

Study of an optical gradiometer for future satellite gravitational missions

Karim Douch¹, Jürgen Müller¹, Phillip Brieden¹, Akbar Shabanloui¹

¹Institut für Erdmessung, LUH, Hannover

Outlines

- Monitoring the time-variable gravitational field
- Principle of an optical gradiometer
- Specifications for a drift mode gradiometer
- Specifications for a suspension mode gradiometer
- Conclusion

- GRACE (2002-now)
 - Based on satellite-to-satellite ranging
 - Altitude: 500km

- Requirements for future gravity missions
 - Different studies: esa NGGM, esa NGA, e.motion, e.motion²...
 - Main objectives:
 - Time-variable gravity @ 200km spatial resolution or better
 - Temporal resolution of 1month or better
 - Increase amplitude sensitivity by 10
 - Global coverage

Objective of the study:

investigate the opportunity to use gravitational gradients as an observable of the timevariable gravitational field

Gravitational gradients

Gravitational potential

V

Gravitational Gradient Tensor (GGT)

$$egin{aligned} oldsymbol{V} = egin{pmatrix} V_{xx} & V_{xy} & V_{xz} \ V_{yx} & V_{yy} & V_{yz} \ V_{zx} & V_{zy} & V_{zz} \end{pmatrix} \end{aligned}$$

Symmetric and trace-free

Unit: 1E (Eötvös) = 10^{-9} s⁻²

- GOCE (2009-2013): determination of the static gravitational field
 - 3 pairs of electrostatic accelerometers
 - Altitude ≈ 250km
 - Drag compensation

GOCE (ESA)

Scheme of the gradiometer

Fig 1. V_{zz} at altitude of 255km (model:Eigen 6c4)

Fig 2. V_{zz} anomaly at altitude of 255km (model:Eigen 6c4)

- GOCE objectives:
 - Geoid:
 - 1cm error @ 100km resolution
 - Gravity anomaly
 - 1-2mGal @ 100km resolution

Typical magnitude of a time-variable gravitational gradients at GOCE altitude

6

Comparison of time-variable gravitational gradient signals with GOCE performances

Principle of an optical gradiometer

Scheme, describtion and explanation (+cf eLISA)

-Readout: distance variation along one axis

- Heterodyne Mach-Zehnder Laser interferometer
- pm/VHz precision
- TMs attitude measured along 2-axes
- nrad/VHz

For 2 inertial test-masses (no non-gravitational forces) we have:

$$\Delta \ddot{y}_{12} = \ddot{y}_1 - \ddot{y}_2 = \left[(\mathbf{V} - \mathbf{\Omega} \mathbf{\Omega} - \dot{\mathbf{\Omega}}) \cdot \boldsymbol{O}_2 \boldsymbol{O}_1 - 2 \mathbf{\Omega} \cdot \frac{d \boldsymbol{O}_2 \boldsymbol{O}_1}{dt} \right] \cdot \boldsymbol{u}_{\mathcal{Y}}$$

 $\Delta \ddot{y}_{12}$: differential acceleration

: GGT

: Matrix of angular rates of gradiometer frame w.r.t an inertial frame

: unit vector in the y direction

Principle of an principle of a

Fig 1. Example of Test-mass motion w.r.t the spacecraft, simulated over 50s for GOCE conditions
-L=50cm
-initial velocity = 0m/s

Equation of motion for the test-mass centre of mass:

$$\overrightarrow{OO_1} = (\mathbf{V} - \mathbf{\Omega}\mathbf{\Omega} - \dot{\mathbf{\Omega}}).\overrightarrow{OO_1} - 2\mathbf{\Omega}.\overrightarrow{OO_1} - \mathbf{a}_{ng}$$

We have to deal with a ≈ 1mm/min drift of the test-masses

Principle of an optical gradiometer

Test-masses must be in an electrode housing in order to control all 6

degrees of freedom

- 2 different modes:
 - Drift mode
 - 0 to $(1-\alpha)T$: TMs are purely free-falling \longrightarrow measurement (absolute value)
 - $(1-\alpha)T$ to T: suspension forces are applied to reset the TMs to its initial conditions

- Advantages: no electrostatic actuation noise during the measurement phase
- <u>Disadvantages</u>: dead-time, high- accuracy required on the initial relative position and velocity of the TMs, rotation of TMs must be controlled anyway

Principle of an optical gradiometer

Suspension mode

- The TMs are controlled in position through a control loop (≈ GOCE)
- The actuation only filters out the TMs accelerations for frequencies below the MBW on the sensitive axis

- MBW = [0.5-7]mHz
- Advantages: the 6 degrees of freedom of the TMs are controlled, no dead-time
- Disadvantages: increase of cross-talk electrostatic actuations
- Study of operability of both mode in a worst case: GOCE satellite dynamics
- Conditions or requirements to operate the gradiometer

Specifications for a drift mode gradiometer

Solution of the equation of motion (2nd order approx.):

$$\Delta y_{12} = \frac{t^2}{2} \left(\Gamma_{yy} \cdot y_0 + \Gamma_{yx} \cdot \delta x_0 + \Gamma_{yz} \cdot \delta z_0 - 2 \delta \dot{x}_0 \cdot \omega_z + 2 \delta \dot{z}_0 \cdot \omega_y \right) + \delta \dot{y}_0 \cdot t$$

For initial conditions: $\Delta y_{012} = (\delta x_0, y_0, \delta z_0)^t$ and $\Delta \dot{y}_{012} = (\delta \dot{x}_0, \delta \dot{y}_0, \delta \dot{z}_0)^t$

3-axes optical interferometer: determination of V_{xx} , V_{yy} and V_{zz} only

- Unknown contribution terms (yellow) << precision on Γ_{yy} . y_0
- Specifications on TMs position (x_0 =0.5m):

	Misalignement (nm)			
	δx_0	δy_0	δz_0	
X-axis	20	1.6	9.7	
Y-axis	3.5	7.2	9	
Z-axis	9.3	8	2.5	

Specifications for a suspension mode gradiometer

Specifications for a suspension mode gradiometer

Fig 1. ASD of offdiagonal elements of the acceleration gradient tensor reconstructed from GOCE data

Micali	gnement	(nm
iviisaii	gnement	(11111)

	δx_0	δy_0	δz_0
X-axis	-	50	50
Y-axis	50	-	50
Z-axis	50	50	-

Angular velocity determination

Fig 1. ASD of angular velocity of GOCE w.r.t an inertial frame

Angular velocity must be determined with an accuracy ≈ 200 times better than for GOCE!

Conclusion and outlooks

- Envisioned concept: GOCE gradiometer enhanced by laser interferometry in the MBW [0.5-7]mHz
- Suspension mode is favored
- So far, spatial resolution is estimated at 350km
- Determination of Γ_{xx} , Γ_{yy} and Γ_{zz} improved by a factor of 100 compared to GOCE
 - Possibility to detect time-variable gravitational signals
- Questions and issues to address:
 - How to determine the angular velocities with a commensurate precision?
 - Instruments (phasemter, gyrometers)
 - Optimal combination of sensors data
 - Technical aspect: electrostatic accelerometer performances with a lower control on one axis...
 - Requirements on spacecraft attitude determination and feasibility

Thank you for your attention!

Sonderforschungsbereich (SFB) 1128 "Relativistische Geodäsie und Gravimetrie mit Quantensensoren (geo-Q)"

Principle of the phasemeter

