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Monitoring the time-variable gravitational field 

 GRACE (2002-now) 

 Based on satellite-to-satellite ranging 

 Altitude: 500km 

 

 Requirements for future gravity missions  

 Different studies: esa NGGM, esa NGA, e.motion, e.motion²… 

 Main objectives: 

 Time-variable gravity @ 200km spatial resolution or better 

 Temporal resolution of 1month or better 

 Increase amplitude sensitivity by 10 

 Global coverage 

3 

Objective of the study:  
investigate the opportunity to use gravitational gradients as an observable of the time-

variable gravitational field 

GRACE 



Monitoring the time-variable gravitational field 

 Gravitational gradients 

     Gravitational potential                 Gravitational Gradient Tensor (GGT) 

 

 

Symmetric and trace-free   

Unit: 1E (Eötvös) = 10-9 s-2 

 GOCE (2009-2013): determination of the static gravitational field 
 3 pairs of electrostatic accelerometers 

 Altitude ≈ 250km 

 Drag compensation 
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Scheme of the gradiometer 

4 



Monitoring the time-variable gravitational field 

E E 
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 GOCE objectives: 

 Geoid: 

 1cm error @ 100km resolution 

 Gravity anomaly 

 1-2mGal @ 100km resolution 

 

 

Fig 2. Vzz anomaly at altitude of 255km (model:Eigen 6c4) Fig 1. Vzz  at altitude of 255km (model:Eigen 6c4) 
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Monitoring the time-variable gravitational field 

Altitude: 255km 
Model   : The updated ESA Earth system model* 
                 (date:16th of February 2006) 

Typical magnitude of a time-variable gravitational gradients at GOCE altitude  

mE 

mE 

Order of magnitude: < 1mE 
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3 quantities to determine with a higher precision: 

   Γ   Ω   measurement frame attitude 

*Dobslaw et al. 2015 

mE 



Monitoring the time-variable gravitational field 

Comparison of time-variable gravitational gradient signals with GOCE performances 
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GOCE trace noise 



Principle of an optical gradiometer 

 Scheme, describtion and explanation (+cf eLISA) 

 

 

 

 

 

 

 

 

 

 

For 2 inertial test-masses (no non-gravitational forces) we have:  

𝛥𝑦 12 = 𝑦 1 − 𝑦 2 = V − 𝛀𝛀 − 𝛀 . 𝑶𝟐𝑶𝟏 − 2𝛀.
𝑑𝑶𝟐𝑶𝟏

𝑑𝑡
. 𝒖𝑦 

𝛥𝑦 12: differential acceleration 
V       : GGT 
Ω      : Matrix of angular rates of gradiometer frame w.r.t an inertial frame 
𝒖𝑦    : unit vector in the y direction 
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-Readout: distance variation along one axis 
 
-LISA Pathfinder technology 

- Heterodyne Mach-Zehnder Laser 
interferometer 

- pm/√Hz precision 
 
- TMs attitude measured along 2-axes 
- nrad/√Hz  

 



Principle of an 
optical gradiometer 

L 

L 

L 

Fig 1. Example of Test-mass motion w.r.t the 
spacecraft, simulated over 50s for GOCE conditions 
 -L=50cm 
 -initial velocity = 0m/s 

 
 
 
 
 
 
Equation of motion for the test-mass 
centre of mass: 

𝑂𝑂1
 = V−𝜴𝜴−𝜴 . 𝑂𝑂1 − 2𝜴.𝑂𝑂1

 − 𝒂𝑛𝑔 

We have to deal with 
a  ≈ 1mm/min drift of 

the test-masses 
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Principle of an optical gradiometer 

 Test-masses must be in an electrode housing in order to control all 6 
degrees of freedom 

 

 

 

 2 different modes: 

 Drift mode 

  0 to (1-α)T:   TMs are purely free-falling             measurement  (absolute value) 

 (1-α)T to T: suspension forces are applied to reset the TMs to its initial conditions 

 

 

 

 

 Advantages: no electrostatic actuation noise during the measurement phase  

 Disadvantages: dead-time, high- accuracy required on the initial relative 

position and velocity of the TMs, rotation of TMs must be controlled anyway 
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t 
T (1-α)T 0 



Principle of an optical gradiometer 

 Suspension mode 

 The TMs are controlled in position through a control loop  ( ≈ GOCE) 

 The actuation only filters out the TMs accelerations for frequencies below the MBW 
on the sensitive axis 

 

 TMs are free-falling  only in the MBW 

 MBW = [0.5-7]mHz 

 

 Advantages: the 6 degrees of freedom of the TMs are controlled, no dead-time  

 Disadvantages: increase of cross-talk electrostatic actuations 

 

 Study of operability of both mode in a worst case: GOCE satellite dynamics 

  

 Conditions or requirements to operate the gradiometer 
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Specifications for a drift mode gradiometer 

 Solution of the equation of motion (2nd order approx.): 

Δ𝑦12 =
𝑡2

2
Γ𝑦𝑦 . 𝑦0 + Γ𝑦𝑥 . 𝛿𝑥0 + Γ𝑦𝑧 . 𝛿𝑧0 − 2𝛿𝑥 0. 𝜔𝑧 + 2𝛿𝑧 0. 𝜔𝑦 +𝛿𝑦 0. t 

For initial conditions: Δ𝑦012 = (𝛿𝑥0, 𝑦0, 𝛿𝑧0) 
𝑡  and Δ𝑦 012 = (𝛿𝑥 0, 𝛿𝑦 0, 𝛿𝑧 0) 

𝑡 

 

 

 

 

 Unknown contribution terms (yellow) << precision on Γ𝑦𝑦 . 𝑦0 

              Specifications on TMs position (𝑥0=0.5m): 
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Misalignement (nm) 

  𝛿𝑥0 𝛿𝑦0 𝛿𝑧0 

X-axis 20 1.6 9.7 

Y-axis 3.5 7.2 9 

Z-axis 9.3 8 2.5 

3-axes optical 
interferometer: 

determination of 
Vxx, Vyy and Vzz 

only 



Specifications for a suspension mode 
gradiometer 
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λ≈350 km along the orbit 

Theoretical optical 
gradiometer noise 

MBW 

Fig 1. ASD of simulated time-variable gravitation 
gradients at 374 km altitude, in the orbital 
frame 



Specifications for a suspension mode 
gradiometer 
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Misalignement (nm) 

  𝛿𝑥0 𝛿𝑦0 𝛿𝑧0 

X-axis - 50 50 

Y-axis 50 - 50 

Z-axis 50 50 - 

MBW Fig 1. ASD of off-
diagonal elements of 
the acceleration 
gradient tensor 
reconstructed from 
GOCE data 



Angular velocity determination 
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Fig 1. ASD of angular velocity of GOCE w.r.t an inertial frame 

Angular velocity must be determined with an accuracy ≈ 200 times better than for GOCE! 

Vxx=Γxx−ωz
2
−ωy

2
 

Vyy=Γyy−ωz
2
−ωx

2
 

Vzz=Γzz−ωx
2
−ωy

2
 



Conclusion and outlooks 

 Envisioned concept: GOCE gradiometer enhanced by laser interferometry in the 
MBW [0.5-7]mHz 

 Suspension mode is favored 

 So far, spatial resolution is estimated at 350km 

 Determination of Γxx, Γyy and Γzz improved by a factor of 100 compared to GOCE 

 Possibility to detect time-variable gravitational signals 

 

 Questions and issues to address: 

 How to determine the angular velocities with a commensurate precision? 

 Instruments (phasemter, gyrometers) 

 Optimal combination of sensors data 

 Technical aspect: electrostatic accelerometer performances with a lower control 
on one axis... 

 Requirements on spacecraft attitude determination and feasibility 
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Thank you for your attention! 
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 Principle of the phasemeter 
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