

Präzise Satellitenbahnmodellierung am **Beispiel der neuen SWARM-Mission**

Igor Koch, Peter Alpers, Mahsa Bashi, Jakob Flury, Damian Kröhnert, Majid Naeimi, Manuel Schilling, Akbar Shabanloui Institut für Erdmessung, Leibniz Universität Hannover

1. Einleitung

Die Kenntnis der genauen Satellitenposition ist essentiell für zahlreiche geodätische Aufgaben.

Satellitenbahnmodellierung

 Aus Anfangszustand (Position und Geschwindigkeit) sollen Zustandsvektoren für spätere Zeitpunkte berechnet werden • Methode: schrittweise Modellierung durch numerische Integration • Voraussetzung: Modellierung der Satellitenbeschleunigung

SWARM

5. Übersicht der modellierten Beschleunigungen	
Effekt	Modell/Daten
Erdschwerefeld	GGM03S (max. Grad 180)
Beschleunigung durch Gezeiten	Ephemeriden: DE430
Atmosphärische Reibung	NRLMSISE-00 mit HWM07
Ozeangezeiten/Polgezeiten	In Bearbeitung
Strahlungsdruck der Sonne	In Bearbeitung
Erdalbedo	Noch nicht berücksichtigt
Relativistische Effekte	Noch nicht berücksichtigt

 Satellitenmission der ESA seit 2013 • Drei baugleiche Low-Earth-Orbiter o Polarorbit in 480 bzw. 530 km Höhe Erforschung des Erd-Magnetfeldes

2. Beschleunigung durch das Erdschwerefeld

• Berechnet mit vollständig normierten Kugelfunktionen: [1]

 $\mathbf{a}_{\mathbf{g}}(x, y, z) = \mathbf{J} \cdot \frac{GM_{\oplus}}{r} \sum_{n=0}^{n_{max}} \left(\frac{R_{\oplus}}{r}\right)^n \sum_{m=0}^n \left[\frac{-\frac{n+1}{r} \left(\bar{C}_{n,m} \cos(m\lambda) + \bar{S}_{n,m} \sin(m\lambda)\right) \bar{P}_{n,m}(\sin\phi)}{\left(\bar{C}_{n,m} \cos(m\lambda) + \bar{S}_{n,m} \sin(m\lambda)\right) \bar{P}_{n,m}(\sin\phi)} \right]$

Schwerefeld-Modell: GGM03S ^[2]

3. Beschleunigung durch Gezeiten

6. Numerische Integration nach Runge-Kutta Ein-Schritt-Verfahren: $\mathbf{y}(t_0) \rightarrow \mathbf{y}(t_1)$ mit $t_1 = t_0 + h$ [3] $\mathbf{y}(t_1) = \mathbf{y}(t_0) + h \cdot \mathbf{\Phi}(t_0, \mathbf{y}(t_0))$ $\Phi(t_0, \mathbf{y}(t_0)) \approx \dot{\mathbf{y}}(t_0) = \begin{pmatrix} \mathbf{v}(t_0) \\ \mathbf{a}(t_0) \end{pmatrix}$ RK4 **RK13** 20

Abb. 6: Integrator-Test durch Vergleich mit analytisch berechneter Kepler-Bahn

7. Ergebnisse der Satellitenbahnmodellierung

• Direkte und indirekte Gezeiten von Mond, Sonne, Venus und Jupiter ○ Die Störbeschleunigung beträgt etwa 10⁻⁶ bzw. 10⁻⁷ m/s²

$$\mathbf{a}_{\text{direkte}} = GM_i \left(\frac{\mathbf{r_i} - \mathbf{r}}{(r_i - r)^3} - \frac{\mathbf{r_i}}{r_i^3} \right)$$

Gezeiten

• Planetare und lunare Ephemeriden: DE430^[4]

4. Beschleunigung durch atmosphärische Reibung

• Verwendung von NRLMSISE-00^[5] (mit ap, F_{10.7}) zur Beschreibung der atmosphärischen Dichte

o Relative Geschwindigkeit zu co-rotierenden Luftmassen und HWM07^[6]

 $\mathbf{a}_{\mathbf{atmos}} = -\frac{1}{2} C_D \frac{1}{m} \rho v_{rel}^2$

Abb. 8: Abweichung der modellierten SWARM-Bahn vom Soll-Orbit (cross-track)

Abb. 9: Abweichung der modellierten SWARM-Bahn vom Soll-Orbit (normal)

Bisher erreichte Modellierungsgenauigkeit nach **90 Minuten**: **3 bis 4 m**

8. Ausblick

 Modellierung zusätzlicher Effekte um Fehler auf cm-Level zu senken o Implementierung weiterer Integratoren • Optimierung der Integrations-Schrittweite

Abb. 4: Norm der Windgeschwindigkeit bei Co-Rotation bzw. nach HWM07

Abb. 5: Beschleunigung des Satelliten durch atmosphärische Reibung (ECI)

Laufzeitverbesserung des in Matlab implementierten Programms

9. Referenzen

[1] M. Sharifi: Satellite Gradiometry Using a Satellite Pair, 2004. [2] B. Tapley et al.: The GGM03 Mean Earth Gravity Model from GRACE, 2007. [3] O. Montenbruck & E. Gill: Satellite Orbits – Models, Methods and Applications, 2000.

[4] W. Folkner et al.: The Planetary and Lunar Ephemerides DE430 and DE431, 2014. [5] J. Picone et al.: NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues, 2002. [6] D. Drob et al.: An Empirical Model of the Earth's Horizontal Wind Fields: HWM07, 2008.

Institut für Erdmessung **Schneiderberg 50** D-30167 Hannover www.ife.uni-hannover.de

Die Präsentation dieses studentischen Projektes auf der geodätischen Woche wurde durch Mittel aus dem SFB 1128 (geo-Q) unterstützt.

INTERGEO 2015 | Stuttgart Geodätische Woche, 15.-17. September