 0◦, this will result in roughly 160
test sites or data points for the evaluation. This number is
chosen with respect to a certain distance between test sites to
avoid cross talk and a certain distance from the sample edge
to exclude edge effects in the data. Evaluating data sets of this
size will give the stated improvements in error budgets.

Also, two additional advantages of this method are the
monotonous increase of the damage probability and the
possibility of more bins without increasing the statistical
error substantially. Since all data points of a certain fluence
interval and damage status can be assigned to neighboring
interval as well, the derived damage probability will result
in a monotonous characteristic of the probability distribution.
Taken most experimental sets of data, this is not the case
when evaluating each interval as a completely independent

FIG. 2. Comparative representation of the established and the cumulative
evaluation of the damage probability based on an ISO based test protocol.
In this case, fitting of the damage probability points is much easier, if the
probabilities were calculated with the new method.

bin. Particularly of interest for a non-linear regression of the
probability data, a rather dense data distribution is preferable
in order to find the correct model and fit parameters to describe
the given optical component. However, increasing the number
of fluence intervals will directly increase the corresponding
error because the amount of data per bin will decrease. This
method allows for a higher flexibility when evaluating the
given data without a significantly increased error.

One characteristic of this method is that the damage
probability of the first fluence bin with a non-zero damage
probability will always get a lower damage probability than
with the standard method, because it can only gain additional
non-damaged sites, but no damaged ones. The opposite case
applies for the last bin with damage probability below 1 which
can only gain damaged sites. Damaged test spots at relatively
low fluences and non-damaged test spots at relatively high flu-
ences have a higher impact on the results and therefore a higher
weighting. This might lead to a steeper gradient of the damage
probability and thus to slightly higher damage threshold,
especially if the sample exhibits a slow increase in damage
probability at lower fluences and a fast increase at higher
fluences. Within this issue, it is recommended to apply this
redistributed data treatment only to complete data sets, with
recorded data below the damage threshold, within the transi-
tion range, and also beyond the 100% damage probability.

III. CASE STUDY

To illustrate the benefits of the suggested approach, four
virtual, randomly generated data9 sets have been analyzed
concerning the impact of this method on the fitting errors
and correlation to the data. Although the damage threshold in
these four respective data sets is very similar, the distribution
of the data is different for each case, just as it is the case in real
experiments. Again, the data are distributed randomly over the
fluence scale and not assembled in distinct intervals. The data
are assigned to the fluence bins as last step before the damage
probability is calculated for each bin. These sets of data
have been evaluated with the standard procedure and with the
presented cumulative data reduction. As a second step, each of
these two probability distributions is fitted with a non-linear
regression. Out of a number of possible models4–7 (just to name
a few), the work by Porteus and Seitel4 has been chosen to be
the basis for fitting both versions of the damage probability
distribution. The result is illustrated in Fig. 3 for each data
set. In these view graphs, for the sake of clarity, only the fit
function of the cumulative reduced probability distribution is
shown, and the complete test results are listed in Table I.

Although the damage threshold in these four respective
data sets is very similar, the distribution of the data is different
for each case, just as it is the case in real experiments. For each
of these four examples, it is obvious that the cumulative data
reduction introduces a monotonous distribution of damage
probability. Usually, at least constant but also reversed trends
are found in each evaluation of laser damage test data.
Now, monotonous trends with significantly reduced error bars
(based on the amount of data points in each bin) lead to a signif-
icantly increased correlation between fit function and proba-
bility distribution. This higher correlation is directly linked to
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FIG. 3. Damage threshold analysis with the standard and cumulative data reduction of four randomly simulated data sets. For the sake of clarity, only the fit
function of the cumulative reduced probability distribution is shown.

a higher certainty of the test results. To assess these results, in
Table I, the fitting errors and the standard deviation between
probability data and fit function are listed. The fitting error of
the LIDT is given by the standard deviation of the fit coeffi-
cients in the Levenberg-Marquardt algorithm.8,10 In this case,
it is usually reduced by a factor of 2 or 3 and the standard devi-
ation between data ensemble and fit function is approximately
five times lower when using the new cumulative method.

Since the laser-induced damage threshold is the physical
characteristic of interest in such a test, the impact of this
progress in error development on the LIDT is the final measure
for improvement. The error of the LIDT value was reduced by
more than 50%, and statistically, the fitting error of the LIDT
of well below 3% is achieved.

IV. REPRESENTATION OF THE TESTED
DAMAGE PROBABILITY

The main result of the previous section is that a lower
standard deviation can be achieved when using the new method
for the calculation of damage probabilities and fitting them
with the powerlaw function. This is usually desirable, but

it does not necessarily mean that the resulting probability
distribution is a better representation of reality than in the
case of the standard method. It remains the question which
method leads to the better representation.

To test this, another ten sets of data were generated and the
standard deviation for the resulting probability distributions in
comparison to the powerlaw function was calculated, which
is shown in Fig. 4. The probability function used for the
generation of the test spots (dashed green line) represents
the “reality” and by randomly generating damaged or non-
damaged test sites from it, a measurement of this “reality” was
simulated. To achieve a broad spectrum of cases, the defect
density, the threshold, the number of generated sites, and the
factor p of the powerlaw function were varied. The standard
deviation was calculated for both methods with five and
ten fluence intervals, respectively, by comparing the damage
probabilities calculated from the generated virtual test spots
and the model curve used for generation of data. The results
can be found in Table II.

The results in Table II clearly show that the new cumu-
lative method of calculation leads to a better representation
of reality than the established method. There was not a single

TABLE I. Evaluation errors and standard deviations of the four presented data sets with the standard and
cumulative reduction technique.

Cumulative LIDT
error (%)

Standard LIDT
error (%)

Cumulative standard
deviation

Standard
deviation

Data set 1 (Fig. 3) 1.3 3.9 0.0138 0.0507
Data set 2 (Fig. 3) 2.6 5.0 0.0108 0.0620
Data set 3 (Fig. 3) 1.4 4.7 0.0137 0.0636
Data set 4 (Fig. 3) 3.6 10.0 0.0128 0.0746
Averaged over all data sets 2.2 5.9 0.0128 0.0627
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FIG. 4. Comparison of damage probabilities deduced from randomly generated damage test data based on a given distribution function—left: standard data
reduction—right: new cumulative data reduction. The depicted data correspond to data set 5 in Table II. The visible green curve shows the fixed model curve
that was used to generate the virtual test spots visible at the top and the bottom.

case where the standard method delivered a better determined
probability distribution. The calculated standard deviation was
in average approximately five times lower when using the
new method. Although our tests were limited to only ten data
sets, we can still conclude that the cumulative technique is
advantageous when trying to find the respective probability
distribution.

V. DIVERSE DEFECT ENSEMBLES

As already discussed in Sec. IV, the described cumulative
data reduction technique does not broaden the damaged
probability distribution although the data are used in multiple
fluence bins. This is the case because only survived or damaged
test sites are counted in the lower or higher bins, respectively.
Never are test sites of different status assigned to a bin in which
they have not been tested.

A second part of laser damage phenomena, where this
is a helpful fact, is the evaluation for more than one defect
type per defect ensemble. As stated a few times before,5,6 if a
defect ensemble consists of more than one class of defects, the
damage probability function will show a discontinuity and the
different parts of the distribution have to be fitted with different
parameters revealing diverse defect densities. Given that a
sufficient number of fluence bins has been chosen to resolve
these discontinuities, the cumulative data reduction keeps
them in position (on the fluence scale). Usually, the presence of
an additional defect class will be revealed more clearly because
of the monotonous nature of the damage probability when
derived with this method. One example for this is presented

in Fig. 5. Two different numbers of fluence bins have been
selected to evaluate a given data set (Fig. 5(a): 20 bins and
Fig. 5(b): 35 bins). The set consists of 500 test positions,
generated randomly in the same procedure as discussed in
Sec. III. The data reduction to derive the damage probability
was conducted using the standard procedure as well as the
cumulative approach. When selecting an insufficient number
of bins (Fig. 5(a)), the discontinuity is not clearly resolved and
can only be estimated. When applying the standard evaluation,
the distribution of the damage probability for each bin is
spread more widely, and the two separate parts cannot be
resolved. The cumulative approach provides the possibility to
increase the number of bins within the evaluation without
significantly increasing the statistical error of the damage
probability. This is shown in Fig. 5(b). Although this example
already has access to a data set of 500 test sites, the amount
of 35 bins introduces error bars of up to ±10 percent in the
standard evaluation. This directly results again in an indistinct
probability characteristic which does not clearly show the
discontinuity of a defect ensemble with two classes. The
cumulative algorithm, however, provides data with small error
bars and reveals a clear transition from one defect class to the
other. Both parts of the distribution can be fitted separately,
and defect densities are accessible for further optimization of
the thin film or optical material.

VI. SHIFTED DATA BINS

With continuously distributed data on the fluence scale,
the division in a certain number of bins is fully determined by

TABLE II. Standard deviations for both methods when comparing the function used for generating data and the
resulting probability distributions.

Data set
Standard method

(5 intervals)
Cumulative method

(5 intervals)
Standard method

(10 intervals)
Cumulative method

(10 intervals)

1 0.3176 0.1722 0.4819 0.2362
2 0.3658 0.0389 0.5169 0.3448
3 0.4932 0.0258 1.0868 0.0658
4 0.5283 0.0591 1.0852 0.0597
5 0.2212 0.0376 0.4142 0.0814
6 0.2913 0.0757 0.5880 0.0858
7 0.3215 0.0269 0.9117 0.0874
8 0.3637 0.0599 0.6904 0.0737
9 0.3387 0.1361 0.6445 0.1617
10 0.1223 0.0275 0.5101 0.1159
Average 0.3364 0.0660 0.6930 0.1313
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FIG. 5. Damage probability curve describing a defect ensemble of two defect classes—evaluated with 20 and 35 fluence bins.

the evaluation or the specific algorithm. This combined with
the error bar extended over the full width of the bin adds high
uncertainty. By continuously shifting the boundaries of these
bins over the data set, it is made visible how this affects a
possible shift of damage probability on the fluence scale when
randomly dividing the data set into bins. This procedure is
illustrated for a damage probability curve in Fig. 6. In the table
on the left, all data in the transition range are listed—meaning
the fluence range in which damaged and survived sites have
been observed simultaneously. This particular full data set has
been divided into 7 bins of energy density, and of course, the
corresponding boundaries can be chosen with a certain degree
of freedom. In the mentioned shift procedure, the bins have
been assigned a width which includes 10 recorded fluence
values and these bins have been shifted through the full data
set resulting in 6 bin sets of 7 bins (5 bins plus one additional
bin with a damage probability of 0 and one with a damage
probability of 1) each. The damage probability of each bin
was then evaluated according to the cumulative data reduction.
It is obvious that the probability transition from 0 to 1 of
this data set is not broadened by taking and treating the test
data with this approach. Of course, this is only shown in this
example for this publication. Since the whole algorithm is a
numerical one for real experimental data, it is not possible
to analytically show the impact of the procedure as generally
valid.

However, working with this routine and comparing it for
numerous data sets showed repeatedly the same result. To also
express this in numbers, in Table III, the fitted LIDT values for
each of the shifted bin sets are listed. The before mentioned
powerlaw model has been used to fit these sets using a constant
p factor (see Ref. 4).

At the bottom of the table, the average values of the fitted
LIDT and the fit errors are stated. Additionally, the standard
deviation of the six LIDT values of the respective bin groups is
calculated, and it is significantly smaller than the fitting error
average. Usually, it is also smaller than the fit errors of each
single data set. This example illustrates the experience with
this approach on laser damage data treatment and its error
development.

Since this paper reports on the data reduction technique,
the error budget in the discussed examples for LIDT tests will
only consider the statistical uncertainty. For the experiment,
the operator always has to include the fluence fluctuations
for the specifically applied laser as well. Depending on the
stability of the laser, this can add a substantial part of the
overall error. Total absolute errors of LIDT measurements are
usually in the range of 10%-20%.

One possible approach to derive a damage threshold
without applying a fit function is to utilize this bin shifting
procedure on the set of test data including the cumulative data
reduction over the respective bins. The bin assigned to the
highest fluence showing a damage probability of 0 can be
considered as significant for the damage threshold, and the
error to be applied to this result would be the width of the bin
on the fluence scale. However, this approach will only give
the value for the 0% damage probability and no insights into
defect distributions or higher percentages. Also, this procedure
will not account for the fact that many samples never show
a damage probability of 0, just very close to 0. However, it
would take out the uncertainties introduced by the choice of
the model and of the start parameters for the fitting routine.
Only the beam parameters and the bin width on the fluence
scale would determine the total error budget.

FIG. 6. Left picture: schematic representation of the bin shifting procedure. Right picture: continually shifted bins of 1-on-1 damage data on the fluence scale.
The bins were shifted by 2 test spots (crosses). With this procedure, identical damage probability distributions are derived to show that continuously distributed
data on the fluence scale does not increase the fluence error.
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TABLE III. Fitted LIDT including error and standard deviation of continu-
ally shifted data bins as shown in Fig. 6.

Fitted LIDT (a.u.) Fit error (%)

Bin group 1 25.2 1.52
Bin group 2 25.7 3.92
Bin group 3 24.6 4.12
Bin group 4 24.9 3.04
Bin group 5 25.3 2.10
Bin group 6 25.4 1.94
Average 25.2 2.77
Standard deviation 1.54%

VII. CONCLUSION

This publication reports on a data reduction technique
in laser-induced damage testing which offers a reduced error
budget and therefore lower uncertainty in the evaluation of
laser damage data. It has been shown that a data set can be
virtually increased by assigning single data points to more than
one data bin based on 3 simple physical assumptions. Based
on these assumptions, the available amount of data is roughly
quadrupled and also a monotonous trend of the damage
probability is introduced to the curve. Fitting correlations
are enhanced and damage threshold determination shows now
lower uncertainty. Additionally, separate defect classes of one
defect ensemble are now accessible also with a data set of
reasonable size. In summary, the statistical error of the LIDT
measurement is clearly reduced by applying the cumulative
data reduction technique. The reduction of the error can be
averaged to a factor of 2–3. Of course, the error budget
depending on the stability of the laser source and beam size
and shape is still not affected by this algorithm.
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