Präzise Bauwerksüberwachungsmessung mittels automatischer Druckschlauchwaage – Ein Bericht aus der Praxis

Dipl.-Ing. Mario Haupt & Dr. Christian Hesse

Der nachfolgende Beitrag beschreibt ein umfangreiches Bauwerksmonitoring an zwei Autobahnbrücken mit Hilfe eines präzisen hydrostatischen Nivelelements.

Die durchgeführten Überwachungsmessungen dienten zur Bestimmung des Bauwerksverhaltens der beiden Brücken während des Rückbaus einer der jeweils gesperrten Richtungsfahrspahn im Zuge der Erneuerung der Brücken.

Das hydrostatische Monitoringsystem bestand aus 10 Nivelementslinien mit insgesamt 68 Druckgefäßen, 70 Temperatursensoren und zwei Datenloggern.

Über den Betriebszeitraum von 4 Monaten wurden auf diese Weise rund 3 Millionen Messwerte registriert und verarbeitet.

Schlüsselwörter – Bauwerksüberwachung, Monitoring, automatische Druckschlauchwaage, Webportal

1. Einleitung

Die Realisierung einer Bauwerksüberwachungsmessung hängt von einer Vielzahl von Faktoren ab, die bei der Planung und Umsetzung berücksichtigt werden müssen, damit die Bauwerksbewegungen präzise erfasst werden können. In der Regel kommen konventionelle Messverfahren wie Nivellement oder Tachymetrie zum Einsatz, bei denen in regelmäßigen Intervallen die relevanten Objekt- oder Setzungspunkte manuell beobachtet werden.

doi.org/10.15488/4525 227
Kann das Verhalten des Bauwerkes aufgrund der zusätzlichen Belastungen nicht gesichert vorhergesagt werden und besteht zudem die Gefahr, dass geringe Verformungen oder Setzungen zu einem Bauwerksversagen ohne Vorankündigung führen können, ist die manuelle Überwachungsmessung nur noch bedingt oder nur noch unter sehr hohen personellen Aufwand einsetzbar.

2. Überwachungsmessungen für die Bauwerke 3075 und 3075a

2.1. Ausgangslage

Die beiden Brückenbauwerke BW 3075 und BW 3075a im Zuge der BAB A7 nahe Derneburg/Salzgitter sollen im Rahmen einer Brückenерneuerungsmaßnahme vorgezogen errichtet und temporär durch einen aufgeschütteten Damm ersetzt werden. Es handelt es sich hierbei um Mehrfeldbrücken aus Spannbeton mit einer baulichen Trennung zwischen den Richtungsfahrbahnen, sodass jedes Bauwerk aus jeweils zwei Teilbauwerken besteht. Die Bauwerke wurden 1959 errichtet und überführen die

[Abbildung 1: Übersicht Brückenbauwerke – Nord-Westlich Gemeinde Holle (Quelle: Google Earth)]
Kreisstraße K306 (BW3075a) sowie einen Wirtschaftsweg (BW3075).

Aufgrund der örtlichen Situation und der hohen Verkehrsbelastung auf der BAB A7 erfolgt die bau-
technische Realisierung des ersten Neubauabschnittes in einzelnen Bauphasen, in deren Ergebnis der
Rückbau und die Herstellung eines Ersatzdammes für die Teilbauten in Fahrtrichtung Hannover
erbracht werden.

Im Rahmen dieser Maßnahme war eine kurzzeitige Mehrbelastung (9 Tage) durch die Einrichtung ei-
er 4+0 Verkehrsführung auf den beiden westlichen Teilbauten (RF Kassel) geplant. Im Anschluss
an den Rückbau über 9 Tage und die Rücknahme der veränderten Verkehrsführung wurden die be-
den Teilbauten bis zur endgültigen Umverlegung des gesamten Verkehrs auf den neu hergestellten
Damm vorübergehend weitergenutzt.

Um die Bauwerksbewegungen infolge der Mehrbelastungen sowie den parallel laufenden Tiefbau-
und Abbrucharbeiten mit nicht unerheblichen Erschütterungen überwachen zu können, wurde ein inge-
nieurgeodätisches Monitoring auf Basis von Druckschlauchwaagensystemen geplant und ausgeführt.

Abbildung 2: Auszug Querschnittsdarstellung Bauphasen – links Situation vor Baubeginn / rechts Situation
nach Fertigstellung (NLS+BV 2018)

2.2. Messkonzept Bauwerksmonitoring

Für die Überwachung der Standsicherheit des Bauwerkes während der Bautätigkeiten sowie der Mehr-
belastungsphase wurde ein Messkonzept erarbeitet, welches die kontinuierliche elektronische Messwer-
terfassung mit hoher zeitlicher und geometrischer Auflösung von einer Nullmessung im Normalzustand,
über einen unbelasteten Bauwerkszustand bis hin zum Abschluss der Baumaßnahme gewährleistet.

Zur Realisierung der geforderten Standardabweichung für die Höhenveränderung von 1 mm bezog-
en auf Referenzpunkte am Brückenwiderlager und unter Berücksichtigung der schwierigen örtlichen
Messbedingungen, wurde für die messtechnische Monitoringaufgabe ein elektronisches Druckschlauch-
waagenmesssystem ausgewählt.

Die Messwerte sollten hierbei mit Hilfe von Sensorknoten direkt vor Ort ausgelesen und über eine
Mobilfunkverbindung (LTE) an einen Monitoringserver in Hamburg übertragen werden.
Abbildung 3: Darstellung Regelmessquerschnitt und Schlauchwaagengefäß vor Anschluss der Schläuche.

Die Erfassung der relativen Höhenänderung zwischen den einzelnen Messstellen ermöglichte eine präzise und zuverlässige Aussage über das Setzungsverhalten des Bauwerkes sowie lokale Höhenänderungen infolge der unmittelbaren Bauarbeiten oder der verkehrsbedingten Mehrbelastung.

Für jede Messlinie wurde ein Referenz- bzw. Nullpunktgefüß an den nicht setzungsgeschädigten Widerlager montiert. Diese Messstellen dienen als Höhenfixpunkte, um die Höhendifferenz zu allen anderen Objektpunkten derselben Linie bestimmen zu können.

3. Einrichtung und Betrieb eines Monitoringsystems

3.1. Sensorik und Installation

Eine Änderung der relativen Höhenlage bewirkt eine proportionale Druckänderung, welche über das spezifische Gewicht der Flüssigkeit in eine Höhendifferenz umgerechnet werden kann. Die Messpunkte können unter Beachtung des Messbereiches an beliebiger Stelle am Messobjekt platziert werden.
Die einzelnen Messstellen wurden mit kalibrierten Präzisionsdrucksensoren ausgestattet, die eine Genauigkeit von ±0,09% FS bei einem Messbereich von 0 bis 500 mm hydrostatischer Höhe aufweisen.

Die Schlauchwaagendrucksensoren sind mit einem internen Temperaturfühler ausgestattet, sodass für jede Messstelle und registrierten Messwert auch die aktuelle Temperatur erfasst wurde. Hierdurch können Druckunterschiede, die aus einem Temperaturgradienten zwischen den Schlauchwaagengefäßen resultieren in gewissen Grenzen kompensiert werden.

Zudem wurde an jedem Teilbauwerk noch ein zusätzlicher Temperaturfühler installiert, sodass simultan auch die Betontemperatur geloggt wurde, um temperaturinduzierte von nicht durch Verkehrslast hervorgerufenen Bauwerksdeformationen trennen zu können.

Die Installation des Schlauchwaagenmesssystems, die zum Teil von bis zu 6 Ingenieuren und Technikern vor Ort durchgeführt wurde, kann hinsichtlich der örtlichen Gegebenheiten, des parallel laufenden Baugeschehens und des sehr kurzen Zeitfensters für die Montage als durchaus herausfordernd betrachtet werden.

Insbesondere die Montage des Schlauchwaagensystems in einer Höhe von etwa 4 m ohne Einrüstung und insbesondere ohne die Möglichkeit des Setzens von Bohrungen sowie die parallel stattfindenden Erdarbeiten unterhalb der Brücke waren wesentliche Erschwernisse bei der Installation.
Eine strikte Vorgabe des Auftraggebers bestand darin, dass eine Fixierung der Befestigungswinkel für die Drucksensoren und für die Kabelkanäle an den Bauwerksunterseiten nur mittels Spezialkleber erfolgen durfte. Durch den Verzicht auf gebohrte Befestigungen sollte eine eventuelle Beschädigung der Bewehrung und Spannbewehrung vermieden werden.

Größtenteils war die Montage der Schlauchwaagenmesssystems nur mit Leitern oder einer Teleskoparbeitsbühne möglich. Abbildung 5 zeigt die installierte Schlauchwaage nach Abschluss aller Erdarbeiten unterhalb der Brücke. Um einseitige Sonneneinstrahlung und die daraus resultierenden wärmeimplizierten Druckänderungen zu verhindern, wurden entlang der gesamten Messlinien Kabelkanäle und zum Teil notwendige zusätzliche Sonnenblenden montiert.

Abbildung 6: Datenlogger und Ausgleichsgefäße (links), Übergabepunkt zwischen zwei Messlinien (rechts).

Insgesamt wurden bei diesem Projekt verbaut:

- BW 3075a 60 Drucksensoren
 8 Ausgleichsgefäße
 61 Temperatursensoren

- BW 3075 8 Drucksensoren
 2 Ausgleichsgefäße
 9 Temperatursensoren

Einen exemplarischen Überblick für das Teilbauwerk BW 3075a samt installierter Messstellen und Linien gibt die Abbildung 7.

Abbildung 7: Skizze Messstellen BW 3075a – Teilbauwerk RF Kassel

Die Verlegung der Flüssigkeits- und Luftschläuche sowie der Datenkabel erfolgte in den montierten Kabelkanälen und entlang der Widerlager durch zusätzliche Fixierungen.
3.2. Systemarchitektur und Webportal

Neben den rohen Messwerten der Schlauchwaagen wurden auch die in den Gefäßen registrierten Temperaturwerte, sowie die Bilder einer auf das rückzubauende Brückenbauwerk im Abstand von 10 Minuten auf den Server übertragen. Für die Datenübertragung kamen LTE Modems zum Einsatz, um die anfallenden Datenmengen zeitnah zu übertragen.

Die Berechnung der Höhenunterschiede sowie die Prüfung auf Überschreitung der vom Auftraggeber definierten Grenzwerte samt anschließender Alarmierung erfolgte im hauseigenen Monitoringsystem GeoSCADA, welches seit 2010 durch dhp entwickelt und um vielfältige Sensorschrottstellten erweitert worden ist.

Abbildung 8 zeigt die Gefäßhöhen einer Schlauchwaagenlinie während des Rückbaus einer der Brückenteile. Die durch die Abbruchmaschinen erzeugten Schwingungen im Schlauchwaagensystem sind ab dem ersten Drittel der Zeitreihe klar zu erkennen.

Wunsch des Auftraggebers war zudem eine direkte Alarmierung mehrerer Mitarbeiter des NLStBV im Falle von definierten Grenzwerterüberschreitungen per Email und SMS. Um bestimmte systematische Effekte wie Schwingungen aufgrund von starker Vibration vorab prüfen zu können, wurde ein zweiter interner Alarmkreis mit niedrigerer Auslöseschwelle eingerichtet, über den nur Mitarbeiter der beteiligten Vermessungsbüros vorab informiert wurden.

4. Erfahrungen mit Schlauchwaagen im hochdynamischen Umfeld

Die Installation eines Schlauchwaagensystems außerhalb von Gebäuden, insbesondere an Orten, die im Hinblick auf Sonneneinstrahlung exponiert und von zum Teil sehr starken Vibrationen beeinflusst sind, ist als Anwendung im Grenzbereich zu sehen.

Vor allem unter diesen Bedingungen ist eine sehr sorgfältige Installation der Gefäße, Verlegung der Leitungen sowie der Schutz der flüssigkeitsführenden Leitungen vor unterschiedlicher Erwärmung von höchster Priorität, um Nutzsignal von Störeinflüssen unterscheiden zu können.
Abbildung 8: Darstellung von Zeitreihen während des Rückbaus.

Abbildung 9: Zeitreihe aller Gefäße von Linie 1100 über 10 Wochen Messdauer.
Die mehr als 20-jährige Erfahrung der Beteiligten bei der Installation und dem Betrieb von Schlauchwaagensystemen war diesbezüglich von Vorteil.

Wie nahe die eigentlichen Abbrucharbeiten an den installierten Schlauchwaagengefäßen stattfanden, ist in Abbildung 10 zu sehen. Der langgestreckte, horizontal unter der Brücke verlaufende, Streifen ist der Kabelplan samt daneben installierten Schlauchwaagengefäßen, der sich in einem Abstand von etwa 10 cm von der Schnittstelle zwischen beiden Brücken befindet. Auch nach Rückbau der Teilbrücke war diese Linie noch vollständig intakt und übermittelte Daten.

Literatur

Abbildung 10: Web-Cam-Bilder während des Rückbaus (oben), nach erfolgreichem Rückbau (unten).